
C O M B I N A T O R Y C A T E G O R I A L G R A M M A R S : G E N E R A T I V E P O W E R A N D

R E L A T I O N S H I P T O L I N E A R C O N T E X T - F R E E R E W R I T I N G S Y S T E M S "

D a v i d J. We i r A r a v i n d K. Joshi

D e p a r t m e n t o f C o m p u t e r and I n f o r m a t i o n Sc ience

Un ive r s i ty o f P e n n s y l v a n i a

Phi lade lphia , PA 19104-6389

A b s t r a c t

Recent results have established that there is a family of
languages that is exactly the class of languages generated
by three independently developed grammar formalisms:
Tree Adjoining Grammm~, Head Grammars, and Linear
Indexed Grammars. In this paper we show that Combina-
tory Categorial Grammars also generates the same class
of languages. We discuss the slruclm'al descriptions pro-
duced by Combinawry Categorial Grammars and com-
pare them to those of grammar formalisms in the class of
Linear Context-Free Rewriting Systems. We also discuss
certain extensions of CombinaWry Categorial Grammars
and their effect on the weak generative capacity.

1 Introduction

There have been a number of results concerning the rela-
tionship between the weak generative capacity (family of
string languages) associated with different grammar for-
malisms; for example, the thecxem of Oaifman, et al. [3]
that Classical Categorial Grammars are weakly equivalent
to Context-Free Grammars (CFG's). Mote recently it has
been found that there is a class of languages slightly larger
than the class of Context-Free languages that is generated
by several different formalisms. In pardodar, Tree Ad-
joining Grammars (TAG's) and Head Grammars (HG's)
have been shown to be weakly equivalent [15], and these
formalism are also equivalent to a reslriction of Indexed
Grammars considered by Gazdar [6] called Linear In-
dexed Grammars (LIG's) [13].

In this paper, we examine Combinatory Categorial
Grammars (CCG's), an extension of Classical Catego-
rial Grammars developed by Steedman and his collab-
orators [1,12,9,10,11]. The main result in this paper is

*This work was partially mpported by NSF gnmts MCS-82-19116-
CER. MCS-82-07294, DCR-84-10413, ARO grant DAA29-84-9-0027.
and DARPA gnmt N0014-85-K0018. We are very grateful to Mark
Steedmm,]C Vijay-Shanker and Remo Pare~:hi for helpful disctmiem.

that CCG's are weakly equivalent to TAG's, HG's, and
LIG's. We prove this by showing in Section 3 that Com-
binatory Categorlal Languages (CCL's) are included in
Linear Indexed Languages (LIL's), and that Tree Adjoin-
ing Languages (TAL's) are included in CCL's.

After considering their weak generative capacity, we
investigate the relationship between the struclzwal descrip-
tions produced by CCG's and those of other grammar for-
malisms. In [14] a number of grammar formalisms were
compared and it was suggested that an important aspect
of their descriptive capacity was reflected by the deriva-
tion structures that they produced. Several formalisms
that had previously been descn2~d as mildly context-
sensitive were found to share a number of properties. In
particular, the derivations of a grammar could be repre-
senled with trees that always formed the tree set of a
context-free grammar. Formalisms that share these prop-
erties were called Linear Context-Free Rewriting Systems
('LCFRS's) [14].

On the basis of their weak generative capacity, it ap-
pears that CCG's should be classified as mildly context-
sensitive. In Section 4 we consider whether CCG's should
be included in the class of LCFRS's. The derivation tree
sets traditionally associated with CCG's have Context-free
path sets, and are similar to those of LIG's, and therefore
differ from those of LCFRS's. This does not, however,
nile out the possibility that there may be alternative ways
of representing the derivation of CCG's that will allow
for their classification as LCP'RS's.

Extensions to CCG's have been considered that enable
them to compare two unbounded sU'uctures (for example,
in [12]). It has been argued that this may be needed in
the analysis of certain coordination phenomena in Dutch.
In Section 5 we discuss how these additional features
increase the power of the formalism. In so doing, we
also give an example demonstrating that the Parenthesis-
free Categorial Grammar formalism [5,4] is moze pow-
erful that CCG's as defined here. Extensions to TAG's
(Multicomponent TAG) have been considered for similar

278

reasons. However, in this paper, we will not investigate
the relationship between the extension of CCG's and Mul-
ticomponent TAG.

2 D e s c r i p t i o n o f F o r m a l i s m s

In this section we describe Combinatory Categorial Gram-
mars, Tree Adjoining Grammars, and Linear Indexed
Grammars.

2 .1 C o m b i n a t o r y C a t e g o r i a i G r a m m a r s

Combinatory Categorial Grammar (CCG), as defined here,
is the most recent version of a system that has evolved in
a number of papers [1,12,9,10,11].

A CCG, G, is denoted by (VT, VN, S, f , R) where

VT is a finite set of terminals (lexical items),
VN is a finite set of nonterminals (atomic categories),
S is a distinguished member of VN,
f is a function that maps elements of VT U {e} to
finite subsets of C(VN), the set of categories*, where

V N g C(VN) and
if CI, C 2 e C(VN) then
(el/c2) E C(VN) and (c1\c2) E C(VN).

R is a finite set of combinatory rules, described below.

We now give the combinatory rules, where z, y, z are
variables over categories, and each Ii denotes either \ or
/ .

1. forward application:

2. backward application:

u (z\u) - . z

3. generaliT~d forward composition for some n _> 1:

(... I.z.) - .

4. generalized backward composition for some n E 1:

(. . .(yl l~x)12... I-=-) (~\~) --'
(--. (~11=x)12... I~z.)

z Note that f can assign categoric8 to the empty suing, ~, though,
to our knowledge, this feature has not been employed in the linguistic
applications ¢~ C'CG.

Restrictions can be associated with the use of the com-
binatory rule in R. These restrictions take the form of
conswaints on the instantiations of variables in the rules.
These can be constrained in two ways.

1. The initial nonterminal of the category to which z is
instantiated can be restricted.

2. The entire category to which y is instantiated can be
resuicted.

Derivations in a CCG involve the use of the combi-
natory rules in R. Let the derives relation be defined as
follows.

~c~ F ~clc2~

if R contains a combinawry rule that has czc2 --* c as
an instance, and a and ~ are (possibly empty) strings of
categories. The string languages, L(G), generated by a
CCG, G', is defined as follows.

{ a l . . .

c, ~ f(aO, a, ~ VT U {~}, 1 _< i _< .}

Although there is no type-raising rule, its effect can be
achieved to a limited extent since f can assign type-raised
categories to lexical items, which is the scheme employed
in Steedman's recent work.

2.2 Linear Indexed Grammars

Linear Indexed Grammars (LIG's) were introduced by
Gazdar [6], and are a restriction of Indexed Grammars
introduced by Aho [2]. LIG's can be seen as an exten-
sion of CFG's in which each nonterrninal is associated
with a stack.

An LIG, G, is denoted by G = (Vjv , VT , Vs , S, P) where

VN iS a finite set of nontenninals,
VT is a finite set of terminals,
Vs is a finite set of stack symbols,
S E VN is the start symbol, and
P is a finite set of productions, having the form

A[] -

A[..1] -* A I [] . . . A i ["] . . . A . []

A[..]--a~[].. .Ad..t]. . .A.[]

where At A . E VN, l E Vs, and a E VT O {~}.

The notation for stacks uses [. •/] to denote an arbi-
Wary stack whose top symbol is I. This system is called
L/near Indexed Grammars because it can be viewed as a

279

restriction of Indexed Grammars in which only one of the
non-terminals on the right-hand-side of a production can
inherit the stack from the left-hand-side.

The derives relation is defined as follows.

~A[Z,, ... ht]~ ~ ~A,[] ... A,[Z,,... t~].., a , []~

if A[.. l] -. ~,[] . . .A, [. .] . . .A, [] ~ P

otA[lm.., l l]~ o =~ a A l [] . . . Ai[lm... i l l] . . . An[]/~

if A[..] --. A , [] . . . A , [- . Z]. . .A,,[] ~ P

: c ,a []a ~ ,ma

if A [] - - . a ~ P

The language, L(G), generated by G is

2.3 Tree Adjo in ing G r a m m a r s

A TAG [8,7] is denoted G = (VN, VT, S, I, A) where

VN is a finite set of nontennlnals,
VT is a finite set of terminals,
S is a distinguished nonterminal,
I is a finite set of initial trees and
A is a finite set of auxiliary trees.

Initial trees are rooted in S with w E V~ on their fron-
tier. Each internal node is labeled by a member of
VN.

Auxiliary trees have tOlAW2 E V'~VNV~ oll their fron-
tier. The node on the frontier labeled A is called
the foot node, and the root is also labeled A. Each
internal node is labeled by a member of VN.

Trees are composed by tree adjunction. When a tree
7' is adjoined at a node ~/in a tree .y the tree that results,
7,', is obtained by excising the subtree under t/from
and inserting 7' in its place. The excised subtree is then
substituted for the foot node of 3 / . This operation is
illustrated in the following figure.

~': $

r'." x

Y": s

Each node in an auxiliary tree labeled by a nonterminal
is associated with adjoining constraints. These constraints
specify a set of auxiliary trees that can be adjoined at
that node, and may specify that the node has obligatory
adjunction (OA). When no tree can be adjoined at a node
that node has a null adjoining (NA) constraint.

The siring language L(G) generated by a TAG, G, is
the set of all strings lYing on the frontier of some tree that
can be derived from an initial trees with a finite number
of adjunctions, where that tree has no OA constraints.

3 W e a k G e n e r a t i v e C a p a c i t y

In this section we show that CCO's are weakly equivalent
to TAG's, HG's, and LIO's. We do this by showing the
Inclusion of CCL's in L1L's, and the inclusion of TAL's in
CCL's. It is know that TAG and LIG are equivalent [13],
and that TAG and HG are equivalent [15]. Thus, the two
inclusions shown here imply the weak equivalence of all
four systems. We have not included complete details of
the proofs which can be found in [16].

3.1 C C L ' s C LIL's

We describe how to construct a LIG, G', from an arbi-
trary CCG, G such that G and G' are equivalent. Let
us assume that categories m-e written without parentheses,
tmless they are needed to override the left associativity of
the slashes.

A category c is minimally parenthesized if and
only if one of the following holds.

c= A for A E VN

c = (*oll*xl2... I,,c,,), f o r , >_ 1,
where Co E VN and each c~ is mini-
mally parenthesize~

It will be useful to be able to refer to the components of
a category, c. We first define the immediate components
of c.

280

when c = A the immediate component is A,
when c = (col:xh. . .I .c .) the immediate
components are co, cl, . • • , e.,,.

The components of a category c are its immediate com-
ponents, as well as the components of its immediate com-
ponents.

Although in CCG's there is no bound on the number
of categories that are derivable during a derivation (cate-
gories resulting from the use of a combinatory rule), there
is a bound on the number of components that derivable
categories may have. This would no longer hold if unre-
stricted type-raising were allowed during a derivation.

Let the set Dc(G) he defined as follows.

c E De(G) if c is a component of d where
c' E f (a) for some a E VT U {e}.

Clearly for any CCG, G, Dc(G) is a finite set. Dc(G)
contains the set of all derivable components because for
every category e that can appear in a sentential form of
a derivation in some CCG, G, each component of c is in
Dc(G). This can be shown, since, for each combinatory
rule, ff it holds of the categories on the left of the rule
then it will hold of the category on the right.

Each of the combinatory rules in a CCG can be viewed
as a statement about how a pair of categories can be com-
bined. For the sake of this discussion, let us name the
members of the pair according to their role in the rule.
The first of the pair in forward rules and the second of
the pair in backward rules will be named the primary cate-
gory. The second of the parr in forward rules and the first
of the pair in backward rules will be named the secondary
category.

As a resuit of the form that combinatory rules can take
in a CCG, they have the following property. When a
combinatory rule is used, there is a bound on the number
of immediate components that the secondary categories of
that rule may have. Thus, because immediate constituents
must belong to De(G) (a finite set), there is a bound on
the number of categories that can fill the role of secondary
categories in the use of a combinatory rule. Thus, theae is
a bound on the number of instantiations of the variables y
and zi in the combinatory rules in Section 2.1. The only
variable that can be instantiated to an unbounded number
of categories is z. Thus, by enumerating each of the finite
number of variable bindings for y and each z~, the number
of combinatory rules in R can be increased in such a way
that only x is needed. Notice that z will appears only
once on each side of the rules (Le, they are linear).

We are now in a position m describe how to represent
each of the combinatory rules by a production in the LIG,

G'. In the combinatory rules, categories can be viewed
as stacks since symbols need only be added and removed
from the right. The secondary category of each rule will
be a ground category: either A, or (AIlcl[2. . . [ncn), for
some n >__ I. These can be represented in a LIG as A[]
or A[hCl[2... InCh], respectively. The primary category
in a combinatory rule will be unspecified except for the
identity of its left and rightmost immediate components.
Its leftmost component is a nonterminal, A, and its right-
most component is a member of D e (G) , c. This can be
represented in a LIG by A[.. el.

In addition to mapping combinatory rules onto produc-
tions we must include productions in G' for the mappings
from lexical items.

If c E f (a) where a E VT U {e} then

if e = A then A[] ...* a E P

if c - ' (a h c l l 2 . . . I , c ,) then
A[llC112.."]nOn] .-o, a e P

We are assuming an extension of the notation for produc-
tions that is given in Section 2.2. Rather than adding or
removing a single symbol from the stack, a fixed number
of symbols can be removed and added in one produc-
tion. Furthermore, any of the nonterminals on the right
of productions can be given stacks of some fixed size.

3.2 T A L ' s C C C L ' s

We briefly describe the construction of a CCG, G' from
a TAG, G, such that G and G' are equivalent.

For each nonterminal, A of G there will be two nonter-
minals A ° and A c in G'. The nonterminal of G' will also
include a nonterminal Ai for each terminal ai of the TAG.
The terminal alphabets will be the same. The combinatory
rules of G' are as follows.

F o r w a r d a n d b a c k w a r d a p p l i c a t i o n a r e re s t r i c t ed to

cases where the secondary category is some X ~, and
the left immediate component of the primary cate-
gory is some Y°.

Forward and backward composition are restricted to
cases where the secondary category has the form
((XChcl)[2c2), and the left immediate component
of the primary category is some Y%

An effect of the restrictions on the use of combinatory
rules is that only categories that can fill the secondary role
during composition are categories assigned to terminals by
f . Notice that the combinatory rules of G' depend only

281

on the terminal and nonterminal alphabet of the TAG, and
are independent of the elementary trees.

f is defined on the basis of the auxiliary trees in G.
Without loss of generality we assume that the TAG, G,
has trees of the following form.

I contains one initial tree:

$ OA

I
Thus, in considering the language derived by G, we

need only be concerned with trees derived from auxiliary
trees whose root and foot are labeled by S.

There are 5 kinds of auxiliary trees in A.

1. For each tree of the following form include
A"/Ca/B ~ ~ f(e) and A°/C*/B + ~ f(O

A NA

B OA C OA

I I
A I ~ e

2 . For each tree of the fonowing form include
Aa\Ba/C ¢ E f(e) and A¢\Ba/C ¢ E f(e)

A NA

BOA C OA

I I
A NA

3. For each tree of the following form
Aa/B¢/C e.E f(e) and Ae/Be/C ¢ E f(e)

ANA

I
B OA

I
COA

I
A NA

include

4. For each tree of the following form include A°\AI E
f(e), A*\AI E f(e) and A, E f(a,)

ANA

al A NA

5. For each tree of the following form include A °/Ai E
f(e), AC/Ai E f(e) and Ai E f(al)

ANA

A NA a i

The CCG, G', in deriving a string, can be understood as
mimicking a derivation in G of that suing in which trees
are adjoined in a particular order, that we now describe.
We define this order by describing the set, 2~(G), of all
trees produced in i or fewer steps, for i >_ 0.

To(G) is the set of auxiliary trees of G.

TI(G) is the union of T~_x(G) with the set of all trees 7
produced in one of the following two ways.

1.

2.

Let 3 / and 7" be trees in T~-I(G) such that
there is a unique lowest OA node, I?, in 7' that
does not dominate the foot node, and 3/' has no
OA nodes. 7 is produced by adjoining 7" at
in 7'.

Let 7 ' be trees in T~-I(G) such that there is
OA node, 7, in 7' that dominates the foot node
and has no lower OA nodes. 7 is pmduceA by
adjoining an auxiliary tree ~ at 17 in 7'-

Each tree 7 E 2~(G) with frontier wiAw2 has tbe prop-
erty that it has a single spine from the root to a node that
dominates the entire string wlAw2. All of the OA nodes
remaining in the tree fall on this spine, or hang immedi-
ately to its right or left. For each such tree 7 there will
be a derivation tree in a ' , whose root is labeled by a
c a ~ g o r y c a n d w i t h f r o n t i e r to 1W2, w h e r ~ c encodes the
remaining obligatory adjunctions on this spine in 7.

Each OA nodes on the spine is encoded in c by a slash
and nonterminal symbol in the appropriate position. Sup-
pose the OA node is labeled by some A. When the OA
node falls on the spine c will contain /.4 ¢ (in this case
the direction of the slash was arbiwarfly chosen to be for-
ward). When the OA node faUs to the left of the spine c
will contain \A% and when the OA node fall~ to the right
of the spine c will contain/A °. For example, the follow-
ing tree is encoded by the category A\A~/AI /A~\A ~

282

A

i

A I OA A2OA

/\

Wl w2

We now give an example of a TAG for the language
{ a"bn I n >_ 0} with crossing dependencies. We then
give the CCG that would be produced according to this
construction.

S NA

S 10A S2OA

I I
£ S N A

S2NA

I
S OA

I
$ 3 0 A

I
$2 NA

S I NA $3 NA

a SINA S3NA b

NA

£ SNA

s'\s~/s~ ~ f(O s ' \s f /s~ ~ f(O

S~\A ~ f(O S~\A ~ f(O

A e f(~) B ~ f(b)
Sa\S, 6 f(¢) S¢\S, 6 f(¢)
S, E f(6)

4 Derivations Trees

Vijay-Shanker, Weir and Joshi [14] described several
properties that were common to various conswained
grammatical systems, and defined a class of such
systems called Linear Context-Free Rewriting Systems

(LCFRS's). LCFRS's are constrained to have linear non-
erasing composition operations and derivation trees that
are structurally identical to those of context-free gram-
mars. The intuition behind the latter restriction is that
the rewriting (whether it be of strings, trees or graphs)
be performed in a context-free way; i.e., choices about
how to rewrite a structure should not be dependent on
an unbounded amount of the previous or future context
of the derivation. Several wen-known formalisms fall
into this class including Context-Free Grammars, Gener-
alized Phrase Structure Grammars (GPSG), Head Gram-
mars, Tree Adjoining Grammars, and Multicomponent
Tree Adjoining Grammars. In [14] it is shown that each
formalism in the class generates scmilinear languages that
can be recognized in polynomial time.

In this section, we examine derivation trees of CCG's
and compare them with respect to those of formalisms that
are known to be LCFRS's. In order to compare CCG's
with other systems we must choose a suitable method for
the representation of derivations in a CCG. In the case of
CFG, TAG, HG, for example, it is fairly clear what the
elementary structures and composition operations should
be, and as a result, in the case of these formalisms, it is
apparent how to represent derivations.

The traditional way in which derivations of a CCG
have been represented has involved a binary tree whose
nodes are labeled by categories with annotations indicat-
ing which combinatory rule was used at each stage. These
derivation trees are different from those systems in the
class of LCFRS's in two ways. They have context-free
path sets, and the set of categories labeling nodes may
be infinite. A property that they share with LCFRS's is
that there is no dependence between unbounded paths. In
fact, the derivation trees sets produced by CCG's have
the same properties as those produced by LIG's (this is
apparent from the construction in Section 3A).

Although the derivation trees that are traditionally as-
sociated with CCG's differ from those of LCFRS's, this
does not preclude the possibility that there may be an al-
ternative way of representing derivations. What appears
to be needed is some characterization of CCG's that iden-
tities a finite set of elementary structures and a finite set
of composition operations.

The equivalence of TAG's and CCG's suggests one way
of doing this. The construction that we gave from TAG's
to CCG's produced CCG's having a specific form which
can be thought of as a normal form for CCG's. We can
represent the derivations of grammars in this form with
the same tree sets as the derivation tree sets of the TAG
from which they were constructed. Hence CCG's in this
normal form can be classified as LCFRS's.

283

TAG derivation trees encode the adjanction of specified
elementary trees at specified nodes of other elementary
trees. Thus, the nodes of the derivation trees are labeled
by the names of elementary trees and tree addresses. In
the construction used in Section 3.2, each auxiliary tree
produces assignments of elementary categories to lexicai
items. CCG derivations can be represented .with trees
whose nodes identify elementary categories and specify
which combinatory rule was used to combine it.

For grammars in this normal form, a unique derivation
can be recovered from these trees, but this is not true
of arbitrary CCG's where different orders of combination
of the elementary categories can result in derivations that
must be distinguished. In this normal form, the combina-
tory rules are so restrictive that there is only one order in
which elementary categories can be combined. Without
such restrictions, this style of derivation tree must encode
the order of derivation.

5 Addi t ions to C C G ' s

CCG's have not always been defined in the same way.
Although TAG's, HG's, and CCG's, can produce the
crossing dependencies appearing in Dutch, two additions
to CCG's have been considered by Steedman in [12]
to describe certain coordination phenomena occurring in
Dutch. For each addition, we discuss its effect on the
power of the system.

5.1 U n b o u n d e d D e p e n d e n t S t r u c t u r e s

A characteristic feature of LCFRS's is that they are un-
able to produce two structures exhibiting an unbounded
dependence. It has been suggested that this capability
may be needed in the analysis of coordination in Dutch,
and an extension of CCG's has been proposed by Steed-
man [12] in which this is possible. The following schema
is included.

X* COnj x ~ x

where, in the analysis given of Dutch, z is allowed to
match categories of arbitrary size. Two arbitrarily large
structures can be encoded with two arbitrarily large cat-
egories. This schema has the effect of checking that the
encodings are identical The addition of rules such as
this increases the generative power of CCG's, e.g., the
following language can be generated.

{(wc)" I w e {a,b} °}

In giving analysis of coordination in languages other than
Dutch, only a finite number of instances of this schema

are required since only bounded categories are involved.
This form of coordination does not cause problems for
LCFRS's.

5.2 Generalized Composition

Steedman [12] considers a CCG in which there are an
inf~te number of composition rules for each n _> 1 of
the form

(~lv) (...(vhz~)l~...I.z.) -
(- . . (~ l : d l n - .. I , z ,)

(. . . (V l l Z l) l , . . . I , z ,) (~\y) -"
(. . . (~ 1 : 0 1 2 . . . I , z ,)

This form of composition is permitted in Parenthesis-free
Categorial Grammars which have been studied in [5,4],
and the results of this section als0 apply to this system.

With this addition, the generative power of CCG's in-
creases. We show this by giving a grammar for a language
that is known not to be a Tree Adjoining language. Con-
sider the following CCG. We allow um~stricted use of
arbitrarily many combinatory rules for forward or back-
wards generalized composition and application.

f(e) = {s}
/(al) = {At}
.~(a2) = {A2}
f(Cl) = {S\AI/D1/S\BI}
f(c2) - - {S\A21D21S\B2}

f(bx) = {Bx}
f(b2)'-{B2}
f(dl) = {DI}
f(d2)= {D2}

When the language, L, generated by this grammar is in-
tersected with the regular language

we get the following language.

n l ~ 3 ~1 f t l f t2 f t 3 2 1 { a I G 2 b I C 1 b 2 C 2 d~2 d~l I n l , n 2 • 0}

The pumping lemma for Tree Adjoining Grammars [13]
can be used to show that this is not a Tree Adjoining
Language. Since Tree Adjoining Languages are closed
under intersection with Regular Languages, L can not be
a Tree Adjoining Language either.

6 C o n c l u s i o n s

In this paper we have considered the string languages
and derivation trees produced by CCL's. We have shown
that CCG's generate the same class of string languages

284

as TAG's, HG's, and LIG's. The derivation tree sets nor-
mally associated with CCG's are found to be the same
as those of LIG's. They have context-free path sets, and
nodes labeled by an unbounded alphaboL A consequence
of the proof of equivalence with TAG is the existence of
a normal form for CCG's having the property that deriva-
tion trees can be given for grammars in this normal form
that are structurally the same as the derivation trees of
CFG's. The question of whether there is a method of
representing the derivations of arbitrary CCG's with tree
sets similar to those of CFG's remains open. Thus, it is
unclear, whether, despite their restricted weak generative
power, CCG's can be classified as LCFRS's.

References

[1] A. E. Ades and M. J. Steedman. On the order of
words. Ling. a.nd Philosophy, 3:517-558, 1982.

[2] A. V. Aho. Indexed grammars - - An extension to
context free grammars. J. ACM, 15:647--671, 1968.

[3] Y. Bar-Hillel, C. Gaifman, and E. Shamir. On cate-
gorial and phrase structure grammars. In Language
and Information, Addison-Wesley, Reading, MA,
1964.

[4] J. Friedman, D. Dai, and W. Wang. The weak gen-
erative capacity of parenthesis-free categorial gram-
mars. In 11 th Intern. Conf. on Comput. Ling., 1986.

[5] J. Friedman and R. Venkatesan. Categorial and Non-
Categorial languages. In 24 Ch meeting Assoc. Corn-
put. Ling., 1986.

[6] G. Gazdar. Applicability of Indexed Grammars to
Natural Languages. Technical Report CSLI-85-
34, Center for Study of Language and Information,
1985.

[7] A. tL Joshi. How much context-sensitivity is nee-
essary for characterizing su'ucm.,~ descriptions
Tree Adjoining Grammars. In D. Dowry, L. Kart-
tunen, and A. Zwieky, editors, Natural Language
Processing ~ Theoretical, Computational and Psy-
chological Perspective, Cambridge University Press,
New York, NY, 1985. Originally presented in 1983.

[8] A. K. Joshi, L. S. Levy, and M. Takahashi. Tree ad-
junct grammars. J. Comput. Syst. Sci., 10(1), 1975.

[9] M. Steedman. Combinators and grammars. In R.
Oehrle, E. Bach, and D. Wheeler, editors, Categorial
Grammars and Natural Language Structures, Foris,
Dordrecht, 1986.

[1o]

[11]

[12]

[13]

[14]

[15]

[16]

M. Steedman. Combinatory grammars and para-
sitic gaps. Natural Language and Linguistic Theory,
1987.

M. Steedman. Gapping as constituent coordination.
1987. m.s. University of Edinburgh.

M. J. Steexlman. Dependency and coordination in the
grammar of Dutch and English. Language, 61:523-
568, 1985.

K. Vijay-Shanker. A Study of Tree Adjoining Gram-
mars. PhD thesis, University of Pennsylvania,
Philadelphia, Pa, 1987.

K. Vijay-Shankcr, D. L Weir, and A. K. Joshi. Char-
acterizing structural descriptions produced by vari-
ons grammatical formalisms. In 25 th meeting Assoc.
Comput. Ling., 1987.

K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. Tree
adjoining and head wrapping. In 11 th International
Conference on Comput. Ling., 1986.

D. J. Weir. Characterizing Mildly Context-Sensitive
Grammar Formalisms. PhD thesis, University of
Pennsylvania, Philadelphia, Pa, in prep.

285

