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ABSTRACT

In contrast to the “designer logic” approach, this
paper shows how the attribute-value feature
structures of unification grammar and
constraints on them can be axiomatized in
classical first-order logic, which can express
disjunctive and negative constraints. Because
only quantifier-free formulae are used in the
axiomatization, the satisfiability problem is a/»
complete.

INTRODUCTION,

Many modern linguistic theories, such as
Lexical-Functional Grammar [1], Functional
Unification Grammar [12] Generalized Phrase-
Structure Grammar [6], Categorial Unification
Crammar [20] and Head-driven TPhrase-
Structure Grammar [18], replace the atomic
categories of a context-free grammar with a
“feature structure” that represents the syntactic
and semantic properties of the phrase These
feature structures are specified in terms of
constraints that they must satisfy. Lexical
entries constrain the feature structures that can
be associated with terminal nodes of the
syntactic tree, and phrase structure rules
simultaneously constrain the feature structures
that can be associated with a parents and its
immediate descendants. The tree is well-formed
if and only if all of these constraints are
simultaneously satisfiable. Thus for the
purposes of recognition a method for
determining the satisfiability of such constraints
is required: the nature of the satisfying feature
structures is of secondary importance.

Mest woerk on unification-based
grammar (including the references cited above)
has adopted a type of feature structure calied an
attribute-value structure., The elements in an
attribute-value structure come in two kinds:
canstant elements and complex elements. Constant
elements are atomic entities with no internal
structure: i.e. they have no attributes. Complex
clements have zero or more attributes, whose

173

values may be any other element in the structure
(including a complex element) and any clement
can be the value of zero, one or several
attributes. Attributes are partial: it need not be
the case that every attribute is defined for every
complex clement. The set of attribute-value
structures partially ordered by the subsumption
relation (together with an additional entity T
that every attribute-value structure subsumes)
forms a lattice, and the join operation on this
lattice is called the unification operation [19].

Example: {from [16]). The attribute-vatue
structure (1} has six complex elements labelled

e1 ... eg and two constant elements, singular and
third. The complex element e1 has two
attributes, subj and pred, the value of which are
the complex elements e and e3 respectively.

£
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The unification of elements e1 of (1) and 7 of (2)
results in the attribute-value structure (3), the



minimal structure in the subsumption lattice
which subswmes both (1) and (2).
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If constraints on attribute-value structures are
restricted to conjunctions of equality constraints
(i.e. requirements that the value of a path of
attributes is equal to a constant or the value of
ancther path) then the set of satisfying attribute-
value structures is the principal filter generated
by the minimal structure that satisfies the
constraints. The generator of the satisfying
principal filter of the conjunction of such
constraints is the unification of the generators of
the satisfying principal filters of each of the
conjuncts. Thus the set of attribute-value
structures that simultaneously satisfy a set of
such constraints can be characterized by
computing the unification of the generators of
the corresponding principal filters, and the
constraints are satisfiable iff the resulting
generatoris not T (i.e. T represents unification

failure). Standard unification-based parsors use
unification in exactly this way.

When disjunctions and negations of
constraints are permitted, the set of satisfying
attribute-value structures docs not always form
a principal filter {11], so the simple unitication-
based technique for determining the
satisfiability of feature structure constraints
must be extended. Kasper and Rounds [11]
provide a formal framework for investigating
such copnstraints by reviving a distinction
originally made (as far as ] am awarc) by Kaplan
and Bresnan [10] between the language in which
fcature structure constraints are expressed and
the structurcs that satisfy thesc constraints.
Unification is supplanted by conjunction of
constraints, and disjunction and negation appear
only in the constraint language, not in the
feature structures themselves (an exception is [3]
and [2]), where feature bundles may contain
negative arcs). _

Research in this genre usually follows a
gencral pattern: an abstract modecl for feature
structures and a spccialized language for
expressing constraints on such structures are
“custom-crafted” to treat some problematic
feature constraint (such as negative feature
constraints). Table 1 sketches some of the
variety of feature structure models and
consiraint types that previous analyses have
used

This paper follows Kasper and Rounds
and most proposals listed in Table1 by
distinguishing the constraint language from
feature structures, and restricts disjunction and
negation to the constraint language alone. It

Table 1: Constraint Languages and Feature Structure Models.

Author

Model of Feature Structures

Constraint Language Features

Kaplan and Bresnan [10}

Partial functions

Disjunction, negation, sot-
values

Pereira and Shieber [17]

Information Domain
F=[A>F]1+C

Kasper and Rounds [11]

Acydlic finite automata

Disjunction

Moshier and Rounds [14]

Forcing sets of acyclic finite
automata

Intuitionistic negation

Dawar and Vijayashankar {3]

Acyclic finite automata

Three truth values, negation

Gazdar, Pullum, Carpenter,
Klein, Hukari and Levine [7]

Category structures

Based on propositional modal
logic

Johnson [9]

“ Attribute-value structures”

Classical negation,
disjunction...
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{Al)
(A2)
(A3)
(Ad)

(A5)

For all constants ¢ and attributes a, afc) = L.
For all distinct pairs of constants c1, €3, €1 # 2.
For all attributes a, a{l)=_1.

For all constants ¢, ¢= L.

Forallterms &, v, u=v<{u=vauzl)

Figure 1: The axiom schemata that define attribute-value structures .

differs by not proposing a custom-built
“designer logic” for describing feature
structures, but instead uses standard first-order
logic to axiomatize attribute-value structures
and express constraints on them, including
disjunctive and negative constraints. The
resulting system is a simplified version of
Attribute-Value Logic [9] which does not aliow
values to be used as attributes (although it
would be easy to do this). The soundness and
completeness proofs in [9) and other papers
listed in Table 1 are not required here because
these results are well-known properties of first-
order logic.

Since both the axiomatizion and the
constraints are actually expressed in a decidable
class of first-order formulae, viz. quantifier-free
formulae with equality,] the decidability of
feature structure constraints follows trivially. In
fact, because the satisfiability problem for
quantifier-free formulae is A®complete [15] and
the relevant portion of the axiomatization and
translation of constraints can be constructed in
polynomial time, the satisfiability problem for
feature constraints (including negatien) is also
AP-complete.

AXIOMATIZING ATTRIBUTE-VALUE
STRUCTURES

This section shows how attribute-value
structures can be axiomatized using first-order
quantifier-free formulae with equality. In the
next section we see that equality and inequality
constraints on the values of the attributes can
also be expressed as such formulae, so systems
of these constraints can be solved using standard
techniques such as the Congruence Closure
algorithm [13], [S].

1 The close relationship between quantifier-
free formulae and attribute-value constraints
was first noted in Kaplan and Bresnan [10].
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The elements of the attribute-value
structure, both constant and compiex, together
with an additional clement L constitute the
domain of individuals of the intended
interpretation. The attributes arce unary partial
functions over this domain (i.e. mappings from
elements to elements) which arc always
undefined on constant clements. We capture
this partiality by the standard technique of
adding an additional element L to the domain to
serve as the value ‘undefined’. Thus a(x) = Lifx
does not have an attribute g, otherwise afx) is the
value of x's attribute 4.

We proceed by specifying the conditions
an interpretation must satisfy to be an attribute-
value structure. Modelling attributes with
functions automatically requires attributes to be
single-valued, as required. :

Axiom schema (Al} describes the
properties of constants. It expresses the
requirement that constants have no attrnibutes.

Axiom schema (A2) requires that
distinct constant symbols denote distinct elements
in any satisfying model. Without (A2) it would
be possible for two distinct constant elements,
say singular and plural, to denote the same
individual.2

Axiom schema (A3) and (A4) state the
properties of the “undefined vatue” L. Tt has no
attributes, and it is distinct from all of the
constants {and from all other elements as well -
this will be enforced by the translation of
equality constraints).

This completes the axiomatization. This
axiomatization is finite iff the sets of attribute
symbols and constant symbols arc fmite: in the
intended computational and linguistic
applications this is always the case. The claim is
that any interpretation which satisfics all of these

2 Such a schema is required because we are
concerned with satisfiability rather than
validity {(as in e.g. logic programming).



axioms is an attribute-value structure; i.e. (A1) -
(A4) constitute a definition of attribute-value
structures.

Example {continued): The interpretation
corresponding to the attribute-value structure
(1) has as its domain theset D = (e, ..., e,
singular, third, 1). The attributes denote
functions from D to D. For example, agr denotes
the function whose value is 1 except on e» and
e5, where its values are eq and eg respectively. It
is straight-forward to check that all the axioms
hold in the three attribute-value structures given
above.

In fact, any model for these axioms can be
regarded as a (possibly infinite and
disconnected) attribute-value feature structure,
where the model’s individuals are the elemenits
or nodes, the unary functions define how
attributes take their values, the constant symbols
denote constant elements, and 1 is a sink state.

EXPRESSING CONSTRAINTS AS
QUANTIFIER-FREE FORMULAE.,

Various notations are currently used to express
attribute-value constraints: the constraint
requiring that the value of attribute 4 of (the
entity denoted by} x is (the entity denoted by} v
is written as (xa) = yin PATR-II[19}, as (xa) =y
in LFG [10], and as x({a) = y in [9], for example.
At the risk of further confusion we use another
notation here, and write the constraint requiring
that the value of attribute a of x is y as a(x) = y.
This notation emphasises the fact that attributes
are modelled by functions, and simplifies the
definition of ‘=’

Clearly for an attribute-value structure
to satisfy the constraint # = v then u and v must
denote the same element, i.e. ¥ = v. However
this is not a sufficient condition: num(x) = num(y)
is not satisfied if num(x) or num(y)is L. Thus it
is necessary that the arguments of ‘=’ denote
identical elements distinct from the denotation
of L.

Even though there are infinitely many
instances of the schema in (A5) (since there are
infinitely many terms) this is not problematic,
since ¥ = v can be regarded as an abbreviation for
u=vAau#*l

Thus equality constraints on attribute-
value structures can be expressed with
quantifier-free formulae with equality. We use
classically interpreted boolean connectives to
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express conjunctive, disjunctive and negative
featurc constraints,

Example (continued): Suppose each variable
xi denotes the corresponding ej, 1 <i <11, of (1)
and (2). Then subj(x1) = x3,
number(xq) = singular and number(agr(xz))
= number(xq) are true, for example. Since eq and
e5 are distinct elements, xg = x717 is false and
hence xg #xy71 s true. Thus * # means “not
identical to” or "not unified with”, rather than
“not unifiable with”,

Further, since agr(x1) = 1,
agr(x1) = agr(x) is false, even though
agr(x1) = agr(xy) is true. Thust=tisnota
theorem because of the possibility that t = L.

SATISFACTION AND UNIFICATION

Given any two formulae ¢ and ¢, the set of
models that satisfy both ¢ and ¢ is exactly the set
of models that satisfy & A ¢. That is, the
conjunction operation can be used to describe
the intersection of two sets of models each of
which is described by a constraint formula, even
if these satisfying models de not form principal
filters [11] [9]. Since conjunction is idempotent,
associative and commutative, the satisfiability of
a conjunction of constraint formulae is
independent of the order in which the conjuncts
are presented, irrespective of whether they
contain negation. Thus the evaluation (i.e.
simplification) of constraints containing
negation can be freely interleaved with other
constraints.

Unification identifies or merges exactly
the elements that the axiomatization implies are
equal. The unification of two complex elements
e and ¢’ causes the unification of clements afe)
and a(e’) for all attributes a that are defined on
both ¢ and ¢’. The constraint x = x” implies
a(x) = a(x’) in exactly the same circumstances; i.e.
when a(x) and a(x’) are both distinct from L.
Unification fails either when two different
constant elements are to be unified, or when a
complex element and a constant element are
unified (i.e. constant-constant clashes and consiani-
complex clashes). The constraint x = x” is
unsatisfiable under exactly the same
circumstances. x = x’ is unsatisfiable when x and
a’ are also required to satisfy x = cand x" = ¢’ for
distinct constants ¢, ¢’, since ¢ # ¢’ by axiom
schema (A2). x=x" is also unsatisfiable when x
and x’ are required to satisfy afx) = tand x" = ¢’



for any attribute g, term f and constant ¢’, since
afc’) = 1 by axiom schema (A3).

Since unification is a technique for
determining the satisfiability of conjunctions of
atomic equality constraints, the result of a
unification operation is exactly the set of atomic

consequences of the corresponding constraints.

Since unification fails precisely when the
corresponding constraints are unsatisfiable,
failure of unification occurs exactly when the
corresponding constraints are equivalent to
False.

Example (continued): The sets of satisfying
models for the formilae (1) and (') are precisely
the principal filters generated by (1) and (2)
above.

(1) subj(x1) = xp Aagr(x) = x4 A
number(xg) = singular A pred(x1) = x3 A
verb(x3) = x5 A agr(xs) = xg A
person{xg) = third

(2} subj(x7) = xg A agr(xg) = x11 A pred(x7) = xg A
verb(xg) = x10 A agr(x10) = x11

Because the principal filter generated by the
unification of e1 and ey is the intersection of the
principal filters generated by (1) and (2), it is
also the set of satisfying modefs{or the
conjunction of (1} and (2) with the formula
x1=x7 (3).

(3 subjlx1) = xp Aagr(xg) = x4 A
nmber(xq) = singular A pred(x1) = x3 A
verb(x3) = x5 A agr(xs) = xg A
person(xg) = third A subj(x7) = xg A
agrixg) = x11 A pred(x7) = xg A
verb(xg) = x10 A agrixip) = x11 A1 =27

The satisfiability of a formula like (3') can be
shown using standard techniques such as the
Congruence Closure Algorithm [15], [5]. In
fact, using the substitutivity and transitivity of
equality, (3') can be simplified to (3). It is easy
to check that (3) is a satisfying model for both
(3"} and the axioms for atiribute-value
structures.

(3”) subj(x1) = x2 ~nagr(xp) = x4 A
number(xy) = singular A person(xa) = third n
pred(x)) = x3 A verb(x3) = x5 A agr(xs) = xg A
X1 = X7 A X2 = X5 A X3 = XG AXG = X0 A
X4= X6 AX4= X1

The treatment of negative and disjunctive
constraints is straightforward. Since negation is
interpreted classically, the set of satisfying
models do not always form a filter (i.e. they are
not always upward closed {16]). Nevertheless,
the quantifier-free language itself is capable of
characterizing exactly the set of feature
structures that satisfy any boolean combination
of constraints, so the failure of upward closurc is
not a fatal flaw of this approach.

At a methodological level, 1 claim that
after the mathematical consequences of two
different interpretations of feature structure
constraints have been investigated, such as the
classical and intuitionistic interpretations of
negation in feature structure constraints [14], it
Is primarily a linguistic question as to which is
better suited to the description of natural
language. 1 have been unable to find any
linguistic analyses which can yield a set of
constraints whose satisfiablity varics under the
classical and intuitionistic interpretations, so the
choice between classical and intuitionistic
negation may be moot.

For reasons of space the following
example (based on Pereira’s example [16]
demonstrating a purported problem arising
from the failure of upward closure with classical
negation} exhibits only negative constraints.

Example: The conjunction of the formulae
number(agr(x)) ~ singular
and

agr(x) =y A~ { pers(y} =~ 3rd A
number(y) ~ singular )

can be simplified by substitution and transitivity
of equality and boolean equivalences to

(47 agr(x) =y A number(y) = singular A
pers(y) # 3rd. :

This formula is satisfied by the structure (4)
when x denotes e and y denotes f. Note the
failure of uprward closure, e.g. (5) does not satisfy
{4'), even though (4) subsumes (5).
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However, if (4'} is conjoined with
perslagr(x)) = 3rd the resulting formula (6) is
unsatisfiable since it is equivalent to (6'), and
3rd # 3rd is unsalisfiable.
{6) agr(x) =y A number(y) = singular A
pers(y) # 3rd A pers(agr(x)} = 3rd.

(6) agr(x) =y a number{y) = singular A
pers(y) = 3rd A 3rd # 3rd.

CONCLUSION

This paper has shown how attribute-value
structures and constraints on them can be
axiomatized in a decidable class of first-order
logic. The primary advantage of this approach
over the “designer logic” approach is that
important properties of the logic of the feature
constraint language, such as soundness,
completeness, decidability and compactness,
follow immediately, rather than proven from
scratch. A secondary benefit is that the
substantial body of work on satisfiability
algorithms for first-order formulae (such as
ATMS-based techniques that can efficiently
evaluate some disjunctive constraints [13]) can
immediately be applied to feature structure
constraints.

Further, first-order logic can be used to
axiomatize other types of feature structures in
addition to attribute-value structures {such as
“set-valued” elements) and express a wider
variety of constraints than equality constraints
(e.g. subsumption constraints). In general these
extended systems cannot be axiomatized using
only quantifier-free formulae, so their
decidability may not follow directly as it does
here. However the decision problem for
sublanguages of first-order logic has been
intensively investigated [4], and therc are
decidable classes of first-order formulae {8} that
appear to be expressive enough to axiomatize an
interesting variety of feature structures (e.g.
function-free universally-quantified prenex
formulae can express linguistically useful
constraints on “set-valued” elements).
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An objection that might be raised to this
general approach is that classical first-order
logic cannot adequately express the inherently
“partial information” that feature structurcs
represent. While the truth value of any formula
with respect to a model (i.e. an interpretation
and variable assignment function) is completely
determined, in general there will be many
models that satisfy a given formula, ie. a
formula only partially identifies a satisfying
model (i.e. attribute-value structure). The claim
is that this partiality suffices to describe the
partiality of feature structures.
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