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Abstract

Although deep neural networks have been
proving to be excellent tools to deliver
state-of-the-art results, when data is scarce
and the tackled tasks involve complex
semantic inference, deep linguistic pro-
cessing and traditional structure-based ap-
proaches, such as tree kernel methods, are
an alternative solution. Community Ques-
tion Answering is a research area that ben-
efits from deep linguistic analysis to im-
prove the experience of the community of
forum users. In this paper, we present a
UIMA framework to distribute the compu-
tation of cQA tasks over computer clusters
such that traditional systems can scale to
large datasets and deliver fast processing.

1 Introduction

Web forums have been developed to help users to
share their information. Given the natural use of
questions and answers in the human communica-
tion process, traditional automated Question An-
swering (QA) techniques have been recently ap-
plied to improve the forum user experience.

Community Question Answering (cQA) deals
with difficult tasks, including comment re-ranking
and question re-ranking. The former task is de-
fined as follows: given a thread of comments re-
lated to a user question, re-rank the comments in
order of relevance with respect to the question.
The latter task comes into play when a user wants
to ask a new question. In this case an automatic
system can be used to retrieve semantically simi-
lar questions, together with their threads of com-
ments, already posted in the forum, and sort them

∗This work was carried out when the author was princi-
pal scientist at QCRI.

according to their relevance against the freshly-
posted question. Solving these tasks is beneficial
both for the user, who avoids to manually look for
such information, and the forum, since related in-
formation is not spread into multiple threads.

Previous cQA challenges, e.g., (Nakov et al.,
2015, 2016, 2017) have shown that, to build ac-
curate rankers, structural information and linguis-
tic processing are required. Indeed, the results
of the challenges have shown that (i) neural ap-
proaches are not enough to deliver the state of
the art and (ii) kernel methods applied to syntactic
structures often achieve top performance (Barrón-
Cedeño et al., 2016; Filice et al., 2016).

Unfortunately, the models above are rather inef-
ficient, as they require among others the syntactic
parsing of long texts and kernel machine process-
ing. The latter can be computationally expensive
as the classification step requires quadratic time in
the number of support vectors. Thus, approaches
to speed up computation are very appealing. The
classical method in these cases is to distribute and
parallelize the computation. However, as the cQA
processing pipelines can be very complex, an en-
gineering approach to distributed computing is re-
quired.

In this paper, we propose a UIMA framework
to manage the computation distribution of the
complicated processing pipelines involved in cQA
systems. In particular, we make the computa-
tion of standard linguistic processing components,
feature/structure extractors and classification or
learning phases scalable. This way, we both at-
tain (i) the state-of-the-art accuracy of tree kernel-
based rerankers and (ii) fast response. This makes
our models useful for practical applications. We
highlight the fact that our framework is rather flex-
ible and extensible as new linguistic or machine
learning components can be easily added. Indeed,
we built two different cQA systems for English
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and Arabic (Barrón-Cedeño et al., 2016) by simply
adding basic linguistic modules, e.g., the syntactic
parsers, for both languages.

We make our software framework, based on
UIMA technology, freely available to the research
and industrial community by also providing our
toolkit with tutorials and usage options for differ-
ent degrees of user expertise.

2 Related Work

One of the first approaches to answer ranking re-
lied on metadata (Jeon et al., 2006) (e.g., click
counts). Agichtein et al. (2008) explored a
graph-based model of contributors relationships
together with both content- and usage-based fea-
tures. Some of the most recent proposals aim at
classifying whole threads of answers (Joty et al.,
2015; Zhou et al., 2015) rather than each answer
in isolation.

Regarding question ranking, Duan et al. (2008)
searched for equivalent questions by considering
the question’s focus. Zhou et al. (2011) used
a (monolingual) phrase-based translation model
and Wang et al. (2009) computed similarities on
syntactic-trees. A different approach using topic
modeling for question retrieval was introduced
by Ji et al. (2012) and Zhang et al. (2014). dos
Santos et al. (2015) applied convolutional neural
networks.

The three editions of the SemEval Task 3 on
cQA (Nakov et al., 2015, 2016, 2017) have trig-
gered a manifold of approaches. The challenges
of 2016 and 2017 included Task 3-A on comment
re-ranking and Task 3-B on question re-ranking.
For task 3-A, Tran et al. (2015) applied machine
translation, topic models, embeddings, and simi-
larities. Hou et al. (2015) and Nicosia et al. (2015)
applied supervised models with lexical, syntactic
and meta-data features.

For task 3-B The top-three participants ap-
plied SVMs as learning models (Franco-Salvador
et al., 2016; Barrón-Cedeño et al., 2016; Filice
et al., 2016). Franco-Salvador et al. (2016) re-
lied heavily on distributed representations and se-
mantic information sources, such as Babelnet and
Framenet. Both Barrón-Cedeño et al. (2016)
and Filice et al. (2016) use lexical similarities
and tree kernels on parse trees. No statistically-
significant differences were observed in the per-
formance of these three systems.

In summary, the results for both tasks show

that SVM systems based on a combination of vec-
torial features and tree kernels perform consis-
tently well on the different editions of the com-
petition (Barrón-Cedeño et al., 2016; Filice et al.,
2016, 2017): the systems described in those papers
won Task 3-A both years, placed second and first
on Task 3-B in years 2016 and 2017, respectively.

The most related demonstration papers to ours
are (Uryupina et al., 2016; Rücklé and Gurevych,
2017). As ours, the system of Uryupina et al.
(2016) is a UIMA-based pipeline. Yet in their
case the input is a single text and the output is
the result of different levels of textual annotation
(e.g., tokens, syntactic information, or wikifica-
tion). Rücklé and Gurevych (2017) developed an
architecture to perform question and answer re-
ranking in cQA based on deep learning. Their
main focus is the analysis of attention models in
these tasks.

3 Structural Linguistic Models for cQA

In this section, we describe the components of the
two learning systems.

The ranking function for both tasks can be im-
plemented by the scoring function of an SVM,
r : X ×X → R, where X is either a set of com-
ments (Task 3-A) or a set of questions (Task 3-B).
For example, r can be a linear function, r(x, x′) =
~w · φ(x, x′), where ~w is the model and φ() pro-
vides a feature vector representation of the pair,
(x, x′). The vectors φ used by Barrón-Cedeño
et al. (2016); Filice et al. (2016) are a combina-
tion of tree kernel similarity functions and features
derived from similarity measures between the two
comments/questions constituting one learning ex-
ample, as well as features extracting information
from the forum threads the comments/questions
belong to.

3.1 Tree Kernel

We use the kernel function defined by Filice et al.
(2015):

K((x1, x
′
1), (x2, x

′
2)) = TK

(
tx′1(x1), tx′2(x2)

)
+ TK

(
tx1(x

′
1), tx2(x

′
2)
)

where TK is the Partial Tree Kernel by Moschitti
(2006) and ty(x) is a function which enriches the
tree x with information derived from its structural
similarity with the tree y (see (Severyn and Mos-
chitti, 2012; Filice et al., 2016) for details).
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3.2 Feature Vectors
Various sets of features have been developed in
(Barrón-Cedeño et al., 2016; Filice et al., 2016).
A number of features which include similarities
between the two texts constituting one learning ex-
ample are computed. Such features include greedy
string tiling, longest common subsequence, Jac-
card coefficient, word containment, and cosine
similarity, which can be computed on n-grams or
bag-of-word representations. Another similarity
can be obtained by comparing syntactic trees with
the Partial Tree Kernel, i.e., TK

(
tx1(x

′
1), tx′1(x1)

)
.

Note that, different from the model in Section 3.1,
the Partial Tree Kernel here is applied to the mem-
bers of the same pair and thus only produces
one feature. In the case of question re-ranking,
the SemEval datasets include information about
the ranking of the question, as generated by the
Google search engine. Such information is ex-
ploited in two ways: “as-is”, by using directly the
position, pos, as a feature of the question, or its
inverse, pos−1.

4 Distributed Framework using UIMA

4.1 UIMA introduction
The Unstructured Information Management Ar-
chitecture (UIMA) is a software framework for
creating, combining, and deploying an arbitrary
number of language analytics. UIMA Asyn-
chronous Scaleout (UIMA-AS) is a set of func-
tionalities integrated in UIMA to enable scalabil-
ity using a distributed environment. In UIMA,
each document is contained in a Common Analy-
sis Structure (CAS), annotated by processing units
called Analysis Engines, or Annotators.

In UIMA-AS, there are basically three actors:
(i) client applications, (ii) brokers, and (iii) UIMA
pipelines. The latter is connected to the broker
and listens for requests on a queue managed by the
broker. The annotation steps are as follows: (a) the
client sends the CAS to the broker; (b) the broker,
in turn, sends it to the pipeline, which is listening
to a specific queue; (c) the pipeline annotates the
CAS and send it back to the broker; and finally,
(d) the broker send the annotated CAS back to the
client. Our pipeline is designed and developed in
this framework.

4.2 Our Pipeline
There are three main modules: (i) feature extrac-
tion, (ii) learning, and (iii) classification. Each

module is designed to be replicated in multiple in-
stances to achieve scalability. Each of these mod-
ules is a pipeline deployed as UIMA-AS service
that listens to a queue of processing requests (reg-
istered on the broker). Each module can interact
with others by means of the broker if necessary.
For instance, both learning and classification use
the feature extraction to extract the features for the
input instances.

The entire framework offers two levels of scal-
ability. The first one deploys the same pipeline
in different UIMA-AS services but listens to the
same queue. In this case, the broker distributes
the processing requests to the different CPUs. The
second one replicates the pipeline a number of
times internally to a UIMA-AS service. In this
case, UIMA-AS internally handles the parallel
processing of multiple requests.

In UIMA each annotator and pipeline is de-
scribed and configured with XML descriptors.
The descriptors of an annotator include informa-
tion related to the implementation class, config-
uration parameters and binding of resources (if
any). The descriptor of a pipeline includes in-
formation regarding the annotators it is composed
of and their order. Furthermore, the deployment
descriptors for the pipelines include information
about the location of the broker and the queue’s
name, where the pipeline listen to the processing
requests. This configuration process is fully au-
tomated in our pipeline and all the required de-
scriptors are generated automatically. Finally, the
pipeline can also be deployed on a single machine
for either local or parallel computation.

Feature Extraction. Each CAS received by this
module contains an instance of one of the afore-
mentioned tasks, i.e., a question along with a set
of comments or a set of other questions. The first
step of the feature extraction is a sequence of stan-
dard preprocessing steps, e.g., segmentation, POS-
tagging, lemmatization, syntactic parsing. The
questions and comments of each instance of the
specific task can be processed in parallel. The in-
put CASes are hence split in a way that each of
the output CASes contains either a single question
or a single comment and it is asynchronously pro-
cessed in the Preprocessing sub-pipeline. The pre-
processed CASes are then aggregated back to form
the input task instances. In its current status, our
pipeline is meant to work with pairs. Therefore,
the aggregated CASes are split in order to form
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question–comment (for comment re-ranking) or
question–question (for question re-ranking) pairs.
These are instances to be used in the learning or
classification phase.

The output CASes are fed into the Feature Com-
putation sub-pipeline. This sub-component com-
putes a set of features for each CAS using the an-
notation previously created. It is composed of a se-
quence of Vectorial Features Annotators and each
of them makes use of a Feature Computer (FC)
to compute each feature. A FC is implemented as
a resource that, given a CAS representing a pair,
computes a feature based on the first, the second,
or both members of the pair. This allows for shar-
ing FC among different annotators. After the com-
putation of all features is completed, it is possi-
ble to add additional information and/or represen-
tations of the CAS contents, e.g., syntactic parse
trees. This is done by means of the Decoration
sub-pipeline that is a sequence of Decorators. Fi-
nally, a Representation Extractor (RE) produces
the features’ representation that the learner and the
classifier expect to process. The RE uses a seri-
alizer, which is a resource in charge of serializing
the generic pair in the target representation format.
The serializer is plugged into the RE at deploy-
ment time to allow the integration of any learning
and classification component.

Learning. The learning module is composed of a
single annotator that makes use of a Learner. A
learner is a resource plugged at deployment time.
This allows to plug any algorithm by wrapping it
in a learner. Furthermore, a single instance can be
shared among multiple instances of the learning
module. Note that all representation instances are
collected before the learning process can start. The
resulting trained model is stored and the local file
path is sent back to the client in an output CAS. At
publication time, the pipeline implements SVM-
based models, but it can be extended with others.

Classification. This module is composed by a sin-
gle annotator that makes use of a resource plugged
at deployment time as well. In this case, the re-
source is a Classifier that uses one of the trained
models stored by the learning module. Again, im-
plementing the classifier as a resource allows to
plug any type of classification algorithm and to
share it among multiple instances of the classifi-
cation module. Every time the classification an-
notator receives a new instance, it computes the
prediction, updates the input CAS adding the cor-

responding information and gives it as output.

5 Software Package

Our cQA pipeline is available for download 1 and
is distributed under the terms of the Apache 2.0 Li-
cense. By taking advantage of the Apache Maven
project management tool, most dependencies are
automatically handled. The only exception is the
UIMA framework toolkit. Still, its installation is
straightforward. The pipeline is able to process
natural language texts and metadata information
associated with them and offers three main func-
tionalities:

Feature and representation extraction al-
lows to compute features, such as the ones de-
scribed in Section 3.2. Moreover, the pipeline al-
lows to compute parse trees by using any third-
party UIMA parser. Currently we integrated the
DKPro (Eckart de Castilho and Gurevych, 2014)
wrapper of the Stanford parser.

Learning and classification allow to apply a
variety of learning algorithms on vectorial or
structured data. Currently KeLP (Filice et al.,
2018) 2 is integrated in the pipeline. KeLP allows
to apply a growing number of kernel-based algo-
rithms and kernel functions to perform unsuper-
vised, online and batch supervised kernel meth-
ods. We opt for integrating KeLP because the
kernel-based cQA systems relying on it perform at
state-of-the-art level (see Section 2). Our pipeline
is able to reproduce the state-of-the-art models for
SemEval cQA tasks 3-A and 3-B.

Besides the functionalities just described, the
pipeline has a modular structure. It allows to eas-
ily plug in new components, such as alternative
natural language preprocessing components (lem-
matizers, POS taggers, parsers), features, repre-
sentations, and learning algorithms. The pipeline
can either be run on a stand-alone machine or de-
ployed on a cluster to distribute the computation
load. In either case, simple classes are provided to
run the pipeline from the command line.

Since this is an ongoing effort, we provide up-
dated information on the wiki page of the GitHub
project. The wiki provides instructions on the in-
stallation and tutorials to illustrate how to use the
three main functionalities: (i) create representa-
tions, (ii) learn models, and (iii) classify data.

1https://github.com/QAML/
S3QACoreFramework

2http://www.kelp-ml.org

https://github.com/QAML/S3QACoreFramework
https://github.com/QAML/S3QACoreFramework
http://www.kelp-ml.org


138

Figure 1: A prototype of the UIMA pipeline applied to a real-world forum.

Our pipeline has been used in a number of pro-
totypes. Qatarliving.com is a forum where expats
in Qatar may ask questions on a variety of dif-
ferent topics and comment on them. We imple-
mented the technology described in Section 3 both
for question and comment re-ranking 3. Fig. 1
shows an example of usage: the user asks the
question “Where can I buy a bike in Doha?”, the
systems returns similar questions in the forum to-
gether with the best overall comment. By click-
ing on a question, the right panel shows the corre-
sponding thread of comments with their relevance.

A second example is a cQA demo4 in Arabic,
which retrieves data from multiple medical forums
from middle-east. In this case physicians answer
to patients’ questions: the left panel shows a ques-
tion from a user and the right panel similar ques-
tions with the answers from the expert. In general
there is only one (good) answer from the doctor,
so this is mostly a question re-ranking task.

3http://www.qatarliving.com/betasearch
4http://cqa.iyas.qcri.org/

cQA-Arabic-Demo

6 Conclusions

We presented a UIMA framework to distribute
the computation of community question answer-
ing tasks. As a result, we can scale deep linguis-
tic analysis and kernel technology to large datasets
and deliver fast processing. Our toolkit is rather
flexible and can be extended with new linguis-
tic components as well as new machine learning
components and algorithms. In addition to sup-
port state-of-the-art community question answer-
ing frameworks, an interesting consequence of the
properties above is the fact that our framework
also enables multilingual and potentially cross-
language pipelines.
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