1

Representational Biasin Unsupervised Learning of Syllable Structure

Sharon Goldwater and Mark Johnson
Department of Cognitive and Linguistic Sciences
Brown University
Providence, Rl 02912
{Shar on_Col dwat er, Mar k_Johnson}@r own. edu

Abstract

Unsupervised learning algorithms based
on Expectation Maximization (EM) are
often straightforward to implement and
provably converge on a local likelihood
maximum. However, these algorithms of-
ten do not perform well in practice. Com-
mon wisdom holds that they yield poor
results because they are overly sensitive
to initial parameter values and easily get
stuck in local (but not global) maxima.
We present a series of experiments indi-
cating that for the task of learning sylla-
ble structure, the initial parameter weights
are not crucial. Rather, it is the choice of
model class itself that makes the differ-
ence between successful and unsuccess-
ful learning. We use a language-universal
rule-based algorithm to find a good set of
parameters, and then train the parameter
weights using EM. We achieve word ac-
curacy of 95.9% on German and 97.1% on
English, as compared to 97.4% and 98.1%
respectively for supervised training.

Introduction

framework, one method that can be used for unsu-
pervised learning is to devise a probabilistic model

of the data, and then choose the values for the model
parameters that maximize the likelihood of the data
under the model.

If the model contains hidden variables, there is
often no closed-form expression for the maximum
likelihood parameter values, and some iterative ap-
proximation method must be used. Expectation
Maximization (EM) (Neal and Hinton, 1998) is
one way to find parameter values that at least lo-
cally maximize the likelihood for models with hid-
den variables. EM is attractive because at each
iteration, the likelihood of the data is guaranteed
not to decrease. In addition, there are efficient
dynamic-programming versions of the EM algo-
rithm for several classes of models that are important
in computational linguistics, such as the forward-
backward algorithm for training Hidden Markov
Models (HMMs) and the inside-outside algorithm
for training Probabilistic Context-Free Grammars
(PCFGs).

Despite the advantages of maximum likelihood
estimation and its implementation via various in-
stantiations of the EM algorithm, it is widely re-
garded as ineffective for unsupervised language
learning. Merialdo (1994) showed that with only

The use of statistical methods in computational lina tiny amount of tagged training data, supervised
guistics has produced advances in tasks such as pdraining of an HMM part-of-speech tagger outper-

ing, information retrieval, and machine translationformed unsupervised EM training. Later results (e.g.
However, most of the successful work to date haBrill (1995)) seemed to indicate that other methods
used supervised learning techniques. Unsupervisetlunsupervised learning could be more effective (al-
algorithms that can learn from raw linguistic datathough the work of Banko and Moore (2004) sug-

as humans can, remain a challenge. In a statistiogésts that the difference may be far less than previ-
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ously assumed). Klein and Manning (2001; 2002)vho trains a PCFG of syllable structure from a
recently achieved more encouraging results using a@orpus of words with syllable boundaries marked.
EM-like algorithm to induce syntactic constituentWe, too, use a model defined by a grammar to de-
grammars, based on a deficient probability model. scribe syllable structure. However, our work dif-

It has been suggested that EM often yield podiers from Muiller’s in that it focuses on how to learn
results because it is overly sensitive to initial paramthe model’'s parameters in an unsupervised manner.
eter values and tends to converge on likelihood maxseveral researchers have worked on unsupervised
ima that are local, but not global (Carroll and Charlearning of phonotactic constraints and word seg-
niak, 1992). In this paper, we present a series afientation (Elman, 2003; Brent, 1999; Venkatara-
experiments indicating that for the task of learningnan, 2001), but to our knowledge there is no pre-
a syllable structure grammar, the initial parameteviously published work on unsupervised learning of
weights are not crucial. Rather, it is the choice o$yllable structure.

the model class, i.e., thepresentational biasthat In the work described here, we experimented with
makes the difference between successful and unsuero different classes of models of syllable structure.
cessful learning. Both of these model classes are presented as PCFGs.

In the remainder of this paper, we first describédhe first model class, described intiNer (2002),
the task itself and the structure of the two differencodes information about the positions within a
ent classes of models we experimented with. Weord or syllable in which each phoneme is likely
then present a deterministic algorithm for choosingp appear. In thigositional model, each syllable
a good set of parameters for this task. The algas labeled as initial (1), medial (M), final (F), or as
rithm is based on language-universal principles dhe one syllable in a monosyllabic word (O). Syl-
syllabification, but produces different parameters foiables are broken down into an optional onset (the
each language. We apply this algorithm to Englisinitial consonant or consonant cluster) followed by a
and German data, and describe the results of expehyme. The rhyme consists of a nucleus (the vowel)
iments using EM to learn the parameter weights foiollowed by an optional coda consonant or cluster.
the resulting models. We conclude with a discussioRach phoneme is labeled with a preterminal cate-
of the implications of our experiments. gory of the formCatPos.x.y whereCat € {Ons,

Nuc, Cod, Pose {I, M, F, O}, = is the position
2 Statistical Parsing of Syllable Structure  of a consonant within its cluster, angdis the total

Knowledge of syllable structure is important fornumber of consonants n the clustera_ndy are un-
used wherCat = Nug, since all nuclei consist of a

correct pronunciation of spoken words, since cers—in le vowel. See Fig. 1 for an example barse
tain phonemes may be pronounced differently de- 9 ) - T19. ‘example p -
Rather than directly encoding positional infor-

ending on their position in the syllable. A num-_ " . . )
P g P y mation, the second model class we investigate (the

ber of different supervised machine learning tech-. ram model) models statistical dependencies b
nigues have been applied to the task of automatjed ) ISt P ! e

syllable boundary detection, including decision-tre%:‘\r':’een adjacent phonemes and adjacent syllables.

classifiers (van den Bosch et al., 1998), weighted particular, each OWSG‘ or coda expands direc_tly
finite state transducers (Kiraz andoblus, 1998), INto one or more terminal phonemes, thus capturing

and PCFGs (Nller, 2001; Miller, 2002). The re- the ordering dependencies between consonants in a

searchers presenting these systems have generglllusmr' Also, the shape of each syllable (whether it

argued from the engineering standpoint that sylla(z(%taInS an onset or coda) depends on the shape of

ble boundary detection is useful for pronunciation the previous syllable, so that the ’.“Ode' can learn,
or example, that syllables ending in a coda should

unknown words in text-to-speech systems. Our mq- : o
tivation is a more scientific one: we are interested icrl%e followed by syllables with an onsétThis kind

the kinds of procedures and representations that can*we follow Miiller in representing our models as PCFGs be-

lead to successful unsupervised language learningGause this representation is easy to present. The languages gen-
erated by these PCFGs are in fact regular, and it is straightfor-

both computers and humaqs. _ ward to transform the PCFGs into equivalent regular grammars.
Our work has some similarity to that of iMer, 2 Many linguists believe that, cross-linguistically, a poten-

113



Word

Word WdN
/\
S)(II SylM SylF S)‘/IN WdON
/\ /\

Rhyl OnsM RhyM  OnsF RhyF Nuc SylON WdON

| T \ | S PN \

Nucl OnsM.1.2 OnsM.2.2 NucM OnsF.1.1 NucF CodF @ Ons Nuc SylONC

| T /\

@ g r i m @ CodF.1.2 CodF.2.2 g r i Ons Nuc Cod
| | | | /N
n t m @ nt

Figure 1: Positional analysis (left) and bigram analysis (right) of the vagrdementGroups of terminals
dominated by a Syl* node constitute syllables. Terminals appear in the SAM&#diery of IPA used by
CELEX.

of bigram dependency between syllables is modelgikbrcentage of words with no syllabification errors)
using rules of the form WH — SylX WdY, where was 97.4% for the bigram model and 97.2% for the
X andY are drawn from the set of possible combipositional modef, while in English it was 98.1%
nations of onset, nucleus, and codain a syllabd: and 97.6% respectively. These results for English
ON, NC, ONG. Each SyK category has only one are in line with previous reported results using other
expansion. See Fig. 1 for an example. supervised learning techniques, e.g. van den Bosch
With respect to either of these two model classest al. (1998). Since many of the words in the data are
each way of assigning syllable boundaries to a worshonosyllabic (49.1% in German, 61.2% in English)
corresponds to exactly one parse of that word. Th&and therefore contain no ambiguous syllable bound-
makes it simple to train the models from a corpus irries, we also calculated the multisyllabic word ac-
which syllable boundaries are provided, as idldr  curacy. This was 94.9% (bigram) and 94.5% (posi-
(2001). We used two different corpora for our expertional) in German, and 95.2% (bigram) and 93.8%
iments, one German (from the ECI corpus of newspositional) in English.
paper text) and one English (from the Penn WSJ
corpus). Each corpus was created by converting Categorical Parsing of Syllable Structure

the orthographic forms in the original text into thelrIn the previous section, we described two different

phonemic transcriptions using the_CELEX databasr%odel classes and showed that the maximum like-
(Baayen_ et aI.,_ 1995). - CELEX mcIuo!es S‘y""?lb_lqihood estimates with supervised training data yield
boundaries, Wh.'Ch we used for' superw_se_d trammgood models of syllable structure. In moving to un-
and for evaluqtlon. _Any words in the_ original te_XtSsupervised learning, however, there are two prob-
that were not listed in CELEX were discarded, SINCfms that need to be addressed: exactly what class of
. . , U¥odels do we want to consider (i.e., what kinds of
supervised tralnlné. From_the resulting phonemic rules should the model contain), and how should we
corpora, we created a training set_of 20,000 tOI(erkselect a particular model from that class (i.e., what
?nd arisﬁ_iet %f 10’000. toléens.. l_Jsmg starcljdard ma\)/\(/'eights should the rules have)? We take as our so-
Imum fIkelinood supervise training proceaures, W o 14 the latter problem the most straightforward
obtained similar results for models from the two proach; namely, maximum likelihood estimation

_ a
model classes. In German, word accuracy (i.e. th.?ging EM. This leaves us with the question of how

tially ambiguous consonant, such as thin saber is always t0 choose a set of parameters in the first place. In this
syllabified as the onset of the second syllable rather than t*@ction, we describe an algorithm based on two fun-

coda of the first. We discuss this point further in Section 3. tal ph loaical princioles that. wh .
3Due to the nature of the corpora, the percentage of worogamen al phonological principles that, when given a

discarded was fairly high: 35.6% of the English tokens (pri-Set of data from a particular language, will produce a
marily proper nouns, acronyms, and numerals, with a smaller

number of morphologically complex words) and 26.7% of the  *Miller reports slightly lower results of 96.88% on German
German tokens (with compound words making up a somewhaising the same positional model. We have no explanation for
larger portion of these discards). this discrepancy.
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set of rules appropriate to that language. These rulekister of consonants between two syllable nuclei,
can then be trained using EM. sonority sequencing states that the syllable boundary
Given a particular rule schema, it is not imme-should occur either just before or just after the con-
diately clear which of the possible rules should acsonant with lowest sonority. Combining this princi-
tually be included in the model. For example, inple with onset maximization predicts that the bound-
the bigram model, should we start off with the ruleary should fall before the lowest-sonority segment.
Ons— k n? This rule is unnecessary for English, Predicting syllable boundaries in this way is not
and could lead to incorrect parses of words sucfvolproof. In some cases, clusters that are predicted
asweakness But /kn/ is a legal onset in German, by sonority sequencing to be acceptable are in fact
and since we want an algorithm that is prepared tiflegal in some languages. The illegal English on-
learn any language, disallowinkn/ as an onset out set clusterkn is a good example. In other cases,
of hand is unacceptable. On the other hand, the ssiich as the English onsstr, clusters are allowed
of all combinatorially possible consonant clusters iglespite violating sonority sequencing. These mis-
infinite, and even limiting ourselves to clusters actumatches between universal principles and language-
ally seen in the data for a particular language yieldspecific phonotactics lead to errors in the predic-
extremely unlikely-sounding onsets lik&j/ (calcu-  tions of the categorical parser, suchwasa.knesand
late) and bst/ (substanck Ideally, we should limit ins.tru.ment In addition, certain consonant clusters
the set of rules to ones that are likely to actually béke bst (as in substance may contain more than
used in the language of interest. one minimum sonority point. To handle these cases,
The algorithm we have developed for producthe categorical parser follows onset maximization
ing a set of language-appropriate rules is essentially adding any consonants occurring between the
a simple categorical (i.e., non-statistical) syllablewo minima to the onset of the second syllable:
parser based on the principles afiset maximiza- sub.stance

tion andsonority sequencingBlevins, 1995). Onset  Not surprisingly, the categorical parser does not
maximization is the idea that in word-medial consoperform as well as the supervised statistical parser:
nant clusters, as many consonants as possible (giv§Rly 92.7% of German words and 94.9% of English
the phonotactics of the language) should be assign@rds (85.7% and 86.8%, respectively, of multisyl-
to onset position. This idea is widely accepted anghpic words) are syllabified correctly. However, a
has been codified in Optimality Theory (Prince angnore important result of parsing the corpus using
Smolensky, 1993) by proposing the existence of the categorical parser is that its output can be used
universal preference for syllables with onsets.  to define a model class (i.e., a set of PCFG rules)
In addition to onset maximization, our categoricafrom which a model can be learned using EM.

parser follows the principle of sonority sequencing Specifically, our model class contains the set of
whenever possible. This principle states that, withipjes that were proposed at least once by the cat-
a syllable, segments that are closer to the nuclewgyrical parser in its analysis of the training cor-
should be higher in sonority th.an segments that alis; in the EM experiments described below, the
further away. Vowels are considered to be the mogfje probabilities are initialized to their frequency
sonorous segments, followed by glides (&v/), lid- i, the categorical parser's output. Due to the mis-
uids (0/, if), nasals @/, i/, hy), fricatives (#/,  akes made by the categorical parser, there will be
Isl, 161, ...), and stops W, i/, fk/, ...). Given & gome ryles, lik®Ons— k nin English, that are not

Tmportam point, which we return to in Section 5, is present in the model trained on the true syllabifica-

that exceptions to onset maximization may occur at morphenféon, but many possible but spurious rules, such as
boundaries. Some linguists also believe that there are addbns— b s t, will be avoided. Although clusters that

tional exceptions in certain languages (including English and. . . .
German), where stressed syllables attract codas. Under this t éplate sonority sequencing tend to be avoided by

ory, the correct syllabification f@aberwould not besa.berbut ~ the categorical parser, it does find examples of these
rathersab.er or possiblysalb]er, where thdb] is ambisyllabic. nypes of clusters at the beginnings and endings of

Since the syllable annotations in the CELEX database follo d I . I d diall .
simple onset maximization, we take that as our approach as wdlords, as well as occasionally word-medially (as in

and do not consider stress when assigning syllable boundariesub.stance This means that many legal clusters that
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Bigram Positional Bigram Positional

all multi | all multi all multi | all multi
CP 92.7 85.7|92.7 857 CP 949 86.8| 949 86.8
CP+EM 959 919|918 84.0 CP + EM 97.1 92.6|94.1 84.9
CP-U+EM 959 919|920 84.4 CP-U+EM 97.1 92.6| 94.1 84.9
supervised 97.4 94.9 97.2 945 supervised 98.1 95.2 97.6 93.8
SP + EM 716 443|944 89.1 SP + EM 86.0 64.0| 96.5 90.9
SP-U+EM 71.6 44.3| 944 89.0 SP-U+EM 86.0 64.0| 67.6 16.5

Table 1: Results for German: % of all words (or Table 2: Results for English.

multisyllabic words) correctly syllabified.

the bigram model was simply due to good initial-
violate sonority sequencing will also be included irization of the parameter weights, we performed a
the set of rules found by this procedure, althougfecond experiment. Again starting with the set of
their probabilities may be considerably lower tharfules output by the categorical parser, we initialized
those of the supervised model. In the following secthe rule weights to the uniform distribution. The re-
tion, we show that these differences in rule probabifsults of this experiment (CP-U + EM) show that for
ities are unimportant; in fact, it is not the rule probihe class of bigram models, the performance of the
abilities estimated from the categorical parser’s oufinal model found by EM does not depend on the
put, but only the set of rules itself that matters foinitial rule probabilities. Performance within the po-

successful task performance. sitional model framework does depend on the initial
rule probabilities, since accuracy in German is dif-
4 Experiments ferent for the two experiments.

In this section, we present a series of experiments us-~S W& have pointed out, the rules found by the
ing EM to learn a model of syllable structure. All of c&tegorical parser are not exactly the same as the
our experiments use the same German and EngliSes found using supervised training. This raises
20,000-word training corpora and 10,000-word test"€ duestion of whether the difference in perfor--
ing corpora as described in Sectiofl 2. mance between the unsupervised and supervised bi-
For our first experiment, we ran the categorica’@m models is due to differences in the rules. To
parser on the training corpora and estimated a mod@&fidress this question, we performed two additional
from the parse trees it produced, as described in tfggPeriments. First, we simply ran EM starting from
previous section. This is essentially a single steff¢ M0del estimated from supervised training data.
of Viterbi EM training. We then continued to train S€¢0nd. we kept the set of rules from the supervised
the model by running (standard) EM to convergencéfaining data, but reinitialized the probabilities to a
Results of this experiment with Categorical ParsUniform distribution before running EM. The results
ing + EM (CP + EM) are shown in Tables 1 andof these experiments are shown as SP + EM and SP-
2. For both German and English, using this leamn? * EM, respectively. Again, performance of the
ing method with the bigram model yields perfor-b'gram model is mvgnant with respect to initial pa-
mance that is much better than the categorical pars@Meter values, while the performance of the posi-
alone, though not quite as good as the fully supeF'—onaI model is not. _Interestlngly, the p_erformz_ance
vised regime. On the other hand, training a posf the bigram model in these two experiments is far
tional model from the categorical parser's output an/©'S€ than in the CP experiments. This result is
then running EM causes performance to degrade. counterintuitive, since it would seem that the model
To determine whether the good performance dtlés found by the supervised system are the opti-
mal rules for this task. In the following section, we

¢of course, for unsupervised leaming, it is not necessary fxplain why these rules are not, in fact, the optimal
use a distinct testing corpus. We did so in order to use the same

testing corpus for both supervised and unsupervised Iearnirﬂ:}”?s for unsgperwsed learning, as well as why we
experiments, to ensure fair comparison of results. believe the bigram model performs so much better
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than the positional model in the unsupervised learwill cause relatively large changes in the induced

ing situation. model. On the other hand, models with high bias
_ _ are less sensitive to changes in the observed data.
5 Discussion Here, the bigram model induced from the categor-

ical parser has a relatively high bias: regardless of

The results of our experiments raise two interestin : o
e parameter weights, it will be a poor model of

guestions. First, when starting from the categoric ta wh d-medial onsets and codas are ver
parser’s output, why does the bigram model improv ata where word-medial onsets S very

after EM training, while the positional model does ifferent from.those a_t word edges, and it cannot
not? And second, why does applying EM to the gymodel data with certain onsets such ag/ /or /tz/
' t all because the rulé®@ns—v pandOns —t z

pervised bigram model lead to worse performanc% . ) .
than applying it to the model induced from the cate?'® simply absent. The mducgd positional mpdel
gorical parser? can model both of these situations, and_can fit the
To answer the first question, notice that one difErue parses more cI_oser as well (as evidenced by
ference between the bigram model and the postihe fact that the likelihood of the data under the su-

ervised positional model is higher than the like-

tional model is that onsets and codas in the bigra#hood under the supervised bigram model). As a

model are modeled using the same set of paramlé- o . "
. result, however, it is more sensitive to the initial
ters regardless of where in the word they occur. This )
. : rpglrameter weights and learns to recreate the errors
means that the bigram model generalizes whatever'i . . .
oduced by the categorical parser. This sensitiv-

learns about clusters at word edges to word-medi8l

clusters (and, of course, vice versa). Since the cat'@-/ to initial parameter weights also explains the ex-

: . ._tremely poor performance of the positional model
orical parser only makes errors word-medially, in- . .
g P y Y M the SP-U + EM experiment on English. Because

correct clusters are only a small percentage of CIU?He model is so unconstrained, in this case it finds a
ters overall, and the bigram model can overcome '

these errors by reanalyzing the word-medial Clusqompletely dn‘fgrent local maximum (not the global
maximum) which more or less follows coda max-

ters. The errors that are made after EM trainingm. : o L
- ization rather than onset maximization, yielding
are mostly due to overgeneralization from clusters

that are very common at word edges, e.g. predictinsg}/”abiﬁcations likesynd.ic.ateandtent.at.ive.ly
le.gi.sla.tion instead of le.gis.la.tion. The concept of representational bias can also ex-
In contrast to the bigram model, the positionaplain why applying EM to the supervised bigram
model does not generalize over different positionmodel performs so poorly. Examining the model in-
of the word, which means that it learns and repeattuced from the categorical parser reveals that, not
the word-medial errors of the categorical parser. F@urprisingly, it contains more rules than the super-
example, this model predicts.gze kju.tiv/ for ex- vised bigram model. This is because the categori-
ecutive just as the categorical parser does, althougtal parser produces a wider range of onsets and co-
/gzl is never attested in word-initial position. In ad-das than there are in the true parses. However, the
dition, each segment in a cluster is generated inrduced model is not a superset of the supervised
dependently, which means clusters liké may be model. There are four rules (three in English) that
placed together in an onset becauges/common occur in the supervised model but not the induced
as the first segment of an onset, atid common model. These are the rules that allow words where
as the second. While this problem exists even ione syllable contains a coda and the following syl-
the supervised positional model, it is compoundetable has no onset. These are never produced by the
in the unsupervised version because of the errors ohtegorical parser because of its onset-maximization
the categorical parser. principle. However, it turns out that a very small per-
The differences between these two models are aentage of words do follow this pattern (about .14%
example of the bias-variance trade-off in probabilisef English tokens and 1.1% of German tokens). In
tic modeling (Geman et al., 1992): models with lowEnglish, these examples seem to consist entirely of
bias will be able to fit a broad range of observations/ords where the unusual syllable boundary occurs at
fairly closely, but slight changes in the observed data morpheme boundary (e.gn.usually, dis.appoint,
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week.end, turn.overin German, all but a handful of sible rules within a particular framework and relied
examples occur at morpheme boundaries as ell. on EM to remove the “unnecessary” rules by letting
The fact that the induced bigram model is unabléheir probabilities go to zero. We suggest that this
to model words with codas followed by no onset iprocedure tends to yield models with low bias but
a very strong bias, but these words are so infrequehigh variance, so that they are extremely sensitive
that the model can still fit the data quite well. Theto the small variations in expected rule counts that
missing rules have no effect on the accuracy of theccur with different initialization weights.
parser, because in the supervised model the proba-Our work suggests that using models with higher
bilities on the rules allowing these kinds of wordsbias but lower variance may lead to much more
are so low that they are never used in the Viterlduccessful results. In particular, we used univer-
parses anyway. The problem is that if these rules asal phonological principles to induce a set of rules
included in the model prior to running EM, they addwithin a carefully chosen grammatical framework.
several extra free parameters, and suddenly EM We found that there were several factors that en-
able to reanalyze many of the words in the corpus tabled our induced bigram model to learn success-
make better use of these parameters. It ends up pfally where the comparison positional model did
ferring certain segments and clusters as onsets andk:
others as codas, which raises the likelihood of the
corpus but leads to very poor performance. Essen-
tially, it seems that the presence of a certain kind of
morpheme boundary is an additional parameter of

the “true” model that the bigram model doesn'tin- > The pigram model does not distinguish be-

parameter matters requires introducing extra param-  generalize onset and coda sequences from word
eters that allow EM too much freedom of analysis.  gqges to word-medial position.

It is far better to constrain the model, disallowing

certain rare analyses but enabling the model to learn3. The bigram model learns specific sequences
successfully in a way that is robust to variations in ~ of legal clusters rather than information about
initial conditions and idiosyncracies of the data. which positions segments are likely to occur in.

1. The bigram model encodes bigram dependen-
cies of syllable shape and disallows onset-less
syllables following syllables with codas.

6 Conclusion Notice that each of these factors imposes a con-
straint on the kinds of data that can be modeled. We
We make no claims that our learning system enhave already discussed the fact that item 1 rules out
bodies a complete model of syllabification. A fullthe correct syllabification of certain morphologically
model would need to account for the effects of morcomplex words, but since our system currently has
phological boundaries, as well as the fact that somgb way to determine morpheme boundaries, itis bet-
languages allow resyllabification over word boundter to do so than to introduce extra free parameters.
aries. Nevertheless, we feel that the results presentefe possible extension to this work would be to try
here are significant. We have shown that, despite incorporate morphological boundary information
previous discouraging results (Carroll and Charniakeither annotated or induced) into the model.
1992; Merialdo, 1994), itis possible to achieve good A more interesting constraint is the one imposed
results using EM to learn linguistic structures in arpy item 2, since in fact most languages do have some
unsupervised way. However, the choice of modelifferences between the onsets and (especially) co-
parameters is crucial for successful learning. Cagas allowed at word edges and within words. How-
roll and Charniak, for example, generated all posever, the proper way to handle this fact is not by
Txceptions in our training data wexaserkoren ‘cho- ?nf[r.oducingl complet.ely inde_p_enden_t parameters for
sen’, erobern ‘capture’and forms oferinnern ‘remind: all of  initial, medial, and final positions, since this allows

which were listed in CELEX as having a syllable boundary, bufar too much freedom. It would be extremely sur-
no morpheme boundary, after the first consonant. Our knowl-

edge of German is not sufficient to determine whether there BfSIN9 to fm_d a language with one set Of_ C_Oqas al-
some other factor that can explain these cases. lowed word-internally, and a completely disjoint set
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allowed word-finally. In fact, the usual situation ism. Banko and R. Moore. 2004. A study of unsupervised part-
that word-internal onsets and codas are a subset ofof-speech tagging. IRroceedings of COLING '04
those allowed at word edges, and this is exactly why Blevins. 1995. The syllable in phonological theory. In
using word edges to induce our rules was Successful_J. Goldsmith, editothe Handbook of Phonological Theory

. . . Blackwell, Oxford.

Considering language more broadly, it is com-

L . for segmentation and word discoveryachine Learning
many similarities but some differences as well. For 3471105
such cases, adding extra parameters to asupervisecll3 i 199 sed learning of disambiauati |
model often yields better performance, since thg BMI: 1995 Unsupervised learning of disambiguation rules

- for part of speech tagging. IRroceedings of the 3rd Work-
augmented model can capture both primary and sec-shop on Very Large Corporaages 1-13.

ondary effects. But it Se_ems that’_ at I_e?St for th‘é. Carroll and E. Charniak. 1992. Two experiments on learning
current state of unsupervised learning, it is better to probabilistic dependency grammars from corpora.Pta-
limit the number of parameters and focus on those ceedings of the AAAI Workshop on Statistically-Based Natu-
that capture the main effects in the data. In our task " -@"guage Processing Techniqué&an Jose, CA.
of learning syllable structure, we were able to usé Elman. 2003. Generalization from sparse inputPioceed-
just a few simple principles to constrain the model gg;;‘;the 38th Annual Meeting of the Chicago Linguistic
successfully. For more complex tasks such as syn-

; ; ; ot ; . Geman, E. Bienenstock, and R. Doursat. 1992. Neural net-
tactic pa_lrsmg, the space of Ilngwstlcally pIaUSIbIeS works and the bias/variance dilemnideural Computation
models is much larger. We feel that a research pro- 4.1_5g.

ram integrating results from the study of linguistic
9 9 9 y 9 G. A. Kiraz and B. Mbius. 1998. Multilingual syllabifica-

Un?VersaIS’ hur_nan_ Ianguage anUiSitiom anq COMPU-tion using weighted finite-state transducers.Phoceedings

tational modeling is likely to yield the most insight of the Third European Speech Communication Association

into the kinds of constraints that are needed for suc- Workshop on Speech Synthesis

cessful learning. D. Klein and C. Manning. 2001. Distributional phrase struc-
Ultimately, of course, we will want to be able to ture induction. IrProceedlngs of the Conference on Natural

. . Language Learningpages 113-120.

capture not only the main effects in the data, but _ _ _ _

some of the subtler effects as well. However, w- Klein and C. Mannlng. 2002. A generative constituent-

beli that th to do this i t by introduci context model forimproved grammar induction.Rroceed-
elieve that the way to do this is not by introducing - jngs of the ACL

completely free parameters, but by using aBayeS|aBn Merialdo. 1994. Taqai lish text with babilisti
. S . Merialdo. . Tagging english text with a probabilistic

prior that would enforce a degree of similarity be- model. Computational Linguistic20(2):155-172.

tween certain parameters. In the meantime, we have

. . e . K. Muller. 2001. Automatic detection of syllable boundaries
shown that employing linguistic universals to deter- combining the advantages of treebank and bracketed corpora

mine which set of parameters to include in a lan- training. InProceedings of the ACL
guage mOde‘I for Sy"able parsmg_ a”OV_VS us to USE. Muller. 2002. Probabilistic context-free grammars for
EM for learning the parameter weights in a success- phonology. InProceedings of the Workshop on Morpholog-
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