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Abstract

In this paper we present the functional au-
tomata as a general framework for repre-
sentation, training and exploring of vari-
ous statistical models as LLM’s, HMM’s,
CRF’s, etc.

Our contribution is a new construction that
allows the representation of the derivatives
of a function given by a functional au-
tomaton. It preserves the natural repre-
sentation of the functions and the stan-
dard product and sum operations of real
numbers. In the same time it requires no
additional overhead for the standard dy-
namic programming techniques that yield
the computation of a functional value.

1 Introduction

Statistical models such as n-gram language mod-
els (Chen and Goodman, 1996), hidden Markov
models (Rabiner, 1989), conditional random fields
(Lafferty et al., 2001), log-linear models (Dar-
roch and Ratcliff, 1972) are widely applied in the
natural language processing in order to approach
various problems, e.g. parsing (Sha and Pereira,
2003), speech recognition (Juang and Rabiner,
1991), statistical machine translation (Brown et
al., 1993). Different statistical models perform
differently on different tasks. Thus in order to find
the best practical solution one might need to try
several approaches before getting the desired ef-
fect. Disposing on a general framework that al-
lows the flexibility to change the statistical model
or/and training scheme would spend much efforts
and time.

Focusing on this pragmatical problem, we pro-
pose the functional automata as a possible solu-
tion. The basic idea is to consider the mathemati-

cal expressions of sums and products arising in the
statistical models as regular expressions. Thus re-
garding the functions in these expressions as indi-
vidual characters, the sums as unions and the prod-
ucts as concatenation, we get the desired corre-
spondence. The relation between a particular sta-
tistical model and a functional automaton for its
representation is then rather straightforward.

The training of the statistical models is in a way
more involved. Most of the approaches require a
gradient method that estimates the best model pa-
rameters. To this end one needs to have an efficient
representation not only of the function used by the
model but also of its (partial) derivatives.

To solve similar problem Eisner and Li in-
troduce first-order and second-order expectation
semirings. In (Jason Eisner, 2002; Zhifei Li and
Jason Eisner, 2009) it is shown how derivatives
of functions arising in statistical models can be
represented. This is achieved by the means of
an algebraic construction that: (i) considers pairs
of functions (first-order expectation semiring) and
quadruples of functions (second-order expectation
semiring); (ii) introduces an operation on pairs and
quadruples, respectively, of functions that replaces
the multiplication and is used to simulate the mul-
tiplication of first- and second-order derivatives,
respectively. Thus the higher the order of the
derivatives in interest, the more complex would be
the necessary expectation semiring and the opera-
tions that it would require.

In the current paper we propose an alternative
approach. It is based on a combinatorial construc-
tion that allows preserving both: (i) manipulation
with single functions and (ii) the usage of the stan-
dard multiplication and addition of real numbers.
Thus we get a uniform representation of functions,
their first- and higher order derivatives. Our ap-
proach requires the same storage as the approach
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in (Jason Eisner, 2002; Zhifei Li and Jason Eis-
ner, 2009) and enables the same efficiency for the
traversal procedures described in (Zhifei Li and
Jason Eisner, 2009).

In Section 3 we show that the values of a func-
tion represented by an acyclic functional automa-
ton can be efficiently computed by the means of
a standard dynamic programming technique. We
further describe how to construct functional au-
tomata for the partial derivatives of F by given
functional automaton representing F . We show in
Sections 2 and 6 that such automata can be used
for training log-linear models, hidden Markov
models and conditional random fields. We only
require that the objective function is represented
via functional automata. In Section 5 we present
a construction of functional automaton for a log-
linear model where one of the feature functions
uses an n-gram language model (Chen and Good-
man, 1996).

In Section 7 we present evaluation of a devel-
oped system, based on functional automata, on the
tasks of (i) noisy historical text normalization and
(ii) OCR postcorrection.

2 Log-linear models

We consider the task of automatic normalization
of Early Modern English texts. In the next two
paragraphs we define some notions related to this
task. We use them afterwards to formulate typical
problems of training and search that can be effec-
tively solved by functional automata.

Given a source text s, say s =
theldest sonn hath bin kild, and the goal is to
find the most relevant modern English equivalent
of s. A candidate generator is an algorithm that
for a fixed source word or sequence of words,
say sisi+1 . . . si+k, generates finite number of
normalization candidates and supplies each
normalization candidate, c, with a conditional
probability, pcg(c | sisi+1 . . . si+k). Hence we
can assume that the candidate generator provides
the information in the form of Table 1. In this
sense the candidate generator corresponds to
the word-to-word or phrase-to-phrase translation
tables in statistical machine translation systems
(Koehn et al., 2003). From the candidates we
construct possible normalization targets: eldest
sun hat been kid, the eldest soon has bean killed,
the eldest son has been killed etc. For normaliza-
tion of texts produced by OCR system from noisy

source word set of target candidates
theldest {⟨the eldest, 0.75⟩, ⟨eldest, 0.25⟩}

sonn {⟨son, 0.92593⟩, ⟨soon, 0.03704⟩, ⟨sun, 0.03704⟩}
hath {⟨hat, 0.0088⟩, ⟨hats, 0.0044⟩, ⟨has, 0.9868⟩}
bin {⟨bin, 0.1⟩, ⟨been, 0.8⟩, ⟨bean, 0.1⟩}
kild {⟨kid, 0.01⟩, ⟨killed, 0.99⟩}

Table 1: Source words and their corresponding set
of candidates provided by the candidate generator.
Each target candidate c for the source word si is
associated with a probability pcg(c | si).

historical documents the candidate generator
could take into account both typical OCR errors
and historical spelling variations, (Reffle, 2011) or
can use directly automatically extracted spelling
variations, for example (Gerdjikov et al., 2013).

A normalization pair is a pair p = ⟨w, c⟩
such that the sequence of target words c is
a normalization candidate for the sequence of
source words w. We call w left side and c
right side of the normalization pair p. The
left and the right sides of p are denoted l(p)
and r(p) respectively. In our example some
of the normalization pairs are ⟨theldest, eldest⟩,
⟨theldest, theeldest⟩, ⟨kild, killed⟩, etc. A nor-
malization alignment from s to t, denoted s → t,
is a sequence of normalization pairs p1p2 . . . pk

such that s = l(p1)l(p2) . . . l(pk) and t =
r(p1)r(p2) . . . r(pk). The i-th normalization pair
pi of the alignment s → t is denoted (s → t)i.
The length k of the alignment is denoted |s → t|.
Thus a possible normalization alignment in
our example, from s = theldest sonn hath bin kild
to t = eldest sun hat been kid is ⟨theldest, eldest⟩
⟨sonn, sun⟩⟨hath, hat⟩⟨bin, been⟩⟨kild, kid⟩. We
denote with As the set of all normalization align-
ments from s. Note that As is always finite, be-
cause the number of normalization candidates for
each sequence sisi+1 . . . si+k of source words is
finite.

Problem. Given a training corpus of normaliza-
tion alignments train a log-linear model that com-
bines the candidate generator with an n-gram sta-
tistical language model. Once the model is trained,
find a best normalization alignment s → t for a
given source s.

Firstly, we consider the case where n = 1,
i.e. we have a monogram language model
which assigns a nonzero probability plm(ti)
to each target word ti. The general case of
arbitrary n-gram language model is postponed

295



to Section 5. There are two feature functions:
hlm(s → t) = log

∏|t|
i=1 plm(ti) and hcg(s → t) =

log
∏|s→t|

i=1 pcg[r((s → t)i) | l((s → t)i)]. The
probability of a normalization alignment s → t
given s is pλ(s → t | s) =

exp[λlmhlm(s → t) + λcghcg(s → t)]∑
s→t′∈As

exp[λlmhlm(s → t′) + λcghcg(s → t′)]
,

where λ = ⟨λlm, λcg⟩ are the parameters of the
model.

Training. Assume that we have a train-
ing corpus T of N normalization alignments,
T = ⟨s(1) → t(1), s(2) → t(2), . . . , s(N) → t(N)⟩.
The training task is to find parameters λ̂ that opti-
mize the joint probability over the training corpus,
λ̂ = argmaxλ

∏N
n=1 pλ(s(n) → t(n) | s(n)).

Search. Once the parameters λ̂ are fixed, the
problem is to find a best normalization alignment
s → t = argmaxs→t′∈As pλ̂(s → t′) for a given
input s.

Introducing es→t(λ) = exp[λlmhlm(s → t) +
λcghcg(s → t)] and

Zs(λ) =
∑

s→t′∈As

es→t′(λ), (1)

we obtain λ̂ = argmaxλ L(λ), where

L(λ) =
∑N

n=1[λlmhlm(s(n) → t(n))+

λcghcg(s
(n) → t(n))− log Zs(n)(λ)]. (2)

To optimize L(λ) we use a gradient method that
requires the computation of L(λ), ∂L

∂λcg
(λ) and

∂L
∂λlm

(λ) by given λ. For i = lm, cg we obtain

∂L

∂λi
(λ) =

N∑
n=1

[hi(s
(n) → t(n))−

∂Z
s(n)

∂λi
(λ)

Zs(n)(λ)
].

(3)
One possible choice of first order gradient method
for the optimization of L is a variant of the conju-
gate gradient method that converges to the unique
maximum of L for each starting point λ0 =
⟨λlm0, λcg0⟩, (Gilbert and Nocedal, 1992).

3 Functional automata

The problem we faced in the previous Sec-
tion is how to compute L(λ) and ∂L

∂λi
(λ) at a

given point λ. The computation of the terms
λihi(s

(n) → t(n)) for i = cg (or i = lm) is
easy since it requires a single multiplication and
|s(n) → t(n)| (or |t(n)|) additions. However the
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Figure 1: Functional automaton representing
the function F (λ1, λ2) = λ2
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term Zs(λ) may require much more efforts. It suf-
fices that each source word si generates two can-
didates for the expression in Equation 1 to explode
in exponential number of summation terms. Com-
puting the derivatives then becomes even harder.
In this Section we present a novel efficient solu-
tion to these problems. It is based on a compact
representation of the mathematical expressions via
functional automata.

Imagine, that we have the function F (λ1, λ2)
given as an expression: λ2

1 sin(λ1)
1

λ2
1+1

+

λ2
1 cos(λ2)

1
λ2
1+1

+ exp(λ1λ
3
2) sin(λ1)

1
λ2
1+1

+

exp(λ1λ
3
2) cos(λ2)

1
λ2
1+1

. Let us further assume

that we interpret the individual functions λ2
1,

cos(λ2), 1
λ2
1+1

, etc, as single symbols. If we
further interpret the multiplication of functions
as concatenation and the addition as union, then
the expression for F (λ1, λ2) given above can be
viewed as a regular expression for which a finite
state automaton can be compiled, see Figure 1.
This is the motivation for the following two
definitions:

Definition 3.1 Let d be a positive natural num-
ber. Functional automaton is a quadruple
A = ⟨Q, q0, ∆, T ⟩, where Q is a finite set of
states, q0 ∈ Q is a start state, ∆ is a finite multiset
of transitions of the form q

W−→ p where p, q ∈ Q
are states and W : Rd → R is a function and
T ⊆ Q is a set of final states.

Definition 3.2 Let A = ⟨Q, q0, ∆, T ⟩ be an
acyclic functional automaton (AFA). A path π
from p0 to pk in A is a sequence of k ≥ 0 tran-

sitions π = p0
W1−→ p1

W2−→ p2 . . . pk−1
Wk−→ pk.

The label of π is defined as lπ =
∏k

j=1 Wj . If π
is empty (k = 0), then lπ = 1. A successful path
is a path from q0 to a final state q ∈ T . The func-
tion FA : Rd → R represented by A is defined as
FA =

∑
π is a successful path in A lπ.

Since A is acyclic, the number of successful
paths is finite and FA is well defined.
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target word the eldest son soon sun
probability 0.017 0.00002 0.0003 0.0005 0.0002

target word hat hats has bin
probability 0.0001 0.00002 0.002 0.000005

target word been bean kid killed
probability 0.003 0.000005 0.00002 0.0001

Table 2: Target words and their language model
probabilities.

Classical constructions for union and concate-
nation of automata (Hopcroft and Ullman, 1979)
can be adapted for functional automata. If A is the
result of the union (concatenation) of A1 and A2,
then FA = FA1 + FA2 (FA = FA1 · FA2).

3.1 Computation of a function FA
represented by an AFA A

In order to efficiently compute FA(λ) for a given
λ = ⟨λ1, λ2, . . . , λn⟩, we use standard dynamic
programming. Without loss of generality we as-
sume that A = ⟨Q, q0, ∆, T ⟩ has only one final
state and each transition in A belongs to some
successful path. Firstly, we sort topologically the
states of the automaton A in decreasing order. Let
p1, p2, . . . , p|Q| be one such order of the states,
i.e. (i) p1 ∈ T is the only one final state, (ii)
p|Q| = q0 is the start state and (iii) if there is
a transition from pi to pj then j < i. For ex-
ample for the automaton on Figure 1 we obtain
3, 2, 1, 0. Afterwards for each state pj we com-
pute a value vj in the following way: v1 = 1
and vj+1 =

∑
pj+1

W (λ)−→ pk

W (λ) · vk. Eventually

FA(λ) = v|Q|. If the computation of W (λ) by
given λ takes time O(1) for all label functions
W , then the time for the computation of FA(λ)
is O(|∆|).

Now we focus on the problem how to com-
pute Zs(λ) at a given point λ, see Equation 1.
We illustrate how Zs(λ) can be represented by
an AFA, As, on the example from Section 2,
s = theldest sonn hath bin kild. Table 1 lists the
sets of candidates in modern English for each
source word si. Table 2 presents the language
model probabilities for each target word. Given
this data we represent the possible normaliza-
tion alignments via an acyclic two-tape automa-
ton, see Figure 2. This automaton can be con-
sidered as a string-to-weight transducer (Mohri,
1997) parameterized with λlm and λcg. Specif-
ically, each path from state i − 1 to state i,
1 ≤ i ≤ |s|, corresponds to a target candi-

the/
exp[λlm log(0.017)
+λcg log(0.75)] eldest/

exp[λlm log(0.00002)
+λcg log(0.25)]

eldest/
exp[λlm log(0.00002)

+λcg log(1)]

0

6

1

son/
exp[λlm log(0.0003)
+λcg log(0.92593)]

soon/
exp[λlm log(0.0005)
+λcg log(0.03704)]

sun/
exp[λlm log(0.0002)
+λcg log(0.03704)]

2

hat/
exp[λlm log(0.0001)
+λcg log(0.0088)]

hats/
exp[λlm log(0.00002)
+λcg log(0.0044)]

has/
exp[λlm log(0.002)
+λcg log(0.9868)]

3

bin/
exp[λlm log(0.000005)

+λcg log(0.1)]

been/
exp[λlm log(0.003)
+λcg log(0.8)]

bean/
exp[λlm log(0.000005)

+λcg log(0.1)]

4

kid/
exp[λlm log(0.00002)

+λcg log(0.01)]

killed/
exp[λlm log(0.0001)
+λcg log(0.99)]

5

Figure 2: The functional automaton
Atheldest sonn hath bin kild is obtained by removing
the words from the transition labels.

date c for the i-th source word si and has a
label exp[λcglog(pcg(c | si)) + λlmlog(plm(c))].
On our example, for i ≥ 2 each such path
consists of a single transition, because the can-
didates are single words. In order to repre-
sent the candidate the eldest we use the ad-
ditional state 6. The transition from 0 to 6
corresponds to the first word the of the can-
didate and accumulates the whole probability
pcg(the eldest | theldest) = 0.75. The transition
from 6 to 1 corresponds to the second word eldest
of the candidate. It should be clear that remov-
ing the target words from the transitions, we ob-
tain the AFA As representing Zs(λ). For each
alignment s(n) → t(n) from the training corpus
we build a separate functional automaton, like the
one on Figure 2, representing Zs(n)(λ). Thus we
have N automata that we use to compute L(λ) via
Equation (2).

3.2 Computation of partial derivates via AFA
Our next goal is to compute the partial derivates
∂L
∂λi

(λ). Let us turn back to the function F (λ1, λ2)
represented by the automaton on Figure 1. We
show how to construct a functional automaton for
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Figure 3: A functional automaton for the partial
derivative of F (λ1, λ2).

∂F
∂λ1

(λ1, λ2). Let G(λ1, λ2) = λ2
1 sin(λ1)

1
λ2
1+1

be
the first of the four summation terms of F . The
partial derivative ∂G

∂λ1
can be written as a sum of

three terms: ∂(λ2
1)

∂λ1
sin(λ1)

1
λ2
1+1

, λ2
1

∂(sin(λ1))
∂λ1

1
λ2
1+1

and λ2
1 sin(λ1)

∂( 1

λ2
1+1

)

∂λ1
. Each of the summation

terms differs from the original expression for
G(λ1, λ2) in exactly one multiplier whose partial
derivative with respect to λ1 is computed. Thus
in order to construct a functional automaton for
∂F
∂λ1

we can take two disjoint copies of the original
functional automaton, see Figure 3, and set tran-
sitions between them in order to reflect the partial
derivatives with respect to λ1 of the single multi-
pliers. The general result is presented in the fol-
lowing Proposition:

Proposition 3.3 Let A be an AFA with k states
and t transitions and let A′ = ⟨Q′, q′0, ∆

′, T ′⟩ be
a disjoint copy of A. If the partial derivatives ∂W

∂λi

exist for each transition q
W (λ1,λ2,...,λd)−→ p in A,

then B = ⟨Q ∪ Q′, q0,∆ ∪ ∆′ ∪ {q
∂W
∂λi→ p′ | q

W→
p ∈ ∆}, T ′⟩ is an AFA with 2k states, 3t transi-
tions and FB = ∂FA

∂λi
.

Sketch of proof. We have
∂FA
∂λi

=
∑

π is a successful path in A
∂lπ
∂λi

=∑
π = q0

W1−→ q1 . . . qm−1
Wm−→ qm

is a successful path in A

∑
j π(j,i),

where π(j,i) = W1 . . . Wj−1
∂Wj

∂λi
Wj+1 . . . Wm.

There is a one-to-one correspondence between the
successful paths in B and the terms π(j,i) in the
above summation.

Let us note that the construction presented in
Proposition 3.3 can be iterated i times in order to
build a functional automaton with 2ik states and
3it transitions for each i-th order partial derivate
of FA. Thus we can build functional automata

with 4k states and 9t transitions for ∂2FA
∂λiλj

. This
gives the possibility to use some second order gra-
dient method in the training procedure. Note that
if the computation of W (λ) for a given λ and all
label functions, W , takes constant time, then us-
ing functional automata we achieve an O(t)-time
computation of both ∂FA

∂λi
(λ) and ∂2FA

∂λiλj
(λ).

4 Search procedure

By given source sequence s
we want to find best alignment
s → t = argmaxs→t′∈As pλ̂(s → t′) =

argmaxs→t′∈As es→t′(λ̂). For this purpose
we use again a standard dynamic programming
procedure on the automaton As representing the
function Zs(λ), Figure 2. The only difference
with the procedure described in Subsection 3.1
is that instead of summation over all transtions
from the current state we need to take maximum
and to mark a transition that gives the maximum.
Finally the successful path of marked transitions
represents a best alignment. Actually this pro-
cedure corresponds to the backward version of
the Viterbi decoding algorithm (Omura, 1967). If
the computation of W (λ) by given λ takes time
O(1) for all label functions W , then the search
procedure is linear in the number of the transitions
in the functional automaton.

5 n-gram language models

In this Section we generalize the constructions
of the automaton As from Section 3 and 4
to the case of an arbitrary n-gram language
model, n > 1. In this case hlm(s → t) =

log
∏|t|

i=1 plm(ti | ti−n+1ti−n+2 . . . ti−1).
We construct an automaton representing
Zs(λ) as follows. Firstly, we build au-
tomaton A1 that represents the function
Zs(⟨0, λcg⟩) =

∑
s→t′∈As

exp[λcghcg(s → t′)].
Each transition in A1 is associated with a target
word, see Figure 2. Now we would like to add
exp[λlm log(plm(ti | ti−n+1ti−n+2 . . . ti−1))]
to the label of each transition associated with
ti. However the problem is that there may
be multiple sequences of preceding words
ti−n+1ti−n+2 . . . ti−1 for one and the same
transition. For example for n = 3 on Figure 2 for
the transition associated with ti = has from state
2 to state 3 there are three different possible pairs
of preceding words ti−2ti−1: eldest son, eldest
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soon and eldest sun. We overcome this problem
of ambiguity by extending A1 = ⟨Q1, q1, ∆1, T1⟩
to equivalent automaton A2 in which for each
state the sequence of n − 1 preceding words is
uniquely determined. The set of states of A2

is Q2 = {⟨w1w2 . . . wn−1, q⟩ | q ∈ Q1 and
w1w2 . . . wn−1 is a sequence of preceding words
for q in A1}. The set of transitions of A2 is ∆2 =

{⟨w1w2 . . . wn−1, q
′⟩ W→ ⟨w2 . . . wn−1wn, q′′⟩ |

transition q′
W→ q′′ ∈ ∆1 is associ-

ated with wn}. In A2 the transition

⟨w1w2 . . . wn−1, q
′⟩ W→ ⟨w2 . . . wn−1wn, q′′⟩

is associated with the word wn. Finally,
from A2 we construct functional automaton
A3 that represents Zs(⟨λlm, λcg⟩) by adding
exp[λlm log(plm(wn | w1w2 . . . wn−1))] to the
label of each transition t where wn is the word
associated with t.

If m is an upper bound for the number of correc-
tion candidates for every sequence sisi+1 . . . si+k,
then |Q2| ≤ mn−1|Q1| and |∆2| ≤ mn−1|∆1|.

6 Other statistical models

In this section we apply the technique developed
in Sections 3 and 4 to other statistical models.

Conditional random fields. A linear-chain
CRF serves to assign a label yi to each the obser-
vation xi of a given observation sequence x. We
assume that the observations xi belong to a set X
and the labels yi belong to a finite set Y . We shall
further consider that the probability measure of a
linear-chain CRF with |x| states is

pλ(y | x) =

exp[
∑|x|

i=2

∑K
j=1 αjfj(yi−1, yi, x, i)

+
∑|x|

i=1

∑K
j=1 βjgj(yi, x, i)]

Zx(λ)

where |x| = |y|, fj : Y × Y ×X∗ × N → R and
gj : X∗ × N → R are predefined feature func-
tions, λ = ⟨α1, α2, . . . , αK , β1, β2, . . . , βK⟩
are parameters and Zx(λ) =∑

y∈Y |x| exp[
∑|x|

i=2

∑K
j=1 αjfj(yi−1, yi, x, i)+∑|x|

i=1

∑K
j=1 βjgj(yi, x, i)]. The training task

is similar to the one described in Sec-
tion 2. We have a training corpus of N
pairs ⟨x(1), y(1)⟩, ⟨x(2), y(2)⟩, . . . , ⟨x(N), y(N)⟩
and we need to find the parameters
λ̂ = argmaxλ

∏N
n=1 pλ(y(n) | x(n)). Formulae

very similar to (2) and (3) can be derived. Thus
the main problem is again in the computation of

the term Zx(λ). In (Lafferty et al., 2001) Zx(λ) is
represented as an entity of a special matrix which
is obtained as a product of |x|+ 1 matrices of size
(|Y | + 2) × (|Y | + 2). The states of an AFA Ax

representing Zx(λ) are as follows: a start state s, a
final state f and |x| · |Y | “intermediate” states qi,γ ,

1 ≤ i ≤ |x|, γ ∈ Y . The transitions are s
G→ q1,γ

for G = exp
∑K

j=1 βjgj(γ, x, 1), qi,γ′
F→ qi+1,γ′′

for F = exp
∑K

j=1[αjfj(γ
′, γ′′, x, i + 1)+

βjgj(γ
′′, x, i + 1)] and q|x|,γ

1→ f . Transitions
with label 0 can be removed from the automaton.
If there are many such transitions this could
significantly reduce the time for training.

Hidden Markov models. We adapt the nota-
tions and the definitions from (Rabiner, 1989). Let
λ = ⟨A,B, π⟩ be the parameters of a HMM with
R states S = {S1, S2, . . . , SR} and M distinct
observation symbols V = {v1, v2, . . . , vM},
where A = {aSiSj} is a R × R matrix of
transition probabilities, B = {bSj (vk)} are the
observation symbol probability distributions and
π = {πSj} is the initial state distribution. The
probability of O1O2 . . . OT is pλ(O1O2 . . . OT ) =∑

q1q2...qT∈ST c(q1q2 . . . qT ), where c(q1q2 . . . qT ) =
πq1bq1(O1)aq1q2bq2(O2) . . . aqT−1qT bqT (OT ).

Given a training set of N observations
O(1), O(2), . . . , O(N) the optimal parameters λ̂ =
argmaxλ

∏N
n=1 pλ(O(n)) have to be determined

under the stohastic constraints
∑

j aSiSj = 1,∑
k bSj (vk) = 1 and

∑
j πSj = 1. Applying

the method of Lagrange multipliers we obtain a
new function F (λ, α, β, γ) =

∏N
n=1 pλ(O(n))+∑

i αi[(
∑

j aSiSj ) − 1] +
∑

i βi[(
∑

k bSj (vk)) −
1]+ γ[(

∑
j πSj ) − 1]. For each training observa-

tion sequence O(n) with T (n) symbols the function
pλ(O(n)) can be represented by an AFA AO(n)

with RT (n) + 2 states, R(T (n) + 1) transitions
and a single final state as follows. We have the
start state s, the final state f and RT (n) “in-
termediate” states qt,Si , 1 ≤ t ≤ T (n), 1 ≤

i ≤ R. The transitions are s
πSi

bSi
(O

(n)
1 )

−→ q1,Si ,

qt,Si

aSiSj
bSj

(O
(n)
t+1)

−→ qt+1,Sj and qT (n),Si

1→ f . The
concatenation of all N automata AO(n) gives
one automaton representing

∏N
n=1 pλ(O(n)). The

union of two automata representing functions F1

and F2 gives an automaton for the function F1 +
F2. So using unions and concatenations we obtain
one AFA (with a single final state) representing the
function F (λ, α, β, γ). We can directly construct
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functional automata for the partial derivatives of F
(first order and if needed second order), see Propo-
sition 3.3. Thus we can use a gradient method to
find a local extremum of F .

7 Evaluation

In this section we evaluate the quality of a noisy
text normalization system that uses the log-linear
model presented in Section 2. The system uses a
globally convergent variant of the conjugate gra-
dient method, (Gilbert and Nocedal, 1992). The
computation of the gradient and the values of
the objective function is implemented with func-
tional automata. We test the system on two tasks:
(i) OCR-postcorrection of the TREC-5 Confusion
Track corpus1 and (ii) normalization of the 1641
Depositions2 - a collection of highly non-standard
17th century documents in Early Modern English,
(Sweetnam, 2011), digitized at the Trinity College
Dublin.

For the task (i) we use a parallel corpus of 30000
training pairs (s, t), where s is a document pro-
duced by an OCR system and t is the corrected
variant of s. The 30000 pairs were randomly se-
lected from the TREC-5 corpus that has about 5%
error on character level. We use 25000 pairs as a
training set and the remaining 5000 pairs serve as
a test set. With a heruistic dynamic programming
algorithm we automatically converted all these
25000 pairs (s, t) into normalization alignments
s → t, see Section 2. We use these alignments
to train (a) a candidate generator, (b) smoothed 2-
gram language model, to find (c) statistics for the
length of the left side of a normalization pair and
(d) statistics for normalization pairs with equal left
and right sides. Our log-linear model has four fea-
ture functions induced by (a), (b), (c) and (d). As
a candidate generator we use a variant of the al-
gorithm presented in (Gerdjikov et al., 2013). The
word error (WER) rate between s and t in the test
set of 5000 pairs is 22.10% and the BLEU (Pap-
ineni et al., 2002) is 58.44%. In Table 3 we com-
pare the performace of our log-linear model with
four feature functions against a baseline where we
use only one feature function, which encodes the
candidate generator. Table 3 shows that the com-
bination of the four features reduces more than
twice the WER. Precision and recall, obtained on
the TREC 5 dataset, for different candidate gener-

1http://trec.nist.gov/pubs/trec5/t5 proceedings.html
2http://1641.tcd.ie

Log-linear model WER BLEU
only candidate generator 6.81% 85.24%

candidate generator + language model
3.27% 92.82%+ other features

Table 3: Only candidate generator vs. candidate
generator + other features. OCR-postcorrection of
the TREC-5 corpus.

ators can be found in (Mihov et al., 2007; Schulz
et al., 2007; Gerdjikov et al., 2013). To test our
system on the task of normalization of the 1641
Depositions, we use a corpus of 500 manually
created normalization alignments s → t, where
s is a document in Early Modern English from
the 1641 Depositions and t is the normalization
of s in contemporary English. We train our sys-
tem on 450 documents and test it on the other 50.
We use five feature functions: (b), (c) and (d) as
above and two language models: (a1) one 2-gram
language model trained on part of the normalized
training documents and (a2) another 2-gram lan-
guage model trained on large corpus of documents
extracted from the entire Gutenberg English lan-
guage corpus3. We obtain WER 5.37% and BLEU
89.34%.

8 Conclusion

In this paper we considered a general frame-
work for the realization of statistical models. We
showed a novel construction proving that the class
of functional automata is closed under taking par-
tial derivatives. Thus the functional automata
yield efficient training and search procedures us-
ing only the usual sum and product operations on
real numbers.

We illustrated the power of this mechanism in
the cases of CRF’s and HMM’s, LLM’s and n-
gram language models. Similar constructions can
be applied for the realization of other methods, for
example MERT (Och, 2003).

We presented a noisy text normalization sys-
tem based on functional automata and evaluated
its quality.
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