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Abstract

In this paperwe investigatethe impactof
morphological featureson the taskof au-
tomatically extending a dictionary. We
approach the problem as a pattern clas-
sification task and compare the perfor-
manceof several models in classifying
nouns that are unknown to a broadcov-
eragedictionary. Weusedaboostingclas-
sifier to compare theperformanceof mod-
els that usedifferent setsof features. We
show how adding simple morphological
features to a model greatly improves the
classification performance.

1 Intr oduction

The incompleteness of the available lexical re-
sources is a major bottleneck in natural language
processing(NLP). Thedevelopmentof methods for
theautomaticextension of theseresourcesmight af-
fect many NLP tasks. Further, from a moregeneral
computational perspective, modeling lexical mean-
ing is a necessarysteptowardsemantic modeling of
larger linguistic units.

We approach the problem of lexical acquisition
asa classification task. The goal of the classifier is
to insert new words into an existing dictionary. A
dictionary1 in this context simply associateslexical�

I wouldliketo thankfor their inputeverybody in theBrown
Laboratoryfor Linguistic InformationProcessing(BLLIP) and
InformationRetrieval andMachineLearningGroupat Brown
(IRML), andparticularlyMark JohnsonandThomasHofmann.
I alsothankBrian RoarkandJesseHochstadt.

1Or lexicon,we usethetwo termsinterchangeably.

forms with classlabels; e.g.,
������� 	�
����	��

,
wherethe arrow canbe interpretedasthe ISA rela-
tion. In this study we usea simplified version of
Wordnet as our baselexicon and we ignore other
relevant semanticrelations(like hyponymy) andthe
problem of word sense ambiguity. We focus on
finding features that are useful for associating un-
known wordswith classlabels from the dictionary.
In this paperwe report the following preliminary
findings. First of all we found that the task is dif-
ficult. We developedseveralmodels, basedon near-
estneighbor (NN), naive Bayes(NB) andboosting
classifiers. Unfortunately, the error rate of these
modelsis much higher than what is found in text
categorization tasks2 with comparable numbersof
classes. Secondly, it seemsobvious that informa-
tion that is potentially useful for word classifica-
tion can be of very diverse types, e.g., semantic
and syntactic, morphological and topical. There-
foremethodsthatallow flexible featurecombination
andselection aredesirable.Weexperimentedwith a
multiclassboostingalgorithm (Schapire andSinger,
2000), which proved successful in this respect. In
this context boosting combines two sourcesof in-
formation: wordsco-occurring nearthe new word,
which we refer to ascollocations, andmorpholog-
ical properties of the new word. This classifier
shows improved performanceover modelsthat use
only collocations. In particular, we found that even
rudimentary morphological informationgreatly im-

2Text categorization is the task of associatingdocuments
with topic labels (POLITICS, SPORT, ...) and it bearssimi-
larities with semanticclassificationtaskssuchas word sense
disambiguation, informationextractionandacquisition.
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Figure1: A few classesunder theroot classABSTRACTION in MiniWordnet.

provesclassification performanceandshould there-
fore bepartof any word classification model.

Theoutlineof thepaper is asfollows. In section
2 we introducethedictionarywe usedfor our tests,
a simplifiedversion of Wordnet. In section 3 we de-
scribe more formally the task, a few simple mod-
els, andthe testmethods. In section 4 we describe
theboosting modelandthesetof morphological fea-
tures. In section 5 we summarize the results of our
experiments.In section 6 we describe relatedwork,
andthenin section 7 we present our conclusions.

2 MiniW ordnet

Ideally the lexicon we would like to extend is a
broad coverage machine readable dictionary like
Wordnet (Miller et al., 1990; Fellbaum,1998). The
problemwith trying to directly useWordnetis thatit
containstoomany classes(synsets),around 70thou-
sand. Learningin sucha hugeclass space can be
extremely problematic,and intuitively it is not the
bestway to starton a taskthat hasn’t beenmuchex-
plored3. Instead,we manually developeda smaller
lexicon dubbedMiniWordnet, which is derivedfrom
Wordnet version 1.6. The reducedlexicon hasthe
samecoverage (about 95 thousandnoun types) but
only a fraction of theclasses.In this paper we con-
sideredonly nounsandthenoundatabase.Thegoal
was to reduce the numberof classesto aboutone
hundred4 of roughly comparable taxonomical gen-
erality andconsistency, while maintaining a littl ebit
of hierarchical structure.

3Preliminary experiments confirmedthis; classificationis
computationally expensive, performanceis low, and it is very
hard to obtain even very small improvements when the full
databaseis used.

4A magnitudecomparable to the classspaceof well stud-
ied text categorizationdatasetslike the Reuters-21578(Yang,
1999).

The output of the manual coding is a setof 106
classes that are the result of merging hundredsof
synsets. A few random examplesof these classes
are PERSON,PLANT, FLUID, LOCATION, AC-
TION, andBUSINESS. Oneway to look at this set
of classes is from the perspective of named-entity
recognition tasks,wherethere area few classesof
a similar level of generality, e.g,PERSON,LOCA-
TION, ORGANIZATION, OTHER. The difference
here is that the classes are intended to capture all
possible taxonomic distinctions collapsedinto the
OTHERclass above. In addition to the 106 leaves
we also kept a set of superordinate levels. We
maintained the 9 root classesin Wordnet plus 18
intermediateones. Examples of theseintermedi-
ate classes areANIMAL, NATURAL OBJECT, AR-
TIFACT, PROCESS, andORGANIZATION. Therea-
sonfor keeping someof thesuperordinate structure
is that hierarchical information might be important
in word classification; this is something we will in-
vestigatein thefuture. For example, theremight not
be enough information to classify the noun ostrich
in theBIRDclassbut enough to labelit asANIMAL.
ThesuperordinatesaretheoriginalWordnet synsets.
Thedatabasehasa maximumdepth of 5.

Weacknowledgethatthemethodologyandresults
of reducing Wordnetin this way arehighly subjec-
tive and noisy. However, we also think that go-
ing through an intermediarystepwith the reduced
databasehas beenuseful for our purposesand it
might alsobesofor otherresearchers5. Figure1 de-
picts the hierarchy below the root classABSTRAC-
TION. The classesthat are lined up at the bottom
of the figure areleaves. As in Wordnet,somesub-

5More information about MiniWordnet and the
databaseitself are available at www.cog.brown.edu/ �
massi/research.



hierarchiesaremoredenselypopulatedthanothers.
For example, the ABSTRACTION sub-hierarchy is
morepopulated(11 leaves) thanthat of EVENT (3
leaves). The mostpopulatedandstructuredclassis
ENTITY, with almosthalf of theleaves(45)andsev-
eralsuperordinateclasses (10).

3 Automatic lexical acquisition

3.1 Word classification

We framethe task of inserting new words into the
dictionaryasa classification problem: � is the set
of classesdefinedby thedictionary. Givena vector
of features ���������� we want to find functions
of the form � � � . In particular we areinterested
in learning functionsfrom data,i.e.,a training setof
pairs ������! #"$� ��%�&� and  � � , suchthat therewill
be a small probability of error when we apply the
classifier to unknown pairs (new nouns).

Eachclassis describedby a vectorof features.A
classof features that intuitively carry semanticin-
formation arecollocations, i.e.,wordsthatco-occur
with thenouns of interestin a corpus. Collocations
have beenwidely usedfor taskssuchasword sense
disambiguation (WSD) (Yarowsky, 1995), informa-
tion extraction (IE) (Riloff, 1996), andnamed-entity
recognition (Collins andSinger, 1999). The choice
of collocations can be conditioned in many ways:
according to syntactic relationswith thetargetword,
syntactic category, distancefrom the target, andso
on.

We usea very simple set of collocations: each
word ' that appearswithin (*) positions from a
noun + is a feature. Eachoccurrence, or token, ,
of + , +.- , is then characterized by a vector of fea-
turecounts �+/- . Thevector representationof thenoun
type + is thesumof all thevectors representing the
contexts in whichit occurs. Overall thevector repre-
sentation for eachclass in the dictionary is thesum
of the vectors of all nouns that aremembersof the
class � 103246587 2 - �+ -
while thevectorrepresentation of anunknown noun
is the sumof the feature vectors of the contexts in
which it occurred ��90 2 - �+:-

The corpus that we used to collect the statistics
about collocationsis thesetof articlesfrom the1989
Wall StreetJournal (about 4 million words) in the
BLLIP’99 corpus.

We performed the following tokenization steps.
We used the Wordnet ”morph” functions to mor-
phologically simplify nouns, verbsand adjectives.
We excluded only punctuation; we did no filtering
for part of speech (POS).Eachword was actually
a word-POSpair; i.e., we distinguished between
plant:NN andplant:VB. We collapsedsequencesof
NNs that appeared in Wordnet asonenoun; so we
have one entry for the noun car company:NN. We
also collapsedsequences of NNPs, possibly inter-
leaved by the symbol”&”, e.g.,George Bush:NNP
andProcter & Gamble:NNP. To reducethenumber
of featuresa little we changed all NNPs beginning
with Mr. or Ms. to MISSX:NNP, all NNPsending in
CORP. or CO. to COMPANY X:NNP, andall words
with POSCD, i.e., numbers, starting with a digit to
NUMBER X:CD. For training and testing we con-
sidered only nouns that arenot ambiguousaccord-
ing to thedictionary, andwe used only featuresthat
occurredat least10 timesin thecorpus.

3.2 Simplemodels

We developedseveral simpleclassifiers. In particu-
lar we focusedon nearest neighbor(


;

) andnaive

Bayes(

<

) methods. Both are very simple and
powerful classification techniques. For NN we used
cosineasameasureof distancebetweentwo vectors,
andtheclassifier is thus� ����=">0@?BADCFE1?8GIH7KJMLFN �O��P� � /" (1)

Since we used aggregate vectors for classes and
noun types, we only usedthe best class; i.e., we
always used 1-nearest-neighbor classifiers. Thus) in this paperrefers only to the size of the win-
dow around the target nounandnever to numberof
neighborsconsulted in ) -nearest-neighbor classifi-
cation. We found that using TFIDF weights instead
of simple counts greatly improved performanceof
theNN classifiers, andwe mainly report results rel-
ative to the TFIDF NN classifiers (


;
RQTS:U$VIS
). A

documentin this context is thecontext, delimited by
thewindow size ) , in which eacheachnoun occurs.
TFIDFbasically filtersout theimpact of closedclass
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modelsfor ) 0`_Babac_ed .at level 1

wordsandre-weights featuresby their informative-
ness, thusmakinga stoplist or other feature manip-
ulationsunnecessary. Thenaive Bayesclassifiersis
alsovery simplef ����.">0@?BA^CFEg?8G 7ih �  j"#k - h � � -Dl  j"!" (2)

The parametersof the prior and class-conditional
distributions are easily estimated using maximum
likelihood. We smoothed all counts by a factor of
.5.

3.3 Testingprocedure

We tested eachmodelon an increasingnumbers of
classesor level. At level 1 thedictionarymapsnouns
only to the nine Wordnet roots; i.e., thereis a very
coarsedistinction amongnoun categoriesatthelevel
of ENTITY, STATE, ACT,.... At level 2 thedictionary
mapsnounsto all theclassesthathave a level-1 par-
ent; thus eachclasscanbe eithera leaf or an inter-
mediate(level 2) class. In general, at level , nouns
areonly mapped to classesthathave a level ( ,Im _ ),
or smaller, parent. Thereare34 level-2 classes,69
level-3 classesand95 level-4 ones.Finally, at level
5,nounsaremappedto all 106leaves.Wecompared
the boosting modelsandthe NN andNB classifiers
over a fixedsizefor ) of 4.

For eachlevel we extractedall unambiguous in-
stances from the BLLIP’99 data. The dataranged
from 200thousandinstancesatlevel 5, to almost400
thousandat level 1. As thenumber of classesgrows

therearelessunambiguouswords.Werandomly se-
lected a fixed numberof noun typesfor eachlevel:
200 types at levels 4 and 5, 300 at level 3, 350 at
level 2 and400at level 1. Testwaslimited to com-
mon nouns with frequency between 10 and300 on
thetotal data. No instanceof thenountypespresent
in thetestsetever appearedin thetraining data.The
testdatawasbetween5 and10%of thetraining data;
10thousandinstancesat level 5,16thousandat level
1, with intermediatefiguresfor theotherlevels. We
usedexactly thesamepartition of thedatafor all ex-
periments,across all models.

Figure 2 shows the error rate of several simple
modelsat level 1 for increasingvaluesof ) . The
errorkeeps dropping until ) reachesa valuearound
4 and then starts rising. Testing for all values of)on�p d confirmedthis pattern. This result sug-
geststhat the mostuseful contextual informationis
that closeto the noun, which should be syntactic-
semantic in nature, e.g.,predicate-argumentprefer-
ences. As the window widens, the bagof features
becomesmorenoisy. This fact is not too surprising.
If we madethewindow aswide asthewholedocu-
ment,everynoun token in thedocumentwould have
the samesetof features. As expected, asthe num-
berof classesincreases, thetaskbecomesharder and
theerrorof theclassifiersincreases.Nonethelessthe
samegeneralpattern of performancewith respectto) holds.As thefigureshows



RQTS:U^VIS
greatly im-

provesover thesimpler




classifier that only uses
counts.


;<
outperformsboth.

4 Boostingfor word classification

4.1 AdaBoost.MH with abstaining

Boosting is an iterative method for combining the
output of many weak classifiers or learners6 to
produce an accurate ensembleof classifiers. The
methodstartswith atrainingset q andtrainsthefirst
classifier. At eachsuccessive iteration r a new clas-
sifier is trained on a new training set qFs , which is
obtained by re-weighting the training datausedatrRm _ so that the examplesthat were misclassified
at rtm _ aregiven moreweight while lessweight is
given to the correctly classified examples. At each

6The learneris calledweak becauseit is requiredto clas-
sify examplesbetterthanat random only by anarbitrarilysmall
quantity.



iteration a weak learner u8s^�\v " is trained and added
to theensemble with weight w#s . Thefinal ensemble
hastheform x ����."t0 Q2szy|{ w=s}ujs^����." (3)

In themostpopular version of aboostingalgorithm,
AdaBoost(Schapire and Singer, 1998), at eachit-
eration a classifier is trained to minimize the expo-
nential loss on the weighted training set. The ex-
ponential loss is an upper bound on the zero-one
loss. AdaBoostminimizes the exponential loss on
the training set so that incorrect classification and
disagreementbetweenmembersof theensembleare
penalized.

Boosting has been successfully applied to sev-
eral problems. Among these is text categoriza-
tion (Schapire and Singer, 2000), which bears
similarities with word classification. For our
experiments we used AdaBoost.MH with real-
valued predictions and abstaining, a version of
boosting for multiclass classification described
in Schapire andSinger(2000). This version of Ad-
aBoostminimizesa loss function that is an upper
bound on the Hammingdistancebetweenthe weak
learners’ predictions and the real labels, i.e., the
numberof label mismatches (Schapire and Singer,
1998). This upper bound is theproduct ~ s�� s . The
function  -!� ��� is 1 if � is thecorrectlabelfor thetrain-
ing example � - andis -1 otherwise;

� 0 l ��l is the
total number of classes;and � 0 l qXl is thenumber
of training examples. We explain what the termfor
theweaklearner uF�s � � - � � " meansin thenext section.
Then � s 0��2 - �2��%� s ��, � � "��MG�� �  - � ����u �s � � - � � "!" (4)

AdaBoost.MH looksschematically asfoll ows:

ADABOOST.MH ��� "
1 � {i� � - � � "�� {� �/��� uniform initialization � {
2 for r ��_ to r ���
3 do C��e�I���O?B�]�6 �� L �D�#� ND¡cN u �s �¢AD��� s �
4 � sz£|{i� � - � � "t0 VP¤}¥§¦O¨�© �§ª^«¬$® ¥�¯ 7 ¨�° �²±´³Oµ¤ ¥¶¦O¨© �¶ªzª· ¤ �� � � - � � " is theweightassignedto the instance-label
pair ( � - � � ). In thefirst round � eachpair is assigned

the sameweight. At the endof eachround the re-
weighted � s is normalizedso that it forms a distri-
bution; i.e., � s is a normalizing factor. The algo-
rithm outputsthefinal hypothesesfor aninstance � -
with respectto classlabel �f � � - � � "�0 Q2 s u �s � � - � � " (5)

sincewe areinterestedin classifying noun types the
final score for eachunknown nounisx ��+ � � "�0 2-�¸ - 5i4 f � � - � � " (6)

wherewith ,X¹/, � + instance � - is a token of noun
type + .

4.2 Weak learners

In this version of AdaBoostweak learners are ex-
tremely simple. Each feature, e.g., one particular
collocation, is a weakclassifier. At eachroundone
feature ' is selected. Each feature makes a real-
valued prediction º}s^��' � � " with respect to eachclass� . If º»s^��' � � " is positive thenfeature ' makesa pos-
itive prediction aboutclass � ; if negative, it makes
a negative prediction about class � . The magnitude
of the prediction l º¼s^��' � � " l is interpretedas a mea-
sureof the confidence in the prediction. Then for
eachtraining instance a simple checkfor the pres-
enceor absence of this feature is performed. For
example, a possible collocation feature is eat:VB,
and the corresponding prediction is “if eat:VB ap-
pearsin thecontext of a noun, predict that thenoun
belongs to the classFOOD and doesn’t belong to
classes PLANT, BUSINESS,...”. A weak learner is
definedasfollows:u �s � � - � � "�0¾½ º»s^��' � � " if ' �K� -d if 'À¿�K� - (7)

Theprediction ºÁs^��' � � " is computedasfollows:º$s^��' � � "t0 _Â*ÃzÄKÅtÆ �£KÇÉÈÆ �¯ ÇÉÈ�Ê (8)

Æ �£ ( Æ �¯
) is the sum of the weights of noun-label

pairs, from thedistribution � s , wherethefeatureap-
pearsandthe label is correct (wrong); È 0 {� � is a
smoothing factor. In Schapire andSinger(1998) it



W=August; PL=0;MU=1; CO=’:POS;CO=passenger:NN; CO=traffic:NN; ...
W=punishment;PL=1;MU=0; MS=ment;MS=ishment;CO=in:IN; CO=to:TO; ...
W=vice president; PL=0;MU=0; MSHH=president; CO=say:VB;CO=chief:JJ;...
W=newsletter; PL=0;MU=0; MS=er;MSSH=letter; CO=yield:NN; CO=seven-day:JJ; ...

Figure3: Sampleinput to theclassifiers,only
<��B��Ë rÍÌ hasaccessto morphological information. COstands

for theattribute “collocation”.

is shown that � s is minimized for a particular fea-
ture ' by choosing its predictions as described in
equation (8). Theweight wjs usually associatedwith
theweakclassifier (seeequation (2)) here is simply
setto 1.

If thevaluein (8) is pluggedinto (4), � s becomes� s 0 ÆÏÎ Ç Â 2� 58ÐÒÑ Æ �£ Æ �¯
(9)

Therefore to minimize � s at eachroundwe choose
the feature ' for which this value is the smallest.
Updating thesescoresis whattakesmostof thecom-
putation, Collins (2000) describes an efficient ver-
sionof this algorithm.

4.3 Mor phological features

We investigated two boosting models:
<��8��Ë rÍÓ ,

which uses only collocations as features, and<��B�BË r Ì , which usesalsoa very simplesetof mor-
phological features.In

<��B��Ë r Ó weusedthecolloca-
tions within a window of (*) 0�Ô , which seemed
to be a good value for both the nearest neighbor
andthenaive Bayesmodel.However, we didn’t fo-
cuson any methodfor choosing ) , since we believe
that thecollocational featureswe usedonly approx-
imatemorecomplex onesthatneedspecific investi-
gation. Our maingoalwasto compare modelswith
and without morphological information. To spec-
ify themorphological propertiesof thenounsbeing
classified, we usedthefollowing setof features:Õ plural (PL): if the token occurs in the plural

form, PL=1;otherwisePL=0Õ upper case(MU): if the token’s first character
is upper-casedMU=1; otherwiseMU=0Õ suffixes (MS): each token can have 0, 1, or
more of a given set of suffixes, e.g., -er, -
ishment, -ity, -ism,-esse, ...

Õ prefixes(MP): eachtoken canhave0,1 or more
prefixes,e.g.,pro-, re-,di-, tri-, ...Õ Wordsthathavecomplex morphologysharethe
morphological headword if this is a noun in
Wordnet. Thereare two cases, depending on
whetherthewordis hyphenated(MSHH) or the
headword is a suffix (MSSH)

– hyphenated (MSHH): drinking age and
age sharethesamehead-word age

– non-hyphenated (MSSH): chairman and
man share the same suffix head word,
man. We limited the useof this feature
to the casein which the remaining prefix
(chair) alsois a noun in Wordnet.

We manually encoded two lists of 61 suffixes and
26 prefixes7. Figure3 shows a few examplesof the
input to themodels. Eachline is a training instance;
theattributeW refers to thelexical form of thenoun
andwasignoredby theclassifier.

4.4 Stoppingcriterion

Oneissue whenusing iterative procedures is decid-
ing whento stop.Weusedthesimplestprocedureof
fixing in advance the numberof iterations. We no-
ticedthat thetesterrordrops until it reachesa point
at which it seemsnot to improve anymore. Then
the error oscillatesaround the samevalueeven for
thousandsof iterations, without apparent overtrain-
ing. A similar behavioris observablein someof the
results on text categorization presentedin (Schapire
and Singer, 2000). We cannot say that overtrain-
ing is not a potential danger in multiclassboosting
models. However, for our experiments, in which the
main goal is to investigate the impactof a particu-
lar classof features,we could limit the numberof

7Thefeaturelistsareavailabletogetherwith theMiniWord-
netfiles.
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Figure5: Testerrorat level 4.

iterations to a fixedvaluefor all models.We chose
this maximumnumberof iterationsto be3500; this
allowed us to perform the experimentsin a reason-
able time. Figure 4 and Figure 5 plot training and
test error for

<��B��Ë r�Ó and
<��B��Ë r Ì at level 4 (per

instance). As the figuresshow, the error rate, on
both training and testing, is still dropping after the
fixed numberof iterations. For the simplestmodel,<��B�BË r Ó at level 1, thesituation is slightly different:
the modelconvergeson its final testerror rateafter
roughly 200 iterations and then remains stable. In
general, asthe number of classesgrows, the model
takes more iterations to converge and then the test
error remains stablewhile the training error keeps
slowly decreasing.

5 Resultsand discussion

The foll owing table summarizes the different
modelswe tested:

MODEL FEATURESÖXÖ�×�ØFÙ}ÚTØ
TFIDF weightsfor collocationsÖXÛ
collocationcounts

Boosts collocations(binary)
Boostm collocations(binary)+morphology

Figure 6 plots the results across the five different
subsets of the reduced lexicon. The error rate is
the error on types. We also plot the results of a
baseline (BASE), which always choosesthe most
frequent class andthe error ratefor random choice
(RAND). The baseline strategy is quite successful
on thefirst setsof classes,becausethehierarchyun-
dertheroot Ü 
 � � ��Ý is by far themostpopulated.
At level 1 it performsworseonly than

<��B��Ë r Ì . As
the size of the model increases,the distribution of
classesbecomesmoreuniformandthetaskbecomes
harder for thebaseline. As thefigureshows the im-
pactof morphological features is quite impressive.
Theaverage decreasein typeerrorof

<Ò�B��Ë r Ì over<��B�BË r!Ó is morethan17%,noticealsothedifference
in testandtraining error, per instance,in Figures4
and5.

In general, we observed that it is harder for all
classifiers to classify nouns that don’t belong to the
ENTITY class, i.e., maybenot surprisingly, it is
harder to classify nounsthat refer to abstract con-
ceptssuch as groups, acts, or psychological fea-
tures. Usually most of the correct guessesregard
membersof the ENTITY class or its descendants,
which arealsotypically the classes for which there
is more training data.

<��B��Ë r Ì really improveson<��B�BË r Ó in this respect.
<Ò�B��Ë rÌ guessescorrectly

several nouns to which morphological features ap-
ply like spending, enforcement,participation, com-
petitiveness,credibility or consulting firm. It makes
also many mistakes, for exampleon conversation,
controversy and insurancecompany. One prob-
lem that we noticed is that thereare several cases
of nouns that have intuitively meaningful suffixes
or prefixes that are not present in our hand-coded
lists. A possible solution to his problem might be
the use of more general morphological rules like
those usedin part-of-speechtagging models(e.g.,
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Figure6: Comparison of all modelsfor � 03_Baba´Þ .
Ratnaparkhi (1996)), whereall suffixesup to a cer-
tain length areincluded. We observedalsocasesof
recurrent confusion betweenclasses. For example
betweenACT and ABSTRACTION (or their subor-
dinates),e.g.,for the nounmodernization, possibly
becausethesuffix is commonin bothcases.

Another measure of the importance of morpho-
logical featuresis the ratio of their usewith respect
to that of collocations. In the first 100 rounds of<��B�BË r Ì , at level 5, 77% of the features selected
aremorphological, 69%in the first 200 rounds. As
Figures4 and5 show theseearly roundsareusually
theonesin which mostof theerror is reduced. The
first ten features selected at level 5 by

<��8��Ë r¶Ì
were the foll owing: PL=0, MU=0, PL=1, MU=0,
PL=1,MU=1, MS=ing,PL=0,MS=tion,andfinally
CO=NUMBER X:CD. One final characteristic
of morphology that is worth mentioning is that
it is independent from frequency. Morphological
features are propertiesof the type and not just of
the token. A model that includesmorphological
informationshould thereforesuffer lessfrom sparse
dataproblems.

Froma moregeneralperspective,Figure6 shows
that even if the simpler boosting model’s perfor-
mancedegrades more than the competitors after
level 3,

<��B��Ë r Ì performsbetterthanall the other
classifiers until level 5 when the TFIDF nearest
neighbor and the naive Bayesclassifiers catchup.
It should be notedthough that, asFigures 4 and 5

showed, boosting wasstill improving at the endof
the fixed number of iterations at level 4 (but also
5). It might quite well improve significantly after
moreiterations.However, determining absoluteper-
formance was beyond the scope of this paper. It
is also fair to say that both




and


;<
arevery

competitive methods, and much simpler to imple-
mentefficiently thanboosting. Themainadvantage
with boostingalgorithmsis theflexibili ty in manag-
ing featuresof very differentnature. Featurecombi-
nation canbeperformednaturally with probabilistic
modelstoobut it is morecomplicated.However, this
is something worth investigating.

6 Relatedwork

Automatic lexical acquisition is a classic problem
in AI. It was originally approached in the con-
text of story understanding with the aim of en-
abling systemsto deal with unknown words while
processing text or spoken input. Thesesystems
would typically rely heavilyon script-based knowl-
edgeresources. FOUL-UP (Granger, 1977) is one
of theseearly modelsthat tries to deterministically
maximizethe expectations built into its knowledge
base. JacobsandZernik (1988) introducedthe idea
of using morphological information, together with
other sources, to guessthe meaning of unknown
words.Hastings andLytinen(1994) investigated at-
tacking the lexical acquisition problem with a sys-
tem that relies mainly on taxonomic information.
In the last decadeor so researchon lexical seman-
tics has focused more on sub-problems like word
sense disambiguation (Yarowsky, 1995; Stevenson
andWilks, 2001), namedentity recognition (Collins
andSinger, 1999), andvocabulary construction for
information extraction (Riloff, 1996). All of these
canbe seenassub-tasks, becausethe space of pos-
sibleclassesfor eachword is restricted. In WSDthe
possible classes for a word are its possible senses;
in namedentity recognition or IE the number of
classes is limited to the fixed (usually small) num-
ber the taskfocuseson. Otherkinds of modelsthat
have beenstudied in the context of lexical acquisi-
tion are thosebased on lexico-syntactic patternsof
thekind ”X, Y andother Zs”, asin thephrase”blue-
jays, robins andother birds”. Thesetypes of mod-
els have beenusedfor hyponym discovery (Hearst,



1992; Roark and Charniak, 1998), meronym dis-
covery (Berland and Charniak, 1999), and hierar-
chy building (Caraballo, 1999). Thesemethodsare
very interesting but of limited applicability, because
nouns that do not appear in known lexico-syntactic
patternscannot belearned.

7 Conclusion

All theapproachescitedabovefocusonsomeaspect
of theproblemof lexical acquisition. Whatwe learn
from themis that informationabout themeaningof
wordscomesin very differentforms. Onething that
needs to be investigatedis the design of better sets
of featuresthatencodetheinformationthathasbeen
found useful in thesestudies. For example, it is
known from work in wordsensedisambiguation that
conditioning on distanceandsyntactic relationscan
bevery helpful. For a modelfor lexical acquisition
to besuccessful it mustbeableto combineasmany
sourcesof information as possible. We found that
boosting is a viable methodin this respect. In par-
ticular, in this paper we showed that morphology is
onevery useful sourceof information,independent
of frequency, that canbe easily encoded in simple
features.

A more general finding was that inserting new
words into a dictionary is a hard task. For these
classifiers to becomeuseful in practice, much bet-
ter accuracy is needed. This raisesthe question of
thescalability of machinelearning methods to mul-
ticlassclassificationfor very largelexicons.Our im-
pression on this is that directly attempting classifi-
cation on tensof thousandsof classes is not a viable
approach.However, thereis agreatdealof informa-
tion in the structure of a lexicon like Wordnet. Our
guess is that theability to make useof structural in-
formation will be key in successfulapproaches to
this problem.
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