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Abstract

In this paper, we examine the idea of
technology-assisted co-construction, where
the communication partner of an AAC user
can make guesses about the intended mes-
sages, which are included in the user’s word
completion/prediction interface. We run some
human trials to simulate this new interface
concept, with subjects predicting words as the
user’s intended message is being generated in
real time with specified typing speeds. Re-
sults indicate that people can provide substan-
tial keystroke savings by providing word com-
pletion or prediction, but that the savings are
not as high as n-gram language models. In-
terestingly, the language model and human
predictions are complementary in certain key
ways – humans doing a better job in some
circumstances on contextually salient nouns.
We discuss implications of the enhanced co-
construction interface for real-time message
generation in AAC direct selection devices.

1 Introduction
Individuals who cannot use standard keyboards for
text entry because of physical disabilities have a
number of alternative text entry methods that per-
mit typing. Referred to as keyboard emulation
within augmentative and alternative communication
(AAC), there are many different access options for
the user, ranging from direct selection of letters with
any anatomical pointer (e.g., head, eyes) to use of a
binary switch – triggered by button-press, eye-blink
or even through event related potentials (ERP) such
as the P300 detected in EEG signals. These options
allow the individual to indirectly select a symbol
based on some process for scanning through alter-
natives (Lesher et al., 1998). Typing speed is a chal-
lenge, yet is critically important for usability, and
as a result there is a significant line of research into

the utility of statistical language models for improv-
ing typing speed (McCoy et al., 2007; Koester and
Levine, 1996; Koester and Levine, 1997; Koester
and Levine, 1998). Methods of word, symbol,
phrase and message prediction via statistical lan-
guage models are widespread in both direct selec-
tion and scanning devices (Darragh et al., 1990; Li
and Hirst, 2005; Trost et al., 2005; Trnka et al.,
2006; Trnka et al., 2007; Wandmacher and Antoine,
2007; Todman et al., 2008). To the extent that the
predictions are accurate, the number of keystrokes
required to type a message can be dramatically re-
duced, greatly speeding typing.

AAC devices for spontaneous and novel text gen-
eration are intended to empower the user of the sys-
tem, to place them in control of their own com-
munication, and reduce their reliance on others for
message formulation. As a result, all such devices
(much like standard personal computers) are built
for a single user, with a single keyboard and/or alter-
native input interface, which is driven by the user of
the system. The unilateral nature of these high tech-
nology solutions to AAC stands in contrast to com-
mon low technology solutions, which rely on collab-
oration between the individual formulating the mes-
sage and their communication partner. Many adults
with acquired neurological conditions rely on com-
munication partners for co-construction of messages
(Beukelman et al., 2007).

One key reason why low-tech co-construction
may be preferred to high-tech stand-alone AAC sys-
tem solutions is the resulting speed of communica-
tion. Whereas spoken language reaches more than
one hundred words per minute and an average speed
typist using standard touch typing will achieve ap-
proximately 35 words per minute, a user of an AAC
device will typically input text in the 3-10 words per
minute range. With a communication partner guess-
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ing the intended message and requesting confirma-
tion, the communication rate can speed up dramati-
cally. For face-to-face communication – a modality
that is currently very poorly served by AAC devices
– such a speedup is greatly preferred, despite any
potential authorship questions.

Consider the following low-tech scenario. Sandy
is locked-in, with just a single eye-blink serving to
provide binary yes/no feedback. Sandy’s commu-
nication partner, Kim, initiates communication by
verbally stepping through an imagined row/column
grid, first by number (to identify the row); then by
letter. In such a way, Sandy can indicate the first
desired symbol. Communication can continue in
this way until Kim has a good idea of the word that
Sandy intends and proposes the word. If Sandy says
yes, the word has been completed, much as auto-
matic word completion may occur within an AAC
device. But Kim doesn’t necessarily stop with word
completion; subsequent word prediction, phrase pre-
diction, in fact whole utterance prediction can fol-
low, driven by Kim’s intuitions derived from knowl-
edge of Sandy, true sensitivity to context, topic, so-
cial protocol, etc. It is no wonder that such methods
are often chosen over high-tech alternatives.

In this paper, we present some preliminary ideas
and experiments on an approach to providing tech-
nology support to this sort of co-construction during
typing. The core idea is to provide an enhanced in-
terface to the communication partner (Kim in the ex-
ample above), which does not allow them to directly
contribute to the message construction, but rather
to indirectly contribute, by predicting what they be-
lieve the individual will type next. Because most text
generation AAC devices typically already rely upon
symbol, word and phrase prediction from statistical
language models to speed text input, the predictions
of the conversation partner could be used to influ-
ence (or adapt) the language model. Such adaptation
could be as simple as assigning high probability to
words or symbols explicitly predicted by the com-
munication partner, or as complex as deriving the
topic or context from the partner’s predictions and
using that context to improve the model.

Statistical language models in AAC devices can
capture regularities in language, e.g., frequent word
collocations or phrases and names commonly used
by an individual. People, however, have access to

much more information than computational mod-
els, including rich knowledge of language, any rel-
evant contextual factors that may skew prediction,
familiarity with the AAC user, and extensive world
knowledge – none of which can be easily included in
the kinds of simple statistical models that constitute
the current state of the art. People are typically quite
good at predicting what might come next in a sen-
tence, particularly if it is part of a larger discourse or
dialogue. Indeed, some of the earliest work looking
at statistical models of language established the en-
tropy of English by asking subjects to play a simple
language guessing game (Shannon, 1950). The so-
called “Shannon game” starts with the subject guess-
ing the first letter of the text. Once they have guessed
correctly, it is uncovered, and the subject guesses
the next letter, and so on. A similar game could be
played with words instead of letters. The number of
guesses required is a measure of entropy in the lan-
guage. People are understandably very good at this
game, often correctly predicting symbols on the first
try for very long stretches of text. No purely com-
putational model can hope to match the contextual
sensitivity, partner familiarity, or world knowledge
that a human being brings to such a task.

A co-construction scenario differs from a Shan-
non game in terms of the time constraints under
which it operates. The communication partner in
such a scenario must offer completions and predic-
tions to the user in a way that actually speeds com-
munication relative to independent text generation.
Given an arbitrary amount of time, it is clear that
people have greater information at their disposal for
predicting subsequent content; what happens under
time constraints is less clear. Indeed, in this paper
we demonstrate that the time constraints put human
subjects at a strong disadvantage relative to language
models in the scenarios we simulated. While it is
far from clear that this disadvantage will also apply
in scenarios closer to the motivating example given
above, it is certainly the case that providing useful
input is a challenging task.

The principal benefit of technology-assisted co-
construction with communication partners is making
use of the partner’s knowledge of language and con-
text, as well as their familiarity with the AAC user
and the world, to yield better predictions of likely
continuations than are currently made by the kinds
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of relatively uninformed (albeit state of the art) com-
putational language models. A secondary benefit is
that such an approach engages the conversation part-
ner in a high utility collaboration during the AAC
user’s turn, rather than simply sitting and waiting for
the reply to be produced. Lack of engagement is a
serious obstacle to successful conversation in AAC
(Hoag et al., 2004). The slow speed of AAC input is
itself a contributing factor to AAC user dissatisfac-
tion with face-to-face conversation, one of the most
critical modes of human social interaction, and the
one least served by current technology. Because of
the slow turnaround, the conversation partner tends
to lose focus and interest in the conversation, leading
to shorter and less satisfying exchanges than those
enjoyed by those using spoken language. A system
which leverages communication partner predictions
will more fully engage the conversation partner in
the process, rather than forcing them to wait for a
response with nothing to do.

Importantly, an enhanced interface such as that
proposed here provides predictive input from the
communication partner, but not direct compositional
input. The responsibility of selecting symbols and
words during text entry remains with the AAC user,
as the sole author of the text. In the preliminary
experiments presented later in the paper, we simu-
late a direct selection typing system with word pre-
diction, and measure the utility of human generated
word completions and predictions relative to n-gram
models. In such a scenario, n-gram predictions can
be replaced or augmented by human predictions.
This illustrates how easily technology assisted co-
construction with communication partners could po-
tentially be integrated into a user’s interface.

Despite the lack of speedup achieved versus n-
gram models in the results reported below, the po-
tential for capturing communication partner intu-
itions about AAC user intended utterances seems a
compelling topic for future research.

2 Background and Related Work
Over the past forty years, there has been a vast
array of technological solutions to aid AAC users
who present with severe speech and physical im-
pairments, from methods for generating possible
responses, to techniques for selecting among re-
sponses. The simplest methods to generate lan-

guage involve the use of pre-stored phrases, such as
“hello”, “thank you”, “I love you”, etc., which are
available on many AAC devices. Some studies have
indicated that use of such phrases improves the per-
ception of fluid communication (McCoy et al., 2007;
Hoag et al., 2008).

Prediction options vary in AAC devices, rang-
ing from letter-by-letter prediction – see Higgin-
botham (1992) and Lesher et al. (1998) for some
reviews – to word-based prediction. Some systems
can be quite sophisticated, for example incorporat-
ing latent semantic analysis to aid in the better mod-
eling of discourse-level information (Wandmacher
and Antoine, 2007). The WebCrawler project in Jef-
frey Higginbotham’s lab uses topic-related wordlists
mined from the Web to populate a user’s AAC de-
vice with terminology that is likely to be of utility to
the current topic of conversation.

Going beyond word prediction, there has been
an increased interest in utterance-based approaches
(Todman et al., 2008), which extend prediction
from the character or word level to the level
of whole sentences. For example, systems like
FrameTalker/Contact (Higginbotham and Wilkins,
1999; Wilkins and Higginbotham, 2006) populate
the AAC device with pre-stored phrases that can be
organized in various ways. In a similar vein, re-
cent work reported in Wisenburn and Higginbotham
(2008; 2009) proposed a novel method that uses au-
tomatic speech recognition (ASR) on the speech of
the communication partner, extracts noun phrases
from the speech, and presents those noun phrases on
the AAC device, with frame sentences that the AAC
user can select. Thus if the communication partner
says “Paris”, the AAC user will be able to select
from phrases like “Tell me more about Paris” or “I
want to talk about Paris”. This can speed up the con-
versation by providing topically-relevant responses.
Perhaps the most elaborate system of this kind is the
How Was School Today system (Reiter et al., 2009).
This system, which is geared towards children with
severe communication disabilities, uses data from
sensors, the Web, and other sources as input for a
natural language generation system. The system ac-
quires information about the child’s day in school:
which classes he or she attended, what activities
there were, information about visitors, food choices
at the cafeteria, and so forth. The data are then used
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to generate natural language sentences, which are
converted to speech via a speech synthesizer. At the
end of the day, the child uses a menu to select sen-
tences that he or she wants the system to utter, and
thereby puts together a narrative that describes what
he/she did. The system allows for vastly more rapid
output than a system where the child constructs each
sentence from scratch.

Perhaps the closest work to what we are proposing
is the study of non-disabled adults in Cornish and
Higginbotham (No Date), where one of the adults
played the role of an AAC user, and the other a non-
disabled communication partner. The participants
completed a narrative, a map and a puzzle task. Of
interest was the relative amount of co-construction
of the other’s utterances by each partner, and in
particular its relation to which of the partners was
the one initiating the attempt to achieve a common
ground with the other speaker — the “grounded
contribution owner”. In all tasks both the commu-
nication partner and the AAC user co-constructed
each other’s contributions, but there was the great-
est asymmetry between the two users in the puzzle
task.

In what follows, we will first describe a prelim-
inary experiment of word completion for a simu-
lated AAC user, using sentences from the Enron
email corpus and the New York Times. We then
will present results for word completion and pre-
diction within the context of dialogs in the Switch-
board corpus. While we ultimately believe that
the potential for co-construction goes far beyond
simple word completion/prediction, these experi-
ments serve as a first indication of the challenges
to an enhanced technology-assisted interface for co-
construction with communication partners during
novel text generation.

3 Preliminary experiment
In this section, we present a preliminary experiment
to evaluate the potential utility of our technology-
assisted co-construction scenario. The experiment is
akin to a Shannon Game (Shannon, 1950), but with
a time limit for guesses imposed by the speed of typ-
ing. For the current experiment we chose 5 seconds
per keystroke as the simulated typing speed: target
sentences appeared one character at a time, every
five seconds. The subjects’ task was to provide a

Figure 1: Preliminary experimental interface in terminal
window, with 4 predicted completions and cursor below

completion for the current word. If the correct word
is provided by the subject, it is selected by the sim-
ulated AAC user as the next keystroke.

For this preliminary experiment, we used a sim-
ple program running in the terminal window of a
Mac laptop. Figure 1 shows a screenshot from this
program in operation. The target string is displayed
at the top of the terminal window, one character at
a time, with the carat symbol showing white space
word boundaries. Predicted word completions are
made by typing with a standard qwerty keyboard;
and when the enter key is pressed, the word that has
been typed is aligned with the current incomplete
word. If it is consistent with the prefix of the word
that has been typed, it remains as a candidate for
completion. When the current five second interval
has passed, the set of accumulated predictions are
filtered to just those which are consistent with the
new letter that the user would have typed (e.g., ‘i’
in Figure 1). If the correct word completion for the
target string is present, it is selected with the follow-
ing keystroke. Otherwise the following letter will
be typed (with the typical 5-second delay) and the
interface proceeds as before.

Three able-bodied, adult, literate subjects were
recruited for this initial experiment, and all three
completed trials with both Enron email and New
York Times target strings. The Enron data
comes from the Enron email dataset (http://www-
2.cs.cmu.edu/∼enron/) and the NY Times data from
the English Gigaword corpus (LDC2007T07). Both
corpora were pre-processed to remove duplicate data
(e.g., spam or multiple recipient emails), tabular
data and other material that does not represent writ-
ten sentences. Details on this normalization can be
found in Roark (2009). Both corpora consist of writ-
ten sentences, one heavily edited (newspaper), the
other less formal (email); and both are large enough
to allow for robust statistical language modeling.
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Ngram training Testing
Task sents words sents words chars
NYT 1.9M 35.6M 10 201 1199
Enron 0.6M 6.1M 10 102 528

Table 1: Statistics for each task of n-gram training corpus
size and test set size in terms of sentences, words and
characters (baseline keystrokes)

The two corpora were split into training and test-
ing sets, to allow for training of n-gram language
models to compare word completion performance.
To ensure fair comparison between n-gram and hu-
man word completion performance, no sentences in
the test sets were seen in the training data. From
each test corpus, we extracted sets of 10 contiguous
sentences at periodic intervals, to use as test or prac-
tice sets. Each subject used a 10 sentence practice
set from the NY Times to become familiar with the
task and interface; then performed the word com-
pletion task on one 10 sentence set from the NY
Times and one 10 sentence set from the Enron cor-
pus. Statistics of the training and test sets are given
in Table 1.

Language models were n-gram word-based mod-
els trained from the given corpora using Kneser-Ney
smoothing (Kneser and Ney, 1995). We performed
no pruning on the models.

We evaluate in terms of keystroke savings per-
centage. Let k be the baseline number of keystrokes
without word completion, which is the number of
characters in the sample, i.e., 1 keystroke per char-
acter. With a given word completion method, let c be
the number of keystrokes required to enter the text,
i.e., if the word completion method provides correct
words for selection, those will reduce the number of
keystrokes required1. Then keystroke savings per-
centage is 100∗(k−c)/k, the percentage of original
keystrokes that were saved with word completion.
Table 2 shows the keystroke savings percentage on
our two tasks for three n-gram language models (un-
igram, bigram and trigram) and our three subjects.

It is clear from this table that the n-gram language
models are achieving much higher keystroke savings
than our three human subjects. Further, our three
subjects performed quite similarly, not only in com-

1Each word completion requires a selection keystroke, but
saves the keystrokes associated with the remaining characters
in the selected word.

N-gram Subject
Task 1g 2g 3g 1 2 3
NYT 47.4 54.5 56.0 36.5 32.0 32.9
Enron 54.4 61.4 64.4 34.5 32.0 34.1

Table 2: Keystroke savings percentage for test set across
models and subjects

parison with each other, but across the two tasks.
On the face of it, the relatively poor performance
of the human predictors might be surprising, given
that the original Shannon game was intended to es-
tablish a lower bound on the entropy of English. The
assumption has always been that people have better
language models than we can hope to learn automat-
ically. However, in contrast to the original Shannon
game, our predictions are carried out with a fairly
tight time limit, i.e., predictions need to be made
within a fairly short period in order to be made avail-
able to individuals for word completion. The time
limit within the current scenario is one factor that
seems to be putting the subjects at a disadvantage
compared to automated n-gram models on this task.

There are a couple of additional reasons why n-
gram models are performing better on these tasks.
First, they are specific domains with quite ample
training data for the language models. As the
amount of training data decreases – which would
certainly be the case for individual AAC users – the
efficacy of the n-gram models decrease. Second,
there is a 1-character advantage of n-gram models
relative to human predictions in this approach. To
see this point clearly, consider the position at the
start of the string. N-gram models can (for prac-
tical purposes) instantaneously provide predictions
for that word. But our subjects must begin typing
the words that they are predicting for this position
at the same time the individual is making their first
keystroke. Those predictions do not become opera-
tive until after that keystroke. Hence the time over-
head of prediction places a lag relative to what is
possible for the n-gram model. We will return to
this point in the discussion section at the end of the
paper.

There are some scenarios, however, where the
subjects did provide word completions prior to the
trigram language model in both domains. Interest-
ingly, a fairly large fraction of these words were
faster than n-gram for more than one of the three
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NY Times Enron
company cranbury creditor hearing
creditors denied facility suggestions
foothill jamesway jamesways stairs

plan proposal sandler savings
stock stockholders warrants

Table 3: Words completed using subject suggestions with
fewer keystrokes than trigram model. Bold indicates
more than one subject was faster for that word.

subjects. Table 3 shows the list of these words for
our trials. These tended to be longer, open-class
words with high topical importance. In addition,
they tended to be words with common word pre-
fixes, which lead to higher confusability in the n-
gram model. Of course, common prefixes also lead
to higher confusability in our subjects, yet they ap-
pear to be able to leverage their superior context sen-
sitivity to yield effective disambiguation earlier than
the n-gram model in these cases.

Based on these results, we designed a second ex-
periment, with a few key changes from this prelim-
inary experiment, including an improved interface,
the ability to predict as well as complete, and a do-
main that is closer to a proposed model for this co-
construction task.

4 Switchboard experiment
Based on the preliminary experiment, we created a
new protocol and ran seven able-bodied, adult, lit-
erate subjects. We changed the interface and do-
main in ways that we believed would make a dif-
ference in the ability of subjects to compete with n-
gram models in keystroke savings. What remained
the same was the timing of the interface: characters
for target strings were displayed every five seconds.
Word completions were then evaluated for consis-
tency with what had been typed, and if the correct
word was present, the word was completed and re-
vealed, and typing continued.
Data Our primary motivating case for technology-
assisted co-construction comes from face-to-face di-
alog, yet the corpora from which target strings were
extracted in the preliminary experiments were from
large corpora of text produced under very different
conditions. One corpus that does represent a varied-
topic, conversational dialog scenario is the Switch-
board corpus (Godfrey et al., 1992), which contains
transcripts of both sides of telephone conversations.

The idea in using this data was to provide some num-
ber of utterances of dialog context (from the 10 pre-
vious dialog turns), and then ask subjects to provide
word completions for some number of subsequent
utterances.

While the Switchboard corpus does represent the
kind of conversational dialog we are interested in, it
is a spoken language corpus, yet we are modeling
written (typed) language. The difference between
written and spoken language does present something
of an issue for our task. To mitigate this mismatch
somewhat, we made use of the Switchboard section
of the Penn Treebank (Marcus et al., 1993), which
contains syntactic annotations of the Switchboard
transcripts, including explicit marking of disfluen-
cies (“EDITED” non-terminals in the treebank), in-
terjections or parentheticals such as “I mean” or
“you know”. Using these syntactic annotations, we
produced edited transcripts that omit much of the
spoken language specific phenomena, thus provid-
ing a closer approximation to the kind of written di-
alogs we would like to simulate. In addition, we de-
cased the corpus and removed all characters except
the following: the 26 letters of the English alphabet,
the apostrophe, the space, and the dash.
Interface Figure 2 shows the graphical user inter-
face that was created for these trials. In the upper
box, ten utterances from the context of the dialog are
presented, with an indication of which speaker (A or
B) took the turn. Participants are asked to first read
this context and then press enter to begin the session.
Below this box, the current utterance is displayed,
along with which of the two participants is currently
producing the utterance. As in the previous experi-
ment, the string is displayed one character at a time
in this region. Below this is a text box where word
completions and predictions are entered. Finally, at
the bottom of the interface, Figure 2 shows two of
the five rows of current word completions (left col-
umn) and next word predictions (right column).

Perhaps the largest departure from the preliminary
experiment is the ability to not only complete the
current word but also to provide predictions about
the subsequent word. The subject uses a space de-
limiter to indicate whether predictions are for the
current word or for the subsequent word. Words
preceding a space are taken as current word com-
pletions; the first word after a space is taken as a
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Figure 2: Experimental graphical user interface

subsequent word prediction. To just predict the sub-
sequent word, one can lead with a space, which re-
sults in no current word completion and whatever
comes after the space as next word prediction. Once
the current word is complete, any words on the sub-
sequent word prediction list are immediately shifted
to the word completion list. We limited current and
next word predictions to five.

We selected ten test dialogs, and subjects pro-
duced word completions and predictions for three
utterances per dialog, for a total of thirty utterances.
We selected the test dialogs to conform to the fol-
lowing characteristics:

1. Each group of three utterances was consecutive
and spoken by the same person.

2. Each utterance contained more than 15 charac-
ters of text.

3. Each group of three utterances began turn-
initially; the first of the three utterances was
always immediately after the other speaker in
the corpus had spoken at least two consecutive
utterances of 15 characters or more.

4. Each group of three utterances was far enough
into its respective conversation that there was
enough text to provide the ten lines of context
required above.

Language models used to contrast with human
performance on this task were trained separately for
every conversation in the test set. For each conver-
sation, Kneser-Ney smoothed n-gram models were

built using all other conversations in the normalized
Switchboard corpus. Thus no conversation is in its
own training data. Table 4 shows statistics of train-
ing and test sets.

Table 5 shows the results for n-gram models and
our seven subjects on this test. Despite the differ-
ences in the testing scenario from the preliminary
experiment, we can see that the results are very sim-
ilar to what was found in that experiment. Also sim-
ilar to the previous trial was the fact that a large per-
centage of tokens for which subjects provided faster
word completion than the trigram model were faster
for multiple subjects. Table 6 shows the nine words
that were completed faster by more than half of the
subjects than the trigram model. Thus, while there is
some individual variation in task performance, sub-
jects were fairly consistent in their ability to predict.

5 Discussion

In this paper we presented two experiments that
evaluated a new kind of technology-assisted co-
construction interface for communication partners
during time-constrained text generation. Results

Ngram training Testing
Task sents words sents words chars

SWBD 0.66M 3.7M 30 299 1501

Table 4: Statistics for the Switchboard task of n-gram
training corpus size and test set size in terms of utter-
ances, words and characters (baseline keystrokes)
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N-gram Subject
Task 1g 2g 3g 1 2 3 4 5 6 7

Switchboard 51.0 59.0 60.0 28.7 33.1 28.4 28.6 34.1 31.8 32.5

Table 5: Keystroke savings percentage for Switchboard test set across models and subjects

applied can’t comes
every failure named

physics should supervisor

Table 6: Words completed in more than half of the
Switchboard trials using subject suggestions with fewer
keystrokes than trigram model.

from both experiments are negative, in terms of the
ability of our human subjects to speed up communi-
cation via word prediction under time constraints be-
yond what is achievable with n-gram language mod-
els. These results are somewhat surprising given
conventional wisdom about the superiority of hu-
man language models versus their simplified compu-
tational counterparts. One key reason driving the di-
vergence from conventional wisdom is the time con-
straint on production of predictions. Another is the
artificiality of the task and relative unfamiliarity of
the subjects with the individuals communicating.

While these results are negative, there are reasons
why they should not be taken as an indictment of
the approach as a whole, rather an indication of the
challenges faced by this task. First, we would stress
the fact that we have not yet tested the approach in a
situation where the user knows the speaker well, and
therefore can be presumed to have knowledge well
beyond general knowledge of English and general
topical knowledge. In future work we are planning
experiments based on interactions between people
who have a close relationship with each other. In
such a scenario, we can expect that humans would
have an advantage over statistical language models,
for which appropriate training data would not, in any
case, be available.

None of the domains that we evaluated were a per-
fect match to the application: the text data was not
dialog, and the dialogs were spoken rather than writ-
ten language. Further, the tasks that we evaluated in
this paper are quite rigid compared to what might
be considered acceptable in real use. For example,
our task required the prediction of a particular word
type, whereas in actual use synonyms or other ways
of phrasing the same information will likely be quite

acceptable to most AAC users. In such an applica-
tion, the task is not to facilitate production of a spe-
cific word string, rather production of an idea which
might be realized variously. We were interested in
the tasks reported here as a first step towards under-
standing the problem, and among the lessons learned
are the shortcomings of these very tasks.

Another take-away message relates to the util-
ity of the new interface itself. The subjects in
these trials had the difficult task of quickly pre-
dicting intended words; this is also a communica-
tion task that may be assisted. Providing access to
what n-gram models are predicting may allow the
communication partner to quickly select or winnow
down the options. Further, it is apparent that single
word completions or predictions is not where com-
munication partners are going to achieve order-of-
magnitude speedups in communication; rather such
speedups may be realized in facilitation of larger
phrase or whole utterance production, particularly
when the communication is between familiar part-
ners on known topics.

In summary, this paper presented preliminary re-
sults on the ability of human subjects to provide
word completion and prediction information to users
of AAC systems, through simulation of such a new
interface concept. While the subjects were not
able to match n-gram language models in terms
of keystroke reduction, we did see consistent per-
formance across many subjects and across several
domains, yielding real keystroke reductions on the
stimulus strings. Ultimately, the tasks were not as
representative of real co-construction scenarios a we
would have liked, but they serve to illustrate the
challenges of such an application.
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