
D S Sharma, R Sangal and E Sherly. Proc. of the 12th Intl. Conference on Natural Language Processing, pages 197–202,
Trivandrum, India. December 2015. c©2015 NLP Association of India (NLPAI)

Automatic conversion of Indian Language Morphological Processors into
Grammatical Framework (GF)

Harsha Vardhan Grandhi
LTRC

IIIT Hyderabad
venkata.harshavardhan@research.

iiit.ac.in

Soma Paul
LTRC

IIIT Hyderabad
soma@iiit.ac.in

Abstract

Grammatical framework (GF) is an open
source software which supports seman-
tic abstraction and linguistic generaliza-
tion in terms of abstract syntax in a multi-
lingual environment. This makes the soft-
ware very suitable for automatic multi-
lingual translation using abstract syntax
which can be treated as a interlingua. As
a first step towards building multi-Indian
language translation system using GF plat-
form, we aim to develop an automatic
converter which will convert morphologi-
cal processors available in various formats
for Indian languages into GF format. In
this paper we develop a deterministic au-
tomatic converter that converts LTtoolbox
and ILMT morphological processors into
GF format. Currently we have converted
Hindi, Oriya and Tamil processors using
our converter with 100% information pre-
served in the output. We will also report
in this paper our effort of converting San-
skrit and Marathi LTtoolbox morphologi-
cal processor into GF format.

1 Introduction

Many NLP resources have been developed for pro-
cessing Indian languages in the last decade. A
major consortium of Indian language - Indian lan-
guage MT system (ILMT) has been successfully
carried out for 9 language pairs. These systems
mainly follow a transfer based approach. MT sys-
tem from English to various Indian languages have
also been developed through large projects. Mor-
phological analyzers and generators have been de-
veloped as part of these projects as well as inde-
pendently for many Indian languages. In this pa-
per, we present an automatic converter that con-
verts morphological processors that exist in differ-

ent formats into one common format of Grammat-
ical Framework. Grammatical framework (GF)
is an open source software which supports se-
mantic abstraction and linguistic generalization in
terms of abstract syntax in a multi-lingual envi-
ronment (Ranta Aarne, 2009). Abstract syntax
can be viewed as an interlingua in the context of
multi-lingual machine translation. Apart from ab-
stract syntax there exists another module called
concrete syntax in which the morphological spec-
ification and syntactic behavior of a language can
be captured. The abstract syntax and concrete syn-
taxes of all languages that one wants to handle to-
gether can produce very good quality, especially
for domain based MT systems. This is the mo-
tivation for converting morphological processors,
that at present exist in different format for differ-
ent Indian languages, into GF format so that good
quality meaning driven multi-lingual MT can be
accomplished.

Our morphological converter presently converts
morph resources designed in Lttoolbox and ILMT
morph framework into GF format. We have ex-
perimented with Hindi, Oriya, Tamil, Marathi
and Sanskrit morphological processors. We have
achieved 100% information preservation for the
conversion of Hindi, Tamil and Oriya languages.
Sanskrit and Marathi LTtoolbox resources are
quite huge and we have encountered some issues
in conversion which we will discuss in the paper.

The paper is divided into the following sections.
In the next section, we will briefly introduce LT-
toolbox, the structure of morph used in ILMT and
functionalities required for representing morpho-
logical information in GF. Section 3 presents re-
lated work. Section 4 presents our approach of au-
tomatic conversion. In section 5, we will present
the result of automatic conversion and analyze the
results for Hindi, Oriya (Ithisree Jena and Dipti
M. Sharma, 2011) and Sanskrit. We conclude the
paper by presenting a critical review of our work197

and also insight into future work.

2 Frameworks

We will briefly discuss the architecture of the mor-
phological processors of the three frameworks,
Grammatical Framework, Lttoolbox and ILMT.

2.1 Grammatical Framework

GF is a development platform which allows lin-
guists to build grammars (Ranta Aarne, 2009;
Ranta Aarne, 2004). It uses paradigm approach
in it’s morph resource. Parameters and Operations
are used as building blocks to create morph re-
source.

A parameter is a user-defined type which is
used to model lexical features like number, gen-
der etc.

param Number = Sg | Pl

Listing 1: “ Example parameter ”

Here, Number is a parameter representing the
singularity/plurality of given word. Each parame-
ter has a set of constructors, which represent possi-
ble values of that parameter. In this case, Number
has two constructors namely Sg and Pl, which are
declared as shown in the example above.

An Operation is a function which takes a
lemma of the given word and generates a table
consisting of all possible word forms. A table
in operation consists of branches with construc-
tors on the left and corresponding word forms on
the right. Table is computed by pattern match-
ing which returns the value from the first branch
whose pattern matches the argument. (Ranta
Aarne, 2003)
Ex:

oper regNoun : Str -> {s : Number => Str
} = \dog -> {

s = table {
Sg => dog ;
Pl => dog + "s"

}
};

Listing 2: “ Example Operation ”

In the example shown above, the operation reg-
Noun takes a String as an argument and returns a
Number to String {s: Number => Str }. If the
string dog is passed to the operation then it returns
a paradigm stating that when the word is singu-
lar(Sg) , the operation returns the same word(i.e.
dog), if it is plural(Pl) then it returns dogs.

2.2 Lttoolbox
Lttoolbox is an open source finite state toolkit used
for lexical processing, morphological analysis and
generation of words (Mikel L. Forcada et al.,
2011). Like GF, Lttoolbox also uses the paradigm
approach for creating morphological analyzer .

Morph resource in Lttoolbox has three impor-
tant sections (i.e. for automatic conversion)
namely symbol definition section, paradigm def-
inition section and lexicon dictionary.

Symbols are used to define lexical categories,
features and their values in the morph. These sym-
bols are defined within symbol definition (sdef).

<sdef n="gen:m" c="masculine" />

Listing 3: ”Example symbol definition”

In the above example, gen is the symbol for gen-
der, m is the corresponding feature value.

Paradigm takes a lemma and generates all pos-
sible word forms. Each paradigm consists of sev-
eral entries. Each entry has the data to create a
word form for a given set of grammatical sym-
bols. These paradigms of the grammar are defined
within paradigm definition (pardef).

<pardef n="kAl/A__adj">
<e><p><l>e</l><r>A<s n="cat:adj"/><s n="

case:o"/><s n="gen:m"/><s n="num:s
"/></r></p></e>

</pardef>

Listing 4: “ Example paradigm definition ”

In the above example, the lemma in consideration
is kAlA. For the given entry (e) , the word form
kAle is generated for kAlA when the grammatical
symbols are <cat=adj;case=o;gen=m;num=s>

2.3 ILMT
ILMT uses Computational Paninian Grammar
(CPG) for analyzing language and combines it
with machine learning. It is developed using both
traditional rules-based and dictionary-based algo-
rithms with statistical machine learning (Sam-
park, 2009).
ILMT morph resource has categories, features,
feature values and word forms.
Each category with its name and its correspond-
ing features are defined in a single file. Simi-
larly, each feature along with its name and value
are stored in a different file. Each category has
its own paradigm file. A category can contain
many words. Each word belonging to a category198

Figure 1: Module level Overview of our approach

is stored in its paradigm file with its root and all its
forms. These word forms are listed in last varies
first order. For example,

• Noun m g m case num means that Noun m
is a category depending on features g m, case
and num.
• case d o represents that case feature has val-

ues d and o. Similarly, g m has value m. num
has values s and p.
• Noun m Gara, Gara, Gara, Gara, GaroM/-

Garoz . means that the first word is the root
form, and rest are its word forms in last varies
fast order of category features(i.e, <m,d,s>,
<m,d,p>, <m,o,s>, <m,o,p>).

3 Related Work

There’s little work done on automatic resource
sharing between frameworks. Some notable works
include resource sharing between Apertium and
Grammatical Framework (Gregoire and Ranta
Aarne, 2014). In this paper, the author proposes an
automatic approach to extract Apertium shallow-
transfer rules from a GF bilingual grammar. The
process of creating GF data from Lttoolbox gram-
mar is done manually. They successfully created
and tested the system with English-Spanish lan-
guage pair. Also some work has been done to im-
port Indian languages (Muhammad Humayoun
and Ranta Aarne, 2011) into GF. However, this is
manual process and it requires linguists. To the
best of our knowledge, there exists no work ad-
dressing the automatic conversion from existing
morph resources(ILMT/Lttoolbox) of Indian lan-
guages into GF.

4 Our Approach

In this section, we describe our approach of con-
verting LTtoolbox and ILMT morph resources into
GF morph resources. The steps of conversion is
presented in the figure 1.

Our approach converts the morphological pro-
cessors available either in XML or ILMT syn-
tax format and converts them into Grammatical

Framework. The key idea here is that Grammat-
ical Framework is a programming language with
a definite syntax and we need to transform the
given morphological processors such that they ad-
here to Grammatical Framework’s syntactic struc-
ture. This calls for the need to change morpholog-
ical processors into non-ambiguous, permissible
units which are supported by Grammatical Frame-
work. Some examples of above mentioned chal-
lenges are as follows. Further details regarding
these decisions are described in algorithms men-
tioned below.

• As already mentioned in above sections, Lt-
toolbox supports paradigms which depend
on variable number of parameters whereas
Grammatical Framework only supports de-
pendence on pre-determined parameters. So
we need to analyze all paradigms and their
dependencies to find the specific occurrences
and transform them into tabular syntax struc-
ture, supported by Grammatical Framework.

• Some attributes present in the source files
(e.g. numeric attributes, duplicate attributes)
cannot be transformed directly into GF e.g.
parsarg = 0. We chose to modify the parame-
ters to include the actual parameter value and
other contextual information e.g. the param-
eter type, the paradigm name etc.

4.1 Detecting Grammar
In this step, we classify the user input as Lttool-
box or ILMT morph resource. This is a relatively
simple step because of widely different syntaxes
of both morph resources. We accomplish this us-
ing syntax-based heuristics.

4.2 Analyzing Grammar
In this step, we take the respective grammar, parse
it and then convert into an intermediate represen-
tation (IR). The motivation behind this step is to
reduce complexity for the following steps i.e Gen-
erating parameters and operations.
In the case of ILMT, the morph resource is present199

across different sources. So we convert it into
XML using the same structure as in Lttoolbox,
to make the conversion process more generalized.
Once we have the XML source, we will convert
it into IR by using the algorithm shown in Algo-
rithm.1.

Algorithm 1 “ Algorithm for Analyze Grammar ”

features = {} . sdef - represents the set of all
symbol definitions
for s ∈ sdef do . s contains lexical features
and lexical values

features[s.lexical-feature].add(s.lexical-
value)
paradigms = {} . pardef - represents the set of
paradigm definitions
for p ∈ pardef do

root = p(n) . root word
for e ∈ p do . e is an entry in paradigm

definition . e contains feature set and word
form

paradigms[root].add(e.feature-
set,e.word-form)
return features,paradigms

In algorithm 1, we are converting symbol defini-
tions and paradigm definitions into IR (i.e features
and paradigms).

4.3 Generating Parameters
In this step, we use the features from IR to gen-
erate parameters and their constructors, using the
algorithm shown in Algorithm 2. The function

Algorithm 2 “ Algorithm for generating parameters ”

for f ∈ features do . features from IR . f
contains feature names and values

buildParameters(f.name, f.value)

buildParameters generates GF syntax (parameters
and corresponding constructors) for a given fea-
ture name and its values. For example call-
ing the function buildParameters with arguments
(Num,[num s,num p]) returns

Num = num_s | num_p;

Listing 5: “ Example Parameter Syntax in GF ”

4.4 Generating Operations
In this step, we use the IR (features, paradigms)
to generate operations using the algorithm given in

Figure 2: The entire process of generating param-
eters 1.Lttoolbox/ILMT morph as given by user
2.IR created in the previous step 3.GF morph re-
source parameters created in the present module.

Algorithm 3 “ Algorithm for generating operations ”

function BUILDOPERATIONS(features,
paradigms)

for p ∈ paradigms do
buildDecalara-

tion(p,dependentFeatures)
buildTable(features,p,dependentFeatures)

return

Algorithm 3. The function buildOperations builds
operations for each paradigm. As explained in
the above section, each operation consists of dec-
laration and description which are generated by
buildDeclaration and buildTable respectively. To
do this we need to keep track of all the features
used for a paradigm. So we built a helper function
which does this by iterating through all the entries
in the paradigm.

For example, calling buildDeclaration
with arguments (case,gen,num) produces the
x1,,,,,,x8:Str -> Case => Gen => Num => Str
(we used x1-x8 because each feature has two
values, total possible values in table are 2x2x2 =
8).

The function buildTable recursively builds the
table which is used to generate the possible word
forms for a given lemma in GF, using the algo-
rithm shown in Algorithm 4.

4.5 Code and Datasets

The entire code base has been written in Python.
The description of datasets are shown in Table
1. Code and datasets are publicly available under
open-source license.1.

1https://github.com/harshavardhangsv/
automaticMorphResourceConverter200

Algorithm 4 “ Algorithm for building table”

function BUILDTABLE(features,paradigm, de-
pendentfeatures)

if dependentFeatures is empty then
return

for df ∈ dependentFeatures do
for v ∈ features[df] do

v => buildTable(features, paradigm,
rest(dependentFeatures))

. rest(1,2,3) = 2,3

Figure 3: This figure explains the process of gen-
erating operations. 1.Lttool/ILMT morph resource
given by user 2.variables state in IR form 3.GF
syntax operations created from the buildTable

Dataset # of paradigms # of words
Hindi 57 26356
Tamil 254 34290
Oriya 45 2860

Bengali 148 5478

Table 1: Description of Datasets

5 Evaluation and Error Analysis

We measure the accuracy of the converter in the
following way. The same text is given to both
GF analyzer and the original source tool (LTtool-
box and ILMT). We verify that the output of GF
analyzer and the original source tool is identical.
Thus we ensure that information is faithfully trans-
ferred. We found that there is no loss of data for
the chosen languages i.e Hindi, Oriya, Tamil and
Bengali. This evaluation is repeated for various
random news articles and 100% information was
preserved in the output. However, we have come
across with some problems in converting Sanskrit
and Marathi morph resources. These problems
are mainly caused due to presence of language-
specific syntax which we had trouble in generaliz-
ing. Even though we had some troubles, we have
found that, after analyzing files manually, our ap-
proach will still be able to make the automated
conversion to around 65%.

6 Conclusion and Future Work

In this paper, we have explained the process
of creating an automatic converter which de-
terministically converts morphological processor
from different formats into GF format without
any information loss for Hindi, Oriya and Tamil.
We are presently working on other Indian lan-
guages such as Marathi, Sanskrit and Telugu. We
have observed that if there exists any language
specific morpho-syntactic information in the re-
source, conversion of such resources requires ad-
ditional work. At present we are converting morph
resources created in Lttoolbox and ILMT morph
format.

In future we might come across a morphologi-
cal processor developed in another framework. In
order to bring the complete genericness into our
tool, we want to modularize our system. We in-
tend to develop a generic system that first asks the
user about the format of their morphological pro-
cessor and then activate the right module for the
conversion. We hope that with our effort we will
be able to offer a NLP resource to the community
which will eradicate the barrier of framework dif-
ferences.

References
Gregoire Dietrez and Ranta Aarne. 2014. Sharing

resources between free/open-source rule-based ma-201

chine translation systems: Grammatical Framework
and Apertium. LREC.

Ithisree Jena, Dipti M. Sharma 2011. Developing
Oriya Morphological Analyzer Using Lt-Toolbox .
Communications in Computer and Information Sci-
ence pp.124-129.

Mikel L. Forcada, Mireia Ginest-Rosell, Jacob Nord-
falk, Jim ORegan, Sergio Ortiz-Rojas, Juan Antonio
Prez-Ortiz, Felipe Snchez-Martnez, Gema Ramrez-
Snchez and Francis M. Tyers 2011. Apertium: a
free/open-source platform for rule-based machine
translation . In Machine Translation: Volume 25,
Issue 2 (2011), p. 127-144.

Muhammad Humayoun , Ranta Aarne 2011. Devel-
oping Punjabi Morphology, Corpus and Lexicon .
Proceedings of the 24th Pacific Asia Conference on
Language, Information and Computation.

Ranta Aarne 2003. A revised version of the on-line GF
tutorial, v1.0.. In A. Beckmann and N. Preining,
editors, ESSLLI Course Material I (2003).

Ranta Aarne 2004. Grammatical Framework: A Type-
Theoretical Grammar Formalism. The Journal of
Functional Programming 14(2) (2004) 145189.

Ranta Aarne 2009. The GF Resource Grammar Li-
brary: A systematic presentation of the library from
the linguistic point of view . Linguistics in Language
Technology, 2(2).

Ranta Aarne 2009. Grammars as Software Libraries.
From Semantics to Computer Science, Cambridge
University Press, Cambridge, pp. 281- 308.

Sampark: Machine Translation Sys-
tem among Indian languages 2009.
http://tdildc.in/index.php?option=com vertical
&parentid=74, http://sampark.iiit.ac.in/.

202

