
Proceedings of NAACL-HLT 2016, pages 161–169,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Fracking Sarcasm using Neural Network

Aniruddha Ghosh
University College Dublin

aniruddha.ghosh@ucdconnect.ie

Tony Veale
University College Dublin
tony.veale@ucd.ie

Abstract
Precise semantic representation of a sentence
and definitive information extraction are key
steps in the accurate processing of sentence
meaning, especially for figurative phenom-
ena such as sarcasm, Irony, and metaphor
cause literal meanings to be discounted and
secondary or extended meanings to be inten-
tionally profiled. Semantic modelling faces
a new challenge in social media, because
grammatical inaccuracy is commonplace yet
many previous state-of-the-art methods ex-
ploit grammatical structure. For sarcasm de-
tection over social media content, researchers
so far have counted on Bag-of-Words(BOW),
N-grams etc. In this paper, we propose a
neural network semantic model for the task
of sarcasm detection. We also review se-
mantic modelling using Support Vector Ma-
chine (SVM) that employs constituency parse-
trees fed and labeled with syntactic and se-
mantic information. The proposed neural net-
work model composed of Convolution Neu-
ral Network(CNN) and followed by a Long
short term memory (LSTM) network and fi-
nally a Deep neural network(DNN). The pro-
posed model outperforms state-of-the-art text-
based methods for sarcasm detection, yielding
an F-score of .92.

1 Introduction

Figurative language, such as metaphor, irony and
sarcasm, is a ubiquitous aspect of human communi-
cation from ancient religious texts to modern micro-
texts. Sarcasm detection, despite being a well-
studied phenomenon in cognitive science and lin-
guistics (Gibbs and Clark, 1992; gib, 2007; Kreuz

and Glucksberg, 1989; Utsumi, 2000), is still at its
infancy as a computational task. Detection is diffi-
cult because literal meaning is discounted and sec-
ondary or extended meanings are instead intention-
ally profiled. In social contexts, one’s ability to
detect sarcasm relies heavily on social cues such
as sentiment, belief, and speaker’s intention. Sar-
casm is mocking and often involves harsh delivery
to achieve savage putdowns, even though it can be
also crafted more gently as the accretion of polite-
ness and the abatement of hostility around a criti-
cism (Brown and Levinson, 1978; Dews and Win-
ner, 1995). Moreover, sarcasm often couches crit-
icism within a humorous atmosphere (Dews and
Winner, 1999). (Riloff et al., 2013) addressed one
common form of sarcasm as the juxtaposition of a
positive sentiment attached to a negative situation,
or vice versa. (Tsur et al., 2010) modeled sarcasm
via a composition of linguistic elements, such as
specific surface features about a product, frequent
words, and punctuation marks. (González-Ibánez et
al., 2011) views sarcasm as a conformation of lex-
ical and pragmatic factors such as emoticons and
profile references in social media. Most research ap-
proaches toward the automatic detection of sarcasm
are text-based and consider sarcasm to be as a func-
tion of contrasting conditions or lexical clues. Such
approaches extract definitive lexical cues as features,
where the linguistic scale of features is stretched
from words to phrases to provide richer contexts for
analysis. Lexical feature cues may yield good re-
sults, yet without a precise semantic representation
of a sentence, which is key for determining the in-
tended gist of a sentence, robust automatic sarcasm

161

detection will remain a difficult challenge to real-
ize. Accurate semantic modelling of context be-
comes obligatory for automatic sarcasm detection if
social cues and extended meaning are to be grasped.

Encouraging an immediate and very social use of
language, social media platforms such as Twitter1

are rich sources of texts for Natural Language Pro-
cessing (NLP). Social micro-texts are dense in fig-
urative language, and are useful for figurative anal-
ysis because of their topicality, ease of access, and
the use of self-annotation via hashtag. In Twitter,
language is distorted, often plumbing the depths of
bad language (Eisenstein, 2013). Yet due to the pres-
ence of grammatical errors liberally mixed with so-
cial media markers (hashtags, emoticons, profiles),
abbreviations, and code switching, these micro-texts
are harder to parse, and parsing is the most com-
monly used method to obtain a semantic represen-
tation of a sentence. The accuracy of state-of-the-
art constituency parsers over tweets can be signif-
icantly lower than that for normal texts, so social
media researchers still largely rely on surface level
features. With the recent move to artificial neural
networks in NLP, ANNs provide an alternative basis
for semantic modelling. In this paper, we perform
semantic modelling of sentences using neural net-
works for the task of sarcasm detection. The paper
is organized as follows. Section 2 surveys related
works, section 3 outlines methods of data collection
and data processing, section 4 describes the recur-
sive SVM model, section 5 describes the neural net-
work model, section 6 & 7 outline our experimental
setup and experimental analysis respectively, while
section 8 presents a simple sarcastic Twitter bot. Fi-
nally, section 9 concludes with a short discussion of
future work.

2 Related work

Semantic modelling of sentence meaning is a well-
researched topic in NLP. Due to ’bad language’ in
Twitter and a noticeable drop of accuracy for start-
of-the-art constituency parsers on tweets, the se-
mantic modelling of tweets has captured the atten-
tion of researchers. To build a semantic represen-
tation of a sentence in various NLP tasks such as
sentiment analysis, researchers have used syntac-

1https://twitter.com

tic structure to compose a total representation as a
function of the word-vector representation of a sen-
tence’s parts. (Nakagawa et al., 2010) describes a
Tree-CRF classifier which uses a data-driven depen-
dency parser, maltparser2, to obtain a parse tree for a
sentence, and whose composition function uses the
head-modifier relations of the parse tree. (Mitchell
and Lapata, 2010) and (Mitchell and Lapata, 2008)
defined the composition function of a sentence by
algebraic operations over word meaning vectors to
obtain sentence meaning vectors. (Guevara, 2010)
and (Malakasiotis, 2011) formulated their composi-
tion function using a set of specific syntactic rela-
tions or specific word categories (Baroni and Zam-
parelli, 2010). (Socher et al., 2011) proposed a struc-
tured recursive neural network based on the convo-
lutional operation, while (Kalchbrenner et al., 2014)
proposed a convolution neural network (CNN) with
dynamic k-max pooling, considering max pooling
as function of input length. For sarcasm detection,
due to the complexity of the task and the some-
what poorer accuracy of start-of-the-art constituency
parsers on tweets, researchers have considered sur-
face level lexical and syntactic cues as legitimate
features. Kreuz and Caucci (Kreuz and Caucci,
2007) explored the role of lexical indicators, such
as interjections (e.g., “gee” or “gosh”), punctuation
symbols (e.g., ‘?’), intensifiers, and other linguistic
markers for e.g. non-veridicality and hyperbole, in
recognizing sarcasm in narratives. Tsur (Tsur et al.,
2010) noted the occurrence of “yay!” or “great!” as
a recurring aspect of sarcastic patterns in Amazon
product reviews. Davidov (Davidov et al., 2010) ex-
amined the effectiveness of social media indicators
such as hashtags to identify sarcasm. Lukin (Lukin
and Walker, 2013) proposed a potential bootstrap-
ping method for sarcasm classification in social dia-
logue to expand lexical N-gram cues related to sar-
casm (e.g. “oh really”, “no way”, etc.) as well
as lexico-syntactic patterns. Riloff (Riloff et al.,
2013) and Liebrecht (Liebrecht et al., 2013) ap-
plied N-grams features to a classifier for English and
Dutch tweets and observed that some topics recur
frequently in sarcastic tweets, such as schools, den-
tists, church life, public transport, the weather and
so on.

2http://www.maltparser.org/

162

In this paper, we investigate the usefulness
of neural-network-based semantic modelling for
sarcasm detection. We propose a neural net-
work model for semantic modelling in tweets that
combines Deep Neural Networks (DNNs) with
time-convolution and Long Short-Term Memory
(LSTM). The proposed model is compared to a
recursive Support Vector Machine (SVM) model
based on constituency parse trees.

3 Dataset

Twitter provides functionality to users to summa-
rize their intention via hashtags. Using a user’s
self-declaration of sarcasm as a retrieval cue, #sar-
casm, we have crawled the Twittersphere. Since
this simple heuristic misses those uses of sarcasm
that lack an explicit mention of #sarcasm, we used
LSA-based approach to extend the list of indicative
hashtags (e.g.to include #sarcastic, #yeahright etc.).
We also harvested tweets from user profiles with
a strong bias toward sincerity or (for professional
wits) sarcasm. To build our sarcastic data set we
aggregated all tweets containing one or more posi-
tive markers of sarcasm, but removed such markers
from the tweets, while tweets which did not contain
any positive markers of sarcasm were considered
non-sarcastic. The training dataset of 39K tweets
is evenly balanced containing 18k sarcastic data and
21K non-sarcastic data. As a test set, we have cre-
ated a dataset of 2000 tweets annotated by an inter-
nal team of researchers. For purposes of compar-
ison, we also used two different publicly available
sarcasm datasets.

Social media contains many interesting elements
such as hashtags, profile references and emoticons.
Due to the size limitation of tweets, users exploit
these elements to provide contextual information.
To tightly focus our research question, we did not in-
clude sarcasm from the larger conversational context
and thus dropped all profile information from the in-
put text. As users often use multi-worded hashtags
to add an additional sarcastic dimension to a tweet.
we used a hashtag splitter to split these phrasal tags
and appended their words to the text.

For the recursive-SVM, we used the Stanford con-
stituency parser3 for parsing tweets. In order to ex-

3http://nlp.stanford.edu/software/lex-parser.shtml

tract maximum information from the parse tree, we
used both a pre-processing and a post-processing
method which are described below.

3.1 Recursive-SVM Data Processing

Constituency parse trees offer a syntactic model of a
sentence which can form a strong basis for seman-
tic modelling. In order to use Stanford constituency
parser here, the tweets were first pre-processed by
removing social media markers such as profile ref-
erences, retweets and hashtags. As a tweet may con-
tain multiple sentences, each is split into sentences
using the Standford sentence splitter, parsed sepa-
rately and then stitched back together with a sen-
tence tag (S). Hashtags are dense annotations offered
by users of their own texts, and their scope gener-
ally applies to the entire content of a tweet. Thus we
restored back Hashtags into parse tree by attaching
them to the root node of the parse tree of the tweet
with a tag (HT). Let’s consider the following tweet
as example,

I love when people start rumors about
me. #not

Hashtag #not is attached to root of parse tree using
Part-of-speech tag (HT) (Figure 1).

Figure 1: parse tree with Hashtag

4 Recursive SVM

We now define a recursive-SVM model. Consider
a subjective sentence (S) containing n phrases with
m words in total. wl, bl and posl denote the surface

163

Feature Type Feature
Node wi

Node wiposi

Node wiposibi
Node+Edge wi..wjposi..posjbi..posj

Node+Edge wi..wjposi..posjbi..posjci+1..cj
Node+Edge wi..wjposi..posjbi..posjci +

1..cjoi + 1..oj

Table 1: recursive SVM features

form, root form and part-of-speech respectively of
lth word of S, while ni denotes the ith node and pi,
hi, and oi denote phrase, head node and offensive
word-marker of the ith node respectively. The 0th

node is the root node, while si and sai denote the
predicted values of sentiment polarity and sarcastic
polarity of the constituency subtrees whose root is
the ith node, (si ∈ +1, 0, sai ∈ +1, 0). Table 1 shows
training vectors (xi ∈ <n, i = 0, .. , n) where yi =
1, 0 is the label for the ith node. As the number of
parameters is larger than the number of instances,
dual-based solvers offer the best fit for this problem.
Through grid-search, the optimum penalty value (C)
is determined and set to 1000 and 2000 for senti-
ment and sarcasm detection respectively. The stop-
ping tolerance value was set to -0.0001. Among the
variation of different loss functions, L2-regularized
L1-loss and L2-loss function yielded the best results.

5 Neural network

Semantic modelling of sentence meaning using neu-
ral networks has been a target of attention in the
social media community. Neural network archi-
tectures, such as CNN, DNN, RNN, and Recur-
sive Neural Networks (RecNN) have shown excel-
lent capabilities for modelling complex word com-
position in a sentence. A sarcastic text can be con-
sidered elementally as a sequence of text signals or
word combinations. RNN is a perfect fit for mod-
elling temporal text signals as it includes a tempo-
ral memory component, which allows the model to
store the temporal contextual information directly
in the model. It can aggregate the entire sequence
into a temporal context that is free of explicit size
constraints. Among the many implementations of
RNNs, LSTMs are easy to train and do not suffer
from vanishing or exploding gradients while per-

Figure 2: Sentence modelling with CNN

forming back propagation through time. LSTM
has the capability to remember long distance tem-
poral dependencies. Moreover, as they performs
temporal text modelling over input features, higher
level modelling can distinguish factors of linguis-
tic variation within the input. CNNs can also cap-
ture temporal text sequence through convolutional
filters. CNNs reduce frequency variation and convo-
lutional filters connect a subset of the feature space
that is shared across the entire input (Chan and Lane,
2015). (Dos Santos et al., 2015) have shown that
CNNs can directly capture temporal text patterns
for shorter texts, yet in longer texts, where temporal
text patterns may span across 15 to 20 words, CNNs
must rely on higher-level fully connected layers to
model long distance dependencies as the maximum
convolutional filter width for a text is 5 (Figure 2).

Another major limitation of CNNs is the fixed
convolutional filter width, which is not suitable for
different lengths of temporal text patterns and can-
not always resolve dependencies properly. Obtain-
ing the optimal filter size is expensive and corpus-
dependent, while LSTM operates without a fixed
context window size. LSTM’s performance can be
improved by providing better features. Following
the proposal of (Vincent et al., 2008), it can be bene-
ficial to exploit a CNN’s ability to reduce frequency
variation and map input features into composite ro-
bust features and using it as an input to a LSTM
network. DNNs are appropriate for mapping fea-
tures into a more separable space. A fully connected

164

DNN, added on top of an LSTM network, can pro-
vide better classification by mapping between output
and hidden variables by transforming features into
an output space. In the following section we define
our proposed network in detail.

5.1 Input layer
Consider a tweet as input containing n words. The
tweet is converted into a vector by replacing each
word with its dictionary index s ∈ <1×n. To resolve
different lengths of input, the tweet vector is padded
and the tweet is converted into matrix s ∈ <1×l,
where l is the maximum length of tweets in the in-
put corpus. The input vector is fed to the embedding
layer which converts each word into a distributional
vector of dimension D. Thus the input tweet matrix
is converted to s ∈ <l×D.

5.2 Convolutional network
The aim of a convolution network is to reduce fre-
quency variation through convolutional filters and
extracting discriminating word sequences as a com-
posite feature map for the LSTM layer. The con-
volution operation maps the input matrix s ∈ <l×D

into c ∈ <|s|+m−1 using a convolutional filter k ∈
<D×m. Each component is computed as follows:

ci = (s ∗ k)i =
∑
k,j

(S:,i−m+1:i ⊗ F)kj (1)

Convolution filter, which has the same dimension D
of the input matrix, which slides along the column
dimension of the input matrix, performing an ele-
ment wise product between a column slice s and a
filter matrix k producing a vector component ci and
summed to create a feature map c ∈ R1(|s|m+1). f
filters create a feature map C ∈ Rf(|s|m+1). We
chose Sigmoid for non-linearity. Initially we passed
the output of the convolutional network through a
pooling layer and max-pooling is used with size 2
and 3. Later, we discarded the max-pooling layer
and fed the LSTM network with all of the compos-
ite features to judge sarcasm, which improved the
performance of the model.

5.3 LSTM
RNN has demonstrated the power of semantic mod-
elling quite efficiently by incorporating feedback cy-
cles in the network architecture. RNN networks in-

clude a temporal memory component, which allows
the model to store the temporal contextual informa-
tion directly in the model. At each time step, it con-
siders the current input xt and hidden state ht−1.
Thus the RNN is unable to plot long term depen-
dencies if the gap between two time steps becomes
too large. (Hochreiter and Schmidhuber, 1997) in-
troduced LSTM, which is able to plot long term
dependencies by defining each memory cell with
a set of gates <d, where d is the memory dimen-
sion of hidden state of LSTM, and it does not suf-
fer from vanishing or exploding gradient while per-
forming back propagation through time. LSTM con-
tains three gates, which are functions of xt and ht−1:
input gate it, forget gate ft, and output gate ot. The
gates jointly decide on the memory update mecha-
nism. Equation (3) and (2) denote the amount of
information to be discarded or to be stored from and
to store in memory. Equation (5) denotes the output
of the cell ct.

it = σ(Wi[ht−1, xt] + bi) (2)

ft = σ(Wf [ht−1, xt] + bf) (3)

qt = tanh(Wq[ht−1, xt] + bq) (4)

ot = σ(Wo[ht−1, xt] + bo) (5)

ct = ft � ct−1 + it � qt (6)

ht = ot � tanh(ct) (7)

5.4 Deep Neural Network Layer
The output of LSTM layer is passed to a fully con-
nected DNN layer, which produces a higher order
feature set based on the LSTM output, which is eas-
ily separable for the desired number of classes. Fi-
nally a softmax layer is added on top of the DNN
layer. Training of network is performed by mini-
mizing the binary cross-entropy error. For parame-
ter optimization, we have used ADAM (Kingma and
Ba, 2014) with the learning rate set to 0.001.

6 Experiment

To evaluate both models, we have tested rigorously
with different experimental setups. For the recursive
SVM, we employed different sets of feature combi-
nations mentioned in table 1. In the neural network
model, we opted for a word embedding dimension

165

Figure 3: Neural network

set to 256. We tested our model with different set-
tings of the hyperparameters for CNN (number of
filter, filter size), LSTM (hidden memory dimension,
dropout ratio), and DNN (number of hidden mem-
ory units (HMU)). Initially we passed the output of
CNN via a maxdropout layer, with maxpooling size
2 and 3, to the LSTM, but later we dropped the max-
pooling layer, which improved the performance by
2%.

In our experiment, apart from the combination
of CNN, LSTM, and DNN, we observed the per-
formance for each of the neural networks individ-
ually. The CNN network is investigated by varying
the number of filters and the filter widths, set to 64,
128, 256 and 2, 3 respectively. For the LSTM net-
work, the number of memory units is varied from
64 to 256. Sigmoid is chosen as activation function
for both networks. We used Gaussian initialization
scaled by the fan-in and the fan-out for the embed-

ding layer and Gaussian initialization scaled by the
fan-in for the CNN, the LSTM, and the DNN layer
as initial probability distribution. The code was im-
plemented using keras4 library.

7 Experimental Analysis

In the neural network, success depends on the apt
input and the selection of hyperparameters. As we
observed that the inclusion of hashtag information in
the recursive-SVM method gained a better F-score,
we pertained the same input structure for the neural
network. Apart from difficulties in training a neu-
ral network, enormous training time is another pas-
sive obstacle. We observed that compared to stacked
LSTM network, the CNN-LSTM network converges
faster as CNN reduces frequency variation and pro-
duces better composite representation of the input
to the LSTM network. Sarcasm detection is consid-
ered a complex task, as very subtle contextual infor-
mation often triggers the sarcastic notion. Thus we
noticed that the inclusion of a dropout layer on top
of the CNN layer, our model suffered a decrease in
performance. In the testing dataset, we observed an
interesting example.

I don’t know about you man but I love
the history homework.

With the dropout layer, model identified above
mentioned example as non-sarcastic, yet without the
dropout layer, our model labeled it as sarcastic. This
indicates that the word ”man”, which functions as an
intensifier of sarcasm in this context, was dropped
out from the output of the CNN layer. Also we
observed that incrementing the filter width of the
CNN layer boosted the performance of our model
by a small margin. To obtain the apt network size,
we have also trained with bigger network sizes and
larger filter widths, but no improvement has been
observed. Table 2 contains the experimental results
over our dataset.

Sarcasm is a very subjective phenomenon. Even
for the human annotators, it was quite hard to decide
if the speaker was sarcastic or not. It was interest-
ing to observe the performance of our model when
human annotators interpreted differently. Since our

4http://keras.io/

166

Model Feature/Hyper parameter Precision Recall F-score
recursive SVM BOW + POS .719 .613 .663
recursive SVM BOW + POS + Sentiment .722 .661 .691
recursive SVM BOW + POS + Sentiment + HT-splitter .743 .721 .732

CNN + CNN

filter size = 64 + filter width = 2 .838 .857 .847
filter size = 128 + filter width = 2 .842 .86 .854
filter size = 256 + filter width = 2 .855 .879 .868
filter size = 64 + filter width = 3 .839 .854 .847
filter size = 128 + filter width = 3 .856 .879 .868
filter size = 256 + filter width = 3 .861 .882 .872

LSTM + LSTM
hidden memory unit = 64 .849 .816 .832
hidden memory unit = 128 .854 .871 .862
hidden memory unit = 256 .868 .89 .879

CNN + LSTM + DNN (with
dropout)

filter size = 256 + filter width = 2 + HMU
= 256

.899 .91 .904

CNN + LSTM + DNN (without
dropout)

filter size = 256 + filter width = 2 + HMU
= 256

.912 .911 .912

CNN + LSTM + DNN (without
dropout)

filter size = 256 + filter width = 3 + HMU
= 256

.919 .923 .921

Table 2: Experimental Results

Figure 4: Performance evaluation of model

dataset contains 3 annotations per tweet, we ob-
tained 4 different values for an average sarcasm
score from the annotations. We divided the dataset
based on the average sarcasm score and observed the
performance of the model in each section. From fig-
ure 4, we observed that our model performed better
for distinct sarcastic data than distinct non-sarcastic
data. For dicey examples of sarcasm, where the av-
erage sarcasm score is between .7 and .3, our model
performed better with non-sarcastic data than sar-

castic data.

dataset Model P R F1

riloff

riloff method .44 .62 .51
CNN + LSTM
+ DNN + filter
size = 256 + filter
width = 2

.882 .861 .872

CNN + LSTM
+ DNN + filter
size = 256 + filter
width = 3

.883 .879 .881

tsur

SASI .912 .756 .827
CNN + LSTM
+ DNN + filter
size = 256 + filter
width = 2

.878 .901 .889

CNN + LSTM
+ DNN + filter
size = 256 + filter
width = 3

.894 .912 .901

Table 3: Comparison with other datasets

We evaluated our system with two publicly avail-
able datasets (Tsur et al., 2010; Riloff et al., 2013).
The results are mentioned in table 3. We observed

167

that our model has performed with a better f-score
than both of the systems, but it has a lower precision
value than SASI (Davidov et al., 2010).

8 Twitter Bot

In NLP research, building a carefully crafted corpus
has always played a crucial role. In recent research,
Twitter has been used as an excellent source for var-
ious NLP tasks due to its topicality and availability.
While sharing previous datasets, due to copyright
and privacy concerns, researchers are forced to share
only tweet identifiers along with annotations instead
of the actual text of each tweet. As a tweet is a per-
ishable commodity and may be deleted, archived or
otherwise made inaccessible over time by their orig-
inal creators, resources are lost in the course of time.
Following our idea of retweeting via a dedicated
account (@onlinesarcasm) to refrain tweets from
perishing without copyright infringement, we have
retweeted only detected sarcastic tweets. Regard-
ing the quality assurance of the automated retweets,
we observed that a conflict between human anno-
tation and the output of the model is negligible for
those tweets predicted with a softmax class proba-
bility higher than 0.75.

9 Conclusion & Future work

Sarcasm is a complex phenomenon and it is linguis-
tically and semantically rich. By exploiting the se-
mantic modelling power of the neural network, our
model has outperformed existing sarcasm detection
systems with a f-score of .92. Even though our
model performs very well in sarcasm detection, it
still lacks an ability to differentiate sarcasm with
similar concepts. As an example, our model clas-
sified “I Just Love Mondays!” correctly as sarcasm,
but it failed to classify “Thank God It’s Monday!”
as sarcasm, even though both are similar at the con-
ceptual level. Feeding the model with word2vec5 to
find similar concepts may not be beneficial, as not
every similar concept employs sarcasm. For exam-
ple, “Thank God It’s Friday!” is non-sarcastic in
nature. For future works, selective use of word2vec
can be exploited to improve the model. Also per-
forming a trend analysis from the our twitter bot

5https://code.google.com/archive/p/word2vec/

can also benefit the system to separate the semantic
space of sarcasm and non-sarcasm more efficiently.

Acknowledgments

This research is supported by Science Founda-
tion Ireland (SFI) as a part of the CNGL Centre
for Global Intelligent Content at UCD (Grant No:
CNGLII, R13645).

References
Marco Baroni and Roberto Zamparelli. 2010. Nouns

are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1183–1193. Association for Computational Linguis-
tics.

Penelope Brown and Stephen C Levinson. 1978. Uni-
versals in language usage: Politeness phenomena. In
Questions and politeness: Strategies in social interac-
tion.

William Chan and Ian Lane. 2015. Deep convolu-
tional neural networks for acoustic modeling in low
resource languages. In IEEE International Conference
on Acoustics, Speech and Signal Processing.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences in
twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 107–116. Association for
Computational Linguistics.

Shelly Dews and Ellen Winner. 1995. Muting the mean-
ing a social function of irony. Metaphor and Symbol,
10(1):3–19.

Shelly Dews and Ellen Winner. 1999. Obligatory pro-
cessing of literal and nonliteral meanings in verbal
irony. Journal of pragmatics, 31(12):1579–1599.

Cıcero Nogueira Dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing, volume 1,
pages 626–634.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In HLT-NAACL, pages 359–369.

2007. Irony in language and thought: A cognitive science
reader. Psychology Press.

Deanna W. Gibbs and Herbert H. Clark. 1992. Coordi-
nating beliefs in conversation. Journal of Memory and
Language.

168

Roberto González-Ibánez, Smaranda Muresan, and Nina
Wacholder. 2011. Identifying sarcasm in twitter: a
closer look. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies: short papers-Volume
2, pages 581–586. Association for Computational Lin-
guistics.

Emiliano Guevara. 2010. A regression model of
adjective-noun compositionality in distributional se-
mantics. In Proceedings of the 2010 Workshop on
GEometrical Models of Natural Language Semantics,
pages 33–37. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Roger J. Kreuz and Gina M. Caucci. 2007. Lexical influ-
ences on the perception of sarcasm. In Proceedings of
the Workshop on Computational Approaches to Figu-
rative Language.

Roger J Kreuz and Sam Glucksberg. 1989. How to be
sarcastic: The echoic reminder theory of verbal irony.
Journal of Experimental Psychology: General.

CC Liebrecht, FA Kunneman, and APJ van den Bosch.
2013. The perfect solution for detecting sarcasm in
tweets #not.

Stephanie Lukin and Marilyn Walker. 2013. Really?
well. apparently bootstrapping improves the perfor-
mance of sarcasm and nastiness classifiers for online
dialogue. In Proceedings of the Workshop on Lan-
guage Analysis in Social Media, pages 30–40.

Prodromos Malakasiotis. 2011. Paraphrase and Textual
Entailment Recognition and Generation. Ph.D. thesis,
Ph. D. thesis, Department of Informatics, Athens Uni-
versity of Economics and Business, Greece.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In ACL, pages 236–
244.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive science,
34(8):1388–1429.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classification
using crfs with hidden variables. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 786–794. Association for
Computational Linguistics.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra
De Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as contrast between a positive sentiment and
negative situation. In EMNLP, pages 704–714.

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 151–161. Association for Computational
Linguistics.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recogni-
tion of sarcastic sentences in online product reviews.
In ICWSM.

A. Utsumi. 2000. Verbal irony as implicit display of
ironic environment: Distinguishing ironic utterances
from nonirony. Journal of Pragmatics.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and com-
posing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on
Machine learning, pages 1096–1103. ACM.

169

