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Abstract

Indirect negative evidence is clearly an im-
portant way for learners to constrain over-
generalisation, and yet a good learning
theoretic analysis has yet to be provided
for this, whether in a PAC or a proba-
bilistic identification in the limit frame-
work. In this paper we suggest a theoreti-
cal analysis of indirect negative evidence
that allows the presence of ungrammati-
cal strings in the input and also accounts
for the relationship between grammatical-
ity/acceptability and probability. Given
independently justified assumptions about
lower bounds on the probabilities of gram-
matical strings, we establish that a limited
number of membership queries of some
strings can be probabilistically simulated.

1 Introduction

First language acquisition has been studied for a
long time from a theoretical point of view, (Gold,
1967; Niyogi and Berwick, 2000), but a consen-
sus has not emerged as to the most appropriate
model for learnability. The two main competing
candidates, Gold-style identification in the limit
and PAC-learning both have significant flaws.

For most NLP researchers, these issues are sim-
ply not problems: for all empirical purposes, one
is interested in modelling the distribution of exam-
ples or the conditional distribution of labels given
examples and the obvious solution – an ε − δ
bound on some suitable loss function such as the
Kullback-Leibler Divergence – is sufficient (Horn-
ing, 1969; Angluin, 1988a). There may be some
complexity issues involved with computing these
approximations, but there is no debate about the
appropriateness of the learning paradigm.

However, such an approach is unappealing to
linguists for a number of reasons: it fails to draw
a distinction between grammatical and ungram-
matical sentences, and for many linguists the key

data are not the “performance” data but rather the
“voice of competence” as expressed in grammat-
icality and acceptability judgments. Many of the
most interesting sentences for syntacticians are
comparatively rare and unusual and may occur
with negligible frequency in the data.

We do not want to get into this debate here: in
this paper, we will assume that there is a categori-
cal distinction between grammatical and ungram-
matical sentences. See (Schütze, 1996) for exten-
sive discussion.

Within this view learnability is technically quite
difficult to formalise in a realistic way. Children
clearly are provided with examples of the lan-
guage – so-called positive data – but the status
of examples not in the language – negative data
– is one of the endless and rather circular de-
bates in the language acquisition literature (Mar-
cus, 1993). Here we do not look at the role of
corrections and other forms of negative data but
we focus on what has been called indirect nega-
tive evidence (INE). INE is the non-occurrence of
data in the primary linguistic data; informally, if
the child does not hear certain ungrammatical sen-
tences, then by their absence the child can infer
that those strings are ungrammatical.

Indirect negative evidence has long been recog-
nised as an important source of information
(Pinker, 1979). However it has been surpris-
ingly difficult to find an explicit learning theo-
retic account of INE. Indeed, in both the PAC
and IIL paradigms it can be shown, that under
the standard assumptions, INE cannot help the
learner. Thus in many of these models, there
is a sharp and implausible distinction between
learning paradigms where the learner is provided
systematically with every negative example, and
those where the learner is denied any negative ev-
idence at all. Neither of these is very realistic.

In this paper, we suggest a resolution for this
conflict, by re-examining the standard learnability
assumptions. We make three uncontroversial ob-
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servations: first that the examples the child is pro-
vided with are unlabelled, secondly that there are
a small proportion of ungrammatical sentences in
the input to the child, and thirdly that in spite of
this, the child does in fact learn.

We then draw a careful distinction between
probability and grammaticality and propose a re-
striction on the class of distributions allowed to
take account of the fact that children are exposed
to some ungrammatical utterances. We call this
the Disjoint Distribution Assumption: the assump-
tion that the classes of distributions for different
languages must be disjoint. Based on this assump-
tion, we argue that the learner can infer lower
bounds on the probabilities of grammatical strings,
and that using these lower bounds allow a prob-
abilistic approximation to membership queries of
some strings.

On this basis we conclude that the learner does
have some limited access to indirect negative evi-
dence, and we discuss some of the limitations on
this data and the implications for learnability.

2 Background

The most linguistically influential learnability
paradigm is undoubtedly that of Gold (Gold,
1967). In this paradigm the learner is required to
converge to exactly the right answer after a finite
time. In one variant of the paradigm the learner
is provided with only positive examples, and must
learn on every presentation of the language. Un-
der this paradigm no suprafinite class of languages
is learnable. If alternatively the learner is pro-
vided with a presentation of labelled examples,
then pretty much anything is learnable, but clearly
this paradigm has little relevance to the course of
language acquisition.

The major problem with the Gold positive data
paradigm is that the learner is required to learn
under every presentation; given the minimal con-
straints on what counts as a presentation, this re-
sults in a model which is unrealistically hard. In
particular, it is difficult for the learner to recover
from an overly general hypothesis; since it is has
only positive examples, such a hypothesis will
never be directly contradicted.

Indirect negative evidence is the claim that the
absence of sentences in the PLD can allow a
learner to infer that those sentences are ungram-
matical. As (Chomsky, 1981, p. 9) says:

A not unreasonable acquisition sys-

tem can be devised with the opera-
tive principle that if certain structures
or rules fail to be exemplified in rel-
atively simple expressions, where they
would expect to be found, then a (pos-
sibly marked) option is selected exclud-
ing them in the grammar, so that a kind
of “negative evidence” can be available
even without corrections, adverse reac-
tions etc.

While this informal argument has been widely
accepted, and is often appealed to, it has so far not
been incorporated explicitly into a formal model
of learnability. Thus there are no learning mod-
els that we are aware of where positive learning
results have been achieved using indirect negative
evidence. Instead positive learnability results have
typically used general probabilistic models of con-
vergence without explicitly modelling grammati-
cality.

In what follows we will use the following no-
tation. Σ is a finite alphabet, and Σ∗ is the
set of all finite strings over Σ. A (formal) lan-
guage L is a subset of Σ∗. A distribution D over
Σ∗ is a function pD from Σ∗ to [0, 1] such that∑

w∈Σ∗ pD(w) = 1. We will write D(Σ∗) for the
set of all distributions over Σ∗. The support of a
distribution D is the set of strings with positive
probability supp(D) = {w|pD(w) > 0}.

3 Probabilistic learning

The solution is to recognise the probabilistic na-
ture of how the samples are generated. We can
assume they are generated by some stochastic pro-
cess. On its own this says nothing – anything can
be modelled by a stochastic process. To get learn-
ability we will need to add some constraints.

Suppose the child has seen thousands of times
sentences of the type “I am AP”, and “He is
AP” where AP is an adjective phrase, but he has
never heard anybody say “He am AP”. Intuitively
it seems reasonable in this case to assume that
the child can infer from this that sentences of the
form“He am AP” are ungrammatical. Now, in the
case of the Gold paradigm, the child can make
no such inference. No matter how many millions
or trillions of times he has heard other examples,
the Gold paradigm does not allow any inference
to be made from frequency. The teacher, or en-
vironment, is an adversary who might be deliber-
ately withholding this data in order to confuse the
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learner. The learner has to ignore this information.
However, in a more plausible learning environ-

ment, the learner can reason as follows. First, the
number of times that the learner has observed sen-
tences of the form “He am AP” is zero. From this,
the learner can infer that sentences of this type are
rare: i.e. that they are not very probable. Similarly
from the high frequency of examples of the type “I
am AP” and so on in the observed data, the learner
can infer that the probability of these sentences is
high.

The second step is that the learner can con-
clude from the difference in probability of these
two similar sets of sentences, that there must be a
difference in grammaticality between “He am AP”
and “He is AP”, and thus that sentences of the type
“He am AP” are ungrammatical.

It is important to recognise that the inference
proceeds in two steps:

1. the first is the inference from low frequency
in the observed data to low probability and

2. the second is the inference from compara-
tively low probability to ungrammaticality.

Both of these steps need justification, but if they
are valid, then the learner can extract evidence
about what is not in the language from stochastic
evidence about what is in the language. The first
step will be justified by some obvious and reason-
able probabilistic assumptions about the presenta-
tion of the data; the second step is more subtle and
requires some assumptions about the way the dis-
tribution of examples relates to the language being
learned.

3.1 Stochastic assumptions
The basic assumption we make is that the sam-
ples are being generated randomly in some way;
here we will make the standard assumption that
each sentence is generated independently from
the same fixed distribution, the Independently and
Identically Distributed (IID) assumption. While
this is a very standard assumption in statistics and
probability, it has been criticised as a modelling
assumption for language acquisition (Chater and
Vitányi, 2007).

Here we are interested in the acquisition of syn-
tax. We are therefore modelling the dependencies
between words and phrases in sentences, but as-
suming that there are no dependencies between
different sentences in discourse. That is to say, we

assume that the probability that a child hears a par-
ticular sentence does not depend on the previously
occurring sentence. Clearly, there are dependen-
cies between sentences. After questions, come an-
swers; a polar interrogative is likely to be followed
by a “yes” or a “no”; topics relate consecutive
sentences semantically, and numerous other fac-
tors cause inter-sentential relationships and regu-
larities of various types. Moreover, acceptability
does depend a great deal on the immediate context.
“Where did who go?” is marginal in most con-
texts; following “Where did he go?” it is perfectly
acceptable. Additionally, since there are multiple
people generating Child Directed Speech (CDS),
this also introduces dependencies: each person
speaks in a slightly different way; while a rela-
tive is visiting, there will be a higher probability
of certain utterances, and so on. These correspond
to a violation of the “identically” part of the IID
assumption: the distribution will change in time.

The question is whether it is legitimate to ne-
glect these issues in order to get some mathemat-
ical insight: do these idealising assumptions criti-
cally affect learnability? All of the computational
work that we are aware of makes these assump-
tions, whether in a nativist paradigm, (Niyogi and
Berwick, 2000; Sakas and Fodor, 2001; Yang,
2002) or an empiricist one (Clark and Thollard,
2004). We do need to make some assumptions,
otherwise even learning the class of observed nat-
ural languages would be too hard. The minimal
assumptions if we wish to allow any learnability
under stochastic presentation are that the process
generating the data is stationary and mixing. All
we need is for the law of large numbers to hold,
and for there to be rapid convergence of the ob-
served frequency to the expectation. We can get
this easily with the IID assumption, or with a bit
more work using ergodic theory. Thus in what fol-
lows we will make the IID assumption; effectively
using it as a place-holder for some more realistic
assumption, based on ergodic processes. See for
example (Gamarnik, 2003) for a an extension of
PAC analysis in this direction. The inference from
low frequency to low probability follows from the
minimal assumptions, specifically the IID, which
we are making here.

4 Probability and Grammaticality

We now look at the second step in the probabilistic
inference: how can the child go from low probabil-
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ity to ungrammaticality? More generally the ques-
tion is what is the relation between probability and
grammaticality. There are lots of factors that affect
probability other than grammaticality: length of
utterance, lexical frequency, semantic factors and
real world factors all can have an impact on prob-
ability.

Low probability on its own cannot imply un-
grammaticality: if there are infinitely many gram-
matical sentences then there cannot be a lower
bound on the probability: if all grammatical
sentences have probability at least ε then there
could be at most 1/ε grammatical sentences which
would make the language finite. A very long
grammatical sentence can have very low probabil-
ity, lower than a short ungrammatical sentence, so
a less naive approach is necessary: the key point is
that the probability must be comparatively low.

Since we are learning from unlabelled data, the
only information that the child has comes from
from the distribution of examples, and so the dis-
tribution must pick out the language precisely. To
see this more clearly, suppose that the learner had
access to an “Oracle” that would tell it the true
probability of any string, and has no limit on how
many strings it sees. A learner in this unrealistic
model is clearly more powerful than any learner
that just looks at a finite sample of the data. If this
learner could not learn, then no real learner could
learn on the basis of finite data.

More precisely for any language L we will have
a corresponding set of distributions D(L), and we
require the learner to learn under any of these dis-
tributions. What we require is that if we have two
distinct languages L and L′ then the two sets of
distributionsD(L) andD(L′) must be disjoint, i.e.
have no elements in common. If they did have a
distribution D in common, then no learner could
tell the two languages apart as the information be-
ing provided would be identical. Of course, given
two distinct languages L and L′, it is possible that
they intersect, that is to say that there are strings
w in L∩L′; a natural language example would be
two related dialects of the same language such as
some dialect of British English and some dialect of
American; though the languages are distinct in for-
mal terms, they are not disjoint, as there are sen-
tences that are grammatical in both. When we con-
sider the sets of distributions that are allowed for
each language D(L) and D(L′), we may find that
there are elements D ∈ D(L) and D′ ∈ D(L′),

whose supports overlap, or even whose supports
are identical, supp(D) = supp(D′), and we may
well find that there are even some strings whose
probabilities are identical; i.e. there may be a
string w such that pD(w) = pD′(w) > 0. But
what we do not allow is that we have a distribution
D that is an element of both D(L) and D(L′). If
there were such an element, then when the learner
was provided with samples drawn from this dis-
tribution, since the samples are unlabelled, there
is absolutely no way that the learner could work
out whether the target was L or L′; the distribu-
tion would not determine the language. Therefore
there must be a function from distributions to lan-
guages. We cannot have a single distribution that
could be from two different languages. Let’s call
this the disjoint distribution assumption (DDA):
the assumption that the sets of distributions for dis-
tinct languages are disjoint.

Definition 1 The Disjoint Distribution Assump-
tion: If L 6= L′ then D(L) ∩ D(L′) = ∅.

This assumption seems uncontroversial; indeed
every proposal for a formal probabilistic model of
language acquisition that we are aware of makes
this assumption implicitly.

Now consider the convergence criterion: we
wish to measure the error with respect to the distri-
bution. There are two error terms, corresponding
to false positives and false negatives. Suppose our
target language is T and our hypothesis is H . De-
fine PD(S) for some set S to be

∑
w∈S pD(s).

e+ = PD(H \ T ) (1)

e− = PD(T \H) (2)

We will require both of these error terms to con-
verge to zero rapidly, and uniformly, as the amount
of data the learner has increases.

5 Modelling the DDA

If we accept this assumption, then we will require
some constraints on the sets of distributions. There
are a number of ways to model this: the most ba-
sic way is to assume that strings have probability
greater than zero if and only if the string is in the
language. Formally, for all D in D(L)

pD(w) > 0 ⇔ w ∈ L (3)

Here we clearly have a function from distribu-
tions to languages: we just take the support of the
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distribution to be the language: for all D in D(L),
supp(D) = L. Under this assumption alone how-
ever, indirect negative evidence will not be avail-
able.

That is because, in this situation, low probabil-
ity does not imply ungrammaticality: only zero
probability implies ungrammaticality. The fact
that we have never seen a sentence in a finite sam-
ple of size n means that we can say that it is likely
to have probability less than about 1/n, but we
cannot say that its probability is likely to be zero.
Thus we can never conclude that a sentence is un-
grammatical, if we make the assumption in Equa-
tion 3, and assume that there are no other limita-
tions on the set of distributions. Since we have
to learn for any distribution, we must learn even
when the distribution is being picked adversari-
ally. Suppose we have never seen an occurrence
of a string; this could be because the probability
has been artificially lowered to some infinitesimal
quantity by the adversary to mislead us. Thus we
gain nothing. Since there is no non-trivial lower
bound on the probability of grammatical strings,
effectively there is no difference between the re-
quirement pD(w) > 0 ⇔ w ∈ L and the weaker
condition pD(w) > 0 ⇒ w ∈ L.

But this is not the only possibility: indeed, it is
not a very good model at all. First, the assump-
tion that ungrammatical strings have zero proba-
bility is false. Ungrammatical sentences, that is
strings w, such that w 6∈ L, do occur in the en-
vironment, albeit with low probability. There are
performance errors, poetry and songs, other chil-
dren with less than adult competence, foreigners
and many other potential sources of ungrammat-
ical sentences. The orthodox view is that CDS
is “unswervingly well-formed” (Newport et al.,
1977): this is a slight exaggeration as a quick look
at CHILDES (MacWhinney, 2000) will confirm.
However, if we allow probabilities to be non-zero
for ungrammatical sentences, and put no other re-
strictions on the distributions then the learner will
fail on everything, since any distribution could be
for any language.

Secondly, the convergence criterion becomes
vacuous. As the probability of ungrammatical sen-
tences is now zero, this means that PD(H \ T ) =
e+ = 0, and thus the vacuous learner that always
returns the hypothesis Σ∗ will have zero error. The
normal way of dealing with this (Shvaytser, 1990)
is to require the learner to hypothesize a subset of

the target. This is extremely undesirable, as it fails
to account for the presence of over-generalisation
errors in the child – or any form of production of
ungrammatical sentences. On the basis of these
arguments, we can see that this naive approach is
clearly inadequate.

There are a number of other arguments why dis-
tribution free approaches are inappropriate here,
even though they are desirable in standard appli-
cations of statistical estimation (Collins, 2005).
First, the distribution of examples causally de-
pends on the people who are uttering the examples
who are native speakers of the language the learner
is learning and use that knowledge to construct ut-
terances. Second, suppose that we are trying to
learn a class of languages that includes some in-
finite regular language Lr. For concreteness sup-
pose it consists of {a∗b∗c∗}; any number of a’s fol-
lowed by any number of b’s followed by any num-
ber of c’s. The learner must learn under any dis-
tribution: in particular it will have to learn under
the distribution where every string except an in-
finitesimally small amount has the number of ’a’s
equal to the number of ’b’s, or under the distribu-
tion where the number of occurrences of all three
letters must be equal, or any other arbitrary subset
of the target language. The adversary can distort
the probabilities so that with probability close to
one, at a fixed finite time, the learner will only see
strings from this subset. In effect the learner has
to learn these arbitrary subsets, which could be of
much greater complexity than the language.

Indeed researchers doing computational or
mathematical modelling of language acquisition
often find it convenient to restrict the distribu-
tions in some way. For example (Niyogi and
Berwick, 2000), in some computational modelling
of a parameter-setting model of language acquisi-
tion say

In the earlier section we assumed
that the data was uniformly distributed.
. . . In particular we can choose a dis-
tribution which will make the conver-
gence time as large as we want. Thus
the distribution-free convergence time
for the three parameter system is infi-
nite.

However, finding an alternative is not easy.
There are no completely satisfactory ways of re-
stricting the class of distributions, while maintain-
ing the property that the support of the distribu-
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tion is equal to the language. (Clark and Thollard,
2004) argue for limiting the class of distributions
to those defined by the probabilistic variants of the
standard Chomsky representations. While this is
sufficient to achieve some interesting learning re-
sults, the class of distributions seems too small,
and is primarily motivated by the requirements of
the learning algorithm, rather than an analysis of
the learning situation.

5.1 Other bounds

Rather than making the simplistic assumption that
the support of the distribution must equal the lan-
guage, we can instead make the more realistic as-
sumption that every sentence, grammatical or un-
grammatical, can in principle appear in the input
and have non zero probability. In this case then
we do not need to require the learner to produce a
hypothesis that is a subset of the target, because if
the learner overgeneralises, e+ will be non-zero.

However, we clearly need to add some con-
straints to enforce the DDA. We can model this as
a function from distributions to languages. It is ob-
vious that grammaticality is correlated with prob-
ability in the sense that grammatical sentences are,
broadly speaking, more likely than ungrammatical
sentences; a natural way of articulating this is to
say that that there must be a real valued threshold
function gD(w) such that if pD(w) > gD(w) then
w ∈ L. Using this we define the set of allowable
distributions for a language L to be:

D(L, g) = {D : pD(w) > gD(w) ⇔ w ∈ L}
(4)

Clearly this will satisfy the DDA. On its own this
is vacuous – we have just changed notation, but
this notation gives us a framework in which to
compare some alternatives.

The original assumption that the support is
equal to the languages in this framework then just
has the simple form gD(w) = 0. The naive con-
stant bound we rejected above would be to have
this threshold as a constant that depends neither on
D nor on w i.e. for all w , gD(w) = ε > 0. Both
of these bounds are clearly false, in the sense that
they do not hold for natural distributions: the first
because there are ungrammatical sentences with
non-zero probability; the second because there are
grammatical sentences with arbitrarily low proba-
bility. But the bound here need not be a constant,
and indeed it can depend both on the distribution
D and the word w.

5.2 Functional bound
We now look at variants of these bounds that pro-
vide a more accurate picture of the set of distribu-
tions that the child is exposed to. Recall that what
we are trying to do is to characterise a range of dis-
tributions that is large enough to include those that
the child will be exposed to. A slightly more nu-
anced way would be to have this as a very simple
function of w, that ignores D, and is just a function
of length. For example, we could have a simple
uniform exponential model:

gD(w) = αgβ
|w|
g (5)

This is in some sense an application of Harris’s
idea of equiprobability (Harris, 1991):

whatever else there is to be said
about the form of language, a fun-
damental task is to state the depar-
tures from equiprobability in sound- and
word-sequences

Using this model, we do not assume that the
learner is provided with information about the
threshold g; rather the learner will have cer-
tain, presumably domain general mechanisms that
cause it to discard anomalies, and pay attention
to significant deviations from equiprobability. We
can view the threshold g as defining a bound on
equiprobability; the role of syntax is to charac-
terise these deviations from the assumption that all
sequences are in some sense equally likely.

A more realistic model would depend also on
D; for example once could define these thresholds
to depend on some simple observable properties of
the distribution that could take account of lexical
probabilities: more sophisticated versions of this
bound could be derived from a unigram model, or
a class-based model (Pereira, 2000).

Alternatively we could take account of the pre-
fix and suffix probability of a string: for example,
where for some α < 1: 1

gD(w) = α max
uv=w

pD(uΣ∗)pD(Σ∗v) (6)

6 Using the lower bound

Putting aside the specific proposal for the lower
bound g, and going back to the issue of indirect

1A prefix is just an initial segment of a string and has no
linguistic and similarly for a suffix as the final segment.
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negative evidence, we can see that the bound g is
the missing piece in the inference: if we observe
that a string w has zero frequency in our data set,
then we can conclude it has low probability, say
p; if p is less than g(w), then the string will be
ungrammatical; therefore the inference from low
probability to ungrammaticality in this case will
be justified.

The bound here is justified independently:
given the indubitable fact that there is a non-zero
probability of ungrammatical strings in the child’s
input, and the DDA, which again seems unassail-
able, together with the fact that learners do learn
some languages, it is a logical necessity that there
is such a bound. This bound then justifies indirect
negative evidence.

It is important to realise how limited this neg-
ative evidence is: it does not give the learner un-
limited access to negative examples. The learner
can only find out about sentences that would be
frequent if they were grammatical; this may be
enough to constrain overgeneralisation.

The most straightforward way of formalising
this indirect negative evidence is with membership
queries (Valiant, 1984; Angluin, 1988b). Mem-
bership queries are a model of learning where the
learner, rather than merely passively receiving ex-
amples, can query an oracle about whether an ex-
ample is in the language or not. In the model we
propose, the learner can approximate a member-
ship query with high probability by seeing the fre-
quency of an example with a high g in a large sam-
ple. If the frequency is low, often zero, in this sam-
ple, then with high probability this example will be
ungrammatical.

In particular given a functional bound, and some
polynomial thresholds on the probability, and us-
ing Chernoff bounds we can simulate a polyno-
mial number of membership queries, using large
samples of data. Note that membership queries
were part of the original PAC model (Valiant,
1984). Thus we can precisely define a limited
form of indirect negative evidence.

In particular given a bound g, we can test to see
whether a polynomial number of strings are un-
grammatical by taking a large sample and examin-
ing their frequency.

The exact details here depend on the form of
gD(w); if the bound depends on D in some re-
spect the learner will need to estimate some aspect
of D to compute the bound. This corresponds to

working out how probable the sentence would be
if it were grammatical. In the cases we have con-
sidered here, given sufficient data, we can estimate
gD(w) with high probability to an accuracy of ε1;
call the estimate ĝD(w). We can also estimate the
actual probability of the string with high probabil-
ity again with accuracy ε2: let us denote this es-
timate by p̂D(w). If p̂D(w) + ε2 < ĝD(w) − ε1,
then we can conclude that pD(w) < gD(w) and
therefore that the sentence is ungrammatical. Con-
versely, the fact that a string has been observed
once does not necessarily mean that it is grammat-
ical. It only means that the probability is non-zero.
For the learner to conclude that it is grammatical,
s/he needs to have seen it enough times to con-
clude that the probability is above threshold. This
will be if p̂D(w)− ε2 > ĝD(w) + ε1

Note that this may be slightly too weak and
we might want to have a separate lower bound
for grammaticality and upper bound for ungram-
maticality. Otherwise if the distribution is such
that many strings are very close to the boundary
it will not be possible for the learner to determine
whether they are grammatical or not.

We can thus define learnability with respect to a
bound g that defines a set of distributionsD(L,G).
Thus this model differs from the PAC model in two
respects: first the data is unlabelled, and secondly
is is not distribution free.

Definition An algorithm A learns the class of
languagesL if there is a polynomial p such that for
every language L ∈ L, where n is the size of the
smallest representation of L, for all distributions
D ∈ D(L, g) for all ε, δ > 0, when the algorithm
A is provided with at least p(n, ε−1, δ−1,Σ) un-
labelled examples drawn IID from D, it produces
with probability at least 1−δ a hypothesis H such
that the error PD(H \T ∪T \H) < ε and further-
more it runs in time polynomial in the total size of
the sample.

7 Discussion

The unrealistic assumptions of the Gold paradigm
were realised quite early on (Horning, 1969). It
is possible to modify the Gold paradigm by in-
corporating a probabilistic presentation in the data
and requiring the learner to learn with probabil-
ity one. Perhaps surprisingly this does not change
anything, if we put no constraints on the target dis-
tribution (Angluin, 1988a).

In particular given a presentation on which the
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normal non-probabilistic learner fails, we can con-
struct a distribution on which the probabilistic
learner will fail. Thus allowing an adversary to
pick the distribution is just as bad as allowing an
adversary to pick the presentation. However, the
distribution free assumption with unlabelled data
cannot account for the real variety of distributions
of CDS. In this model we propose restrictions on
the class of distributions, motivated by the oc-
currence of ungrammatical sentences. This also
means that we do not require a separate bound for
over-generalisation. As a result, we conclude that
there are limited amounts of negative evidence,
and suggest that these can be formalised as a lim-
ited number of membership queries, of strings that
would occur infrequently if they were ungrammat-
ical.

To be clear, we are not claiming that this is a di-
rect model of how children learn languages: rather
we hope to get some insight into the fundamen-
tal limitations of learning from unlabelled data by
switching to a more nuanced model. Here we have
not presented any positive results using this model,
but we observe that distribution dependent results
for learning regular languages and some context
free languages could be naturally modified to learn
in this framework. We hope that the recognition of
the validity of indirect negative evidence will di-
rect attention away from the supposed problems of
controlling overgeneralisation and towards the real
problems: the computational complexity of infer-
ring complex models.
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