
Proceedings of The 9th International Natural Language Generation conference, pages 51–60,
Edinburgh, UK, September 5-8 2016. c©2016 Association for Computational Linguistics

Infusing NLU into Automatic Question Generation

Karen Mazidi and Paul Tarau
Department of Computer Science and Engineering
University of North Texas, Denton TX 76207 USA

karenmazidi@my.unt.edu, paul.tarau@unt.edu

Abstract

We present a fresh approach to automatic
question generation that significantly in-
creases the percentage of acceptable questions
compared to prior state-of-the-art systems. In
our evaluation of the top 20 questions, our sys-
tem generated 71% more acceptable questions
by informing the generation process with Nat-
ural Language Understanding techniques. The
system also introduces our DeconStructure al-
gorithm which creates an intuitive and prac-
tical structure for easily accessing sentence
functional constituents in NLP applications.

1 Introduction

Question generation has been described as a dia-
logue and discourse task, drawing on both Natu-
ral Language Understanding and Natural Language
Generation (Rus et al., 2012). However, cur-
rent state-of-the-art question generation systems pay
scant attention to the NLU aspect, an issue we ad-
dress in this work. The question generator we
present explores means of infusing NLU analysis
(Allen, 1995) into the task of automatically gen-
erating questions from expository text for educa-
tional purposes. Ginzburg’s work on Questions Un-
der Discussion (2012) frames discourse as a series
of questions to be addressed. Expository text could
be viewed from this perspective: it is a monologue
from which the author hopes the reader would be
able to answer a set of questions. Automatic ques-
tion generation, then, could be viewed as a process
of discovering unasked questions within the mono-
logue.

2 Prior work in question generation

Pioneering work in QG dates back to Wolfe (1976)
who not only demonstrated the feasibility of auto-
matically generating questions from text but also
that automatically generated questions could be
as effective as human-authored questions (Wolfe,
1977). Question generation has received revived in-
terest in recent years, spurred in part by a series of
workshops on question generation, the last one of
which occurred in 2010 (Boyer and Piwek, 2010).

2.1 Common approaches to QG

Apart from a few outliers in specialized domains
with limited results, the majority of question gen-
eration systems input a text source, parse the sen-
tences, and transform sentences into questions. Two
major design decisions are: (1) selecting a parser,
and (2) deciding whether to use external templates
or internal rules for sentence-to-question transfor-
mation. In a recent survey of question genera-
tion approaches for educational applications, Le et
al. (2014) observed that template-based approaches
tended to perform better than systems that syntac-
tically rearrange the source text. Our observation
is that generating any question type is theoretically
possible in any approach, but that some approaches
make some types easier to generate than others.

One of the most popular QG approaches involves
parsing text with a PSG (phrase structure gram-
mar) parser and then forming questions using tem-
plates (Rus et al., 2007; Wyse and Piwek, 2009;
Liu et al., 2010; Liu et al., 2012) or transformation
rules and tree manipulation tools (Gates, 2008; Heil-
man, 2011; Ali et al., 2010). Heilman notes (2011)

51



Sentence ArgN Dep. Label Meaning
1. John broke the window. Arg1 dobj second entity in relation
2. John was angry. Arg1 acomp property of subject
3. John felt that everyone always ignored him. Arg1 ccomp proposition of subject
4. John is an angry man. Arg1 attr definition of subject
5. John wanted to make his presence heard. Arg1 xcomp purpose
6. John began bleeding profusely. Arg1 xcomp action

Table 1: Arg1 versus Dependency Labels

that these purely syntactic approaches do not allow
higher-level abstractions that may be possible with
more semantically informed approaches.

An alternative to the phrase-structure parse is the
SRL (semantic role label) parse which identifies for
each predicate in a sentence, its associated argu-
ments and modifiers, and specifies their semantic
roles. A QG system can then extract arguments and
modifiers for question construction (Mannem et al.,
2010; Lindberg et al., 2013; Mazidi and Nielsen,
2014; Chali and Hasan, 2015). These systems are
able to generate a wider variety of questions than
the phrase structure approach and are not as closely
bound to the sentence source text.

A third type of parse used in QG systems is the
dependency parse, which connects words in a sen-
tence in a graphical structure based on their gram-
matical and functional relations. Although the SRL
parse is sometimes referred to as a shallow seman-
tic parse, certain dependency relations give greater
insight into semantics than the SRL parse. The itali-
cized portions of the sentences in Table 1 were all
parsed as Arg1 by the SRL parser. In contrast,
the labels provided by the dependency parser are
quite varied, and provide opportunities to glean var-
ied meanings from what is simply Arg1 in the SRL
parse. Although the dependency parse had been
used as an ancilliary tool and for sentence simpli-
fication, Mazidi et al. (2015) was the first to fully
exploit dependency relations in question generation.

Another recent innovative approach (Labutov et
al., 2015) used crowd sourcing to develop QG tem-
plates by leveraging the structure of their source
data, Wikipedia. As an example, articles about per-
sons have similar subsections such as Eary Life, In-
fluences, and so forth, so that templates formed for
one person should transfer reasonably well to oth-
ers. It remains to be seen how this innovative but

source-specific approach would transfer to other text
sources such as textbooks on a wide range of topics.
Interestingly, the approach relies on the observation
that expository text tends to be rather redundant in
structure, an observation that has parallels with the
observations we offer in this paper.

2.2 NLU: the missing piece of the puzzle

Most prior work in QG views a sentence as a string
of constituents and proceeds to rearrange those con-
stituents into as many questions as possible accord-
ing to grammar rules. In contrast, the work we
present here first classifies what a sentence is com-
municating by examining the pattern of constituent
arrangement. As described below, the identification
of this sentence pattern is key to determining what
type of question should be asked about that sentence,
as opposed to generating questions on every possi-
ble sentence constituent. This sentence identifica-
tion process is part of the DeconStructure algorithm.

3 DeconStructure algorithm

The DeconStructure algorithm has one major objec-
tive: a sentence is taken apart to be restructured in
such a way that reveals what it is trying to commu-
nicate. This involves two major phases: deconstruc-
tion, then structure formation, In the deconstruction
phase, the sentence is parsed with both a dependency
parse and an SRL parse. Additionally, word lemmas
and parts of speech are gathered, along with named
entity information. In the structure formation phase,
the algorithm first divides the sentence into indepen-
dent clauses, then utilizes output from all parses to
identify clause components and assigns each a label
that represents its function within the clause. Before
delving into the specifics of these two phases, we
justify the approach with theoretical foundations.

52



Token PSG SRL Dependency
1 The (S(NP* B-A0 det(algorithm-3,the-1)
2 DeconStructure * I-A0 compmod(algorithm-3,DeconStructure-2)
3 algorithm *) E-A0 nsubj(creates-4,algorithm-3)
4 creates (VP* S-V ROOT(root-0,creates-4)
5 a (NP(NP* B-A1 det(representation-7,a-5)
6 functional-semantic * I-A1 amod(representation-7,functional-semantic-6)
7 representation *) I-A1 dobj(creates-4,representation-7)
8 of (PP* I-A1 adpmod(representation-7,of-8)
9 a (NP* I-A1 det(sentence-10,a-9)
10 sentence *))) E-A1 adpobj(of-8,sentence-10)
11 by (PP* B-AM-MNR adpmod(creates-4,by-11)
12 leveraging (S(VP* I-AM-MNR adpcomp(by-11,leveraging-12)
13 multiple (NP* I-AM-MNR amod(parses-14,multiple-13)
14 parses *))))) E-AM-MNR dobj(leveraging-12,parses-14)

Table 2: Comparing Parser Outputs: Phrase Structure Grammar, Semantic Role Label, Dependency

Constituent Text Head Governor
predicate creates 4 0
subject the DeconStructure algorithm 3 4
dobj a functional-semantic representation of a sentence 7 4
MNR by leveraging multiple parses 11 4

Table 3: Front End DeconStructure for Sentence in Table 2

3.1 Theoretical Foundations

The Cambridge Grammar of the English Language
(Huddleston et al., 2002) identifies three essential
concepts in the analysis of sentences: (1) Sentences
have parts, which may themselves have parts, (2)
The parts of sentences belong to a limited range of
types, and (3) The parts have specific roles or func-
tions within the larger parts they belong to. Kroeger
(2004) identifies three aspects of sentence structure:
(1) argument structure, (2) constituent structure, and
(3) functional structure. With these concepts in
mind, the DeconStructure algorithm was designed
with three desiderata: (1) Identify sentence con-
stituents in a manner that is intuitive yet consistent
with linguistic foundations, (2) Classify constituents
from a set of types indicating the semantic function
of constituents within sentences, and (3) Determine
the sentence pattern: a sequence consisting of the
root predicate, its complements and adjuncts.

3.2 Parser Comparisons

In prior work, we determined that no one parse tells
us everything we would like to know about a sen-

tence, as each of the three parser types gives its own
particular viewpoint. Table 2 compares parser out-
puts. The PSG (phrase structure grammar) parse
identifies sentence constituents and labels phrases
with the appropriate phrase label such as VP, NP,
and so forth. The SRL parse (semantic role label
parse, also called predicate-argument parse) identi-
fies numbered arguments of the predicate as well as
modifiers. The dependency parse provides a repre-
sentation of the grammatical relations between in-
dividual words in a sentence. Table 3 shows the
front end of the DeconStructure created by the al-
gorithm. The DeconStructure algorithm gleans the
most important aspects from each of the parsers and
combines them in to a structure that is both intuitive
and practical, thus making sentence elements read-
ily available for downstream NLP applications, such
as the question generation system presented in this
paper. Although Table 3 shows the front end of the
DeconStructure, it is important to note that all of the
parsing information from Table 2, as well as gener-
ated information such as sentence type, is available
in the DeconStructure sentence object.

53



Pattern Meaning Frequency
S-V-acomp adjectival complement that describes the subject 8%
S-V-attr nominal predicative complement defining the subject 14%
S-V-ccomp clausal complement indicating a proposition of subject 7%
S-V-dobj indicates the relation between two entities 28%
S-V-iobj-dobj indicates the relation between three entities < 1%
S-V-parg phrase describing the how/what/where of the action 17%
S-V-xcomp non-finite clause-like complement 8%
S-V indicates an action of the entity 14%
other combinations of constituents 4%

Table 4: Typical Sentence Pattern Distribution in Expository Text

3.3 Advantages of Multiple Parsers

The DeconStructure algorithm is encoded in a
Python program that first parses sentences with Mi-
crosoft Research’s SPLAT 1 (Quirk et al., 2012),
which provides constituency parsing, dependency
parsing using universal dependency labels (McDon-
ald et al., 2013), semantic role labeling, tokenizing,
POS tagging, lemmatization, and other NLP func-
tions through a JSON (JavaScript Object Notation)
request. It should be noted that the DeconStructure
algorithm can be implemented with any parser that
provides an SRL and dependency parse. Hence it
does not require a custom parser as do other repre-
sentations such as AMR (Banarescu et al., 2012).

The DeconStructure algorithm (see Algorithm 1)
exploits synergies between the SRL and dependency
parses. For example, a prepositional phrase that is
dependent on the verb can be an argument or an ad-
junct. Knowing what role the PP is playing is crucial
for NLP applications but the dependency parse does
not identify this information. However, the SRL will
label PPs with numbered arguments if they are argu-
ments of the verb. By checking if a PP dependent
on a root verb is also a numbered argument in the
SRL parse, the PP can be identified as an argument;
otherwise it will be considered to be an adjunct.

Complements are words, phrases and clauses that
complete the meaning of the verb, including the ob-
jects of traditional grammar (Carnie, 2013; Huddle-
ston et al., 2002). The universal dependency la-
bel set has six distinct labels that may be internal
complements of the VP: direct object, indirect ob-
ject, attr (attribute), acomp (adjectival complement),

1http://research.microsoft.com/en-us/projects/msrsplat/

ccomp (clausal complement) and xcomp (non-finite
clause-like complement) (McDonald et al., 2013).
Including the PP-argument and the case in which
there are no internal VP arguments, this gives eight
distinct patterns for major constituents in clauses.
Table 4 provides pattern distribution data observed
from collections of expository text. Table 7 provides
sample sentences for each structure, along with gen-
erated questions. Note that all modifiers and PP that
are not core arguments are available in the Decon-
Structure for placement in generated questions.

4 Question generation

As seen in Table 4, these sentence patterns fall into
a surprisingly small number of categories. For each
sentence, the QG system classifies its sentence pat-
tern prior to the question generation phase. The
sentence pattern is key to determining what type
of question should be asked about that sentence.
This analysis was based on text extracted from open
source textbooks as well as Wikipedia passages,
where each text passage consisted of the text of
one chapter section, or Wikipedia text of equivalent
length. In order to identify patterns to be included in
the QG system, the following criteria was used: (1)
Does the sentence pattern occur frequently across
passages in different domains? (2) Is the semantic
information conveyed by the sentence pattern con-
sistent across different instances? and (3) Does the
sentence pattern identify important content in source
sentences so that generated questions will be mean-
ingful and not trivial?

An independent clause can be viewed as a propo-
sition, and the predicate identifies the relationship,
property or state of the entities participating in the

54



proposition. The predicate determines the num-
ber of participants, or arguments, that are allowed
(Kroeger, 2005). In the S-V-iobj-dobj pattern, for
example, there must be 3 entities identified in the
sentence. The predicate is often the main verb but
there are other constructions in which the predi-
cate can be found in other syntactic categories. The
acomp constituent follows a copula verb which has
negligible semantic content in this construction. The
meaning is carried by the acomp, which may be an
adjective or a noun. Linguists often used the term
xcomp to denote predicate complements of various
syntactic categories (Kroeger, 2005). In contrast, the
universal dependency relations divide the comple-
ments into acomp for AP, attr for NP, ccomp for
subordinate clauses, leaving xcomp for VP. It mat-
ters what syntactic category a complement belongs
to because this provides important semantic indica-
tions of what the clause is saying. Take for instance
a ccomp compared to a dobj. They differ syn-
tactically in that the ccomp is a clause whereas the
dobj is a phrase. Semantically, the dobj identifies
the second entity in the predicate relation whereas
the ccomp can be viewed as an independent propo-
sition either indicated by or about the subject.

4.1 Templates and question generation

After a sentence object is created for each indepen-
dent clause of each sentence via the DeconStructure
algorithm, the sentence pattern is compared against
approximately 60 templates. If a template matches
the pattern, a question can be generated. Templates
are designed to ask questions related to the major
point of the sentence as identified in the pattern (see
Table 7). Templates also contain filter conditions
which are checked. Filter conditions may check for
the presence or absence of particular verbs (partic-
ularly be, do and have), whether the sentence is in
active or passive voice, and other conditions that are
documented in the template file. More information
is available2 for those interested in implementation
details.

4.2 Ranking question importance

A question generation system can increase its util-
ity by ranking the output questions in order to iden-

2http://www.karenmazidi.com/

Algorithm 1 DeconStructure Algorithm
S← set of parsed sentences
for each sentence s ∈ S do

DIVIDEINDEPCLAUSES(s)
for each indepClause ic ∈ s: do

Step 1: Add predicate complex
ic[pred.label]← predicate
icRoot = pred.index
Step 2: Add constituents
for each dep ∈ dependencies do

if dep.gov == icRoot then
ic[const.label]← dp

Step 3: Add ArgMs to IC
for each AM in ArgMs for icRoot do

ic[AM.label]← ArgM
Step 4: Determine pp type
for each pp in PPs do

if pp == ArgN then
pp.label = ppArg

else
pp.label = ppMod

Step 5: Determine ic structure
Determine ic type (passive, active, ...)
Classify ic pattern
Flag sentences with questionable parse

tify which questions are more likely to be accept-
able. Heilman and Smith used a logistic regression
question ranker which focused on linguistic quality.
The ranker more than doubled the percentage of ac-
ceptable questions in the top 20% of generated ques-
tions, from 23% to 49% (2011). The logistic regres-
sion approach has also attempted by others, but with
less success. One system (Lindberg et al., 2013) was
able to identify with 86% precision that a question
was not acceptable; however, their annotator consid-
ered 83% of the questions to be unacceptable ques-
tions so the utility of the classifer is unclear.

Given that our system typically outputs questions
that are grammatically correct, we decided to eval-
uate the question importance, an often overlooked
criterion (Vanderwende, 2008). To that end we em-
ployed the TextRank algorithm (Mihalcea and Ta-
rau, 2004) for keyword extraction. For a given in-
put passage, the top 25 nouns were identified by
TextRank. Then each generated question was given

55



Figure 1: Sample Amazon Mechanical Turk HIT (Human Intelligence Task).

a score based on the percentage of top TextRank
words it contained, with a penalty for very short
questions such as What is keyword? Our evalu-
ation demonstrated that outputting important ques-
tions also increases their acceptability scores.

5 Evaluation

There is no standard way to evaluate automatically
generated questions. Recent work in QG and other
NLP applications favors evaluation by crowdsourc-
ing which has proven to be both cost and time ef-
ficient and to achieve results comparable to human
evaluators (Snow et al., 2008; Heilman and Smith,
2010). We compared our system performance to
the most-frequently cited prior question generation
system by Heilman and Smith (2011). The eval-
uation was conducted using Amazon’s Mechanical
Turk Service. Workers were selected with at least
90% approval rating and who were located in the
US and proficient in US English. To monitor quality,
work was submitted in small batches, manually in-
spected, and run through software to detect workers
whose ratings did not correspond well with fellow
workers. Each question was rated on a 1-5 scale by
4 workers. The four scores were averaged. Figure 1
shows a sample HIT. Agreement between each set of
workers and the average had a Pearson’s correlation
r = .71, showing high agreement.

5.1 Test data

Test data consists of 10 science and humanities pas-
sages, one each from 10 open source textbooks from

OpenStax and Saylor. All text sources are written
at an early college reading level with an average of
83 sentences per passage. Each passage represents
the text of one textbook chapter section, chosen at
random. Table 5 lists the topics in the test data set,
along with the number of sentences in each file and
the number of questions generated by the Heilman
& Smith system and our system. The H&S system
takes an overgenerate-and-rank approach, generat-
ing almost 5 questions per input sentence. In con-
trast, our system generates an average closer to one
question per every 2 input sentences by focusing on
the important content in each sentence but not gen-
erating questions when conditions are not favorable
for generating a good question.

Table 5: Test Data and Questions Generated

Topic Sents H&S M&T
Epithelial Tissue 148 600 77
Protists 118 545 76
Bankruptcy 37 159 23
Network Layers 79 267 55
Monetary Policy 90 431 37
Uzbekistan 71 351 52
Legislature 73 375 55
Jackson Era 46 279 24
Stages of Sleep 72 339 44
Education 103 715 50
Average 83 406 50
Generation Percents 488% 60%

56



5.2 Results
The evaluation looked at the top 20 questions out-
put from each system for each input file, with each
system performing its own internal ranking. Table
6 compares the average MTurk worker ratings for
each file for the two systems. Our system had a
higher rating for every topic. When averaging all
200 questions, the Heilman & Smith system had an
average rating of 2.9. Our system had an average
rating of 3.7. The results are statistically significant,
p < 0.001, as determined by the Student’s t-Test.
Figure 2 shows a side-by-side histogram of the score
distributions between the two systems. The his-
togram demonstrates that the majority of the Heil-
man and Smith system questions are below the mid-
point of 3.0 and that the majority of our questions are
above this mid-point. Using > 3.0 as the acceptabil-
ity threshold, 72% of our questions are acceptable
whereas only 42% of the Heilman and Smith ques-
tions pass this threshold. This is an increase in the
acceptablity percentage of the top questions of 71%.
Interestingly, the Heilman and Smith percentage of
42% found in our evaluation of their top 20 ques-
tions is close to the 49% acceptable percentage they
found in their analysis of the top 20 percent of their
generated questions.

Table 6: Average Scores for Top 20 Questions

Topic H&S M&T
Epithelial Tissue 2.6 3.9
Protists 2.6 4.1
Bankruptcy 2.7 3.5
Network Layers 3.0 3.9
Monetary Policy 2.8 3.8
Uzbekistan 3.3 3.6
Legislature 3.0 3.1
Jackson Era 3.4 3.7
Stages of Sleep 3.0 4.0
Education 2.6 3.1
Average 2.9 3.7

5.3 Error analysis
Analysis of unacceptable questions revealed both
sources of errors and areas for future work. Some
errors are caused by idiomatic langauge. For exam-
ple the sentence: Few members spend time in the

Figure 2: Score Distributions. Light:H&S, Dark:M&T

chamber other than when they are speaking or vot-
ing, resulted in the generated question: What do few
members spend? In this case time grammatically
is the direct object which is why this question was
generated, but spend time is an idiom. One way to
avoid generating this question would be to look for
specific idiomatic phrases and rephrase them, essen-
tially translating the idiomatic language into more
direct language.

Another issue is that some templates work better
with some topics other than others. For example,
a template that matches the S-V-attr pattern is How
would you describe subject? which generated the
question: How would you describe a gland? with
the answer: a structure made up of one or more
cells modified to synthesize and secrete chemical
substances. However in another passage it generates
the question: How would you describe the sea? from
the sentence: The sea was once the fourth-largest
body of water in the world. Techniques need to be
employed to identify noun phrases that are suitable
for definition questions, a task to be explored in fu-
ture work.

Another problem is insufficient preprocessing to
remove sentences such as: Different episodes of
monetary policy are indicated in the figure, which
generated the question: Where are different episodes
of monetary policy indicated? Our system prepro-

57



Pattern and Sample
1. S-V-acomp Adjectival complement that describes the subject.
S: Brain waves during REM sleep appear similar to brain waves during wakefulness.
Q: Indicate characteristics of brain waves during REM sleep.
2. S-V-attr Nominal predicative complement following copula, often defining the subject.
S: The entire eastern portion of the Aral sea has become a sand desert, complete with the
deteriorating hulls of abandoned fishing vessels.
Q: How would you describe the entire eastern portion of the Aral sea?
3. S-V-ccomp Clausal complement indicates a proposition of or about the subject.
S: Monetary policy should be countercyclical to counterbalance the business cycles of
economic downturns and upswings.
Q: What evidence could support the notion that monetary policy should be countercyclical?
4. S-V-dobj Indicates the relation between two entities.
S: The early portion of stage 1 sleep produces alpha waves.
Q: What does the early portion of stage 1 sleep produce?
5. S-V-iobj-dobj Indicates the relation between three entities.
S: The Bill of Rights gave the new federal government greater legitimacy.
Q: What gave the new federal government greater legitimacy?
6. S-V-pparg Prepositional phrase that is required to complete the meaning.
S: REM sleep is characterized by darting movement of closed eyes.
Q: What is REM sleep characterized by?
7. S-V-xcomp Non-finite clause-like complement.
S: Irrigation systems have been updated to reduce the loss of water.
A: For what purpose have the irrigation systems been updated?
8. S-V May contain phrases that are not considered arguments such as ArgMs.
S: The 1828 campaign was unique because of the party organization that promoted Jackson.
Q: Why was the 1828 campaign unique?

Table 7: Sample Questions by Sentence Type

cessing unit removes most but not all references to
figures and tables.

Yet another issue is with text that conveys a se-
quence of events, in which case a given sentence in
isolation may be vague. For example the sentence:
Political authority appeared to rest with the major-
ity as never before, generated the question: What
did political authority appear to do? This ques-
tion is vague out of context. This problem suggests
that certain topics require features not available in
general-purpose question generators. And indeed,
there is an inherent conflict in designing a general-
purpose question generation system as opposed to
one targeted for a specific topic or source text.

6 Discussion

The question generation system presented here in-
troduced a fresh approach to question generation by

analyzing intrasentential structure and meaning with
the DeconStructure algorithm. The pattern of the
constituent structure indicates what meaning can be
inferred from the sentence. This enables genera-
tion of questions relevant to the central point of a
sentence and avoids the overgeneration problem of
prior work. The approach can be implemented with
off-the-shelf parsers that provide both a dependency
and an SRL parse. The QG system achieved a 71%
increase in the percentage of acceptable questions
from among the top system-ranked questions com-
pared to the most cited prior state-of-the-art system.
This improvement is due in part to the internal NLU
analysis of what the sentence is communicating and
to the application of the TextRank algorithm to iden-
tify the most important questions.

58



References

Husam Ali, Yllias Chali, and Sadid A Hasan. 2010.
Automation of question generation from sentences.
In Proceedings of QG2010: The Third Workshop on
Question Generation, pages 58–67.

James Allen. 1995. Natural language understanding.
The Benjamin/Cummings Publishing Company.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2012. Abstract meaning representation
(amr) 1.0 specification. In Parsing on Freebase from
Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Seattle: ACL, pages 1533–1544.

Kristy Elizabeth Boyer and Paul Piwek. 2010. Proceed-
ings. In Proceedings of QG2010: The Third Workshop
on Question Generation. Pittsburgh: questiongenera-
tion. org.

Andrew Carnie. 2013. Syntax: A generative introduc-
tion. John Wiley & Sons.

Yllias Chali and Sadid A Hasan. 2015. Towards topic-
to-question generation. Computational Linguistics.

D Gates. 2008. Generating look-back strategy questions
from expository texts. In The Workshop on the Ques-
tion Generation Shared Task and Evaluation Chal-
lenge, NSF, Arlington, VA. http://www. cs. memphis.
edu/˜ vrus/questiongeneration//1-Gates-QG08. pdf.

Jonathan Ginzburg. 2012. The interactive stance. Ox-
ford University Press.

Michael Heilman and Noah A Smith. 2010. Rating
computer-generated questions with mechanical turk.
In Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s
Mechanical Turk, pages 35–40. Association for Com-
putational Linguistics.

Michael Heilman. 2011. Automatic factual question gen-
eration from text. Ph.D. thesis, Carnegie Mellon Uni-
versity.

Rodney Huddleston, Geoffrey K Pullum, et al. 2002.
The cambridge grammar of english. Language. Cam-
bridge: Cambridge University Press, pages 1–23.

Paul Kroeger. 2004. Analyzing syntax: a lexical-
functional approach. Cambridge University Press.

Paul R Kroeger. 2005. Analyzing grammar: An intro-
duction. Cambridge University Press.

Igor Labutov, Sumit Basu, and Lucy Vanderwende. 2015.
Deep questions without deep understanding. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics.

Nguyen-Thinh Le, Tomoko Kojiri, and Niels Pinkwart.
2014. Automatic question generation for educational

applications–the state of art. In Advanced Compu-
tational Methods for Knowledge Engineering, pages
325–338. Springer.

David Lindberg, Fred Popowich, John Nesbit, and Phil
Winne. 2013. Generating natural language questions
to support learning on-line. In Proceedings of the
14th European Workshop on Natural Language Gen-
eration. Association for Computational Linguistics.

Ming Liu, Rafael A Calvo, and Vasile Rus. 2010. Auto-
matic question generation for literature review writing
support. In Intelligent Tutoring Systems, pages 45–54.
Springer.

Ming Liu, Rafael A Calvo, and Vasile Rus. 2012. G-
asks: An intelligent automatic question generation
system for academic writing support. Dialogue and
Discourse: Special Issue on Question Generation,
3(2):101–124.

Prashanth Mannem, Rashmi Prasad, and Aravind Joshi.
2010. Question generation from paragraphs at
upenn: Qgstec system description. In Proceedings of
QG2010: The Third Workshop on Question Genera-
tion, pages 84–91.

Karen Mazidi and Rodney D Nielsen. 2014. Linguis-
tic considerations in automatic question generation. In
Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics. Baltimore, Mary-
land: Association for Computational Linguistics.

Karen Mazidi and Rodney D Nielsen. 2015. Leveraging
multiple views of text for automatic question genera-
tion. In Artificial Intelligence in Education, Springer
LNCS.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, et al. 2013. Universal dependency annota-
tion for multilingual parsing. In ACL (2), pages 92–97.
Citeseer.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into texts. Association for Computational
Linguistics.

Chris Quirk, Pallavi Choudhury, Jianfeng Gao, Hisami
Suzuki, Kristina Toutanova, Michael Gamon, Wen-tau
Yih, Lucy Vanderwende, and Colin Cherry. 2012. Msr
splat, a language analysis toolkit. In Proceedings of
the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies: Demonstration Session,
pages 21–24. Association for Computational Linguis-
tics.

Vasile Rus, Zhiqiang Cai, and Arthur C Graesser. 2007.
Experiments on generating questions about facts. In
Computational Linguistics and Intelligent Text Pro-
cessing, pages 444–455. Springer.

59



Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean,
Svetlana Stoyanchev, and Cristian Moldovan. 2012. A
detailed account of the first question generation shared
task evaluation challenge. Dialogue and Discourse,
3(2):177–204.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Y Ng. 2008. Cheap and fast—but is it good?:
evaluating non-expert annotations for natural language
tasks. In Proceedings of the conference on empirical
methods in natural language processing, pages 254–
263. Association for Computational Linguistics.

Lucy Vanderwende. 2008. The importance of being im-
portant: Question generation. In Proceedings of the
1st Workshop on the Question Generation Shared Task
Evaluation Challenge, Arlington, VA.

John H Wolfe. 1976. Automatic question genera-
tion from text-an aid to independent study. In ACM
SIGCUE Outlook, volume 10, pages 104–112. ACM.

John H Wolfe. 1977. Reading retention as a function of
method for generating interspersed questions. Techni-
cal report, DTIC Document.

Brendan Wyse and Paul Piwek. 2009. Generating ques-
tions from openlearn study units.

60


