
Detecting Grammar Errors in Children’s Writing:
A Finite State Approach

Sylvana Sofkova Hashemi
Department of Linguistics, Göteborg University

sylvana@ling.gu.se

ABSTRACT

This paper reports on the development of a finite state system for finding
grammar errors in Swedish text written by children. The writing problems are
more frequent for this group and the distribution of the error types is
different from texts written by adults. The detection approach involves
subtraction of automata that represent two “positive” grammars with varying
degree of detail. The difference between the automata corresponds to the
search for writing problems that violate the grammars. The constituents of
various fragments are identified by the use of lexical-prefix-first strategy and
application of incremental parsing. While the grammatical coverage is still
rather small, yielding rather large numbers of false alarms, the technique can
be applied to agreement phenomena, verb selection phenomena and some
word order phenomena. The aim is to include also detection of missing
sentence boundaries.

Introduction

Research and development of grammar checking techniques has been carried
out since the 1980’s, mainly for English and also for other languages, e. g.
French (Chanod, 1993), Dutch (Vosse, 1994), Czech (Kirschner, 1994), Spanish
and Greek (Bustamente and León, 1996). In the case of Swedish, the
development of grammar checkers started not until the later half of the 1990’s
with several independent projects, resulting in the first product release in
November 1998 - Grammatifix (Arppe, 2000; Birn, 2000), now part of the
Swedish Microsoft Office 2000.

The work described here is a continuation of a project from this starting
period, that explores the use of finite state techniques for grammar checking.
The approach differs from the other Swedish projects not only in the choice
of technique used, but also in that the grammatical errors are found without
any description of the erroneous patterns. The detection process involves
partial parsing as writing of ”positive” grammars at different accuracy levels
that as transducers can be subtracted from each other. The difference between
the automata corresponds to the search for writing problems that violate the

Online Proceedings of NODALIDA 2001

mailto:sylvana@ling.gu.se

grammars. Karttunen et al (1996) use this technique to find instances of
invalid dates.

The current system, using the Xerox Finite-State Tool (XFST) (Karttunen et
al, 1997), is divided in four main modules: the lexicon lookup, the grammar,
the parser and the error finder. A simple emacs environment is used both for
testing and development of finite state grammars. The environment shows
the results of an XFST process run on the current emacs buffer in a separate
buffer. An XFST mode allows for menus to be used and recompile files in the
system.

The Corpus Data

The analyses of writing problems is based on a corpus of 31 756 words (3 361
word types), composed of (mostly) computer written and hand written essays
written by children between 9 to 13 year old. In general, the text structure of
the compositions reveals clearly the influence of spoken language and
performance difficulties in spelling, segmentation of words, the use of capitals
and punctuation, varying both by individuals and age.

In total, 306 grammatical error instances were found in the 134 narratives.
The most recurrent grammar problem concerns the omission of finite verb
inflection (28%), i. e. when the main finite verb in a clause is in infinitive
form and the appropriate present or past tense endings are dropped (a quite
usual phenomena in spoken Swedish). Other more frequent grammar
problems are wrong choice of a pronoun (15%), wrong pronoun case (8%),
extra or missing words (11%), errors in verb chains (6%) and agreement in
noun phrases (5 %).

Punctuation problems are also included in the analyses. In general, the use
of punctuation varies from no usage at all (mostly among the youngest
children) to rather sparse marking. The omission of end of sentence marking
is quite obvious problem (35%), but the most frequent punctuation problem
concerns the comma (81%).

The Lexicon Lookup

The lexicon is built as a finite state transducer, using the Xerox tool Finite-
State Lexicon Compiler (Karttunen, 1993). It takes a string and maps inflected
surface form to a tag containing part-of-speech and feature information, e. g.
applying the transducer to the string kvinna ‘woman’ will return [nn utr sin
ind nom]. The word analyser is based on LEXIN (58 326 word forms;
Skolverket, 1992) and the lexicon developed in Daniel Ridings’ lexicon project
in the Language Technology Programme, HSFR/NUTEK (100 000 word
forms). The network does not handle unknown words. The size of the

Online Proceedings of NODALIDA 2001

lexicon is rather small, but the LEXIN-part includes valuable information on
valency (see further in Andersson et al, 1998 and 1999).

The system uses a simple lookup without any disambiguation. The reason
for that is that the disambiguation heuristics of a tagger may fail with a text
that contains errors, because the information needed for the detection of
errors is (often) filtered out (see Cooper and Sofkova Hashemi, 1998). The
strategy of a lexical lookup which leaves all lexical information present
without attempting any disambiguation seems to be the most safe strategy in
order to ensure that no information needed is lost.

The Grammar and Parsing

The grammar module is further subdivided into a broad grammar and a
narrow grammar, that include regular expressions reflecting truths about the
grammatical structure of Swedish, differing in the level of detail. For example
the simple regular expression in the broad grammar:

define VC [Verb Adv* Verb (Verb)];

recognises potential verb clusters (both grammatical and ungrammatical),
consisting of a sequence of two or three verbs in combination with some
adverbs (zero or more). On the other hand, the following rules in the narrow
grammar take into account the internal structure of a verb cluster, i. e. the
rules define the grammar of (modal or temporal) auxiliary verbs followed by
optional sentence adverb(s) and main verb:

define VC1 [Mod Adv* VerbInf]; kan (inte) springa
”can (not) run ”

define VC2 [Mod Adv* PerfInf VerbSup]; skall (inte) ha sprungit
”will (not) have run[sup]”

define VC3 [Perf Adv* VerbSup]; har (nog) sprungit
”have (not) run[sup]”

define VC4 [Perf Adv* ModSup VerbInf]; har (inte) velat springa
”have (not) want[sup] run[sup]”

The various kinds of constituents are marked out in a text using the lexical-
prefix-first method, i. e. parsing first from left margin of a phrase to the head
and then extending the phrase by adding on complements.

The actual parsing (based on the broad grammar definitions) is
incremental similarly to the methods described in Ait-Mokhtar and Chanod
(1997). With this method, the parsing results vary depending on the order in
which the various grammatical facts are applied. The system recognises the
higher phrases in the first phase (e. g. vp, pp, np) and then applies the second
phase in the reverse order (e. g. np, pp, vp). This method gives a greater
efficiency and flexibility to the system by decreasing the size of the nets when
compiling and that (some) false parses can be blocked.

Online Proceedings of NODALIDA 2001

Error Detection

The error finder is a separate module in the system which means that the
grammar and parser could be used directly in a different application. The nets
of this module correspond to the difference between the two grammars, broad
and narrow. For example, the regular expression:

[”<vc>” [VC - VCgram] ”</vc>”]

where VC is the part of the broad grammar describing broad structure of a
verb cluster and VCgram is the part of the narrow grammar describing the
grammar of auxiliary verbs, will find verb clusters that violate these
constraints within the VC-boundaries that have been previously marked out
by applying the broad grammar.

So far the technique was used to detect agreement errors in noun phrases,
verb selection phenomena (in particular selection of finite and non-finite
verb forms in main and subordinate clauses and infinitival complements)
and local word order phenomena (e. g. placement of negation). Also some
attempts were maid to detect missing sentence boundaries, starting with
clause and verb subcategorisation and trying to make use of the valency
information stored in the lexicon of the system.

Further, it is possible to use this method to perform error diagnostics. This
is achieved by subtraction of small parts of the narrow grammar representing
specific constraints that can be violated.

Evaluation

The grammatical coverage of the system is still rather small, yielding a large
number of false alarms. There are in general two kinds of false alarms that
occur: either because of the “smallness” of grammar for the particular
constituents occurring in the phrase, or due a false parse depending either on
the ambiguity of constituents or the “wideness” of the parse, i. e. too many
constituents are included when applying the longest-match strategy. The
following example shows an ambiguous parse:

Linda , brukade ofta vara i stallet.1

”Linda , used to be often in the stable.”

<Error finite verb> <vp><vpHead><np>Linda </np></vpHead></vp>
</Error> , <vp><vpHead> <vc> brukade ofta <np>vara </np> </vc>
</vpHead><pp><ppHead>i </ppHead><np>stallet </np></pp></vp>.

1 The example is authentic, including the comma after the proper name ’Linda’, that also
influence the parsing result, i. e. without the comma ’Linda’ would be parsed as part of a verb
cluster than a separate verb phrase.

Online Proceedings of NODALIDA 2001

where ‘linda’ is a proper name and parsed as a noun phrase, but it also is an
(infinite) verb in infinitive (to wrap) and will then be marked as a verb
phrase. Then the error finder marks this phrase as a finite verb error, due the
violation of this constraint in the narrow grammar that does not allow any
infinite verbs without the presence of a preceding (finite) auxiliary verb or
infinitival marker ‘att’. Next example shows the effect of the longest-match
strategy:

I hålet som pojken hade hittat fanns en mullvad.
“In the hole that the boy had found was a mole.”

<pp><ppHead>I </ppHead><np>hålet </np></pp> som <np>pojken
</np><vp><vpHead> <Error verb after Vaux> <vc>hade hittat fanns
</vc></Error> </vpHead><np>en mullvad </np></vp>.

where the verb cluster boundary is too wide, including both a verb cluster and
a finite verb belonging to the next clause (here missing the appropriate
punctuation marking).

Increasing the coverage of the positive grammar will solve some problems
with false marking, but also some kind of filtering techniques (e. g. finite state
intersection grammar; Tapanainen, 1997) should be involved in the solution
of false parsing. However, involving filtering of any kind may also cause that
the errors in the text may not be found.

Conclusion

The simple finite state technique of subtraction presented in this paper, has
the advantage that the grammars one needs to write to find errors are always
positive grammars rather than grammars written to find specific errors. This
means that they will find a large class of errors without having to specify
them individually. Although the grammatical coverage of the system is
rather small, the technique can be applied to detect some kinds of grammar
errors. Most of the false alarms depend on the smallness of the grammar,
other occur due the ambiguity of the constituents resulting in false parses.
Further expansion of the grammatical coverage and some other filtering
techniques are needed in order to block the false alarms.

In conclusion, the robustness and modularity of this system makes it
possible to perform both error detection and diagnostics and that the
grammars can be reused for other applications that do not necessarily have
anything to do with error detection, e. g. for educational purposes, speech
recognition, and for other users such as dyslectics, aphasics, deaf and foreign
speakers.

Online Proceedings of NODALIDA 2001

References

Ait-Mokhtar, S. and Chanod, J-P. (1997) Incremental Finite-State Parsing. In Proceedings
of ANLP’97, Washington March 31 st to April 3rd, pp. 72-79

Andersson, R., Cooper, R. and Sofkova Hashemi, S. (1998) Finite State Grammar for
Finding Grammatical Errors in Swedish Text: a finite-state word analyser, Report-
9808. Department of Linguistics, Göteborg University.

Andersson, R., Cooper, R. and Sofkova Hashemi, S. (1999) Finite State Grammar for
Finding Grammatical Errors in Swedish Text: a system for finding ungrammatical
noun phrases in Swedish text, Report-9903. Department of Linguistics, Göteborg
University.

Arppe, A. (2000) Developing a grammar checker for Swedish. In Proceedings of the 12 th

Nordic Conference in Computational Linguistics, Nodalida´99. Department of Linguistics,
Norwegian University of Science and Technology, Trondheim, pp. 13-27.

Birn, J. (2000) Detecting grammar errors with Lingsoft’s Swedish grammar checker. In
Proceedings of the 12 th Nordic Conference in Computational Linguistics, Nodalida´99.
Department of Linguistics, Norwegian University of Science and Technology,
Trondheim, pp. 28-40.

Cooper, R. and Sofkova Hashemi, S. (1998) Finite State Grammar for Finding
Grammatical Errors in Swedish Text: Report-9809. Department of Linguistics,
Göteborg University.

Chanod, J-P. (1993) A Broad-Coverage French Grammar Checker: Some Underlying
Principles. In Proceedings of the Sixth International Conference on Symbolic and Logical
Computing. Dakota State University Madison, South Dakota.

Bustamente, F. R. and León, F. S. (1996) GramCheck: A Grammar and Style Checker. In
Proceedings of the 16 th International Conference on Computational Linguistics,
Copenhagen, pp. 175-181.

Karttunen, L. (1993) Finite-State Lexicon Compiler. Technical Report ISTL-NLTT-1993-
04-02, Xerox Palo Alto Research center, Palo Alto, California.

Karttunen, L., Chanod, J-P., Grefenstette, G. and Schiller, A. (1996) Regular Expressions
for Language Engineering. In Natural Language Engineering 2 (4), pp. 305-328.

Karttunen, L., Gaál, T. and Kempe, A. (1997) Xerox Finite-State Tool. Technical Report
Version 6.0.4, Xerox Research Centre Europe, Grenoble, Meylan, France.

Kirschner, Z. (1994) Czecker – a Maquette Grammar-Checker for Czech. In The Prague
Bulletin of Mathematical Linguistics 62 , Prague: Universita Karlova.

Skolverket (1992) Lexin: språklexikon för invandrare. Stockholm: Nordstedts Förlag.
Tapanainen, P. (1997) Applying a Finite-State Intersection Grammar. In Roche, E. and

Schabes, Y. (eds.) Finite-State Language Processing, The MIT Press.
Vosse, T. (1994) The Word Connection. Grammar-Based Spelling Error Correction in Dutch.

Doctoral Dissertation. Enschede: Neslia Paniculata.

Online Proceedings of NODALIDA 2001

