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Abstract
Our motivation is to perform call routing of utterances
without recourse to transcriptions of the training data,
which are very expensive to obtain.  We therefore use
phonetic recognition of utterances and search for
salient phonetic sequences within the decodings.  An
important issue in phonetic recognition is the language
model.  It has been demonstrated [1] that the use of an
iterative language model gives benefits in speech
recognition performance that are translated to
improvements in utterance classification. However, an
all-purpose language model sometimes produces
decodings that are ambiguous, in that they apparently
contain key phonetic sequences from several different
routes, or non-informative, in that they apparently
contain no useful phonetic sequences. This paper
describes a method that uses multiple language models
to detect useful information in such utterances.  The
outputs from recognizers that use these multiple models
are examined by post-processing HMMs that decide
whether putative sequences are present or not.  It is
found that using multiple language models increases
performance significantly by classifying utterances that
a single language model is unable to discriminate.

1. Introduction

Call routing refers to the technique of automatically
relaying a customer's telephone enquiry to one of
several appropriate destinations, using computational
speech and language processing techniques.
Transcribing calls for training purposes for a particular
application requires considerable human effort, and it
would be preferable for the system to learn routes
without transcriptions being provided [2].

In this study, we assume that we are provided with a set
of training utterances that have been labelled with their
destination by an expert, but not transcribed into words
or phonemes.  We also assume (perhaps over-
pessimistically) that we have no prior knowledge of the
vocabulary or syntax of our application.
In this situation, one possible course of action is to use
phone recognition and attempt to identify phonetic

sequences that are salient to particular routes.
Unfortunately, the speech signals are often of very poor
quality, being subject to the usual distortion, bandwidth
restriction and noise associated with telephone signals,
and often compounded by the fact that callers usually
speak casually and spontaneously, and sometimes with a
strong accent.
Some approaches to the problem of extracting salient
phonetic strings from these utterances are:

• Improve phone accuracy by using a variable length
language model and building models for insertion
and substitution; [3,4]

• Identify subword units (e.g. phonemes, phoneme
strings, syllables and morphemes) from the
recognised phonetic sequences by using clustering
and segmentation methods;  [5,6,7]

• Use matrix-based methods for classification, such as
LSA, LDA, ICA, SVM, etc. [8,9,10]

Work at AT&T [1] showed that call routing performance
using this phone-string utterance classification can be
surprisingly close to what can be achieved by
conventional methods involving word-trigram language
models that require manual transcription. The method
described in [1] combines automatic training of
application-specific phonotactic language models
together with token sequence classifiers.

Our own experiments, using data different from that used
by AT&T, showed that this technique gave only a small
benefit in phone recognition accuracy, but was useful for
finding salient phoneme strings.  However, we found
that, in some cases, it was impossible to obtain salient
phoneme sequences from the recognised utterances even
when it was known that they occurred within the
utterance.  The reason may be that when building a
single language model with the collected utterances from
all call routes, the salience of a particular sequence for a
particular route is lost in the “noise” from mis-recognised
sequences of phonemes from the other routes. Hence we
sought a way of making the language model more
sensitive to the keywords occurring in the utterances.  In



our system, an independent corpus is used to build an
n-gram phonotactic language  model that enables an
initial recogniser to be built to decode all the training
utterances.  This model is refined iteratively using the
output from the recogniser as the basis for the next
language model.   A specific language model for each
call route is then built using the utterances from this
call route.  These are much more sensitive to key
salient phoneme sequences in the utterance.
The structure of the paper is as follows: in section 2,
the data corpus used is introduced. Section 3 describes
in detail the language modelling techniques, section 4
presents experiments and analysis of results, and we
end with a Discussion in section 5.

2. Database

The application studied here was the enquiry-point for
the store card for a large retail store. Customers were
invited to call up the system and to make the kind of
enquiry they would normally make when talking to an
operator. Their calls were routed to 61 different
destinations, although some destinations were used
very infrequently. 15 000 utterances were available,
and a subset of 4511 utterances was used for training
and 3518 for testing, in which 18 different call types
were represented. Some of these call types are quite
easily confused e.g. PaymentDue and PaymentDate,
PaymentAddress and Changeaddress. Phoneme
recognition of the input speech queries was performed
using an HMM recogniser whose acoustic models had
been trained on a large corpus of telephone speech and
which had separate models for males and females. The
average length of an utterance is 8.36 words. In
addition, transcriptions of the prompts from the Wall
Street Journal (WSJ) database were used to generate
phoneme-level statistical language models for initial
training.  These models were generated using a scheme
for backing off to probability estimates for shorter n-
grams.
The size of the vocabulary is 1208 words.  To get a feel
for the difficulty of the task, the mutual information
(MI) between each word and the classes was
calculated.  By setting a threshold on this figure, we
observed that there were about 51 keywords occurring
in 4328 utterances which were capable on their own of
classifying a call with high accuracy (some utterances
had no keywords).

3. Modelling

3.1. Model Structure

Figure 1 shows the method used to produce an initial
language model.

The algorithm follows that described in [1]:
1. Build an n-gram language model (LM) using the

dictionary transcriptions of the WSJ corpus (we used
n=6).   Make this the current LM.

2. Use the current LM in the recognizer to produce a
set of phone strings.

3. Build a new LM based on the recognizer phone
strings:

4. If niterations <=threshold, goto 2 else
finish and produce a single language model for
all routes.

Phonotactic language 
model (WSJ)

Figure. 1 The Iterative training procedure

The phone strings are now segmented and clustered so
that salient phone sequences for each route can be
identified.  This is done as follows:
FOR EACH ROUTE
1. Segment each recognized phone string in the route

into all possible sequences of 3,4, … , 9 phones.
2. Estimate the MI for each sequence, and identify the

salient sequences as the sequences with the highest
MI [11].

3. Cluster the salient sequences within the route.  This
is done by calculating and combining two measures
of distance (using dynamic programming
techniques) for each pair of sequences:
• The Levensthein distance between the phone

symbols representing the sequences.



• The acoustic distance in “MFCC space”
between the two waveform segments
representing the sequences.

4. Use a simple lexicon pruning scheme that
eliminates long agglomerations of short primitives
[12].

At this point, we have generated a set of clustered
phone sequences for each route.  Each phone sequence
corresponds to a sequence of frames, and the frame
sequences within a cluster are used to build an HMM
These HMMs are used later to estimate the class of a
segment output by the recognizer (see section 3.2).
Finally, we build a language model for each route, as
follows by collecting together the recognised phonetic
sequences of utterances from each route and using
them to construct a language model.

After iterating the LM, detection of key phonetic
sequences improves.  However, many utterances do not
produce any sequences  or produce several sequences
from different routes.  For recognition, we use a
“divide and conquer” approach.  Utterances that yield
one or more sequences from the same route are
classified immediately as that route, and utterances
whose output is ambiguous, in that they yield no
sequences, or sequences from several routes, or whose
recognition confidence is too low to trust, are subject to
a more detailed recognition pass in which separate LMs
for each route are used.   This has the advantage of
only applying the extra computational effort required to
use multiple LMs  for those utterances that need this.
In practice, if lattices are used, the additional
computational effort is not too great.  The confidence
measure used was the measure available from the
Nuance speech recognizer v8.0.

Hence recognition proceeds as follows.
1. A single language model is used in the recognizer to

produce an output phone string.
2. Any phonetic sequences in the output string that also

occur within any of the clusters of key phonetic
sequences in any of the routes are found.

3. IF the number of key phonetic sequences found is
one or more AND the sequences all belong to the
same route:
the utterance is classified as belonging to this route.
ELSEIF  the number of key phonetic sequences is
zero OR there are one or more sequences from
different routes OR the confidence measure of the
whole utterance is lower than some threshold:
the utterance is re-recognized using all 18 language
models.

4. Recognition using multiple language models works as
follows. 18 recognized phonetic sequences are
output, one from each recognizer (as shown in Figure
2), and key phonetic sequences are detected in each
output.

IF there are one or more sequences from different
routes:
Putative sections of the speech that contain keywords
are identified by comparing the symbolic output of a
recognizer using a certain LM with the sequences that
were used to form the HMMs of the clustered key
phonetic sequences for this LM.  These HMMs are
then used to determine the likelihood of each
sequence given the output string, and the utterance is
assigned to the route of the highest likelihood.
ELSEIF  the number of key phonetic sequences is
zero
The utterance is not classified (rejected).

Test
utterances

Total utts = 3515
# classified correct by 1 LM = 2553
# classified correct by 18 LMs = 487

Figure 2: The Recognition Process
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Call type classification is done using a vector-based
approach as described in [8].  It is perhaps surprising
that this classifier gets 100% accuracy (2553/2553) on
utterances in which all the sequences are apparently
from the same route―we attribute this to the fact that
the 18 call-types were used were highly independent in
their use of keywords.

Figure 2 gives an overview of the whole process,
together the number of utterances that were involved in
each stage.

3.2. Key Phonetic Sequence Detection

Key phonetic sequences can be incorrectly matched to
incorrect segments of the utterance, causing false
alarms.  To combat this problem, we use matching in
the acoustic domain as well as the symbolic domain.
HMMs for 41 key phonetic sequences whose number
of occurrences was larger than a threshold (we used 30)
were built.  Each key phonetic sequence was modelled
by a five-state left-to-right HMM with no skips and
each state is characterised by a mixture Gaussian state
observation density. A maximum of 3 mixture
components per state is used. The Baum-Welch
algorithm is then used to estimate the parameters of the
Gaussian densities for all states of subword HMM’s.

We use key phrase detection as described in [13][14].
By using the phonetic output from the recogniser, the
position in the utterance waveform of putative strings
can be identified, and this section of the waveform is
input into the phonetic sequence HMMs.  Detection of
phrases is achieved by monitoring the forward
probability of the data given the model at any time and
searching for peaks in the probability. If full-likelihood
recognition is used, we estimate the score ),( twS f :
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In equation (1), ),( twS f  is the forward probability of
word w at time t [13].  In practice, we used the Viterbi
equivalent of equation (1) to determine the likelihood.

4. Experiments

4.1. Phone accuracy based on one LM

Figure 3 illustrates the effects of
(a) using the recogniser output strings to construct a

new language model as described in section 3.1;
(b)  using 18 different LMs as well as a single LM.
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Fig 3. Phone error rate using 1 LM and 18 LMs

Rec-Phone: Build language model using recognised
phonetic sequences of utterances from training set;
Trans-Phone: Build language model using phoneme
transcriptions of words of utterances from training set
1 LM:   Recognition using one language model;
18LMs: Recognition using 18 language models.

Figure 3 shows that the phone error rate is very much
higher when recognised phone sequences (Rec-Phone)
rather than dictionary transcriptions (Trans-Phone) are
used to build an LM.  However, an interesting point is
that iterative performance decreases when the
transcriptions are used, but increases when the
recognised strings are used. This is probably because,
when the recognised strings are used, the initial LM,
which is trained on WSJ, does not reflect the distribution
of n-grams in the data, and so performance is poor.
However, the vocabulary in the data is quite small, so
that after even a single recognition pass, although the
error-rate is high, the new LM is a better reflection of the
n-grams in the data.  This has the effect of improving the
phone recognition performance, and this improvement
continues with each iteration.
When we use an initial language model built using
dictionary phoneme transcriptions, the performance is
initially much better than using an LM trained on an
independent corpus, as would be expected.  However,
because of the small vocabulary size and the relatively
high number of occurrences of a few phonetic sequences,
any errors in recognition of these sequences dominate,
and this leads to an increasing overall error-rate.
These results are not as good as those obtained by Hiyan
[1] using an iterative language model.  This may be
because of the difference in the speech recognisers, or,
more likely, in the average length of the phrases in the
different vocabularies, which are much shorter than the
phrases used here.



4.2. Classification Accuracy

Iteration
No.

1 2 3 4 5

Phone
accuracy

25.7 27.1 30.0 30.6 31.0

Classif-
ication

accuracy
Rec-

Phone
(%)

44.3 60.4 69.4 72.1 72.6

Table 1. Phone recognition accuracy and
 call routing accuracy

Table 1 shows the call-routing classification
performance when a single LM is used and the LM is
iterated.  What is interesting here is that an apparently
small increase in phone accuracy on iteration gives rise
to a huge increase in call-routing accuracy.  This is
because although the overall phone error-rate improves
only slightly, the error rate on the key phonetic
sequences is greatly improved, leading to improved
classification performance.   Note that performance on
this dataset when the dictionary translations of the
transcriptions of the utterances are used is 93.7%.

Name Trans-
Phone

1
LM

1 LM +
Multiple LMs

Correct
classification
rate (%)

93.7 72.6 86.5

Table 2. Comparison of correct classification rate
Trans-Phone: language model built with dictionary
phoneme transcriptions of the utterances;
1 LM: iterative language model built using  recognition
output;
1 LM + Multiple LMs: Using the two-pass approach
described in section 3.1.

Table 2 compares the call-routing classification
accuracies.  The accuracy achieved using the two pass
system with multiple LMs (86.5%) is much better than
that using a single iterated LM, but not quite as good as
that obtained by using the dictionary transcriptions.

It could be argued that it is not possible to say whether
the improvement shown in column 4 of Table 2
compared with column 3 is due to the use of multiple
LMs or to the use of the HMM post-processor.
However, when a single LM is used, the situation is
either that there are one or more fairly unambiguous

output sequences from a single call type, or there are
many noisy and ambiguous sequences whose positions
are not well-defined.  It is very difficult to process these
putative sequences with all the HMMs of key phonetic
sequences.  Using multiple LMs has the effect of
producing relatively unambiguous sequences from only a
small subset set of call-types, whose position in the
waveform is quite well-defined.  This reduces the
number of HMM sequences that need to used and hence
also the difficulty of application.

5. Discussion

In this paper, we have presented a method for automatic
call routing in which we do not require transcriptions of
the training utterances, only the route of each utterance.
The technique is based on phonetic recognition of
utterances, and we have focused on the design of the
language model in this recognition process.  Our
conclusions are that iterating a single phone language
model (as described in [1]) is highly beneficial to
performance, but performance can be further increased
by using multiple language models for recognition for
utterances whose content is ambiguous when a single
language model is used.  Using multiple LMs inevitably
gives rise to identification of false keywords, but this
difficulty is resolved by the use of post-processing
HMMs which estimate the likelihood of the putative
keyword phonetic sequence being present in the
waveform.   Future work will concentrate on use of
confidence measures and classification of ambiguous
utterances.  We will also investigate the use of “lightly
supervised” adaptation, in which a small proportion of
the utterances available have been transcribed [15].
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