An End-to-end Approach for Handling Unknown Slot Values
in Dialogue State Tracking

Puyang Xu

Qi Hu'

Mobvoi Al Lab, Redmond, WA
TUniversity of Washington, Seattle, WA
{puyangxu, gihuchn}@gmail.com

Abstract

We highlight a practical yet rarely dis-
cussed problem in dialogue state tracking
(DST), namely handling unknown slot val-
ues. Previous approaches generally as-
sume predefined candidate lists and thus
are not designed to output unknown val-
ues, especially when the spoken language
understanding (SLU) module is absent as
in many end-to-end (E2E) systems. We
describe in this paper an E2E architec-
ture based on the pointer network (PtrNet)
that can effectively extract unknown slot
values while still obtains state-of-the-art
accuracy on the standard DSTC2 bench-
mark. We also provide extensive empir-
ical evidence to show that tracking un-
known values can be challenging and our
approach can bring significant improve-
ment with the help of an effective feature
dropout technique.

1 Introduction

A dialogue state tracker is a core component in
most of today’s spoken dialogue systems (SDS).
The goal of dialogue state tracking (DST) is to
monitor the user’s intentional states during the
course of the conversation, and provide a compact
representation, often called the dialogue states, for
the dialogue manager (DM) to decide the next ac-
tion to take.

In task-oriented dialogues, or slot-filling dia-
logues in the simplistic form, the dialogue agent is
tasked with helping the user achieve simple goals
such as finding a restaurant or booking a train
ticket. As the name itself suggests, a slot-filling

OThe first author is now with Facebook. Qi contributed to
the work during an internship at Mobvoi.

dialogue is composed of a predefined set of slots
that need to be filled through the conversation. The
dialogue states in this case are therefore the values
of these slot variables, which are essentially the
search constraints the DM has to maintain in order
to perform the database lookup.

Traditionally in the research community, as ex-
emplified in the dialogue state tracking challenge
(DSTC) (Williams et al., 2013), which has be-
come a standard evaluation framework for DST
research, the dialogues are usually constrained by
a fixed domain ontology, which essentially de-
scribes in detail all the possible values that each
predefined slot can take. Having access to such
an ontology can simplify the tracking problem in
many ways, however, in many of the SDS appli-
cations we have built in the industry, such an on-
tology was not obtainable. Oftentimes, the back-
end databases are only exposed through an exter-
nal API, which is owned and maintained by our
partners. It is usually not possible to gain access
to their data or enumerate all possible slot val-
ues in their knowledge base. Even if such lists or
dictionaries exist, they can be very large in size
and highly dynamic (e.g. new songs added, new
restaurants opened etc.). It is therefore not ami-
able to many of the previously introduced DST
approaches, which generally rely on classification
over a fixed ontology or scoring each slot value
pairs separately by enumerating the candidate list.

In this paper, we will therefore focus on this par-
ticular aspect of the DST problem which has rarely
been discussed in the community — namely how to
perform state tracking in the absence of a compre-
hensive domain ontology and how to handle un-
known slot values effectively.

It is worth noting that end-to-end (E2E) mod-
eling for task-oriented dialogue systems has be-
come a popular trend (Williams and Zweig, 2016;
Zhao and Eskenazi, 2016; Lietal., 2017; Liu et al.,

1448

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1448—1457
Melbourne, Australia, July 15 - 20, 2018. (©)2018 Association for Computational Linguistics

2017; Wen et al., 2017), although most of them
focus on E2E policy learning and language gener-
ation, and still rely on explicit dialogue states in
their models. While fully E2E approaches which
completely obviate explicit DST have been at-
tempted (Bordes and Weston, 2016; Eric and Man-
ning, 2017a,b; Dhingra et al., 2017), their gener-
ality and scalability in real world applications re-
mains to be seen. In reality, a dedicated DST com-
ponent remains a central piece to most dialogue
systems, even in most of the proclaimed E2E mod-
els.

E2E approaches for DST, i.e. joint modeling of
SLU and DST has also been presented in the lit-
erature (Henderson et al., 2014b,c; Mrksic et al.,
2015; Zilka and Jurcicek, 2015; Perez and Liu,
2017; Mrksic et al., 2017). In these methods, the
conventional practice of having a separate spoken
language understanding (SLU) module is replaced
by various E2E architectures that couple SLU and
DST altogether. They are sometimes called word
based state tracking as the dialogue states are de-
rived directly from word sequences as opposed to
SLU outputs. In the absence of SLU to gener-
ate value candidates, most E2E trackers today can
only operate with fixed value sets. To address this
limitation, we introduce an E2E tracker that al-
lows us to effectively handle unknown value sets.
The proposed solution is based on the recently in-
troduced pointer network (PtrNet) (Vinyals et al.,
2015), which essentially performs state tracking in
an extractive fashion similar to the sequence label-
ing techniques commonly utilized for slot tagging
in SLU (Tur and Mori, 2011).

Our proposed technique is similar in spirit as
the recent work in (Rastogi et al., 2018), which
also targets the problem of unbounded and dy-
namic value sets. They introduce a sophisticated
candidate generation strategy followed by a neural
network based scoring mechanism for each can-
didate. Despite the similarity in the motivation,
their system relies on SLU to generate value candi-
dates, resulting in an extra module to maintain and
potential error propagation as commonly faced by
pipelined systems.

The contributions of this paper are three-folds:
Firstly, we target a very practical yet rarely investi-
gated problem in DST, namely handling unknown
slot values in the absence of a predefined ontol-
ogy. Secondly, we describe a novel E2E architec-
ture without SLU based on the PtrNet to perform

state tracking. Thirdly, we also introduce an effec-
tive dropout technique for training the proposed
model which drastically improves the recall rate
of unknown slot values.

The rest of the paper is structured as follows:
We give a brief review of related work in the field
in Section 2 and point out its limitations. The Ptr-
Net and its proposed application in DST are de-
scribed in Section 3. In Section 4, we demon-
strate some caveats regarding the use of PtrNet and
propose an additional classification module as a
complementary component. The targeted dropout
technique, which can be essential for generaliza-
tion on some datasets, is described in Section 5.
Experimental setup and results are presented in
Section 6, followed by conclusions in Section 7.

2 Dialogue State Tracking

In DSTC tasks, the dialogue states are defined as
a set of search constraints (i.e. informable slots
or goals) the user specified through the dialogue
and a set of attribute questions regarding the
search results (i.e. requestable slots or requests).
The DST component is expected to track the
values of the aforementioned slots taking into
account the current user utterance as well as the
entire dialogue context. As mentioned in the
previous section, the values each slot variable
can take are specified beforehand through an
ontology. This is a hidden assumption that
previous techniques usually rely upon implic-
itly and also what motivates our work in this paper.

Discriminative DST While generative models
aiming at modeling the joint distribution of di-
alogue states and miscellaneous evidences have
been a popular modeling choice for DST for many
years, the scalability issue resulting from large
state spaces has limited the broader application of
this family of models, despite the success of vari-
ous approximation techniques.

The discriminative methods, on the other
hand, directly model the posterior distribution of
dialogue states given the evidences accumulated
through the conversation history. Models such as
maximum entropy (Metallinou et al., 2013) and
particularly the more recent deep learning based
models (Henderson et al., 2014b,c; Zilka and
Jurcicek, 2015; Mrksic et al., 2015, 2017; Perez
and Liu, 2017) have demonstrated state-of-the-art
results on public benchmarks. Such techniques

1449

often involve a multi-class classification step at
the end (e.g. in the form of a softmax layer) which
for each slot predicts the corresponding value
based on the dialogue history. Sometimes the
multi-class classification is replaced by a binary
prediction that decides whether a particular slot
value pair was expressed by the user, and the list
of candidates comes from either a fixed ontology
or the SLU output.

E2E DST Previous work has also investigated
joint modeling strategies merging SLU and DST
altogether. In this line of work, the SLU module is
removed from the standard SDS architecture, re-
sulting in reduced development cost and alleviat-
ing the error propagation problem commonly af-
fecting cascaded systems.

In the absence of SLU providing fine-grained
semantic features, the E2E approaches these days
typically rely on variants of neural networks such
as recurrent neural networks (RNN) or memory
networks (Weston et al., 2014) to automatically
learn features from the raw dialogue history.
The deep learning based techniques cited in
the previous subsection generally fall into this
category.

Current Limitations In short, most of the previ-
ous DST approaches, particularly E2E ones, are
not designed to handle slot values that are not
known to the tracker.

As we have described in the introduction, the
assumption that a predefined ontology exists for
the dialogue and one can enumerate all possible
values for each slot is often not valid in real world
scenarios. Such an assumption has implicitly in-
fluenced many design choices of previous sys-
tems. The methods based on classification or scor-
ing each slot value pair separately can be very dif-
ficult to apply when the set of slot values is not
enumerable, either due to its size or its constantly
changing nature, especially in E2E models where
there is no SLU module to generate an enumerable
candidate list for the tracker.

It is important to point out the difference be-
tween unseen states and unknown states, as pre-
vious work has tried to address the problem of
unseen slot values, i.e. values that were not ob-
served during training. E2E approaches in par-
ticular, frequently employ a featurization strategy
called delexicalization, which replaces slots and

values mentioned in the dialogue text with generic
labels. Such a conversion allows the models to
generalize much better to new values that are in-
frequent or unseen in the training data. However,
such slot values are still expected to be known to
the tracker, either through a predefined value set or
provided by SLU, otherwise the delexicalization
cannot be performed, nor can the classifier prop-
erly output such values.

3 Pointer Network

In this section, we briefly introduce the Ptr-
Net (Vinyals et al., 2015), which is the main basis
of the proposed technique, and how the DST prob-
lem can be reformulated to take advantage of the
flexibility enabled by such a model.

In the PtrNet architecture, similar as other
sequence-to-sequence (seq2seq) models, there is
an encoder which takes the input and iteratively
produces a sequence of hidden states correspond-
ing to the feature vector at each input position.
There is also a decoder which generates outputs
with the help of the weighted encoded states where
the weights are computed through attention. Here,
instead of using softmax to predict the distribution
over a set of predefined candidates, the decoder
directly normalizes the attention score at each po-
sition and obtains an output distribution over the
input sequence. The index of the maximum prob-
ability is the pointed position, and the correspond-
ing element is selected as decoder output, which
is then fed into next decoding step. Both the en-
coder and decoder are based on various RNN mod-
els, capable of dealing with sequences of variable
length.

The PtrNet specifically targets the problems
where the output corresponds to positions in the
input sequence, and it is widely used for seq2seq
tasks where some kind of copying from the input
is needed. Among its various applications, ma-
chine comprehension (a form of question answer-
ing), such as in (Wang and Jiang, 2016), is the
closest to how we apply the model to DST.

The output of DST, same as in machine compre-
hension, is a word segment in the input sequence
most of the time, thus can be naturally formu-
lated as a pointing problem. Instead of generating
longer output sequences, the decoder only has to
predict the starting index and the ending index in
order to identify the word segment.

More specifically, words are mapped to embed-

1450

dings and the dialogue history wg, wy, ..., w; up to
the current turn ¢ is bidirectionally encoded using
LSTM models. To differentiate words spoken by
the user versus by the system, the word embed-
dings are further augmented with speaker role in-
formation. Other features, such as the entity type
of each word, can also be fed into the encoder si-
multaneously in order to extract richer information
from the dialogue context.

The encoded state at each position can then be
denoted as h;, which is the concatenation of for-
ward state and backward state ([, h?]). The final
forward state h{ is used as the initial hidden state
of the decoder. We use a special symbol denoting
the type of slot (e.g. <food>) as the first decoder
input, which is also mapped to a trainable embed-
ding Ejype. Therefore, the starting index Y of the
slot value is computed as the following, where 1!
is the attention score of the iy, word in the input
against the decoder state d".

d° = LSTM (hi, Eyype)

ud = o7 tanh(Wyh; + Wado)

t
af = exp(uf)/ > exp(u))
=0

s = arg max a!

(2
The attention scores at the second decoding step
are computed similarly as below, where Ey , is
the embedding of the word at the selected start-
ing position, and the ending position s! can be ob-

tained in the same way as s°.

d' = LSTM(d°, E, ,)

u}l = o7 tanh(Wyh; + Wed")

Note that there is no guarantee that s* > s, al-
though most of the time the model is able to iden-
tify consistent patterns in the data and therefore
output reasonable word segments. When s' < 59,
it is often a good indication that the answer does
not exist in the input (such as the none slot in
DSTC2).! Depending on the nature of the task, it
is certainly possible to set a constraint at the sec-
ond decoding step, forcing s' to be larger than s°.

One can clearly see how the described model
can handle unknown slot values — as long as they
are mentioned explicitly during the dialogue, we

't is the backoff strategy we take in our experiments on
DSTC2.

Hidden
State

Attention [nl [l m [nl
D;D:D%

Distribution T
R

“Italian”
<sys> would you like some Thai food ‘

f

PtrNet

—

TTEREY

<usr> No prefer Italian <food> Italian

other
dontcare
none

Figure 1: An illustration of the proposed PtrNet
based architecture for DST. The classifier outputs
“other” indicating the decision should be made by
PtrNet; The decoder (red) in PtrNet is predicting
the ending word of the slot value given the pre-
dicted starting word via attention against the en-
coded states (blue).

have a chance of finding them. Compared with
previous approaches, which all require some kind
of candidate lists, the proposed technique takes a
different perspective on DST: For most slots in di-
alogue systems, tracking up-to-date values in a di-
alogue is not very different from tagging slots in a
user query. While sequence labeling models such
as conditional random field (CRF) has proven to
be a great fit for slot tagging, the same formula-
tion may as well be used for DST.

4 Rephrasing and Non-pointable Values

Our PtrNet based architecture works by directly
pinpointing in the conversation history the slot
value that the user expressed in its surface form.
The model is totally unaware of the different ways
of referring to the same entity. Therefore, the
derived dialogue states may not have canonical
forms that are consistent with the values in the
backend database, making it more difficult to re-
trieve the correct results. A good example from
the DSTC2 dataset is the price slot which can take
the reference value “moderate”, in the actual di-
alogues however, they are frequently expressed as
“moderately priced”, causing problems for search-
ing the database and also computing accuracy.
While such a problem can be easily remedied
by an extra canonicalization step (setting dialogue
states to standard forms) before performing the

1451

Classifer | PtrNet
Rephrasing Yes *Yes
none, dontcare, etc Yes No
ASR errors Hard Hard
Unknown values No Yes

Table 1: Classifier vs. Pointer network in handling
various difficult conditions. *PtrNet requires post-
normalization to handle rephrasing.

database lookup, it is a much bigger problem if
the slot value is not indicated explicitly by any
particular word or phrase in the dialogue history,
we describe these slot values as non-pointable.
To give an example, in DSTC tasks, the special
none value is given when the user has not specified
any constraint for the slot. While this information
can be easily inferred from the dialogue, it is not
possible to point to any specific word segment in
the sentence as the corresponding slot value. The
same problem also exists for the dontcare value in
DSTC, which implies that the user can accept any
values for a slot constraint.

To address this issue, we add a classification
component into our neural network architecture to
handle non-pointable values. For each turn of the
dialogue, the classifier makes a multi-class deci-
sion on whether the target slot should take any of
the non-pointable values (e.g. dontcare or none)
or it should be processed by the PtrNet.

As illustrated in Figure 1, the final forward state
out of the dialogue encoder is used as the feature
vector for the classification layer, which is trained
with cross entropy loss and jointly with the PtrNet.

The best choice of the set of values to be han-
dled by the classifier may not be obvious. In most
cases both the classifier and the PtrNet are capable
of extracting the correct slot value, although they
both offer unique advantages over the other. Ta-
ble 1 briefly summarizes the pros and cons of each
model.

The proposed combined architecture, taking the
best of both worlds, is similar to the pointer-
generator model introduced in (See et al., 2017)
for abstractive text summarization. In their ap-
proach the PtrNet is also augmented with a classi-
fication based word generator, and the model can
choose to generate words from a predefined vo-
cabulary or copy words from the input. Other
classify-and-copy mechanisms have also been ex-
plored in (Gu et al., 2016; Gulcehre et al., 2016;

Eric and Manning, 2017a), and demonstrated im-
proved performance on various seq2seq tasks such
as summarization and E2E dialogue generation. 2
As we have shown in this paper, DST can also
be formulated to incorporate such copying mecha-
nisms, allowing itself to handle unknown slot val-
ues as well.

5 Targeted Feature Dropout

Feature dropout is an effective technique to pre-
vent feature co-adaption and improve model gen-
eralization (Hinton et al., 2012). It is most widely
used for neural network based models but may as
well be utilized for other feature based models.
Targeted feature dropout however, was introduced
in (Xu and Sarikaya, 2014) to address a very spe-
cific co-adaptation problem in slot filling, namely
insufficient training of word context features.

For slot filling, this problem often occurs when
1) the dictionary (a precompiled list of possible
slot values) covers the majority of the slot values
in the training data, or 2) most slot values repeat
frequently resulting in insufficient tail representa-
tions. In both cases, the contextual features tend
to get severely under-trained and as a result the
model is not able to generalize to unknown slot
values that are neither in the dictionary nor ob-
served in training.

The way our architecture works essentially ex-
tracts slot values in the same way as in slot fill-
ing, although the goal is to identify slots consider-
ing the entire dialogue context rather than a (usu-
ally) single user query. The same problem can also
happen for DST if training data are not examined
carefully. As an example, the DSTC2 task comes
with a fixed ontology, it is not originally designed
to track unknown slots (see the OOV rate in Ta-
ble 2). Taking a closer look at the data, as shown
in the histogram in Figure 2, the majority of the
food type slot appears more than 10 times in the
training data. As a result, the model oftentimes
only learns to memorize these frequent slot val-
ues, and not the contextual patterns which can be
more crucial for extracting slot values not known
in advance.

To alleviate the generalization issue, we adapt
the targeted dropout trick to work with our neural

>The copy-augmented model in (Eric and Manning,
2017a) also outputs API call parameters (which are essen-
tially dialogue states) in a seq2seq fashion, including un-
known parameters by copying from dialogue history, al-
though the work focuses entirely on dialogue generation.

1452

25

20

Number of Distinct Slot Values
s

242.00
262.00 [y
282.00 |y
302.00
322.00
342.00
362.00
382.00 |y
402.00 |
422.00 [y
442.00
462.00 8
482.00

Count of Occurrence

Figure 2: Histogram of food type slot on DSTC2
training data.

network based architecture. Instead of randomly
disabling unigram and dictionary features for CRF
models as done in the original work, we randomly
set to zero the input word embeddings that corre-
spond to the slot values in the dialogue utterances.
For example, the italian food type in DSTC2 ap-
pears almost 500 times in the training data. During
training, every time “italian” gets mentioned in the
dialogue as the labeled user goal, we turn off the
word embedding of “italian” in the model input
with some probability, forcing the model to learn
from the context to identify the slot value. Dic-
tionary features are not used in our experiments,
otherwise they can be turned off similarly.

As we will show later in the results, this proves
to be a particularly effective yet simple trick for
improving generalization to unknown slot values,
without sacrificing accuracy for the known and ob-
served ones.

6 Experiments and Results

6.1 Datasets

We conduct our experiments on the DSTC2
dataset (Henderson et al., 2014a), and on the bAbI
dialogue dataset as used in (Bordes and Weston,
2016).

The DSTC2 dataset is the standard DST bench-
mark comprised of real dialogues between human
and dialogue systems. We are mainly interested in
tracking user goals, whereas the other two compo-
nents of the dialogue state, namely search methods
and requested slots, are not concerned with un-
known slot values, and thus are not the focus in
this paper. Meanwhile, the non-pointable values,
none and dontcare, constitute a significant portion
in DSTC2. Overall almost 60% of the user goals

Original New
#food types in train 74 48
#train instances 11677 8546
#test instances 9890 9890
OOV food types in test (%) 0 30.4

Table 2: Statistics of the new modified DSTC2
dataset with unknown food types. About 27% of
the training instances are discarded. The test set
remains the same.

are labeled as either none or dontcare, the two pre-
dominant non-pointable values, it is therefore par-
ticularly suitable for evaluating our proposed hy-
brid architecture.

An important part of our experimental evalua-
tion is to demonstrate our ability to identify un-
known slots. Although it happens frequently in
real world situations, the original DSTC2 dataset
does not suffer from this particular problem — on
the test data, there are no unknown values that we
have not observed in training for all of the three
slot types. To conduct our investigation, we pick
the food type slot to simulate unknown values.
Specifically, we randomly select about 35% of the
food types in the training set (26 out of 74) as un-
known and discard all the training instances where
the correct food type is one of the 26 unknown
types that we selected. The statistics of the result-
ing dataset is shown in Table 2.

On the other hand, the bAbI dialogue dataset is
initially designed for evaluating E2E goal oriented
dialogue systems and has not been used specifi-
cally for DST. The model is expected to predict
both the system utterances and the API calls to ac-
cess the database. We notice that the parameters
of the API calls are essentially the dialogue states
at the point of the dialogue, it may as well be used
as a dataset for measuring the accuracy of the state
tracker. We therefore convert Task 5 of the bAbl
dataset, which is the full dialogue combination of
Tasks 1-4, into a DST dataset for our experiments.

Although simulated and with highly regular be-
haviors, the nice thing about the bAbI dialogue
dataset is that it comes with an out-of-vocabulary
(OO0V) test set in which the entities (locations and
food types) are not seen in any training dialogues.
This poses exactly the same problem we are try-
ing to address in this paper, namely predicting the
API call parameters when they are not only un-
seen but also unknown to the system. Many of

1453

the previous E2E approaches simplifies the pre-
diction problem as a selection among all API calls
appeared in the entire dataset, thus bypassing the
problem of tracking unknown dialogue states ex-
plicitly, although we believe it is not a realistic
simplification.

6.2 Model and Training Details

The proposed model is implemented in Tensor-
Flow. We use the provided development set to tune
the hyper-parameters, track the training progress
and select the best performing model for reporting
the accuracy on test sets. The joint architecture is
trained separately for each slot type by minimizing
the sum of the cross entropy loss from the PtrNet
and the classifier. Mini-batch SGD with a batch
size of 50 and Adam optimizer (Kingma and Ba,
2014) is used for training.

Each word is mapped to a randomly initialized
100 dimensional embedding and each dialogue in-
stance is represented as a 540 * 100 dimensional
vector with zero paddings on the left when neces-
sary. Instead of the using the raw word sequences,
the system utterances are replaced by the more
succinct and consistent dialogue act representa-
tions such as “request slot food”. One layer of
LSTM is used with a state size of 200 (additional
layers did not help noticeably). Standard dropout
with a keep probability of 0.5 is performed for
training at the input and output of the LSTM cells.
To keep it simple, targeted dropout is done only
once for the entire training set before training be-
gins, the dataset is therefore static across epochs.

To train the PtrNet, the location of the reference
slot value in the dialogue needs to be provided. It
does not require manual labeling though, and we
simply use the last occurrence of the reference slot
value in the dialogue history as the reference lo-
cation. The occurrence is found via exact string
match and the two most frequent spelling varia-
tions, “moderate” and “moderately”, “center” and
“centre” are considered equivalent. If no occur-
rence exists in a training instance (due to ASR er-
rors or rephrasing), it will not be used for training
the PtrNet.

On the other hand, the classifier serves as a gate-
keeper that decides which slot values should be
handed over to the PtrNet. On the bADbI dataset,
there are zero non-pointable slots, and therefore
everything is handled by the PtrNet. On DSTC2,
we train the classifier to perform a three-way clas-

sification that determines if the slot values is none,
dontcare or other. As we have described, other slot
values can also become non-pointable in the ac-
tual dialogue: Those resulting from different sur-
face forms are usually easier to handle, all we need
is an extra post-processing step to normalize the
value; The ones caused by ASR errors though,
are much more challenging. One can argue that
a classifier may be better equipped for these cases
since it does not require locating the actual values
in the word sequence, but unless there are consis-
tent misrecognition patterns, they are difficult to
handle for either the classifier or the PtrNet.

The non-pointable values in DSTC2, besides
none and dontcare, are predominantly due to
recognition errors, and we decide not to do any-
thing specific about them — the PtrNet is tasked
with processing these misrecognized utterances,
and no normalization (except for “moderately”
and “center”) is performed on the network output
for computing the accuracy. 3

6.3 Evaluation Setup

The DSTC2 dataset is a standard benchmark for
the task, we therefore compare the joint goal ac-
curacy (a turn is considered correct if values are
predicted correctly for all slots) of the proposed
model with previous reported numbers to show
the efficacy of our approach under regular circum-
stances, i.e. all slot values are known and observed
in training. However, it is not our goal to outper-
form all previous DST systems — the main theme is
that our technique allows identifying unknown slot
values effectively and even if used in the standard
setting, our model yields state-of-the-art results.

Measuring the accuracy on unknown slot val-
ues, however, does not have well-established base-
lines in the literature. Most previous systems are
not concerned with this problem, and many of
them are inherently not capable of outputting un-
known values. So instead of comparisons with
previous techniques, we will focus on demonstrat-
ing how this could be a serious problem tracking
unknown slot values and how the targeted dropout
can improve things drastically.

6.4 Results

The joint goal accuracy on the standard DSTC2
test set is shown in Table 3 comparing our Ptr-

*Non-pointable values besides none and dontcare consti-
tute 9.7% of food, 7.6% of location and 4.7% of price on the
test data, effectively setting an upper bound on the accuracy.

1454

Models Joint Acc.
Delexicalizaed RNN 69.1
Delexicalizaecd RNN + semdict 72.9
NBT-DNN 72.6
NBT-CNN 734
MemN2N 74.0
Scalable Multi-domain DST 70.3
PtrNet 72.1

Table 3: Joint goal accuracy on DSTC?2 test set vs.
various approaches as reported in the literature.

Net based model against various previous reported
baselines.

It is important to emphasize that the PtrNet
model is an E2E model without using any SLU
output and makes use of only the 1-best ASR
hypothesis without any confidence measure for
testing. Although more sophisticated DST mod-
els sometimes demonstrate better accuracy, our
PtrNet model holds various advantages against
all baseline models: In comparison with our ap-
proach, the delexicalized RNN models (Hender-
son et al., 2014b,c) utilize the n-best list and/or the
SLU output; The NBT (Mrksic et al., 2017) and
MemN2N (Perez and Liu, 2017) models are E2E
but both depend on candidate lists as given and
hence are not designed to handle unknown (differ-
ent from unseen) slot values; The scalable DST
model (Rastogi et al., 2018), although address-
ing the same problem of unbounded value set, re-
lies on SLU to generate value candidates, and also
does not perform equally well on the standard test
set.

On the modified DSTC2 dataset with the re-
duced training set, the accuracy of the known/seen
and unknown food types is shown in Figure 3.
The standard training process with no targeted
dropout performs poorly when the food types are
not known beforehand, epitomizing the often over-
looked challenge of handling unknown slot values.
With a small dropout probability of 5%, the accu-
racy on unknown values essentially increases by
three times (from 11.6% to 34.4%), while the ac-
curacy on other values remains roughly the same.

Similar observations can also be made on the
bADbI dataset predicting OOV API parameters (Ta-
ble 4). While the dataset is quite artificial and in
most cases we can achieve perfect accuracy on the
regular test set, the OOV parameter values are not
nearly as easy to predict. The targeted dropout

90 85.2 842 84.5 82.1

80
70
60

50
40 34.4

Accuracy

30 £21.3
20 1.6

0 0.025 0.05 0.075 0.1

Dropout Probability
W Known/Seen Values (6882) @ Unknown Values (3008)

Overall (9890)
Figure 3: Accuracy of known/seen and unknown
food types on the modified DSTC2 dataset with
different dropout probabilities.

Regular Test | OOV Test
p=0 | p=0.1 | p=0 | p=0.1

food 100 100 | 86.2 | 100
location | 100 100 | 747 | 99.6

Table 4: Accuracy of predicting regular and OOV
food and location parameters in bAbI (Task 5) API
calls w/ (p=0.1) and w/o (p=0) targeted dropout.

however, allows us to bridge the accuracy gap en-
tirely.

7 Conclusion

An E2E dialogue state tracker is introduced based
on the pointer network. The model outputs slot
values in an extractive fashion similar to the
slot filling task in SLU. We also add a jointly
trained classification component to combine with
the pointer network, forming a hybrid architec-
ture that not only achieves state-of-the-art accu-
racy on the DSTC2 dataset, but also more im-
portantly is able to handle unknown slot values,
which is a problem often neglected although par-
ticularly valuable in real world situations. A fea-
ture dropout trick is also described and proves to
be particularly effective.

Acknowledgments

We are grateful to the anonymous reviewers for
their insightful comments. We also would like to
thank Mei-Yuh Hwang for helpful discussions.

References

Antoine Bordes and Jason Weston. 2016. Learning
end-to-end goal-oriented dialog. In CoRR.

1455

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Chen Yun-Nung, Faisal Ahmed, and Deng Li. 2017.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL).

Mihail Eric and Christopher Manning. 2017a. A copy-
augmented sequence-to-sequence architecture gives
good performance on task-oriented dialogue. In
arXiv preprint arXiv:1701.04024v3 [cs.CL].

Mihail Eric and Christopher Manning. 2017b. Key-
value retrieval networks for task-oriented dialogue.
In arXiv preprint arXiv:1705.05414v2 [cs.CL].

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2014a. The second dialog state tracking
challenge. In 15th Annual Meeting of the Special
Interest Group on Discourse and Dialogue.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014b. Robust dialosg state tracking using
delexicalised recurrent neural networks and unsu-
pervised adaptation. In Proceedings of IEEE Spoken
Language Technology..

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014c. Word based dialog state tracking
with recurrent neural networks. In Proceedings
of the 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL).

Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. In arXiv preprint
arXiv:1207.0580v1 [cs.NE].

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng
Gao, and Asli Celikyilmaz. 2017. End-to-end
task-completion neural dialogue systems. In arxiv
preprint arXiv:1703.01008v3 [cs.CL].

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2017. End-to-end op-
timization of task-oriented dialogue model with
deep reinforcement learning. In arxiv preprint
arXiv:1711.10712v2 [cs.CL].

Metallinou Metallinou, Dan Bohus, and Jason
Williams. 2013. Discriminative state tracking for
spoken dialog systems. In Proceedings of the 51th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Nikola Mrksic, Diarmuid Seaghdha, Blaise Thomson,
Milica Gasic, Pei-Hao Su, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2015. Multi-domain
dialog state tracking using recurrent neural net-
works. In Proceedings of the 53th Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Nikola Mrksic, Diarmuid Seaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017.
Neural belief tracker: Data-driven dialogue state
tracking. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Julien Perez and Fei Liu. 2017. Dialog state tracking,
a machine reading approach using memory network.
In Proceedings of EACL.

Abhinav Rastogi, Dilek Hakkani-Tur, and Larry Heck.
2018. Scalable multi-domain dialogue state track-
ing. In arXiv preprint arXiv:1712.10224v2 [cs.CL].

Abigail See, Peter Liu, and Christopher Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Gokhan Tur and Renato De Mori. 2011. Spoken Lan-
guage Understanding: Systems for Extracting Se-
mantic Information from Speech. Wiley.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In NIPS.

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer. In
arXiv preprint arXiv:1608.07905v2 [cs.CL].

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of EACL.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2014. Memory networks. In CoRR.

Jason Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In Proceedings of the SIGDIAL 2013
Conference.

Jason Williams and Geoffrey Zweig. 2016. End-to-
end Istm-based dialog control optimized with super-
vised and reinforcement learning. In arxiv preprint
arXiv:1606.01269v1 [cs.CL].

1456

Puyang Xu and Ruhi Sarikaya. 2014. Targeted feature
dropout for robust slot filling in natural language un-
derstanding. In ISCA - International Speech Com-
munication Association.

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards
end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In
Proceedings of SIGDIAL 2016 Conference.

Lukas Zilka and Filip Jurcicek. 2015. Incremental
Istm-based dialog state tracker. In ASRU.

1457

