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Abstract

Ambiguity represents an obstacle for
distributional semantic models (DSMs),
which typically subsume the contexts of
all word senses within one vector. While
individual vector space approaches have
been concerned with sense discrimination
(e.g., Schütze (1998), Erk (2009), Erk
and Pado (2010)), such discrimination has
rarely been integrated into DSMs across
semantic tasks. This paper presents a soft-
clustering approach to sense discrimina-
tion that filters sense-irrelevant features
when predicting the degrees of compo-
sitionality for German noun-noun com-
pounds and German particle verbs.

1 Introduction

Addressing the compositionality of complex
words is a crucial ingredient for lexicography and
NLP applications, to know whether the expres-
sion should be treated as a whole, or through its
constituents, and what the expression means. For
example, studies such as Cholakov and Kordoni
(2014), Weller et al. (2014), Cap et al. (2015), and
Salehi et al. (2015b) have integrated the prediction
of multi-word compositionality into statistical ma-
chine translation.

We are interested in predicting the degrees of
compositionality of two types of German multi-
word expressions: (i) German noun-noun com-
pounds (NCs) represent nominal multi-word ex-
pressions (MWEs), e.g., Feuer|werk ‘fire works’
is composed of the constituents Feuer ‘fire’
and Werk ‘opus’. (ii) German particle verbs
(PVs) are complex verbs such as an|strahlen
(‘beam/smile at’) which are composed of a sepa-
rable prefix particle (an) and a base verb (strahlen
‘beam’/’smile’). Both types of German MWEs are

highly frequent and highly productive in the lexi-
con. Table 1 presents some example MWEs and
their constituents with human ratings on composi-
tionality.1

Automatic approaches to predict composition-
ality degrees typically exploit distributional se-
mantic models (DSMs), i.e. vector representa-
tions relying on the distributional hypothesis (Har-
ris, 1954; Firth, 1957), that words with simi-
lar distributions have related meanings. Regard-
ing the compositionality prediction, DSMs repre-
sent the meanings of the MWEs and their con-
stituents by distributional vectors, and the sim-
ilarity of a compound–constituent vector pair
is taken as the predicted degree of compound-
constituent compositionality. Existing approaches
addressed the compositionality of NCs (Reddy et
al., 2011; Salehi and Cook, 2013; Schulte im
Walde et al., 2013; Salehi et al., 2014) and com-
plex verbs (Baldwin, 2005; Bannard, 2005; Bott
and Schulte im Walde, 2015), mainly dfor English
and for German.

A major obstacle for DSMs is their conflation
of contexts across individual word senses. DSMs
typically subsume evidence of cooccurring items
within one vector for the target word type, rather
than discriminating contextual evidence for the
specific target word senses. Taking the German
noun-noun compound Blatt|salat ’leaf salad’ as an
example, its modifier constituent Blatt has at least
four senses: ’leaf’, ’sheet of paper’, ’newspaper’
and ’hand of cards’. If we had individual sense
vectors for each sense of Blatt, a DSM might suc-
cessfully predict a strong compositionality for the
compound Blatt|salat regarding this constituent,
when comparing the compound vector with the
’leaf’ sense vector, because the vectors agree on

1The scales for mean ratings were 1–7 for noun-noun
compounds, and 1–6 for particle verbs. Examples were taken
from the two gold standards described in section 2.
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Multi-Word Expressions Mean Ratings
Modifier Head

Ahorn|blatt ‘maple leaf’ maple leaf 5.64 5.71
Blatt|salat ‘green salad’ leaf salad 3.56 5.68
See|zunge ‘sole’ sea tongue 3.57 3.27
Löwen|zahn ‘dandelion’ lion tooth 2.10 2.23
Fliegen|pilz ‘toadstool’ fly/bow tie mushroom 1.93 6.55
Fleisch|wolf ‘meat chopper’ meat wolf 6.00 1.90
an|leuchten ‘illuminate’ anPRT illuminate – 5.95
auf|horchen ‘listen attentively’ aufPRT listen – 4.55
aus|reizen ‘exhaust’ ausPRT provoke – 3.62
ein|fallen ‘remember/invade’ einPRT fall – 2.54
an|stiften ‘instigate’ anPRT create – 1.80

Table 1: Examples of German noun-noun compounds and German particle verbs, accompanied by trans-
lations and human mean ratings on the degrees of compound-constituent compositionality.

salient features such as green and fresh. But tra-
ditionally, the constituent vector contains distribu-
tional information across all Blatt senses, and the
similarity between the conflated word type vector
and the compound vector is most probably deter-
mined by the predominant sense of the word type
(which does not necessarily coincide with the rel-
evant sense).

While individual vector space approaches have
been concerned with sense discrimination (e.g.,
Schütze (1998), Erk (2009), Erk and Pado (2010)),
the approaches have rarely been integrated into
DSMs across semantic tasks. Alternatively,
sense disambiguation/discrimination approaches
have been developed for SemEval tasks on Word
Sense Disambiguation/Discrimination and (Cross-
lingual) Lexical Substitution (McCarthy and Nav-
igli, 2007; Mihalcea et al., 2010; Jurgens and
Klapaftis, 2013). As to our knowledge, few sys-
tems have attempted to distinguish between word
senses and then address various semantic related-
ness tasks, such as Li and Jurafsky (2015) and
Iacobacci et al. (2015). Computational compo-
sitionality assessment has been studied for NCs
(Reddy et al., 2011; Schulte im Walde et al., 2013;
Salehi and Cook, 2013; Schulte im Walde et al.,
2016a) and PVs (McCarthy et al., 2003; Baldwin
et al., 2003; Bannard, 2005; Kühner and Schulte
im Walde, 2010). Most similar to our current work
is Salehi et al. (2015a), who addressed the prob-
lem of semantic ambiguity in MWEs by using a
multi-sense skip gram model with two to five em-
beddings per word. They expected multiple em-
beddings to capture different word senses. They
could, however, not find an improvement over the
use of single-word embeddings.

In this paper, we suggest soft clustering as an

approximation to separate the different senses of
a word type. We expect that the assignments of
compound and constituent words to clusters reflect
the differences between word senses, and that the
underlying features refer to the features of the re-
spective word sense. We assume further that if we
find a pair <µ, κ> of an MWE µ and one of its
constituents κwith high distributional similarity in
the same cluster, this indicates closeness in mean-
ing and therefore strong compositionality. We ex-
ploit the soft clusters by (a) identifying the rele-
vant senses of the MWE and constituents based
on overlap in cluster assignment, and by (b) com-
paring reduced vectors of MWEs and constituents
when taking into account only a subset of cluster-
based salient sense features, in order to optimize
the prediction of compositionality.

2 Experiment Setup

Distributional Semantics Models Our DSM is
a word space model that uses lemmatized words as
dimensions in the high-dimensional vectors space
(Sahlgren, 2006; Turney and Pantel, 2010). The
associative strength between target and context
words is measured as Local Mutual Information
(LMI) (Evert, 2004), based on context word fre-
quency. The context of the targets is defined as a
window of n words to the left and the right of the
target. We use the cosine value of the angle be-
tween two vectors as a measure for semantic sim-
ilarity and compositionality. For technical reasons
we ignore context words with a count of 5 or less
or an LMI value below 0.

We use the word vectors in three ways here: (a)
we use them directly as window models in order to
measure the distance between vector pairs for an
MWE and each of its components (e.g. Blatt|salat
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vs. Blatt). We also use them (b) as an input matrix
for soft clustering and (c) we build word vector
models for each cluster.

LSC for Soft Clustering We use Latent Seman-
tic Classes (LSC) as a soft clustering algorithm
(Rooth, 1998; Rooth et al., 1999). LSC is a
two-dimensional soft-clustering algorithm which
learns three probability distributions: (a) across
the clusters, (b) for the output probabilities of each
element within a cluster and (c) for each feature
type with regard to a cluster. The access to all
three probability distributions is crucial for our ap-
proach, since it allows to determine which features
are salient for individual clusters.

The Pipeline We create two types of models:
The window models are simple word space models
which use LMI values based on counts of context
words. The clustering models apply soft clustering
as a previous step to the determination of distribu-
tional similarity. For their construction, we use the
window-based models as an input to the LSC al-
gorithm. The clusters produced by LSC are used
to create individual models for each cluster C in a
way that each of these cluster-specific models only
contain vectors for the target words which are con-
tained in C and represent only those features as
dimensions which are predicted to be salient fea-
tures for C. The models vary with respect to the
number of clusters created.

With this, we expect that in our example of
Blatt|salat some clusters will capture the leaf-
sense and others the sheet- or other senses. The
comparison between the vectors for Blatt and
Blatt|salat is then done separately for each cluster,
where the context dimensions of the vectors are re-
duced to only those context words which are also
salient features of each cluster. We expect that the
pair of our example only occur in clusters which
can be attributed to the leaf-sense.

Comparison across Clusters In cases like the
NC Blatt|salat it appears that the word sense
which should be considered for compositional-
ity assessment is the one which is distributionally
closest to the target MWE. But this is not neces-
sarily the case for all MWEs. The PV zu|schlagen
is one example: it can mean both to hit hard
and quickly or to take advantage of a good of-
fer/bargain; in this case the MWE itself is am-
biguous. The base verb schlagen means to hit,
so one sense of the PV is highly compositional

and the other sense is less so; nevertheless none
of the senses is predominant. We use three meth-
ods to compare the distributional similarity across
clusters: highest, lowest and average. In the first
two methods (highest/lowest) we select the clus-
ter with the highest/lowest distributional similar-
ity between µ and κ and use its similarity value.
In the last method (average) the average similar-
ity is computed among those clusters which con-
tain both the MWE µ and the target component κ,
while clusters which do not contain the pair <µ, κ>
are ignored.

Thresholds The fact that LSC outputs proba-
bilities for both targets and features allows to
set two different thresholds on these probabilities.
The threshold on the target output probability (t-
threshold) controls the number of clusters to which
a target element will be assigned. The lower the
threshold is set, the more elements each cluster
will contain. Lower threshold values also lead to
higher average numbers of clusters to which each
element is assigned. The t-threshold influences the
predictions of our models in that low values also
increase the likelihood for each Cluster C and for
each pair <α, β> of a MWE and a constituent word
that both α and β are included in C. The thresh-
old on the feature output probability (f-threshold)
allows to filter the vectors for both elements of
<α, β> according to each clusterC so that only the
dimensions representing the salient features for C
are included in the vectors.

Corpus For the extraction of features we use the
SdeWaC (v.3, 880 million words) corpus (Faaß
and Eckart, 2013), in a tokenized (Schmid, 2000),
POS-tagged and lemmatized (Schmid, 1994) ver-
sion.

Gold Standards For NCs and PVs we use the
following gold standards:

• GS-NN: 868 German NCs (Schulte im Walde
et al., 2016b) randomly selected from dif-
ferent frequency ranges, different ambiguity
levels of the heads and different levels of
modifier and head productivity. NCs were
annotated by eight native speakers on a scale
from 1 to 6 for compositionality with respect
to both head and modifier constituents.
• GS-PV: 354 PVs, for 11 verb particles. PVs

were randomly selected, balanced over 3 fre-
quency bands. The PVs were automatically
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Figure 1: Results (in ρ values) for different win-
dow sizes for the NC-head gold standard

Figure 2: Results (in ρ values) for different win-
dow sizes for the PV gold standard

harvested from various corpora, assigned
to 3 different frequency ranges per parti-
cle and then automatically selected. Some
manual revision was done to filter out non-
existing PVs resulting from lemmatization
errors. Ratings were obtained with Amazon
Mechanical Turk.2

Feature Sets We were interested in which parts
of speech provide the best predictive features for
compositionality. We use only content-word cate-
gories: adjectives, nouns and verbs. We use four
different combinations: all content words and cat-
egories in isolation.

Measures Distributional similarity is measured
with the cosine between vectors. The cosine sim-
ilarity values are used to rank the compared pairs
from lowest to highest. For the evaluation, sys-
tem rankings and human judgment rankings of
MWEs are compared to each other with Spear-
man’s rank order correlation ρ (Siegel and Castel-
lan, 1988). Spearman’s ρ is a non-parametric mea-
sure which assesses monotonic relationships of
ranks that range between -1 (inverse correlation)
and 1 (perfect correlation); a ρ value of 0 indicates
a lack of correlation. Significance is determined
with the use of the Fisher transformation.

Soft clustering does not guarantee that each of
the pairs of NCs and a constituent word is placed
together in at least one of the clusters. This may
potentially lead to problems of coverage. In prac-
tice, however, we experience coverage problems
only for very restrictive threshold settings.

2This gold standard is a preliminary, but not identical, ver-
sion of the one presented in Bott et al. (2016). It was also used
in Bott and Schulte im Walde (2014).

3 Results and Discussion

Figure 1 and 2 show the results for different win-
dow sizes for NCs and PVs. The two figures
have different scales and higher ρ scores are ob-
tained for NCs. The values are compared to the
results of the window-based models. The pre-
dictions of compositionality levels become more
accurate with increasing window sizes. For NC
compositionality apparently more general infor-
mation about the larger context plays an important
role. Interestingly, no negative effect from larger
contexts can be observed, even if smaller con-
texts tend to concentrate on closely related words
such as complements, modifiers and the comple-
mentary parts of collocations in which the target
word takes part. All ρ values above 0.108 are sta-
tistically highly significant (p<0.001 for n=868),
which applies to nearly all of the observed values.

Regarding PV compositionality, window mod-
els increase their performance with larger con-
text sizes, but this is not true for clustering mod-
els. The latter tend to perform better with small
to medium window sizes and in this range clus-
tering models clearly outperform window models.
Also NC compositionality tends to be better pre-
dicted with the clustering-based models, but to a
degree. It is also interesting to note that the suc-
cessful combination cluster methods are different
for NC (where highest performs best) and PVs (for
which the average method yields the best results).
This suggests a more fundamental difference in
the two types of MWEs. One of the possible dif-
ferences lies in the average degree of ambiguity
of the MWEs and their constituents. NCs have a
strong tendency to be less ambiguous than their
constituent nouns. PVs, on the other hand, are of-
ten highly ambiguous themselves.
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Figure 3: Results for different numbers of clusters
for the NC gold standard (heads vs. modifiers)

Figure 3 shows the effect of the number of clus-
ters which are used in the clustering stage. The
graphic shows that the number of clusters has not a
strong influence on performance, but slightly bet-
ter results can be observed with smaller numbers
of clusters. This might be due to the fact that larger
numbers of clusters split up the feature space into
smaller segments and the feature vectors tend to
suffer from sparseness. Figure 3 also shows that
the predictions for the noun compound composi-
tionality with respect to the heads are generally
better than with respect to the modifiers. This
is probably a consequence of the fact that mean-
ing of NCs is in most cases more strongly deter-
mined by the meanings of their heads than their
modifiers. This might explain the observed asym-
metry. This finding is in line with earlier stud-
ies (Hätty, 2016; Schulte im Walde et al., 2016a)
which investigated the asymmetry between the
properties of heads and modifiers in noun-noun
compounds. They showed that head constituent
properties, such as their ambiguity or frequency,
influence the predictability of NC composition-
ality to a much larger degree than modifier con-
stituent properties.

As for feature selection, we found that ad-
jectives represented the least reliable predictive
features for compositionality assessment, while
nouns were the most reliable ones. The use of the
latter even leads to a slightly better performance
than the use of the full feature set that contains all
content word categories.

Figure 4 shows the influence of the target and
the feature thresholds on compositionality predic-

Figure 4: ρ values for variations over thresholds
(NC gold standard)

tion. As expected, very high threshold values lead
to poor performance since they cause very sparse
vector representations. Lowering the threshold the
performance curve raises steeply and reaches a
stable plateau which is observable in this figure.

4 Conclusions

We started this paper with a theoretical justifi-
cation to factor out the influence of ambiguity
from the prediction of compositionality across
multi-word expressions. We applied soft cluster-
ing to extract word-sense vectors from word-type
vectors, in order to strengthen salient sense fea-
tures and improve the prediction of compound–
constituent compositionality. Both NCs and PVs
benefit from the use of clustering in distributional
modeling, but in different ways. First, PVs ben-
efit much more than NCs. Second, the optimal
type of the combination method which calculates a
global similarity score per compound–constituent
pair from the cluster-specific DSMs differs be-
tween the two types of MWEs. This suggests an
underlying difference between them.

In future work we will explore alternative ways
to treat the ambiguity of constituent words more
adequately. We further plan to examine why dif-
ferent types of MWEs tend to benefit from the
clustering approach but with different cluster com-
bination methods. We will also extend our investi-
gation to other semantic relatedness tasks, such as
the distinction between semantic relations, which
potentially suffer from the same ambiguity issue.
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