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Abstract

We review the current schemes of text-image
matching models and propose improvements
for both training and inference. First, we em-
pirically show limitations of two popular loss
(sum and max-margin loss) widely used in
training text-image embeddings and propose
a trade-off: a kNN-margin loss which 1) uti-
lizes information from hard negatives and 2)
is robust to noise as all K-most hardest sam-
ples are taken into account, tolerating pseudo
negatives and outliers. Second, we advocate
the use of Inverted Softmax (IS) and Cross-
modal Local Scaling (CSLS) during inference
to mitigate the so-called hubness problem in
high-dimensional embedding space, enhanc-
ing scores of all metrics by a large margin.

1 Introduction

In recent years, deep eural models have gained a
significant edge over shallow1 models in cross-
modal matching tasks. Text-image matching has
been one of the most popular ones among them.
Most methods involve two phases: 1) training:
two neural networks (one image encoder and one
text encoder) are learned end-to-end, mapping
texts and images into a joint space, where vectors
(either texts or images) with similar meanings are
close to each other; 2) inference: for a query in
modality A, after being encoded into a vector, a
nearest neighbor search is performed to match the
vector against all vector representations of items2

in modality B. As the embedding space is learned
through jointly modeling vision and language, it is
often referred to as Visual Semantic Embeddings
(VSE).

While the state-of-the-art architectures being
consistently advanced (Nam et al., 2017; You

1shallow means non-neural methods.
2In this paper, we refer to vectors used for searching as

“queries” and vectors in the searched space as “items”.

et al., 2018; Wehrmann et al., 2018; Wu et al.,
2019), few works have focused on the more fun-
damental problem of text-image matching - that
is, the optimization objectives during training and
inference. And that is what this paper focuses
on. In the following of the paper, we will dis-
cuss 1) the optimization objective during training,
i.e., loss function, and 2) the objective used in in-
ference (how should a text-image correspondence
graph be predicted).

Loss function. Faghri et al. (2018) brought the
most notable improvement on loss function used
for training VSE. They proposed a max-margin
triplet ranking loss that emphasizes on the hard-
est negative sample within a min-batch. The max-
margin loss has gained significant popularity and
is used by a big set of recent works (Engilberge
et al., 2018; Faghri et al., 2018; Lee et al., 2018;
Wu et al., 2019). We, however, point out that the
max-margin loss is very sensitive to label noise
and encoder performance, and also easily over-
fits. Through experiments, we show that it only
achieves the best performance under a careful se-
lection of model architecture and dataset. Before
Faghri et al. (2018), a pairwise ranking loss has
been usually adopted for text-image model train-
ing. The only difference is that, instead of only
using the hardest negative sample, it sums over all
negative samples (we thus refer to it as the sum-
margin loss). Though sum-margin loss yields sta-
ble and consistent performance under all dataset
and architecture conditions, it does not make use
information from hard samples but treats all sam-
ples equally by summing the margins up. Both
Faghri et al. (2018) and our own experiments point
to a clear trend that, more and cleaner data there
is, the higher quality the encoders have, the better
performance the max-margin loss has; while the
smaller and less clean the data is, the less pow-
erful the encoders are, the better sum-margin loss
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would perform (and max-margin would fail).
In this paper, we propose the use of a trade-

off: a kNN-margin loss that sums over the k hard-
est sample within a mini-batch. It 1) makes suf-
ficient use of hard samples and also 2) is robust
across different model architectures and datasets.
In experiments, the kNN-margin loss prevails in
(almost) all data and model configurations.

Inference. During text-image matching infer-
ence, a nearest-neighbor search is usually per-
formed to obtain a ranking for each of the
queries. It has been pointed out by previous
works (Radovanović et al., 2010; Dinu et al.,
2015; Zhang et al., 2017) that hubs will emerge in
such high-dimensional space and nearest neighbor
search can be problematic for this need. Qualita-
tively, the hubness problem means a small portion
of queries becoming “popular” nearest neighbor in
the search space. Hubs harm model’s performance
as we already know that the predicted text-image
correspondence should be a bipartite matching3.
In experiments, we show that the hubness prob-
lem is the primary source of error for inference.
Though has not attracted enough attention in text-
image matching, hubness problem has been ex-
tensively studied in Bilingual Lexicon Induction
(BLI) which aims to find a matching between two
sets of bilingual word vectors. We thus propose
to use similar tools during the inference phase of
text-image matching. Specifically, we experiment
with Inverted Softmax (IS) (Smith et al., 2017)
and Cross-modal Local Scaling (CSLS) (Lample
et al., 2018) to mitigate the hubness problem in
text-image embeddings.

Contributions. The major contributions of this
work are

• analyzing the shortcomings of sum and max-
margin loss, proposing a kNN-margin loss as
a trade-off (for training);

• proposing the use of Inverted Softmax and
Cross-modal Local Scaling to replace naive
nearest neighbor search (for inference).

2 Method

We first introduce the basic formulation of text-
image matching model and sum/max-margin loss
in 2.1. Then we propose our intended kNN-margin

3In Graph Theory, a set of edges is said to be a matching
if none of the edges share a common endpoint.

loss in Section 2.2 and the use of IS and CSLS for
inference in Section 2.3.

2.1 Basic Formulation
The bidirectional text-image retrieval framework
consists of a text encoder and an image en-
coder. The text encoder is composed of word
embeddings, a GRU (Chung et al., 2014) or
LSTM (Hochreiter and Schmidhuber, 1997) layer
and a temporal pooling layer. The image encoder
is a VGG19 (Simonyan and Zisserman, 2014) or
ResNet152 (He et al., 2016) pre-trained on Ima-
geNet (Deng et al., 2009) and a linear layer. We
denote them as functions f and g which map text
and image to two vectors of size d respectively.

For a text-image pair (t, i), the similarity of t
and i is measured by cosine similarity of their nor-
malized encodings:

s(i, t) =

〈
f(t)

‖f(t)‖2
,
g(i)

‖g(i)‖2

〉
: Rd × Rd → R.

(1)

During training, a margin based triplet ranking
loss is adopted to cluster positive pairs and push
negative pairs away from each other. We list the
both the sum-margin loss used in Frome et al.
(2013); Kiros et al. (2015); Nam et al. (2017); You
et al. (2018); Wehrmann et al. (2018):

min
θ

∑
i∈I

∑
t̄∈T\{t}

[α− s(i, t) + s(i, t̄)]+

+
∑
t∈T

∑
ī∈I\{i}

[α− s(t, i) + s(t, ī)]+;
(2)

and the max-margin loss used by Engilberge et al.
(2018); Faghri et al. (2018); Lee et al. (2018); Wu
et al. (2019):

min
θ

∑
i∈I

max
t̄∈T\{t}

[α− s(i, t) + s(i, t̄)]+

+
∑
t∈T

max
ī∈I\{i}

[α− s(t, i) + s(t, ī)]+,
(3)

where [·]+ = max(0, ·); α is a preset margin (we
use α = 0.2); T and I are all text and image en-
codings in a mini-batch; t is the descriptive text for
image i and vice versa; t̄ denotes non-descriptive
texts for i while ī denotes non-descriptive images
for t.

2.2 kNN-margin Loss
We propose a simple yet robust strategy for se-
lecting negative samples: instead of counting all
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(Eq. 2) or hardest (Eq. 3) sample in a mini-batch,
we take the k-hardest samples. We first define
a function kNN(x,M, k) to return the k closest
points in point set M to x. Then the kNN-margin
loss is formulated as:

min
θ

∑
i∈I

∑
t̄∈K1

[α− s(i, t) + s(i, t̄))]+

+
∑
t∈T

∑
ī∈K2

[α− s(t, i) + s(t, ī))]+
(4)

where

K1 = kNN(i, T\{t}, k),K2 = kNN(t, I\{i}, k).

In max-margin loss, when the hardest sample
is misleading or incorrectly labeled, the wrong
gradient would be imposed on the network. We
call it a pseudo hard negative. In kNN-margin
loss, though some pseudo hard negatives might
still generate false gradients, they are likely to be
canceled out by the negative samples with cor-
rect information. As only the k hardest negatives
are considered, the selected samples are still hard
enough to provide meaningful supervision to the
model. In experiments, we show that kNN-margin
loss indeed demonstrates such characteristics.

2.3 Hubness Problem During Inference
The standard procedure for inference is perform-
ing a naive nearest neighbor search. This, how-
ever, leads to the hubness problem which is the
primary source or error as we will show in Sec-
tion 3.5. We thus leverage the prior that “one
query should not be the nearest neighbor for mul-
tiple items” to improve the text-image matching.
Specifically, we use two tools introduced in BLI:
Inverted Softmax (IS) (Smith et al., 2017) and
Cross-modal Local Scaling (CSLS) (Lample et al.,
2018).

2.3.1 Inverted Softmax (IS)
The main idea of IS is to estimate the confidence of
a prediction i → t not merely by similarity score
s(i, t), but the score reweighted by t’s similarity
with other queries:

s′(i, t) =
eβs(i,t)∑

ī∈I\{i} e
βs(̄i,t)

(5)

where β is a temperature (we use β = 30). Intu-
itively, it scales down the similarity if t is also very
close to other queries.

2.3.2 Cross-modal Local Scaling (CSLS)

CSLS aims to decrease a query vector’s similarity
to item vectors lying in dense areas while increase
similarity to isolated4 item vectors. It punishes the
occurrences of an item being the nearest neighbor
to multiple queries. Specifically, we update the
similarity scores with the formula:

s′(i, t) = 2s(i, t)− 1

k

∑
it∈K1

s(it, t)

−1

k

∑
ti∈K2

s(i, ti)
(6)

where K1 = kNN(t, I, k) and K2 = kNN(i, T, k)
(we use k = 10).

3 Experiments

In this section we introduce our experimental se-
tups (Section 3.1, 3.2, 3.3) and quantitative results
(Section 3.4, 3.5).

3.1 Dataset

dataset # train # validation # test

Flickr30k 30, 000 1, 000 1, 000
MS-COCO 1k 113, 287 5, 000 1, 000
MS-COCO 5k 113, 287 5, 000 5, 000

Table 3: Train-validation-test splits of used datasets.

We use Flickr30k (Young et al., 2014) and MS-
COCO (Lin et al., 2014) as our experimental
datasets. We list their splitting protocols in Ta-
ble 3. For MS-COCO, there has been several dif-
ferent splits used by the research community. In
convenience of comparing to a wide range of re-
sults reported by other works, we use two proto-
cols and they are referred as MS-COCO 1k and 5k
where 1k and 5k differs only in the test set used
(1k’s test set is a subset of 5k’s). Notice that MS-
COCO 5k computes the average of 5 folds of 1k
images. Also, in both Flickr30k and MS-COCO,
1 image has 5 captions - so 5 (text,image) pairs are
used for every image.

3.2 Evaluation Metrics

We use R@Ks (recall at K), Med r and Mean r to
evaluate the results:

4Dense and isolated are in terms of query.
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image→text text→image

# architecture loss R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

1.1

GRU+VGG19

sum-margin 30.2 58.7 70.4 4.0 33.0 22.9 50.6 61.4 5.0 49.5
1.2 max-margin 30.7 58.7 69.6 4.0 30.3 22.4 48.4 59.3 6.0 39.0
1.3 kNN-margin (k = 3) 34.1 61.7 69.9 3.0 24.7 25.1 52.5 64.6 5.0 34.3
1.4 kNN-margin (k = 5) 33.4 61.6 71.1 3.0 26.7 24.2 51.8 64.8 5.0 32.7
1.5 kNN-margin (k = 10) 33.3 59.4 69.4 3.0 28.4 23.4 50.6 63.5 5.0 33.8

Table 1: Quantitative results on Flickr30k (Young et al., 2014).

image→text text→image

# architecture loss R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

2.1
GRU+VGG19

sum-margin 48.9 79.9 89.0 1.8 5.6 38.3 73.5 85.3 2.0 8.4
2.2 max-margin 51.8 81.1 90.5 1.0 5.5 39.0 73.9 84.7 2.0 12.0
2.3 kNN-margin 50.6 81.1 90.6 1.4 5.5 38.7 74.0 85.5 2.0 11.8

2.4
GRU+ResNet152

sum-margin 53.2 85.0 93.0 1.0 3.9 41.9 77.2 88.0 2.0 8.7
2.5 max-margin 58.7 88.2 94.0 1.0 3.2 45.0 78.9 88.6 2.0 8.6
2.6 kNN-margin 57.8 87.6 94.4 1.0 3.4 43.9 79.0 88.8 2.0 8.1

Table 2: Quantitative results on MS-COCO (Lin et al., 2014). Using the 5k test set.

• R@K: the ratio of “# of queries that the
ground-truth item is ranked in top K” to “to-
tal # of queries” (we use K = {1, 5, 10}; the
higher the better);
• Med r: the median of the ground-truth rank-

ing (the lower the better);
• Mean r: the mean of the ground-truth ranking

(the lower the better).

We compute all metrics for both text→image
retrieval and image→text matching. We follow
the convention of taking the model with maximum
R@Ks sum (both text→image and image→text)
on the validation set as the best model for testing.

3.3 Hyperparameters
Training. For max-margin models, we follow the
configuration specified in Faghri et al. (2018). For
all other models, we start with a learning rate of
0.001 and decay it by 10 times after every 10
epochs. We train all models for 30 epochs with a
batch size of 128. All models are optimized using
an Adam optimizer (Kingma and Ba, 2015).

Model. We use 300-d word embeddings and
1024 internal states for GRU text encoders (all
randomly initialized with Xavier init. (Glorot and
Bengio, 2010); d = 1024 for both text and image
embeddings. All image encoders are fixed (with
no finetuning) for fair comparison.

3.4 Loss Function Performance
Table 1 and 2 show quantitative results on
Flickr30k and MS-COCO respectively.

Flickr30k. kNN-margin loss achieves signifi-
cantly better performance on all metrics than all
other loss. It is worth noticing that max-margin
loss fails on this dataset (even much worse than
sum-margin). kNN-margin loss with k = {3, 5}
get the highest scores. We use k = 3 for the fol-
lowing experiments unless explicitly specified.

MS-COCO. Max-margin loss performs much
better on MS-COCO, especially on R@1 - it has
the best R@1 across both configurations. kNN-
margin is comparable to max-margin. Specifi-
cally, it produces slightly worse R@1s, almost
identical R@5s, and slightly better R@10s. Sum-
margin, however, performs poorly on MS-COCO.
It is worth noting that here we are using the 5k test
set, which is a superset of the widely adopted 1k
test set. We will compare with quantitative results
reported on the 1k test set in the next section.

3.5 Hubs during Inference

To show hubness is indeed a major source of er-
ror, we select one of the text-image embeddings
to do statistics. We use the model on Table 2
line 2.1 to generate embeddings on MS-COCO’s
test set. Among the 25, 000 (query, item) pairs,
only 1, 027 (4.1%) items are the nearest neighbor
(NN) of solely 1 query; there are, however, 19, 805
(79.2%) items that are NN to 0 query and 3, 007
(12.0%) items that are NN to ≥ 5 queries, indicat-
ing wide existence of hubs. Moreover, the most
“popular” item is NN to 51 queries. We know
that one item ought to be NN to only one query
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image→text text→image

# dataset model inference R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

3.1
Flickr30k GRU+VGG19

kNN-margin

naive 34.1 61.7 69.9 3.0 24.7 25.1 52.5 64.6 5.0 34.3
3.2 IS 36.0 64.5 72.9 3.0 20.1 25.2 52.6 64.4 5.0 31.1
3.3 CSLS 36.0 64.4 72.5 3.0 20.3 26.7 54.3 65.7 4.0 30.8

3.4 MS-COCO
5k

GRU+ResNet152
kNN-margin

naive 57.8 87.6 94.4 1.0 3.4 43.9 79.0 88.8 2.0 8.1
3.5 IS 64.2 89.4 95.0 1.0 3.2 46.7 80.1 89.3 2.0 7.8
3.6 CSLS 62.4 89.3 95.4 1.0 3.0 47.2 80.7 89.9 2.0 7.7

3.7

MS-COCO
1k

(Kiros et al., 2015) (ours5) 49.9 79.4 90.1 2.0 5.2 37.3 74.3 85.9 2.0 10.8
3.8 (Vendrov et al., 2016) 46.7 - 88.9 2.0 5.7 37.9 - 85.9 2.0 8.1
3.9 (Huang et al., 2017) 53.2 83.1 91.5 1.0 - 40.7 75.8 87.4 2.0 -

3.10 (Liu et al., 2017) 56.4 85.3 91.5 - - 43.9 78.1 88.6 - -
3.11 (You et al., 2018) 56.3 84.4 92.2 1.0 - 45.7 81.2 90.6 2.0 -
3.12 (Faghri et al., 2018) 58.3 86.1 93.3 1.0 - 43.6 77.6 87.8 2.0
3.13 (Faghri et al., 2018) (ours) 60.5 89.6 94.9 1.0 3.1 46.1 79.5 88.7 2.0 8.5
3.14 (Wu et al., 2019) 64.3 89.2 94.8 1.0 - 48.3 81.7 91.2 2.0 -
3.15 GRU+ResNet152

kNN-margin

naive 58.3 89.2 95.4 1.0 3.1 45.0 80.4 89.6 2.0 7.2
3.16 IS 66.4 91.8 96.1 1.0 2.7 48.6 81.5 90.3 2.0 7.3
3.17 CSLS 65.4 91.9 97.1 1.0 2.5 49.6 82.7 91.2 2.0 6.5

Table 4: Quantitative results of different inference methods across different datasets and models. Line 3.1-3.3 are
using the model from Table 1 line 1.3 and line 3.4-3.6, 3.15-3.17 are using the model from Table 2 line 2.9. Line
3.7-3.14 are results reported by previous works which all adopted naive nearest neighbor search for inference.

in the ground-truth query-item matching. So, we
can spot errors even before ground-truth labels are
revealed - for instance, the most “popular” item
with 51 NNs must be the false NN for at least 50
queries. Table 5 shows the brief statistics.

k = 0 k = 1 k ≥ 2 k ≥ 5 k ≥ 10

# 19,805 1,026 4,169 3,007 500
percentage 79.2% 4.1% 16.7% 12.0% 2.0%

Table 5: Statistics of # items being NN to k queries
in the embeddings of Table 2, line 2.1, text→image.
There are in total 25,000 (text,image) paris in this em-
bedding.

Both IS and CSLS demonstrate compelling em-
pirical performance in mitigating the hubness
problem. Table 4 shows the quantitative results.
R@Ks and also Med r, Mean r are improved by
a large margin with both methods. In most con-
figurations, CSLS is slightly better than IS on im-
proving text→image inference while IS is better
at image→text. The best results (line 3.8, 3.9) are
even better than the recently reported state-of-the-
art (Wu et al., 2019) (Table 4 line 3.14), which
performs a naive nearest neighbor search. This
suggests that the hubness problem deserves much
more attention and careful selection of inference
methods is vital for text-image matching.

5“ours” means our implementation.

4 Limitations and Future Work

This paper brings up a baseline with excellent
empirical performance. We plan to contribute
more theoretical and technical novelty in follow
up works for both the training and inference phase
of text-image matching models.

Loss function. Though the kNN-margin loss
has superior empirical performance, it is lever-
aging the prior knowledge we hardcoded in it -
it relies on a suitable k to maximize its power.
Flickr30k and MS-COCO are relatively clean and
high-quality datasets while the real world data is
usually not. With the kNN-margin loss being a
strong baseline, we plan to bring a certain form
of self-adaptiveness into the loss function to help
it automatically decide what to learn based on the
distribution of data points.

Also, to further validate the robustness of loss
functions, we plan to experiment models on more
noisy data. The reason for max-margin’s failure
on Flikr30k is more likely that the training set is
too small - so the model easily overfits. However,
the dataset (Flikr30k) itself is rather clean and ac-
curate. It makes more sense to experiment with
a noisy dataset with weak text-image correspon-
dence or even false labels. We have two types
of candidates for this need: 1) academic datasets
that contain “foil” (Shekhar et al., 2017) or adver-
sarial samples (Shi et al., 2018); 2) a real-world
text-image dataset such as a news article-image
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dataset (Elliott and Kleppe, 2016; Biten et al.,
2019).

Inference. Both IS and CSLS are soft criteria.
If we do have the strong prior that the final text-
image correspondence is a bipartite matching, we
might as well make use of that information and im-
pose a hard constraint on it. The task of text-image
matching, after all, is also a form of assignment
problem in Combinatorial Optimization (CO). We
thus plan to investigate tools from the CO lit-
erature such as the Hungarian Algorithm (Kuhn,
1955), which is the best-known algorithm for pro-
ducing a maximum weight bipartite matching; the
Murty’s Algorithm (Murty, 1968), which general-
izes the Hungarian Algorithm into producing the
K-best matching - so that rankings are available
for computing R@K scores.

5 Related Work

In this section, we introduce works from two
fields which are highly-related to our work: 1)
text-image matching and VSE; 2) Bilingual Lexi-
con Induction (BLI) in the context of cross-modal
matching.

5.1 Text-image Matching

Since the dawn of deep learning, works have
emerged using a two-branch structure to connect
both language and vision. Frome et al. (2013)
brought up the idea of VSE, which is to embed
pairs of (text, image) data and compare them in
a joint space. Later works extended VSE for the
task of text-image matching (Hodosh et al., 2013;
Kiros et al., 2015; Gong et al., 2014; Vendrov
et al., 2016; Hubert Tsai et al., 2017; Faghri et al.,
2018; Wang et al., 2019), which is also our task of
interest. It is worth noting that there are other lines
of works which also jointly model language and
vision. The closest one might be image captioning
(Lebret et al., 2015; Karpathy and Fei-Fei, 2015).
But image captioning aims to generate novel cap-
tions while text-image matching retrieves existing
descriptive texts or images in a database.

5.2 Bilingual Lexicon Induction (BLI)

We specifically talk about BLI as the tools we
used to improve inference performance come from
this literature. BLI is the task of inducing word
translations from monolingual corpora in two lan-
guages (Irvine and Callison-Burch, 2017). Words
are usually represented by vectors trained from

Distributional Semantics, eg. Mikolov et al.
(2013). So, the word translation problem converts
to finding the appropriate matching among two
sets of vectors which makes it similar to our task of
interest. Smith et al. (2017); Lample et al. (2018)
proposed to first conduct a direct Procrustes Anal-
ysis (Schönemann, 1966) between two sets of vec-
tors, then use criteria that heavily punish hubs dur-
ing inference to avoid the hubness problem. We
experimented with both methods in our task.

6 Conclusion

We discuss the pros and cons of prevalent loss
functions used in text-image matching and pro-
pose a kNN-margin loss as a trade-off which
yields strong and robust performance across dif-
ferent model architectures and datasets. Instead of
using naive nearest neighbor search, we advocate
to adopt more polished inference strategies such
as Inverted Softmax (IS) and Cross-modal Local
Scaling (CSLS), which can significantly improve
scores of all metrics.

We also analyze the limitations of this work and
indicate the next step for improving both the loss
function and the inference method.
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