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ABSTRACT 

In contrast to the "designer logic" approach, this 
paper shows how the attribute-value feature 
s t ruc tures  of uni f ica t ion  g r a m m a r  and 
constraints on them can be axiomatized in 
classical first-order logic, which can express 
disjunctive and negative constraints. Because 
only quantifier-free formulae are used in the 
axiomatization, the satisfiability problem is NP- 
complete. 

INTRODUCTION. 

Many modern  linguistic theories, such as 
Lexical-Functional Grammar  [1], Functional 
Unification Grammar [12] Generalized Phrase- 
Structure Grammar [6], Categorial Unification 
G r a m m a r  [20] and Head-d r iven  Phrase- 
Structure Grammar  [18], replace the atomic 
categories of a context-free grammar  with a 
"feature structure" that represents the.syntactic 
and semantic properties of the phrase. These 
feature structures are specified in terms of 
constraints that they must  satisfy. Lexical 
entries constrain the feature structures that can 
be associated with terminal  nodes of the 
syntactic tree, and phrase s t ructure  rules 
simultaneously constrain the feature structures 
that can be associated with a parents and its 
immediate descendants. The tree is well-formed 
if and only if all of these constraints are 
s imul taneous ly  satisfiable. Thus for the 
purposes  of recogni t ion  a me thod  for 
determining the satisfiability of such constraints 
is required: the nature of the satisfying feature 
structures is of secondary importance. 

Most work  on un i f ica t ion-based  
grammar (including the references cited above) 
has adopted a type of feature structure called an 
attribute-value structure. The elements in an 
attribute-value structure come in two kinds: 
constant elements and complex elements. Constant 
elements are atomic entities with no internal 
structure: i.e. they have no attributes. Complex 
elements have zero or more attributes, whose 
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values may be any other element in the structure 
(including a complex element) and ally element 
can be the value of zero, one or several 
attributes. Attributes are partial: it need not be 
the case that every attribute is d ef!ned for every 
complex element. The set of attribute-value 
structures partially ordered by the subsumption 
relation (together with all additional entity T 
that every attribute-value structure subsumes) 
forms a lattice, and the join operation on this 
lattice is called the unification operati(m 119]. 

Example: (from [16]). The attribute-value 
structure (1) has six complex elements labelled 
el ... e6 and two corastant elements, singular and 
third. The complex element el has two 
attributes, subj and pred, the value of which are 
the complex elements e 2 and e 3 respectively. 

(1) 

e2 
e2¢ r 

number 

singular 

el 

s u b j ~ p r e d  

" ~ e  3 
verb 

agr 

 'e6 
person 

third 
e 7 

(2) ~ p r e d  )ubi ""5 e,) 
verb 

e8 ) e l ( )  
agr.. 

ell 

The unification of elements el of(l) and e7 of(2) 
results in the attribute-value structure (3), the 



minimal structure in the subsumption lattice 
which subsumes both (1)and (2). 

¢1 ¢7 

(3) ~ p r e d  ~ ubj " ~ e 3  e9 

e2 e8 verb 

. . .~e  5 el0 
a g r ~ a g r  

number person 

singular third 

If constraints on attribute-value structures are 
restricted to conjunctions of equality constraints 
(i.e. requirements that the value of a path of 
attributes is equal to a constant or the value of 
another path) then the set of satisfying attribute- 
value structures is the principal filter generated 
by the minimal structure that satisfies the 
constraints. The generator of the satisfying 
principal filter of the conjunction of such 
constraints is the unification of the generators of 
the satisfying principal filters of each of the 
conjuncts. Thus the set of attr ibute-value 
structures that simultaneously satisfy a set of 
such constraints  can be character ized by 
computing the unification of the generators of 
the corresponding principal filters, and the 
constraints are satisfiable iff the resulting 
generator is not "T (i.e. -T- represents unification 

failure). Standard t, nification-based parsers use 
unification in exactly this way. 

When disjunctions and negations of 
constraints are permitted, the set of satisfying 
attribute-value structures does not always form 
a principal filter [11], so the simple unification- 
based  t echn ique  for d e t e r m i n i n g  the 
satisfiability of feature structure constraints 
must be extended. Kasper and Rounds [11] 
provide a formal framework for investigating 
such constraints by reviving a distinction 
originally made (as far as I am aware) by Kaplan 
and Bresnan [10] between the language in which 
feature structure constraints are expressed and 
the structures that satisfy these constraints. 
Unification is supplanted by conjunction of 
constraints, and disjunction and negation appear 
only in the constraint language, not in the 
feature structures themselves (an exception is [3] 
and [2], where feature bundles may contain 
negative arcs). 

Research in this genre usually follows a 
general pattern: an abstract model for feature 
structures and a specialized language for 
expressing constraints on such structures are 
"custom-crafted" to treat some problematic 
feature constraint (such as negative feature 
constraints). Table 1 sketches some of the 
variety of feature s t ructure  models  and 
constraint types that previous analyses have 
used. 

This paper follows Kasper and Rounds 
and most  proposals listed in Table 1 by 
distinguishing the constraint language from 
feature structures, and restricts disjunction and 
negation to the constraint language alone. It 

Table 1: Constraint Languages and Feature Structure Models. 

Author 

Kaplan and Bresnan [10] 

Model of Feature Structures 

Partial functions 

Constraint Lanl~ua~e Features 

Disjunction, negation, set- 
values 

Pereira and Shieber [ 1 7 ]  Information Domain 
F = [ A - - - ) F ] + C  

Kasper and Rounds [11] Acyclic finite automata Disjunction 

Moshier and Rounds [ 1 4 ]  Forcing sets of acyclic finite lntuitionistic negation 
automata 

Dawar and Vijayashankar [3] Acyclic finite automata Three truth values, negation 

Gazdar, Pullum, Carpenter, Category structures Based on propositional modal 
Klein, Hukari and Levine [7] logic 

Johnson [9] "Attribute-value structures" Classical negation, 
disjunction... 
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(A1) For all Constants c and attributes a, a(c) = 3-. 

(A2) For all distinct pairs of constants Cl, c2, Cl ~ c2. 

(A3) For all attributes a, a(3-) = ±.  

(A4) For all constants c, c ~ ±. 

(A5) For all t e r m s  u, v,  U = V ~-~ ( U = V A U # ± ) 

Figure 1: The axiom schemata that define attribute-value structures. 

differs by  not p ropos ing  a cus tom-bui l t  
"des igne r  logic" for descr ib ing  feature  
structures, but instead uses standard first-order 
logic to axiomatize attribute-value structures 
and express constraints on them, including 
disjunctive and negative constraints. The 
resulting system is a simplified version of 
Attribute-Value Logic [9] which does not allow 
values to be used as attributes (although it 
would be easy to do this). The soundness and 
completeness proofs in [9] and other papers 
listed in Table 1 are not required here because 
these results are well-known properties of first- 
order logic. 

Since both the axiomatizion and the 
constraints are actually expressed in a decidable 
class of first-order formulae, viz. quantifier-free 
formulae with equality, 1 the decidability of 
feature structure constraints follows trivially. In 
fact, because the satisfiability problem for 
quantifier-free formulae is NP-complete [15] and 
the relevant portion of the axiomatization and 
translation of constraints can be constructed in 
polynomial time, the satisfiability problem for 
feature constraints (including negation) is also 
NP-complete. 

AXIOMATIZING ATTRIBUTE-VALUE 
STRUCTURES 

This sect ion shows  how a t t r ibu te -va lue  
structures can be axiomatized using first-order 
quantifier-free formulae with equality. In the 
next section we see that equality and inequality 
constraints on the values of the attributes can 
also be expressed as such formulae, so systems 
of these constraints can be solved using standard 
techniques such as the Congruence Closure 
algorithm [15], [5]. 

The elements of the at tr ibute-value 
structure, both constant and complex, together 
with an additional element ± constitute the 
domain  of ind iv idua ls  of the in tended 
interpretation. The attributes are unary partial 
functions over this domain (i.e. mappings from 
elements  to elements)  which are a lways  
undefined on constant elements. We capture 
this partiality by the standard technique of 
adding an additional element 3_ to the domain to 
serve as the value 'undefined'. Thus a(x) = 3_ if x 
does not have an attribute a, otherwise a(x) is the 
value of x's attribute a. 

We proceed by specifying the conditions 
an interpretation must satisfy to be an attribute- 
value structure. Modelling attributes with 
functions automatically requires attributes to be 
single-valued, as required. 

Axiom schema ( A 1 ) d e s c r i b e s  the 
propert ies  of constants.  It expresses the 
requirement that constants have no attributes. 

Axiom schema (A2) requires  that 
distinct constant symbols  denote distinct elements  
in any satisfying model. Without (A2) it would 
be possible for two distinct constant elements, 
say s i n g u l a r  and p l u r a l ,  to denote the same 
individual. 2 

Axiom schema (A3) and (A4) state the 
properties of the "undefined value" 3-. It has no 
attributes, and i t  is distinct from all of the 
constants (and from all other elements as well - 
this will be enforced by the translation of 
equality constraints). 

This completes the axiomatization. This 
axiomatization is finite iff the sets of attribute 
symbols and constant symbols are finite: in the 
in t ended  c o m p u t a t i o n a l  and l inguis t ic  
applications this is always the case. The claim is 
that any  interpretation which satisfies all of these 

The close relationship between quantifier- 
free formulae and attribute-value constraints 
was first noted in Kaplan and Bresnan [10]. 
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Such a schema is required because we are 
concerned with satisfiability rather than 
validity (as in e.g. logic programming). 



axioms is an at t r ibute-value structure; i.e. (A1) - 
(A4) const i tu te  a definition of a t t r ibu te -va lue  
structures. 

Example (cont inued):  The interpretation 
corresponding to the attribute-value structure 
(1) has as its domain the set D = { el . . . . .  e6, 
singular, third, 3-}. The attributes denote 
functions from D to D. For example, agr denotes 
the function whose value is 3_ except on e2 and 
es, where its values are e4 and e6 respectively. It 
is straight-forward to check that all the axioms 
hold in the three attribute-value structures given 
above. 

In fact, a ny  mode l  for  these axioms can be 
r e g a r d e d  as  a ( p o s s i b l y  i n f i n i t e  a n d  
disconnected)  a t t r ibute-value feature structure,  
where  the model ' s  individuals  are the elements  
or  nodes ,  the u n a r y  func t ions  de f ine  h o w  
attributes take their values, the constant symbols 
denote  constant elements,  and _L is a sink state. 

EXPRESSING C O N S T R A I N T S  AS 
Q UANTI F IER -F REE FORMULAE.  

Various notat ions are current ly  used to express 
a t t r i b u t e - v a l u e  cons t r a in t s :  the  c o n s t r a i n t  
requi r ing  that  the va lue  of a t t r ibute  a of (the 
enti ty deno ted  by) x is (the ent i ty denoted  by) y 
is writ ten as (x a> = y in PATR-II [19], as (x a) = y 
in LFG [10], and as x(a) = y in [9], for example.  
At the risk of fur ther  confus ion we use another  
notation here, and write the constraint  requiring 
that the value of at tr ibute a of x is y as a(x) = y. 
This notat ion emphasises  the fact that attributes 
are mode l l ed  by  functions,  and simplifies the 
definit ion of ' - ' .  

Clear ly  for an a t t r ibute-value  s t ructure  
to satisfy the constraint  u = v then u and v must  
deno te  the same element ,  i.e. u = v. H o w e v e r  
this is not  a sufficient condition: num(x) = num(y) 
is not satisfied if num(x) or num(y) is I .  Thus  it 
is necessary  that  the a rguments  of '=' deno te  
identical e lements  distinct f rom the denota t ion  
of_L. 

Even though  there  are infinitely m a n y  
instances of the schema in (A5) (since there are 
infinitely m a n y  terms) this is not  problematic ,  
since u = v can be regarded  as an abbreviation for 
U = V A U ~ : / .  

Thus equal i ty  constraints  on at tr ibute- 
v a l u e  s t r u c t u r e s  can  be  e x p r e s s e d  w i th  
quantif ier-free formulae  wi th  equality.  We use 
classically in te rp re ted  boolean  connect ives  to 

express  conjunct ive,  d is junct ive  and negat ive  
feature constraints. 

Example (continued):  Suppose each variable 
xi denotes the corresponding e i, 1 <_i <_11, of ( l )  
and (2). Then subj(xl) ~ x2, 
number(x4) = singular and number(agr(x2 ) ) 
= number(x 4) are true, for example. Since e 4 and 
e5 are distinct elements, x8 = Xll is false and 
hence x8 ~Xl l  is true. Thus " ~" means "not 
identical to" or "not unified with", rather than 
"not unifiable with". 

Further, since agr(xl ) = J-, 
agr( x l ) = agr(x l ) is false, even though 
agr(xl) = agr(xl) is true. Thus t = t is not a 
theorem because of the possibility that t = J_. 

S A T I S F A C T I O N  AND U N I F I C A T I O N  

Given  an y  two fo rmulae  ~ and q0, the set of 
models  that satisfy both ~) and q0 is exactly the set 
of m o d e l s  tha t  sat isfy ~ ^ q). That  is, the 
conjunct ion opera t ion  can be used to describe 
the intersection of two sets of models  each of 
which is described by a constraint  formula,  even 
if these satisfying models  do not form principal 
filters [11] [9]. Since conjunction is idempotent ,  
associative and commutat ive ,  the satisfiability of 
a c o n j u n c t i o n  of  c o n s t r a i n t  f o r m u l a e  is 
independen t  of the order  in which the conjuncts 
are  p re sen ted ,  i r respec t ive  of w h e t h e r  they  
conta in  negat ion.  Thus  the eva lua t ion  (i.e. 
s i m p l i f i c a t i o n )  of c o n s t r a i n t s  c o n t a i n i n g  
negat ion can be freely in ter leaved with o ther  
constraints. 

Unification identifies or merges exactly 
the elements that the axiomatizat ion implies are 
equal. The unification of two complex elements 
e and e' causes the unif icat ion of e lements  a(e) 
and a(e') for all at tr ibutes a that are def ined on 
bo th  e and e'. The  const ra int  x = x' impl ies  
a(x) : a(x') in exactly the same circumstances; i.e. 
w h en  a(x) and a(x') are both  dist inct  f rom 3-. 
Unif ica t ion  fails e i ther  w h e n  two d i f f e ren t  
constant  e lements  are to be unified,  or when  a 
complex  e lement  and a cons tant  e l ement  are 
unified (i.e. constant-constant clashes and constant- 
complex clashes). The cons t ra in t  x : x '  is 
u n s a t i s f i a b l e  u n d e r  e x a c t l y  the  s a m e  
circumstances, x -~ x' is unsatisfiable when x and 
x' are also required to satisfy x = c and x' = c' for 
dis t inct  constants  c, c', since c ~ c' by axiom 
schema (A2). x = x" is also unsatisfiable when x 
and x' are required to satisfy a(x) : t and x' ~ c' 
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for any attribute a, term t and constant c', since 
a(c') = _t_ by axiom schema (A3). 

Since uni f ica t ion  is a technique  for 
determining the satisfiability of conjunctions of 
a tomic equa l i ty  constra ints ,  the result  of a 
unification operation is exactly the set of atomic 
consequences of the corresponding constraints. 
Since un i f i ca t ion  fails precise ly  w h e n  the 
co r respond ing  constra ints  are unsat isf iable ,  
failure of unif icat ion occurs exactly when  the 
cor responding  constra ints  are equiva len t  to 
False. 

Example (continued): The sets of satisfying 
models for the formulae (1") and (2') are precisely 
the principal filters generated by (1) and (2) 
above. 

(1') subj(xl) = x2 ^ agr(x2) = x4 ^ 
number(x4) = singular A pred(xl) = x3 A 
verb(x3) = x5 A agr(x 5) ~- X6 ^ 
person(x6) = third 

(2') subj(x7) = x8 ^ agr(x8) = Xll ^ pred(x7) = x9 a 
verb(x9) = Xl0 A agr(xlO) = Xll 

Because the principal filter generated by the 
unification of el and e7 is the intersection of the 
principal filters generated by (1) and (2), it is 
also the set of satisfying models for the 
conjunction of (1') and (2') with the formula 
Xl = x7 (3'). 

(3') subj(xl) = x 2 ^ agr(x 2) = x4 ^ 
nmber(x4) = singular ^ pred(xl) ~- x3 ^ 
verb(x3) = x5 ^ agr(x5) = x6 ^ 
person(x6) -~ third a subj(x7) = x8 ^ 
agr(x8) = Xll A pred(x7) ~- x9 A 
verb(x 9) = Xl0 A agr(xlO) = Xll A X 1 ~ X 7 . 

The satisfiability of a formula like (3') can be 
shown using standard techniques such as the 
Congruence Closure Algorithm [15], [5]. In 
fact, using the substitutivity and transitivity of 
equality, (3') can be simplified to (3"). It is easy 
to check that (3) is a satisfying model for both 
(3") and the axioms for attribute-value 
structures. 

The t rea tment  of negat ive  and dis junct ive  
constraints is straightforward. Since negatiou is 
in terpre ted classically, the set of sa t isfying 
models do not ahvays form a filter (i.e. they are 
not always upward  closed [16]). Nevertheless, 
the quantifier-free language itself is capable of 
charac te r i z ing  exact ly  the set of fea ture  
structures that satisfy any boolean combination 
of constraints, so the failure of upward  closure is 
not a fatal flaw of this approach. 

At a methodological  level, I claim that 
after the mathemat ica l  consequences  of two 
dif ferent  in terpre ta t ions  of feature s t ructure  
constraints have been investigated, such as the 
classical and intui t ionist ic  in terpre ta t ions  of 
negation in feature structure constraints [14], it 
is primarily a linguistic question as to which is 
bet ter  sui ted to the descr ip t ion  of natural  
language.  I have been unable  to find any  
linguistic analyses  which can yield a set of 
constraints whose satisfiablity varies under  the 
classical and intuitionistic interpretations, so the 
choice be tween  classical and in tu i t ionis t ic  
negation may be moot. 

For reasons of space the fol lowing 
example  (based on Pereira 's  example  116] 
demons t ra t ing  a purpor ted  problem arising 
from the failure of upward  closure with classical 
negation) exhibits only negative constraints. 

Example: The conjunction of the formulae 

number(agr(x) ) = singular 

and 

agr(x) = y A ~ (pers(y) = 3rd A 
number(y) = singular ) 

can be simplified by substitution and transitivity 
of equality and boolean equivalences to 

(4') agr(x) = y A number(y) ~- singular A 
pers(y) ~ 3rd. 

This formula is satisfied by the structure (4) 
when x denotes e and y denotes f. Note the 
failure of upward closure, e.g. (5) does not satisfy 
(4'), even though (4) subsumes (5). 

(3") subj(xl) = x2 A agr(x2) = x4 A 
number(x4) = singular A person(x4) = third A 
pred(xl) = x3 A verb(x 3) = x5 A agr(xs) = X4 A 

Xl = X7 ^ X2 = X5 ̂  X3 = X9 AX5 = Xl0 ^ 
X4 ~- X6 A X4 = X11. 
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(4) el (5) el 

number number pers 

singular singular 3rd 

However, if (4') is conjoined with 
pers(agr(x) ) ~- 3rd the resulting formula (6)/s 
unsatisfiable since it is equivalent to (6'), and 
3rd ~ 3rd is unsatisfiable. 

(6) agr(x) ~, y ^ number(y) = singular ^ 
pers(y) ~ 3rd ^ pers(agr(x)) = 3rd. 

(6') agr(x) = y a number(y) ~ singular ^ 
pers(y) = 3rd ^ 3rd ~ 3rd. 

CONCLUSION 

This paper  has shown how at tr ibute-value 
structures and constraints on them can be 
axiomatized in a decidable class of first-order 
logic. The primary advantage of this approach 
over the "designer  logic" approach is that 
important properties of the logic of the feature 
constra int  language,  such as soundness ,  
completeness, decidability and compactness, 
follow immediately, rather than proven from 
scratch. A secondary  benefit  is that the 
substantial  b o d y  of work  on satisfiability 
algorithms for first-order formulae (such as 
ATMS-based techniques that can efficiently 
evaluate some disjunctive constraints [13]) can 
immediately be applied to feature structure 
constraints. 

Further, first-order logic can be used to 
axiomatize other types of feature structures in 
addition to attribute-value structures (such as 
"set-valued" elements) and express a wider 
variety of constraints than equality constraints 
(e.g. subsumption constraints). In general these 
extended systems cannot be axiomatized using 
only  quan t i f i e r - f ree  formulae ,  so their 
decidability may not follow directly as it does 
here. H o w e v e r  the decision problem for 
sublanguages  of first-order logic has been 
intensively invest igated [4], and there are 
decidable classes of first-order formulae [8] that 
appear to be expressive enough to axiomatize an 
interesting variety of feature structures (e.g. 
function-free universal ly-quant i f ied prenex 
formulae  can express l inguistically useful 
constraints on "set-valued" elements). 

An objection that might be raised to this 
general approach is that classical first-order 
logic cannot adequately express the inherently 
"partial information" that feature structures 
represent. While the truth value of any formula 
with respect to a model (i.e. an interpretation 
and variable assignment function) is completely 
determined,  in general there will be many 
models  that satisfy a given formula, i.e. a 
formula only partially identifies a satisfying 
model (i.e. attribute-value structure). The claim 
is that this partiality suffices to describe the 
partiality of feature structures. 
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