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Abstract

In this paper, we give a treatment to the prob-
lem of bilingual part-of-speech induction with
parallel data. We demonstrate that naive op-
timization of log-likelihood with joint MRFs
suffers from a severe problem of local max-
ima, and suggest an alternative — using con-
trastive estimation for estimation of the pa-
rameters. Our experiments show that estimat-
ing the parameters this way, using overlapping
features with joint MRFs performs better than
previous work on the 71984 dataset.

1 Introduction

This paper considers unsupervised learning of lin-
guistic structure—specifically, parts of speech—in
parallel text data. This setting, and more gener-
ally the multilingual learning scenario, has been
found advantageous for a variety of unsupervised
NLP tasks (Snyder et al., 2008; Cohen and Smith,
2010; Berg-Kirkpatrick et al., 2010; Das and Petrov,
2011).

We consider globally normalized Markov random
fields (MRFs) as an alternative to directed models
based on multinomial distributions or locally nor-
malized log-linear distributions. This alternate pa-
rameterization allows us to introduce correlated fea-
tures that, at least in principle, depend on any parts
of the hidden structure. Such models, sometimes
called “undirected,” are widespread in supervised
NLP; the most notable instances are conditional ran-
dom fields (Lafferty et al., 2001), which have en-
abled rich feature engineering to incorporate knowl-
edge and improve performance. We conjecture that
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the “features view” of NLP problems is also more
appropriate in unsupervised settings than the con-
trived, acyclic causal stories required by directed
models. Indeed, as we will discuss below, previous
work on multilingual POS induction has had to re-
sort to objectionable independence assumptions to
avoid introducing cyclic dependencies in the causal
network.

While undirected models are formally attractive,
they are computationally demanding, particularly
when they are used generatively, i.e., as joint dis-
tributions over input and output spaces. Inference
and learning algorithms for these models are usually
intractable on realistic datasets, so we must resort to
approximations. Our emphasis here is primarily on
the machinery required to support overlapping fea-
tures, not on weakening independence assumptions,
although we weaken them slightly. Specifically, our
parameterization permits us to model the relation-
ship between aligned words in any configuration,
rather than just those that conform to an acyclic gen-
erative process, as previous work in this area has
done (§2). We incorporate word prefix and suffix
features (up to four characters) in an undirected ver-
sion of a model designed by Snyder et al. (2008).
Our experiments suggest that feature-based MRFs
offer advantages over the previous approach.

2 Related Work

The task of unsupervised bilingual POS induction
was originally suggested and explored by Snyder et
al. (2008). Their work proposes a joint model over
pairs of tag sequences and words that can be under-
stood as a pair of hidden Markov models (HMMs)
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in which aligned words share states (a fixed and
observable word alignment is assumed). Figure 1
gives an example for a French-English sentence pair.
Following Goldwater and Griffiths (2007), the tran-
sition, emission and coupling parameters are gov-
erned by Dirichlet priors, and a token-level col-
lapsed Gibbs sampler is used for inference. The hy-
perparameters of the prior distributions are inferred
from data in an empirical Bayesian fashion.

Figure 1: Bilingual Directed POS induction model

When word alignments are monotonic (i.e., there
are no crossing links in the alignment graph), the
model of Snyder et al. is straightforward to con-
struct. However, crossing alignment links pose a
problem: they induce cycles in the tag sequence
graph, which corresponds to an ill-defined probabil-
ity model. Their solution is to eliminate such align-
ment pairs (their algorithm for doing so is discussed
below). Unfortunately, this is a potentially a seri-
ous loss of information. Crossing alignments often
correspond to systematic word order differences be-
tween languages (e.g., SVO vs. SOV languages). As
such, leaving them out prevents useful information
about entire subsets of POS types from exploiting of
bilingual context.

In the monolingual setting, Smith and Eisner
(2005) showed similarly that a POS induction model
can be improved with spelling features (prefixes and
suffixes of words), and Haghighi and Klein (2006)
describe an MRF-based monolingual POS induction
model that uses features. An example of such a
monolingual model is shown in Figure 2. Both pa-
pers developed different approximations of the com-
putationally expensive partition function. Haghighi
and Klein (2006) approximated by ignoring all sen-
tences of length greater than some maximum, and
the “contrastive estimation” of Smith and Eisner
(2005) approximates the partition function with a set
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Figure 2: Monolingual MRF tag model (Haghighi
and Klein, 2006)

of automatically distorted training examples which
are compactly represented in WFSTs.

Das and Petrov (2011) also consider the prob-
lem of unsupervised bilingual POS induction. They
make use of independent conventional HMM mono-
lingual tagging models that are parameterized with
feature-rich log-linear models (Berg-Kirkpatrick et
al., 2010). However, training is constrained with tag
dictionaries inferred using bilingual contexts derived
from aligned parallel data. In this way, the complex
inference and modeling challenges associated with a
bilingual tagging model are avoided.

Finally, multilingual POS induction has also been
considered without using parallel data. Cohen et al.
(2011) present a multilingual estimation technique
for part-of-speech tagging (and grammar induction),
where the lack of parallel data is compensated by
the use of labeled data for some languages and unla-
beled data for other languages.

3 Model

Our model is a Markov random field whose ran-
dom variables correspond to words in two parallel
sentences and POS tags for those words. Let s =
(s1,...,8n,)and t = (t1,...,ty,) denote the two
word sequences; these correspond to Ng + N; ob-
served random variables.! Let x and y denote the se-
quences of POS tags for s and t, respectively. These
are the hidden variables whose values we seek to in-
fer. We assume that a word alignment is provided for
the sentences. Let A C {1,...,Ns} x {1,... N}
denote the word correspondences specified by the
alignment. The MRF’s unnormalized probability S

"We use “source” and “target” but the two are completely
symmetric in our undirected framework.
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where w is a numerical vector of feature weights
that parameterizes the model. Each f, corre-
sponds to features on pairs of random variables;
a source POS tag and word, two adjacent source
POS tags, similarly for the target side, and aligned
source/target POS pairs. For simplicity, we let f de-
note the sum of these five feature vectors. (In most
settings, each feature/coordinate will be specific to
one of the five addends.) In this paper, the features
are indicators for each possible value of the pair of
random variables, plus prefix and suffix features for
words (up to four characters). These features encode
information similar to the Bayesian bilingual HMM
discussed in §2. Future work might explore exten-
sions to this basic feature set.

The marginal probability of the words is given by:

post | Aw) = ey SV S ELAW)

zs’,t’ Zx,y S(S Xy | A,W)
Maximum likelihood estimation would choose
weights w to optimize a product of quantities like
the above, across the training data.

A key advantage of this representation is that any
alignments may be present. In directed models,
crossing links create forbidden cycles in the graph-
ical model. For example, Figure 3 shows a cross-
ing link between “Economic discrepancies” and “di-
vergences economiques.” Snyder et al. (2008) dealt
with this problem by deleting word correspondences
that created cycles. The authors deleted crossing
links by considering each alignment link in the order
of the source sentence, deleting it if it crossed pre-
vious links. Deleting crossing links removes some
information about word correspondence.
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Figure 3: Bilingual tag model.

4 Inference and Parameter Learning

When using traditional generative models, such as
hidden Markov models, the unsupervised setting
lends itself well to maximizing joint log-likelihood,
leading to a model that performs well (Snyder et
al., 2008). However, as we show in the following
analysis, maximizing joint log-likelihood for a joint
Markov random field with arbitrary features suffers
from serious issues which are related to the com-
plexity of the optimized objective surface.

4.1 MLE with Gradient Descent

For notational simplicity, we assume a single pair of
sentences s and t; generalizing to multiple training
instances is straightforward. The marginalized log-
likelihood of the data given w is

L(w) =logp(s,t | w)
Zx,y S(X7 y,S, t ’ W)
Zs’,t’ ZX,y S(Xa y,s’,t/ ‘ W) .

In general, maximizing marginalized log-
likelihood is a non-concave optimization problem.
Iterative hill-climbing methods (e.g., expectation-
maximization and gradient-based optimization) will
lead only to local maxima, and these may be quite
shallow. Our analysis suggests that the problem
is exacerbated when we move from directed to
undirected models. We next describe a simple
experiment that gives insight into the problem.

We created a small synthetic monolingual data set
for sequence labeling. Our synthetic data consists of

the following five sequences of observations: {(0 12
3),(1230),(2301),(3012),(0123)}. We then

= log



maximized the marginalized log-likelihood for two
models: a hidden Markov model and an MRF. Both
use the same set features, only the MRF is globally
normalized. The number of hidden states in both
models is 4.

The global maximium in both cases would be
achieved when the emission probabilities (or feature
weights, in the case of MRF) map each observation
symbol to a single state. When we tested whether
this happens in practice, we noticed that it indeed
happens for hidden Markov models. The MRF, how-
ever, tended to use fewer than four tags in the emis-
sion feature weights, i.e., for half of the tags, all
emission feature weights were close to 0. This ef-
fect also appeared in our real data experiments.

The reason for this problem with the MRF, we be-
lieve, is that the parameter space of the MRF is un-
derconstrained. HMMs locally normalize the emis-
sion probabilities, which implies that a tag cannot
“disappear”—a total probability mass of 1 must al-
ways be allocated to the observation symbols. With
MRFs, however, there is no such constraint. Fur-
ther, effective deletion of a state y requires zeroing
out transition probabilities from all other states to
vy, a large number of parameters that are completely
decoupled within the model.
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Figure 4: Histograms of local optima found by opti-
mizing the length neighborhood objective (a) and the
contrastive objective (b) on a synthetic dataset with
8 sentences of length 7. The weights are initialized
uniformly at random in the interval [—1, 1]. We plot
frequency versus negated log-likelihood (lower hor-
izontal values are better). An HMM always finds a
solution that uses all available tags. The numbers at
the top are numbers of tags used by each local opti-
mum.

Our bilingual model is more complex than the
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above example, and we found in preliminary exper-
iments that the effect persists there, as well. In the
following section, we propose a remedy to this prob-
lem based on contrastive estimation (Smith and Eis-
ner, 2005).

4.2 Contrastive Estimation

Contrastive estimation maximizes a modified ver-
sion of the log-likelihood. In the modified version,
it is the normalization constant of the log-likelihood
that changes: it is limited to a sum over possible ele-
ments in a neighborhood of the observed instances.
More specifically, in our bilingual tagging model,
we would define a neighborhood function for sen-
tences, N (s,t) which maps a pair of sentences to
a set of pairs of sentences. Using this neighborhood
function, we maximize the following objective func-
tion:

Lee(w)
=logp(S=s,T=t|S e Ni(s), T € Na(t), w)
Zx7y S(S7t7x7y | W)

Z ZS(S’,t',X,y | w).

s’ t/eN(s,t) X,y

= log

ey
We define the neighborhood function using
a cross-product of monolingual neighborhoods:
N(s,t) = Ni(s) x Ny(t). Ny is the “dynasearch”
neighborhood function (Potts and van de Velde,
1995; Congram et al., 2002), used for contrastive
estimation previously by Smith (2006). This neigh-
borhood defines a subset of permutations of a se-
quence s, based on local transpositions. Specifically,
a permutation of s is in N (s) if it can be derived
from s through swaps of any adjacent pairs of words,
with the constraint that each word only be moved
once. This neighborhood can be compactly repre-
sented with a finite-state machine of size O (V) but
encodes a number of sequences equal to the Nsth
Fibonacci number.

Monolingual Analysis To show that contrastive
estimation indeed gives a remedy to the local max-
imum problem, we return to the monolingual syn-
thetic data example from §4.1 and apply contrastive
estimation on this problem. The neighborhood we
use is the dynasearch neighborhood. In Figure 4b



we compare the maxima identified using MLE with
the monolingual MRF model to the maxima identi-
fied by contrastive estimation. The results are con-
clusive: MLE tends to get stuck much more often in
local maxima than contrastive estimation.

Following an analysis of the feature weights
found by contrastive estimation, we found that con-
trastive estimation puts more weight on the transi-
tion features than emission features, i.e., the tran-
sition features weights have larger absolute values
than emission feature weights. We believe that this
could explain why contrastive estimation finds better
local maximum that plain MLE, but we leave explo-
ration of this effect for future work.

It is interesting to note that even though the con-
trastive objective tends to use more tags available in
the dictionary than the likelihood objective does, the
maximum objective that we were able to find does
not correspond to the tagging that uses all available
tags, unlike with HMM, where the maximum that
achieved highest likelihood also uses all available
tags.

4.3 Optimizing the Contrastive Objective

To optimize the objective in Eq. 1 we use a generic
optimization technique based on the gradient. Using
the chain rule for derivatives, we can derive the par-
tial derivative of the log-likelihood with respect to a
weight w;:

OLce(W)
%wi = Epx,vls,t,w) il

— Eps,1,.x,Y[SeN (5), TN (t),w) [ fi]

The second term corresponds to a computationally
expensive inference problem, because of the loops
in the graphical model. This situation is differ-
ent from previous work on linear chain-structured
MRFs (Smith and Eisner, 2005; Haghighi and Klein,
2006), where exact inference is possible. To over-
come this problem, we use Gibbs sampling to obtain
the two expectations needed by the gradient. This
technique is closely related to methods like stochas-
tic expectation-maximization (Andrieu et al., 2003)
and to contrastive divergence (Hinton, 2000).

The training algorithm iterates between sam-
pling part-of-speech tags and sampling permutations
of words to compute the expected value of fea-
tures. To sample permutations, the sampler iterates
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through the sentences and decides, for each sen-
tence, whether to swap a pair of adjacent tags and
words or not. The Markov blanket for computing
the probability of swapping a pair of tags and words
is shown in Figure 5. We run the algorithm for a
fixed number (50) of iterations. By testing on a de-
velopment set, we observed that the accuracy may
increase after 50 iterations, but we chose this small
number of iterations for speed.

Figure 5: Markov blanket of a tag (left) and of a pair
of adjacent tags and words (right).

In preliminary experiments we considered
stochastic gradient descent, with online updating.
We found this led to low-accuracy local optima,
and opted for gradient descent with batch updates
in our implementation. The step size was chosen to
limit the maximum absolute value of the update in
any weight to 0.1. Preliminary experiments showed
only harmful effects from regularization, so we did
not use it. These issues deserve further analysis and
experimentation in future research.

S Experiments

We next describe experiments using our undirected
model to unsupervisedly learn POS tags.

With unsupervised part-of-speech tagging, it is
common practice to use a full or partial dictionary
that maps words to possible part-of-speech tags. The
goal of the learner is then to discern which tag a
word should take among the tags available for that
word. Indeed, in all of our experiments we make
use of a tag dictionary. We consider both a com-
plete tag dictionary, where all of the POS tags for all
words in the data are known,” and a smaller tag dic-
tionary that only provides possible tags for the 100

20f course, additional POS tags may be possible for a given
word that were not in evidence in our finite dataset.



most frequent words in each language, leaving the
other words completely ambiguous. The former dic-
tionary makes the problem easier by reducing ambi-
guity; it also speeds up inference.

Our experiments focus on the Orwell novel 71984
dataset for our experiments, the same data used by
Snyder et al. (2008). It consists of parallel text of
the /984 novel in English, Bulgarian, Slovene and
Serbian (Erjavec, 2004), totalling 5,969 sentences in
each language. The /984 datset uses fourteen part-
of-speech tags, two of which denote punctuation.
The tag sets for English and other languages have
minor differences in determiners and particles.

We use the last 25% of sentences in the dataset
as a test set, following previous work. The dataset
is manually annotated with part-of-speech tags. We
use automatically induced word alignments using
Giza++ (Och and Ney, 2003). The data show very
regular patterns of tags that are aligned together:
words with the same tag in two languages tend to
be aligned with each other.

When a complete tag dictionary derived from the
Slavic language data is available, the level of ambi-
guity is very low. The baseline of choosing random
tags for each word gives an accuracy in the low 80s.
For English, we use an extended tag dictionary built
from the Wall Street Journal and the 7984 data. The
English tag dictionary is much more ambiguous be-
cause it is obtained from a much larger dataset. The
random baseline gives an accuracy of around 56%.
(See Table 1.)

In our first set of experiments (§5.1), we perform
a “sanity check” with a monolingual version of the
MREF that we described in earlier sections. We com-
pare it against plain HMM to assure that the MRFs
behave well in the unsupervised setting.

In our second set of experiments (§5.2), we com-
pare the bilingual HMM model from Snyder et al.
(2008) to the joint MRF model. We show that using
an MRF has an advantage over an HMM model in
the partial tag dictionary setting.

5.1 Monolingual Experiments

We turn now to two monolingual experiments that
verify our model’s suitability for the tagging prob-
lem.
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Language | Random | HMM | MRF
Bulgarian 82.7 88.9 | 935
English 56.2 90.7 | 87.0
Serbian 83.4 85.1 | 89.3
Slovene 84.7 87.4 | 94.5

Table 1: Unsupervised monolingual tagging accura-
cies with complete tag dictionary on /984 data.

Supervised Learning As a very primitive com-
parison, we trained a monolingual supervised MRF
model to compare to the results of supervised
HMMs. The training procedure is based on sam-
pling, just like the unsupervised estimation method
described in §4.3. The only difference is that there is
no need to sample the words because the tags are the
only random variables to be marginalized over. Our
model and HMM give very close performance with
difference in accuracy less than 0.1%. This shows
that the MRF is capable of representing an equiva-
lent model represented by the HMM. It also shows
that gradient descent with MCMC approximate in-
ference is capable of finding a good model with the
weights initialized to all Os.

Unsupervised Learning We trained our model
under the monolingual setting as a sanity check for
our approximate training algorithm. Our model un-
der monolingual mode is exactly the same as the
models introduced in §2. We ran our model on the
1984 data with the complete tag dictionary. A com-
parison between our result and monolingual directed
model is shown in Table 1. “Random” is obtained by
choosing a random tag for each word according to
the tag dictionary. “HMM” is a Bayesian HMM im-
plemented by (Snyder et al., 2008). We also imple-
mented a basic (non-Bayesian) HMM. We trained
the HMM with EM and obtained rsults similar to the
Bayesian HMM (not shown).

5.2 Billingual Results

Table 2 gives the full results in the bilingual setting
for the /1984 dataset with a partial tag dictionary. In
general, MRFs do better than their directed counter-
parts, the HMMs. Interestingly enough, removing
crossing links from the data has only a slight adverse
effect. It appears like the prefix and suffix features
are more important than having crossing links. Re-



Language pair | HMM MRF | MRF w/o cross. | MRF w/o spell.
English 71.3 | 733106 73.4+ 06 67.4+00
Bulgarian 62.6 | 62.3+03 63.8+ 04 55.2+0s
Serbian 54.1 | 55.7+02 54.6+03 477 x0s
Slovene 59.7 | 61.4103 60.4+03 56.7+04
English 66.5 | 73.3+03 73.4+02 62.3+0s
Slovene 53.8 | 59.7+25 57.6+20 52.1+13
Bulgarian 54.2 | 58.1+o. 56.3+13 58.0+02
Serbian 56.9 | 58.6+03 59.0£12 55.1+03
English 68.2 | 72.8+0s6 727+ 06 65.7+ 04
Serbian 54.7 | 58.5x 06 57.T+03 54.2+03
Bulgarian 559 | 59.8x01 60.3x05 55.0+04
Slovene 585 | 61.4+03 61.6+04 58.1+06
Average ‘ 59.7 ‘ 62.9 ‘ 62.5 56.5

Table 2: Unsupervised bilingual tagging accuracies with tag dictionary only for the top 100 frequent words.
“HMM?” is the result reported by (Snyder et al., 2008). “MRF” is our contrastive model averaged over ten
runs. “MRF w/o cross.” is our model trained without crossing links, like Snyder et al.’s HMM. “MRF
w/o spell.” is our model without prefix and suffix features. Numbers appearing next to results are standard

deviations over the ten runs.

Language | w/ cross. | w/o cross.
French 73.8 70.3
English 56.0 59.2

Table 3: Effect of removing crossing links when
learning French and English in a bilingual setting.

moving the prefix and suffix features gives substan-
tially lower results on average, results even below
plain HMMs.

The reason that crossing links do not change the
results much could be related to fact that most of
the sentence pairs in the /984 dataset do not contain
many crossing links (only 5% of links cross another
link). To see whether crossing links do have an ef-
fect when they come in larger number, we tested our
model on French-English data. We aligned 10,000
sentences from the Europarl corpus (Koehn, 2005),
resulting in 87K crossing links out of a total of 673K
links. Using the Penn treebank (Marcus et al., 1993)
and the French treebank (Abeillé et al., 2003) to
evaluate the model, results are given in Table 3. It is
evident that crossing links have a larger effect here,
but it is mixed: crossing links improve performance
for French while harming it for English.
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6 Conclusion

In this paper, we explored the capabilities of joint
MRFs for modeling bilingual part-of-speech mod-
els. Exact inference with dynamic programming is
not applicable, forcing us to experiment with ap-
proximate inference techniques. We demonstrated
that using contrastive estimation together with Gibbs
sampling for the calculation of the gradient of the
objective function leads to better results in unsuper-
vised bilingual POS induction.

Our experiments also show that the advantage of
using MRFs does not necessarily come from the fact
that we can use non-monotonic alignments in our
model, but instead from the ability to use overlap-
ping features such as prefix and suffix features for
the vocabulary in the data.
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