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Abstract

This paper compares a range of methods
for classifying words based on linguis-
tic diagnostics, focusing on the task of
learning countabilities for English nouns.
We propose two basic approaches to
feature representation: distribution-based
representation, which simply looks at
the distribution of features in the cor-
pus data, and agreement-based represen-
tation which analyses the level of token-
wise agreement between multiple pre-
processor systems. We additionally com-
pare a single multiclass classifier archi-
tecture with a suite of binary classifiers,
and combine analyses from multiple pre-
processors. Finally, we present and evalu-
ate a feature selection method.
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with differences in meaningd:submitted two papers
“documents” (countable) v®lease use white paper
“substance to be written on” (uncountable).

This research complements that described in
Baldwin and Bond (2003), where we present the lin-
guistic foundations and features drawn upon in the
countability classification task, and motivate the
claim that countability preferences can be learned
from corpus evidence. In this paper, we focus on
the methods used to tackle the task of countability
classification based on this fixed feature set.

The remainder of this paper is structured as fol-
lows. Section 2 outlines the countability classes,
resources and pre-processors. Section 3 presents
two methods of representing the feature space. Sec-
tion 4 details the different classifier designs and the
dataset, which are then evaluated in Section 5. Fi-
nally, we conclude the paper with a discussion in
Section 6.

2 Preliminaries
In this section, we describe the countability classes,

Lexical acquisition can be described as the proce#’e resources used in this research, and the feature
of populating a grammar skeleton with lexical itemsgextraction method. These are described in greater
through a process of mapping word lemmata ontgetail in Baldwin and Bond (2003).

lexical types described in the grammar. Dependin -

on the linguistic precision of the base grammar, Ie><2-l Countability classes

ical acquisition can range in complexity from sim-Nouns are classified as belonging to one or more of
ple part-of-speech taggingl{allow lexical acquisi-
tion) to the acquisition of selectionally-constrainedonly and bipartite.Countable nouns can be modi-
subcategorisation frame clusters or constructionéied by denumerators, prototypically numbers, and
compatibilities @eep lexical acquisitior). Our par-
ticular interest is in the latter task of deep lexicadog two dogs Uncountable nouns cannot be mod-
acquisition with respect to English nouns.

four possible classes: countable, uncountable, plural

have a morphologically marked plural fornone

ified by denumerators, but can be modified by un-

We are interested in developing learning techspecific quantifiers such asuch they do not show

niques for deep lexical acquisition which take a fixeény number distinction (prototypically being singu-
set of linguistic diagnostics, and classify words aclar): *one equipmentsome equipmenttwo equip-
cording to corpus data. We propose a range of gements Plural only nouns only have a plural form,
eral techniques for this task, as exemplified over theuch aggoods and cannot be either denumerated or
task of English countability acquisition. Countabil-modified by much many plural only nouns, such
ity is the syntactic property that determines whetheasclothes use the plural form even as modifiegs:

a noun can take singular and plural forms, and atlothes horseBipartite nouns are plural when they

fects the range of permissible modifiers.

Manyhead a noun phrasé&rqusersy, but generally singu-

nouns have both countable and uncountable lemmadatr when used as a modifietrquser leg; they can



be denumerated with the classifigair: a pair of the presence or absence of a determiner when

SCissors the target noun occurs gingular form in a PP

Pronoun co-occurrencel*2*2 what personal, pos-
2.2 Gold standard data sessive and reflexive pronouns (ehg, their,
Information about noun countability was obtained itself) occur in the same sentence as singular
from two sources: COMLEX 3.0 (Grishman et and plural instances of the target noun

al., 1998) and the common noun part 8fT-  gingular determiners:*®l what singular-selecting
JE's Japanese-to-English semantic transfer dictio- ~determiners (e.q, much) occur in NPs headed

22,000 noun entries IDOMLEX , 13,622 are marked

as countable, 710 asuncountable and the remainder
are unmarked for countabilityALT-J/E has 56,245
English noun types with distinct countability.

Plural determiners:[*2 what plural-selecting de-
terminers (e.gmany, variouy occur in NPs
headed by the target nounptural form

Non-bounded determinerst* <2 what non-
2.3 Feature space bounded determiners (e.gnore, sufficient
occur in NPs headed by the target noun, and

Features used in this research are divided up into what is the number of the target noun for each

feature clusters each of which is conditioned on
the occurrence of earget nounin a given construc- 2.4 Feature extraction

E'gg s crilf)(ier? tu;e Sci:]usl,éerr?]ualttri\e/ a?ilgt]:rfggti_ril)mgrn ?\I/S S_Ef‘lhe values for the features described above were ex-
9 9 acted from the written component of the British

dimensional (describing the interaction between twg,” . ;

multivariate features), with each dimension describdi‘;"fg(r)gr‘?,[I C:rgtplrjsc(fstgr’ssl(J;?zrggg ?Q)) gf'?g)tgziﬁ_
ing a lexical or syntactic property of the construc, pre-p : gger,
tion in question. An example of a one—dimensiona‘iext chunker and (c) a dependency parser. These are

: . Ised independently to test the efficacy of the differ-
feat“fe cluster is head noun number, i.e. the nungm systems at capturing features used in the clas-
ber @ingular or plural) of the target noun when it oc-

. ification process, and in tandem to consolidate the
curs as the head of an NP; an example of a twgtrengths of the individual methods.

dimensional feature cI_uster in subject-verb agreé— With the POS extraction method, we first tagged

ment, i.e. the numbesifgular or plural) of the tar- e BNC using an fnTBL-based tagger (Ngai and

get noun when it occurs as head of a subject N~ .~ '™ = ga d ho B 99 d V\?SJ

vS. number agreement on the vedndular or plu- ortan, ) trained over the Brown an cor-
iora and based on the Penn POS tagset. We then

ral). Below, we provide a basic description of th . . . :
10 feature clusters used in this research and their ?_mmansed this data using a Penn tagset-customised
ersion of morph (Minnen et al., 2001). Finally, we

mensionality {*/=1-dimensional feature cluster with . ; o
implemented a range of high-precision, low-recall

. e )
@ unit features}” *¥=2-dimensional feature cluster pog pace templates to extract out the features from

with 2 x y unit features). These represent a total Olfhe processed data
206 unit features. '

For the chunker, we ran fnTBL over the lem-
Ia matised tagged data, training over CoNLL 2000-

Head noun rrl\umbehr.[ }dthe nl\lljlrjnber of the target oo (Tjong Kim Sang and Buchholz, 2000) chunk-
.n.oun when it heads an converted versions of the full Brown and WSJ cor-
Modifier noun number:_[?] the number of the target pora. For the NP-internal features (e.g. determin-
noun when a modifier in an NP ers, head number), we used the noun chunks directly,
Subject—verb agreement2*2 the number of the or applied POS-based templates locally within noun
target noun in a subject position vs. numbechunks. For inter-chunk features (e.g. subject-verb
agreement on the governing verb agreement), we looked at only adjacent chunk pairs

Coordinate noun number:2%2! the number of the SO @s to maintain a high level of precision.
target noun vs. the number of the head nouns of, Ve read dependency tuples directly off the output
conjuncts of RASP (Briscoe and Carroll, 2002b) in grammati-

cal relation modé.RASP has the advantage that re-

N of yoiﬁgcszgrkgi%;ﬁ;;j)_t\?se tt);]peer?lj;:]sel}rj E)?‘?He call is high, although precision is potentially lower
: We used the first parse in the experiments reported here.

target n_oun (B)inan N, of N, qu_]Strucnon An alternative method would be to use weighted dependency
Occurrence in PPs!52%2! the preposition type vs. tuples, as described in Briscoe and Carroll (2002a).



than chunking or tagging as the parser is forced into featdimfreqs(fa,w) = Dedtelw) ®)
resolving phrase attachment ambiguities and com- 2 afrealfo.slw)

mitting to a single phrase structure analysis. which represent th¢eatfreq values calculated along
After generating the different feature Vectors fol,a o of the two feature dimensions. Additionally
each noun based on the above configurations, we fg/ i

d I hich did | 1 e calculate cumulative totals for each row and
tered out all houns which did not occur at least 10,y of the feature matrix and describe each as
times in NP head position in the output of all thre

. : Sor the one-dimensional features above (in the form
systems. This resulted in a total of 20,530 noungy 3 values). Thus, for ann x n-valued two-

of which 9,031 are contained in the combir®oM-  inensional feature cluster, we generate a total of
LEX andALT-JE lexicons. The evaluation is based5mn + 3(m + n) independent feature values.

on these 9,031 nouns. The feature clusters produce a combined total of
3 Feature representation 1284 individual feature values.

We test two basic feature representations in this ré&-2 Agreement-based feature representation

search: distribution-based, which simply looks afhe agreement-based feature representation con-
the relative occurrence of different features in theiders the degree of token agreement between the
corpus data, and agreement-based, which analygeatures extracted using the three different pre-
the level of token-wise agreement between multiplgrocessors. This allows us to pinpoint the reliable di-
systems. agnostics within the corpus data and filter out noise
S _ generated by the individual pre-processors.
3.1 Distribution-based feature representation It is possible to identify the features which
In the distribution-based feature representation, ware positively-correlated with a unique countability
take each target noun in turn and compare its amadtass (e.g. occurrence of a singular noun with the
gamated value for each unit feature with (a) the vadeterminera occurs only for countable nouns), and
ues for other target nouns, and (b) the value of othéor each to determine the token-level agreement be-
unit features within that same feature cluster. Thatveen the different systems. The number of diagnos-
is, we focus on the relative prominence of featureics considered for each of the countability classes
globally within the corpus and locally within eachis: 32 for countable nouns, 19 for uncountable nouns
feature cluster. and 1 for each of plural only and bipartite nouns.
In the case of a one-dimensional feature clustéfrhe total number of diagnostics we test agreement
(e.g. singular determiners), each unit featfirdor across is thus 53.
target nounw is translated into 3 separate feature The token-level correlation for each featifrgis

values: calculated fourfold according to relative agreement,
freq(fs|w) the x statistic, correlated frequency and correlated
corpfreq(fs, w) = ———t (€] . :
frea(x) weight. Therelative agreementbetween systems
wordfreq(fs, w) = fr;fe(qf(wlﬂ)v) @ Effl andsys, wrt f ¢ for target nounw is defined to
frea(fs|w) '
eatfreq(fs, w = = 3
Jeatfrea(fs, v) Zifmq(filw)> @ [tok (s, wy(sys.) N tok s, wy(sysz2)l

. . agr(sqwy(sys., syss) = 20k 7. ) (5552) U Tk, ) (552)]
wherefreq(x) is the frequency of all words in the cor- a ‘

pus. Thatis, for each unit feature we capture the rejyhere tok (s, . (sys;) returns the set of token in-

ative corpus frequency, frequency relativ_e to the tat, nces off., w). Ther statistic (Carletta, 1996)
get word frequency, and frequency relative to oth ’

. recast as:
features in the same feature cluster. Thus, fonan
valued one-dimensional feature cluster, we generate o S ey, ey (s susa)
3n independent feature values. Kra oy (5ysn, sys) = I Uam) (Y52, 552) = r
In the case of a two-dimensional feature ma- - 2L G )

trix (e.g. subject-position noun number vs. verb ) N )
number agreement), each unit featyitg for tar- [N this modified form,x ;. ., represents the diver-
get nounw is translated intocorpfreq(fs,, w), 9ENCE inrelative agreement yitfor target noun,

wordfreq(f s, w) and featfreq(fss, w) as above, relative to the mean relative agreement Yurtover
and 2 additional feature values: all words. Correlated frequencyis defined to be:

featdimfreq, (fo,w) = Sreddedlw) @

|tok(f5‘w)(sysl) N tok (s, w) (sysa2)|
Z ifreq(fie|w)

freq(w)

cfreq(fg711,>(sysl, sYysz) =



It describes the occurrence of tokens in agreemehRull-feature supervised classifiers

for (fs, w) relative to the total occurrence of the tar-  The simplest system architecture applies the su-
getword. _ pervised learning paradigm to the distribution-based
The metrics are usec_l to der!ve three separate fegature vectors for each of the POS tagger, chun-
ture values for each diagnostic over the three prger and RASP Dist(POSy), Dist(chunkx) and
processor system pairings. We additionally calcupisy(RASP), respectively). For the distribution-
late the mean value of each metric across the Systg§gsed feature representation, we additionally
pairings and the overatlorrelated weightfor each  compine the outputs of the three pre-processors by:

countability class’ as: (a) concatenating the individual distribution-based
S facoltoksy u (sys2) N tokr, w) (sysa)] feature vectors for the three systems (resulting in
cw(,w) (sYsa, sysa) = S ok, oy (3yss) (1 kG, (3352)] a 3852-element feature vectorDist(Allcon,*));

_ _ and (b) taking the mean over the three systems for

Correlated weight describes the occurrence of correach distribution-based feature value (resulting in
lated features in the given countability class relativg 1284-element feature vectoBist(Allygan,*)).
to other correlated features. ~ The agreement-based feature representation

We test agreement: (a) for each of these diagrovides two additional system configurations:
nostics individually and within each countability Agree(Class;) and Agree(Token) (see Section
class Agree(Token)), and (b) across the amalgam3 2).
of diagnostics for each of the countability classes Orthogonal to the issue of how to generate the
(Agree(Class)). For Agree(Tokeny), we calculate feature values is the question of how to classify
agr,  and cfreq values for each of the 53 diag-a given noun according to the different countabil-
nostics across the 3 system pairings, and additiofty classes. The two basic options here are to ei-
ally calculate the mean value for each value. Weher have a single classifier and define multiclasses
additionally calculate the overatiw value for each according to all observed combinations of count-
countability class. This results in a total of 640 feaapility classesDist(+,SINGLE)), or have a suite of
ture values§ x 53 x 3 + 53 x 3 + 4). Inthe case pinary classifiers, one for each countability class
of Agree(Class;), we average thegr, x andcfreq  (Dist(x,suITE)). The SINGLE classifier architec-
values across each countability class for each of thgre has advantages in terms of speedxaspeed-
three system pairings, and also calculate the megj over the classifier suite) and simplicity, but runs
value in each case. We further calculate the overglito problems with data sparseness for the less-
cw value for each countability class, culminating incommonly attested multi-classes given that a single

52 feature values3(x 4 x 3 + 4 x 3 + 4). noun can occur with multiple countabilities. The
. . SUITE classifierarchitecture delineates the different
4 Classifier Set-up and Evaluation countability classes more directly, but runs the risk

Below, we outline the different classifiers tested!@noun notbeing classified according to any of the

and describe the process used to generate the gdigdr classes.

standard data. Feature-selecting supervised classifiers

4.1 Classifier architectures We improve the performance of the basic classi-
We propose a variety of unsupervised and supe _erstby Wa3|/ oft_besﬁf f||tber-bas?]d feaiur_e selectlor;.
vised classifier architectures for the task of learningSature Selection has been snown (o Improve clas-

countability, and also a feature selection method. | ification accuracy over a variety of tasks (Liu and

all cases, our classifiers are built using TIMBL ver.-viotoda, 1988), but in the case of memory-based

sion 4.2 (Daelemans et al., 2002), a memory-basc%%amers such as TiMBL, has the additional advan-

classification system based on th@earest neigh- age of accelerating the classification process and re-
bour algorithm. As a result of extensive parameguc'ng memory overhead. The computational com-

ter optimisation, we settled on the default configuf’r!ex'ty o{)mer?(f)ry;based Iearnersdls ptropqrtlt?]nafl to
catior? for TIMBL. with & sef to &3 e number of features, so any reduction in the fea-

—— _ _ ture space leads to a proportionate reduction in com-
_'E_l with ; We'grted_ ﬁ‘_’e”ag- gain ratio-based featurepytational time. For tasks such as countability clas-
weighting and equal weighting of neighbours. sification with a large number of both feature values

3 e - .
We additionally experimented with the kernel-base . . . )
TinySVM system, but found TiMBL to be the marginally supe- and test instances (particularly if we are to classify

rior performer in all cases, a somewhat surprising result giveﬁl_II noun types in a given corpus), this speed-up is
the high-dimensionality of the feature space. vital.



Our feature selection method uses a combined_Count Uncount Plural Bipart | No. Freq
feature relevance metric to estimate the b€dea- (1) (1) 8 8 ﬁgi '(1582
tures for each countability class, and then restricts g 0 1 0 35 006
the classifier to operate over only tha¥efeatures. 0 0 0 1 10 .002
Feature relevance is estimated through analysis of 1 1 0 0 650 .110
the correspondence between class and feature val- 1 0 1 0 13 .002
ues for a given feature, through metrics including 8 (1) i 2 1;’ '88%
shared variance and information gain. These indi- 1 1 1 0 8 .00l

rom this, it is evident that some class combinations
e.g.plural only+bipartite) are highly infrequent, hint-

Liu, 1994). In order to minimise such bias, we'Nd &t a problem with data sparseness. -
generate a feature ranking for each feature selec-For theSUITE classifier, we generate the positive
tion metric (based on the relative feature relevanc@emplars for the countable and uncountable classes
scores), and simply add the absolute ranks for eadiPm the intersection of theOMLEX and ALT-J/E
feature together. By re-ranking the features in indata for that class; negative exemplars, on the other
creasing order of summed rank, we can generate’gnd, are those not annotated as belonging to that
generalised feature relevance ranking. We are no@Ss in either lexicon. With the plural only and

in a position to prune the feature space to a prélipartite dataCoMLEX cannot be used as it does
determined size, by taking the beStfeatures in the NOt describe these two classes. We thus took all
feature ranking. members of each class listedAoT-J/E as our pos-

The feature selection metrics we combine arive €xemplars, and all remaining nouns with non-

those implemented in TiIMBL, namely: shared varildentical singular and plural forms as negative ex-

ance, chi-square, information gain and gain ratio. emplars. This resulted in the following datasets:

features: information gain and gain ratio, e.g., ten

vidual metrics tend to be biased toward particulzg
to favour features of higher cardinality (White an

Class | Positive data  Negative data
Unsupervised classifier Countable 4,342 1,476
. ) ) Uncountable 1,519 5,471
In order to derive a common baseline for the dif- Plural only 84 5,639
ferent systems, we built an unsupervised classifier Bipartite 35 5,639

which, for each target noun, simply checks to see

if any diagnostic (as used in the agreement-baséd Evaluation

feature representation) was detected for each of the , , -~ _
countability classes; even a single occurrence &fvaluation of the superws_ed classmers_was carried
a diagnostic is taken to be sufficient evidence foput based on 10-fold stratified cross-validation over
membership in that countability class. Elementar{he relevant dataset, and results presented here are
system combination is achieved by voting betweefiveraged over the 10 iterations. Classifier perfor-
the three pre-processor outputs as to whether the tgfance is rated according to classification accuracy
get noun belongs to a given countability class. Thdthe proportion of instances classified correctly) and
is, the target noun is classified as belonging to &-score § = 1). Inthe case of theINGLE classifier, -
given countability class iff at least two of the pre-the class-wise F-score is calculated by decomposing

processors furnish linguistic evidence for membeithe multiclass labels into their componentscobint-
ship in that class. able+uncountable instance misclassified asuntable,

for example, would count as a misclassification in
terms of classification accuracy, a correct classifica-
tion in the calculation of theountable F-score, and a
Training data was generated independently for thmisclassification in the calculation of thecountable
SINGLE andsUITE classifiers. In each case, we firstF-score. Note that th@NGLE classifier is run over a
extracted all countability-annotated nouns from eactlifferent dataset to each member of @ TE clas-

of the ALT-J/E andCOMLEX lexicons which are at- sifier, and cross-comparison of the classification ac-
tested at least 10 times in the BNC, and composexliracies is not representative of the relative system
the training data from these pre-filtered sets. In thperformance (classification accuracies for the-
case of thesINGLE classifier, we simply classified GLE classifier are given in parentheses to reinforce
words according to the union of all countabilitiesthis point). Classification accuracies are thus simply
from ALT-JJE andCOMLEX , resulting in the follow- used for classifier comparison within a basic classi-
ing dataset: fier architecture INGLE or SUITE), and F-score is

4.2 Training data



Classifier Accuracy F-score
Majority class .746 .855
Unsupervised .798 .879
Dist(POSSUITE) .928 .953
Dist(POSSINGLE) (.850) .940
Dist(chunksuITE) .933 .956
Dist(chunksINGLE) (.853) .942
Dist(RASPsUITE) .923 .950
Dist(RASPSINGLE) (.847) .940
Dist(All con,SUITE) .939 .960
Dist(All con,SINGLE) (.857) .944
DiSt(A”MEAN,SUlTE) 937 959
Agree(TokersuITE) .902 .936
Agree(ClassUITE) 911 941

Table 1: Basic results for countable nouns

Classifier Accuracy F-score
Majority class .783 (.357)
Unsupervised .342 391
Dist(POSSUITE) .945 .876
Dist(POSSINGLE) (.850) .861
Dist(chunksuITE) .945 .876
Dist(chunksINGLE) (.853) .861
Dist(RASPsUITE) .944 .872
Dist(RASPSINGLE) (.847) .851
Dist(All con,SUITE) .952 .892
Dist(All con,SINGLE) (.857) .873
DiSt(A”MEAN,SUITE) 954 .895
Agree(TokersuITE) .923 .825
Agree(ClassUITE) .923 .824

Table 2: Basic results for uncountable nouns

the evaluation metric of choice for overall evalua-

tion.

We present the results for two baseline systems
for each countability class: a majority-class clas-

sifier and the unsupervised method. TWajority

classsystem is run over the binary data used by
the SUITE classifier for the given class, and sim-
ply classifies all instances according to the most

commonly-attested class in that dataset. Irrespective ®

of the majority class, we calculate the F-score based
on a positive-class classifier, i.e. a classifier which

naively classifies each instance as belonging to the ®

given class; in the case that the positive class is not
the majority class, the F-score is given in parenthe-

Ses.

The results for the different system configurations
over the four countability classes are presented in
Tables 14, in which the highest classification accu-

racy and F-score values for each class are presented

in boldface The classifieDist(Allcon,SUITE), for

example, applies the distribution-based feature rep- o

resentation in aUITE classifier configuration (i.e.
it tests for binary membership in each countability
class), using the concatenated feature vectors from

each of the tagger, chunker and RASP.
Items of note in the results are:

Classifier Accuracy F-score
Majority class .985 (.023)
Unsupervised 411 .033
Dist(POSSUITE) .989 .558
Dist(POSSINGLE) (.850) 479
Dist(chunksuITE) .990 .568
Dist(chunksINGLE) (.853) .495
Dist(RASPsUITE) .989 415
Dist(RASPSINGLE) (.847) .360
Dist(All con,SUITE) .990 .582
Dist(All con,SINGLE) (.857) .500
DiSt(A”MEAN,SUlTE) 990 575
Agree(TokersuiTE) .988 .409
Agree(ClassUITE) .088 401

Table 3: Basic results for plural only nouns

Classifier Accuracy F-score
Majority class .994 (.012)
Unsupervised 931 137
Dist(POSSUITE) .997 .752
Dist(POSSINGLE) (.850) .857
Dist(chunksuITE) .997 .704
Dist(chunksINGLE) (.853) .865
Dist(RASPsUITE) .997 .700
Dist(RASPSINGLE) (.847) .798
Dist(All con,SUITE) .996 .723
Dist(All con,SINGLE) (.857) .730
Dist(All\ieAN,SUITE) .997 .710
Agree(TokersuITE) .997 .710
Agree(ClassUITE) .997 .695

Table 4: Basic results for bipartite nouns

all system configurations surpass both the
majority-class baseline and unsupervised clas-
sifier in terms of F-score

for all other than bipartite nouns, th&UITE
classifier outperforms theINGLE classifier in
terms of F-score

the best of the distribution-based classifiers
was, without exception, superior to the best of
the agreement-based classifiers

chunk-based feature extraction generally pro-
duced superior performance to POS tag-based
feature extraction, which was in turn gener-
ally better than RASP-based feature extraction;
statistically significant differences in F-score
(based on the two-tailetitest,p < .05) were
observed for both chunking and tagging over
RASP for the plural only class, and chunking
over RASP for the countable class

for the suITE classifier, system combination
by either concatenatiorD{st(Allcon,SUITE))

or averaging over the individual feature val-
ues Dist(Allyigan,SUITE)) generally led to a
statistically significant improvement over each
of the individual systems for the countable



1 100 Feature COUNTABLE UNCOUNTABLE
‘ best-N (countable) =<~ rand-N (countable) -x- space Acc F-score Acc F-score
0.95 ,7/——>HH<//\>é S T All features | .937 .959 .954 .895
‘ x**: — — o Best-200 .934 956 | .949 .884
3 vest-Nluncountable) 0 g Binary 904 93T | 930 833
rand-N (uncountable) --O-- <
@ o9 — — 2 Corpusfreq| .929 .954 .952 .889
g e = AN g Word freq .933 .956 .954 .896
iy Y 8 Feature freq| .928 .952 934 .869"
B 085 @
11
/ - Table 5: Results for restricted feature sets
0.8 1
a speedup greater than an order of magnitude, po-
sk : ‘ o1 tentially making the difference in practical utility for
o 100 1000 the proposed method.

No. Features (V) To determine the relative impact of the com-

_ _ ponent feature values on the performance of the
Figure 1: Effects of feature selection distribution-based feature representation, we used
the Dist(Allyran,SUITE) configuration to build: (a)
atnc:_ l:_nc?lénftfable clabsstésbut mere ¥vas noh.a classifier using a single binary value for each
statistical difierence between these two archi it faatyre, based on simple corpus occurreBge (

tectures for any of the 4 countability classesp ;). anq (b) 3 separate classifiers based on each of
for the SINGLE classifier, system combination

. . <o the corpfreq, wordfreq and featfreq features values
(Dist(Allcon,SUITE)) did not lead to a signifi- o without the 2D feature cluster totals). In each
cant performance gain case, the total number of feature values is 206.

To evaluate the effects of feature selection, we The results for each of these classifiers over
graphed the F-score value and processing time (fountable and uncountable nouns are pre-
instances processed per sec)ndver values of sented in Table 5, as compared to the basic
N from 25 to the full feature set. We targetedDist(All\izan,SUITE) classifier with all 1,284
the Dist(Allcon,SUITE) system for evaluation (3852 features All featureg and also the best-200 features
features), and ran it over both the countable and uBest-20). Results which differ from those for
countable classé€sWe additionally carried out ran- All featuresto a level of statistical significance are
dom feature selection as a baseline to compare thsterisked. The binary classifiers performed signif-
feature selection results against. Note thatttexis icantly worse tharAll featuresfor both countable
(V) and righty-axis (instances/sec) are both log-and uncountable nouns, underlining the utility of the
arithmic, such that the linear right-decreasing timélistribution-based feature representatiamrdfreq
curves are indicative of the direct proportionality beis marginally superior taorpfreq as a standalone
tween the number of features and processing tim&ature representation, and both of these were on
The differential in F-score for the beat-configura- the whole slightly below the full feature set in
tion as compared to the full feature set is statisticallperformance (although no significant difference was
insignificant for N > 100 for countable nouns and observed) featfreq performed slightly worse again,

N > 50 for uncountable nouns. That is, feature sesignificantly below the level of the full feature set.
lection facilitates a relative speed-up of arowtick  Results for the best-200 classifier were marginally
without a significant drop in F-score. Comparing thdnigher than those for each of the individual feature
results for the beslV and randd features, the dif- representations in the case of the countable class,
ference in F-score was statistically significant for albut marginally below the results faforpfreq and
values of N < 1000. The proposed method of fea- wordfreq in the case of the uncountable class. The
ture selection thus allows us to maintain the full clasdifferences here are not statistically significant, and
sification potential of the feature set while enablingrdditional evaluation is required to determine the

“No significant performance difference was observed forFeI_atlve success of feature selection over simply
Dist(Chunkeax,SUITE) vs. Dist(All,,SUITE) for countable USiNguwordfreq values, for example.

nouns, anDist(POS%on,SUITE) vs. Dist(Allcon,SUITE) for
uncountable nouns.

°As evaluated on an AMD Athlon 2160CPU with 3GB of
Harfwts here have b least th I
5We focus exclusively on countable and uncountable noun-g ere have been at least three earlier approaches

here and in the remainder of supplementary evaluation as thed¢ the automatic determination of countability:
are by far the most populous countability classes. two using semantic cues and one using cor-
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pora. Bond and Vatikiotis-Bateson (2002) deterFrancis Bond and Caitlin Vatikiotis-Bateson. 2002. Using an

mine a noun’s countability preferences—as de- ontology to determine English countability. Rroc. of the
fined in a 5-way classification—from its se- 19th International Conference on Computational Linguistics

. . . (COLING 2002) Taipei, Taiwan.
mantic class in theALT-JE lexicon, and show Ted Briscoe and John Carroll. 2002a. High precision extraction

t_hat semantics predlcts Cou_ntab'“ty 78% of _the of grammatical relations. IRroc. of the 19th International
time. O’Haraetal. (2003) implemented a Sim- Conference on Computational Linguistics (COLING 2002)
ilar approach using the much larger Cyc on- pages 134-140, Taipei, Taiwan.

tology and achieved 89.5% accuracy, mappinged Briscoe and John Carroll. 2002b. Robust accurate sta-

onto the 2 classes of countable and uncount- tistical annotation of general text. Iroc. of the 3rd In-
ternational Conference on Language Resources and Evalu-

able. Schwartz (2002) learned noun countabilities ., (LREC 2002)pages 1499-1504, Las Palmas, Canary
by looking at determiner occurrence in singular giands.

noun chunks and was able to tag 11.7% of BNCou Burnard. 2000.User Reference Guide for the British Na-
noun tokens as countable and 39.5% as uncountablefional Corpus Technical report, Oxford University Comput-
achieving a noun type agreement of 88% and 44%, ing Services.

respectively, with the\LT-J/E lexicon. Our results Jean Carletta. 1996. = Assessing agreement on classifica-
tion tasks: the kappa statisticComputational Linguistics

compare favourably with each of these. 22(2):249-254.

In a separate _evalluation, we took the besiyalter Daelemans, Jakub Zavrel, Ko van der Sloot, and An-
performing classifierQist(Allcon,SUITE)) and ran tal van den Bosch. 2002TiMBL: Tilourg memory based
it over open data, using best-500 feature selection learner, version 4.2, reference guidgK technical report
(Baldwin and Bond, 2003). The output of the 92-01

. . _ Iph Grishman, Catherine Macleod, and Adam Myers, 1998.
classifier was evaluated relative to hand annotat&fCOMLEX Syntax Reference Manuroteus Project, NYU.

data, and the level of agreement found to be around (tp://nip.cs.nyu.edu/comlex/refman.ps ).
92.4%, which is approximately equivalent to thesatoru Ikehara, Satoshi Shirai, Akio Yokoo, and Hiromi
agreement betweatDMLEX andALT-J/E of 93.8%. Nakaiwa. 1991. Toward an MT system without pre-editing

: . : e Machine Translation Summit (MT Summit JIjages 101—
learning techniques for deep lexical acquisition from 106, Washington DC, USA.

corpus d_ata! and applied each _t_O the task of _C!ass'fMUan Liu and Hiroshi Motoda. 198&eature Extraction, Con-
ing English nouns for countablllty._ We specifically  struction and Selection: A Data Mining Perspectivéuwer
compared two feature representations, based on rel-Academic Publishers.
ative feature occurrence and token-level classificguido Minnen, John Carroll, and Darren Pearce. 2001. Ap-
tion, and two basic classifier architectures, using a Plied morphological processing of EnglistiNatural Lan-
suite of binary classifiers and a single multi-clasg, 3% Englngeéln(??(?gl-297—232.001 Hransformation-based
lassifier. We also analysed the effects of comb: e oo aic Sadi Foran: | ranstormation-base
c . Yy learning in the fast lane. IRroc. of the 2nd Annual Meeting

ing the out_put of multiple pre-processors, and pre- of the North American Chapter of Association for Compu-
sented a simple feature selection method. Overall, tational Linguistics (NAACL2001)pages 40-7, Pittsburgh,

the best results were obtained using a distribution- USA.

based suite of binary classifiers combining the ou'ttorge?";?gg;n’\'zlrgg/ ng‘eﬁé r':"oicngt'o\l’(‘)’“bégfﬁ' gz‘é‘fOﬁChF”rﬁiz'
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