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Abstract

In social media, demographic inference is
a critical task in order to gain a better un-
derstanding of a cohort and to facilitate in-
teracting with one’s audience. Most pre-
vious work has made independence as-
sumptions over topological, textual and la-
bel information on social networks. In
this work, we employ recursive neural net-
works to break down these independence
assumptions to obtain inference about de-
mographic characteristics on Twitter. We
show that our model performs better than
existing models including the state-of-the-
art.

1 Introduction

Social media is a popular public platform for com-
municating, sharing information and expressing
opinions. Millions of users discuss a variety of
topics such as politics or sports. Valuable insights
can be obtained by analysing social media content
(e.g., mining consumer preferences), and, conse-
quently, social media data is now a valuable re-
source. Accordingly, social media analytics have
received much attention among researchers and
companies (Wan and Paris, 2014; Valdes et al.,
2015; Zubiaga et al., 2016).

Inferring demographic characteristics from so-
cial media is a useful mechanism to gain a bet-
ter understanding of a cohort and one’s audi-
ence, and to facilitate interacting with that audi-
ence. Many researchers have studied ways to in-
fer demographic attributes of Twitter users, such
as age (Mislove et al., 2011; Mohammady Arde-
haly and Culotta, 2015), gender (Filippova, 2012;
Taniguchi et al., 2015), occupation (Preoţiuc-
Pietro et al., 2015; Kim et al., 2016), location (Jur-
gens et al., 2015; Jayasinghe et al., 2016) or politi-

cal preferences (Volkova et al., 2014; McCormick
et al., 2015).

A common approach to infer demographic char-
acteristics is the use of supervised classifiers
trained on textual features. The main limitation
of this approach is that it makes little use of the
network topology. Several network embedding
methods have been proposed to learn distributed
dense representations for vertices in graphs: Deep-
Walk (Perozzi et al., 2014) or LINE (Tang et al.,
2015). While these two models can capture the
topological structure of social networks, their per-
formances are still limited, as the text features
associated with vertices are not considered. For
instance, text messages that Twitter users post,
tweets, can offer great potential to enhance the ver-
tex embeddings. Yang et al. (2015) proposed the
Text-Associated DeepWalk (TADW) to enhance
the discriminative power of the vertex embeddings
by incorporating the text information into the em-
bedding generation process. Although this matrix
factorisation framework is effective on the vertex
classification task, it can produce suboptimal em-
beddings. This is because the label information
is not exploited in the unsupervised framework.
More recently, Pan et al. (2016) proposed the Tri-
Party Deep Network Representation (TriDNR),
a method that incorporates the label information
in addition to the text and topological informa-
tion. However, in TriDNR, the text in a vertex
is assumed to be independent of neighbour ver-
tices. Furthermore, the two optimisation problems
(learning vertex embeddings and training discrim-
inative classifiers) are tackled separately. This is
also true of TADW.

In this paper, we tackle the problem of infer-
ring demographic characteristics from social net-
works as a vertex classification task on graphs. We
employ recursive neural networks (RNNs) to in-
fer three demographic attributes of Twitter users

471

https://doi.org/10.18653/v1/P17-2075
https://doi.org/10.18653/v1/P17-2075


1
4

2

6

3

5

(a) Graph

1

4

2

6

3

5

(b) Tree

RNU1

RNU4

RNU2

RNU6

RNU3

RNU5

softmax

x4

x1

h1

x5x6

h6
h4 h5

h3h2

x2 x3

(c) GRNN

Figure 1: An illustration of GRNN construction steps: (a) The graph consisting of six vertices; (b) The
tree converted from the graph using breadth-first search; (c) The GRNN constructed from the tree. The
target vertex is marked in red.

(age, gender and user type) based on network
topology, text content and label information. Our
model breaks down the independence assumption
by leveraging RNNs on paths in graphs. We show
that our model achieves better performance com-
pared to existing models including the state-of-
the-art. While high performance is achieved using
solely neural network models, more importantly,
we find that different demographic inference tasks
benefit to varying the topological size of RNNs.
To our knowledge, there has been little previous
work applying neural network based methods to
the problem of inferring social media demograph-
ics.

2 Graph Recursive Neural Networks

RNNs are deep learning models that recursively
compose the vector of a parent unit from those of
child units over a given structure in topological or-
der (Pollack, 1990). They have shown to be very
effective for various natural language process-
ing (NLP) tasks, capturing syntactic and seman-
tic composition (Socher et al., 2011; Qian et al.,
2015). In this section, we describe the framework
of Graph RNNs (GRNNs) (Xu et al., 2017) to clas-
sify the vertices of a graph. This framework allows
us to infer the demographic characteristics of so-
cial media users.

We formally define the problem of Twitter ver-
tex classification as follows: A Twitter social net-
work is defined as G = (V,E), where V is the
set of vertices (users) and E is the set of edges
(relationships) between the vertices. Each edge
e ∈ E is an ordered pair e = (vi, vj), where
vi, vj ∈ V , that is unweighted1 (wij = 0) but di-

1While the edges in the Twitter social network can be
weighted (e.g., based on the importance of relationship), we
only take into account an unweighted social network in this
study.

rected ((i, j) 6≡ (j, i)). Each vi is associated with
a pair of (xi, yi), where xi ∈ X is a feature vector
and yi ∈ Y is a particular label that depends on xi.
X and Y thus denote a set of feature vectors and a
set of possible predicted labels in G, respectively.
Our goal is then to predict the most likely label
ŷt ∈ Y for vt ∈ V , which is the target vertex to
be classified: ŷt = argmaxyt∈Y Pθ(yt|vt, G,X )
using a RNN with parameters θ.

GRNNs contain five components that will be
presented in this section: 1) Graph-to-Tree Con-
version, 2) Word Embedding layer, 3) Recursive
Neural Unit layer and 4) Softmax Output layer, as
illustrated in Figure 1.

2.1 Graph-to-Tree Conversion
A graph is converted to tree structures before con-
structing a RNN for each tree. Specifically, we
construct a tree T = (VT , ET ) of depth d rooted
at vt using a breadth-first search algorithm from
G. VT and ET are the sets of vertices and edges
in the tree. (v, w) ∈ ET denotes an edge from a
parent vertex v to a child vertex w.

2.2 Word Embeddings
Let Si = {w1, w2, ..., wR} be texts (e.g., tweets)
consisting of R words, which are associated with
a vertex vi. Every word wr is converted into a
real-valued vector er by looking up the embed-
ding matrix E ∈ Rdw|V |, where dw is the size
of word embedding and |V | is a vocabulary size.
The matrix E is initialised using the Skip-gram
model (Mikolov et al., 2013). Si is then fed into
the next layer as a real-valued feature vector xi =
{e1, e2, ..., eR}.
2.3 Recursive Neural Units
Once we construct a tree from a graph, we build
a RNN using one of two types of recursive neu-
ral units (RNUs) for each vertex vk ∈ T : Naive
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Recursive Neural Unit (NRNU) and Long Short-
Term Memory Unit (LSTMU).

2.3.1 Graph Naive Recursive Neural Net
Each NRNU for a vertex vk take its feature vector
xk and a hidden state h̃k as input. Max pooling
produces h̃k from all hidden state vectors hr of the
child vertices vr of vk.2 A hidden state vector hk
of vk is obtained using weight matrices, followed
by a non-linear function tanh:

h̃k = max
vr∈C(vk)

{hr}

hk = tanh(W (h)xk + U (h)h̃k + b(h))

where C(vk) is the set of child vertices of vk (vr ∈
C(vk)) and hr is a hidden state of a child vertex vr.
W (h) and U (h) are weight matrices, and b(h) is a
bias vector for model parameters. In this paper, we
refer to Graph Naive Recursive Neural Network as
GNRNN incorporating NRNU as a RNU.

2.3.2 Graph Long Short-Term Memory Net
LSTMU (Hochreiter and Schmidhuber, 1997) was
originally proposed to tackle a sequential labelling
problem and it is able to model long-range depen-
dencies by incorporating gated memory cells. At
each time step, LSTMU takes the sequential input
vector and the previous hidden state vector to pro-
duce the next hidden state. In this study, LSTMU
is employed as a RNU to represent a vertex in a
tree, and it naturally captures the relationships be-
tween vertices.

For a vertex vk, LSTMU takes xk and h̃k as in-
put, and generates the input, forget and output gate
signals, denoted as ik, fk and ok respectively. It
produces a memory cell state ck and hidden state
hk with respect to a vertex vk:

h̃k = max
vr∈C(vk)

{hr}

c̃k = tanh(W (c)xk + U (c)h̃k + b(c))

ik = σ(W (i)xk + U (i)h̃k + b(i))

fkr = σ(W (f)xk + U (f)hr + b(f))

ok = σ(W (o)xk + U (o)h̃k + b(o))

ck = ik � c̃k +
∑

vr∈C(vk)

fkr � cr

hk = ok � tanh(ck)

where � refers to element-wise product and σ in-
dicates the sigmoid function. W (∗), U (∗) and b(∗)

2Our preliminary results demonstrated that the max pool-
ing strategy achieved better performance than sum and aver-
age poolings.

Dataset Gender Age UserType
Users |V | 5,367 6,482 3,017

Relationships |E| 5,088 6,514 38,785
Labels |Y | 2 2 3

Avg. degree 1.90 2.01 25.71
Num. texts 383,425 701,889 3,017
Vocab size 12,558 20,946 615

Table 1: Statistics of the three Twitter social net-
works. Num. texts indicates the number of tweets
for Gender and Age, and the number of profile de-
scriptions for UserType.

are LSTM parameters. We call a tree-structured
network topology consisting of LSTMUs as Graph
Long Short-Term Memory Net (GLSTMN).

2.4 Softmax Output

At the end, the hidden state ht is fed into a softmax
classifier to predict the label yt of the target vertex
vt after calculating the hidden states of all vertices
in T : Pθ(yt|vt, G,X ) = softmax(W (s)ht+b

(s))
ŷt = argmaxyt∈Y Pθ(yt|vt, G,X ).

3 Experimental Setup

In this section, we provide an overview of datasets
and the models that are evaluated in the experi-
ments.

3.1 Datasets

We evaluate the effectiveness of our model on
three types of social networks: gender, age and
user type classification. Twitter users follow oth-
ers or are followed, and two types of relationships
are used to build the social networks: friend and
follower. A user is associated with others via the
following relationship, the user’s friend in Twit-
ter’s terminology. Follower relationships indicate
that a user receives all the tweets from those the
user follows.

• Gender (Volkova, 2014) is a Twitter social
network encoding friend relationships be-
tween users. The labels of this network are
Male and Female.

• Age (Volkova, 2014) is a Twitter social net-
work encoding friend relationships between
users. The labels of this network are Young
(18-23 years old) and Old (25-30 years old).

• UserType (Kim et al., 2017) is a Twitter so-
cial network encoding follower relationships
between users. The labels represent the types
of Twitter users: Individual, Organisation
and other.
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To generate text features of vertices, up to 1K
tweets per user are used in Gender and Age,
whereas Twitter user profile descriptions are used
in UserType. All words are stemmed, and then
stop words and words with document frequency
less than 10 are removed. The statistics of the
datasets are summarised in Table 1.

3.2 Evaluated Models

We compare the GRNN model with several exist-
ing models to assess vertex classification perfor-
mance.

• Lexica (LX) (Sap et al., 2014): a lexicon-
based method produced from Twitter to cal-
culate the scores of gender and age. These
scores are used to predict their labels for
users.

• Logistic Regression (LR) (Hosmer Jr et al.,
2013): a commonly used linear model in the
NLP community, only using textual contents
in vertices. Bag-of-words feature vectors are
generated without incorporating any topolog-
ical information of a network.

• Label Propagation (LP) (Wang and Zhang,
2006): a graph-based semi-supervised learn-
ing model, where label probabilities are prop-
agated to all unlabelled neighbours. The
probability derivation steps are terminated for
the remaining vertices when all label proba-
bilities converge.

• Text-Associated DeepWalk (TADW) (Yang
et al., 2015): an unsupervised vertex embed-
ding learning method. Low-dimensional rep-
resentations of vertices are induced both from
their texts and graph relationships based on
inductive matrix factorisation.

• Tri-Party Deep Network Representation
(TriDNR) (Pan et al., 2016): two neural net-
works incorporating the texts, relationships
and labels of vertices in graphs. As in TADW,
unlabelled vertices are classified using Sup-
port Vector Machines (SVMs) (Cortes and
Vapnik, 1995) trained on learned vertex em-
beddings.

3.3 Experiment Settings

In our experiments, we follow the standard ex-
perimental protocol for vertex classification task.
More specifically, we evaluate classification ac-

Labelled Nodes 20% 40% 60% 80%
LX 50.72 50.35 53.29 57.37
LR 57.37 59.91 61.97 62.37
LP 55.92 60.53 60.39 61.05

TADW 53.07 50.93 54.04 51.47
TriDNR 50.99 49.56 48.03 56.58

GNRNN d0 57.37 61.67 63.03 65.79
GNRNN d1 57.76 61.84 63.55 66.05
GNRNN d2 57.76 61.84 63.55 66.05

GLSTMN d0 58.29 63.68 64.21 68.16
GLSTMN d1 57.37 62.46 63.95 68.16
GLSTMN d2 57.37 62.46 63.95 68.16

Table 2: Vertex classification results on Gender
(e.g., GNRNN with depth 1 is represented by GN-
RNN d1). Numbers in bold represent the highest
performance in each column in all tables.

Labelled Nodes 20% 40% 60% 80%
LX 50.10 50.69 46.76 47.95
LR 67.75 71.15 72.97 73.70
LP 67.47 71.61 71.86 73.97

TADW 66.81 68.80 69.31 68.89
TriDNR 58.13 57.60 49.66 57.53

GNRNN d0 72.46 74.56 74.62 74.79
GNRNN d1 72.53 71.61 76.69 75.89
GNRNN d2 72.46 71.98 76.14 76.44

GLSTMN d0 73.49 74.47 75.86 77.53
GLSTMN d1 73.91 75.02 77.93 80.82
GLSTMN d2 73.43 74.65 78.48 80.27

Table 3: Vertex classification results on Age.

curacy3 with different training ratios, increasing
from 20% to 80%. For each training ratio, we ran-
domly generate 5 different training datasets. For
each training dataset, we run 10 trials and record
the highest accuracy on each testing dataset. We
then report the average accuracy for the same ratio
of training datasets.

We test six different model architectures us-
ing NRNU and LSTMU with three different tree
depths (d = 0 , d = 1 , d = 2 ). The tree depth
corresponds to the number of hops between users
in a social network. For all the GRNN models, the
size of the hidden units is set to 200. We use Ada-
grad (Duchi et al., 2011) with a batch size of 20 as
the optimisation method that automatically adapts
the learning rate in training. The initial learning
rate is set to 0.1 for LR and LP, and 0.01 for all
GRNNs.

4 Results and Analysis

In this section, we present the experimental results
and analysis on vertex classification for the three

3We report accuracy following previous work for Age and
Gender datasets, consisting of balanced label distributions.
Although UserType is imbalanced, accuracy is reported in
this paper for simplicity and consistency. Previous work also
reports classification accuracy for this task.
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Labelled Nodes 20% 40% 60% 80%
LR 74.76 76.18 76.98 77.91
LP 73.41 74.50 75.99 75.33

TADW 72.62 75.67 76.43 75.69
TriDNR 74.90 77.91 80.37 81.62

GNRNN d0 77.02 77.96 78.51 79.21
GNRNN d1 73.97 77.10 78.66 79.37
GNRNN d2 NA NA NA NA

GLSTMN d0 77.16 78.63 79.40 79.77
GLSTMN d1 72.41 76.51 78.53 80.46
GLSTMN d2 NA NA NA NA

Table 4: Vertex classification results on UserType.
NA stands for “Not Available”.

networks. Numbers in bold represent the highest
performance in each column in all tables.

As shown in Table 2, GNRNN and GLSTMN
perform better than the evaluated models for the
task of gender prediction, with no performance
gain when the depth of the tree is increased.
Namely, GLSTMN d0 is the best performing
model for this task. Table 3 shows that GLSTMN
also achieves the best performance for age pre-
diction. For this task, however, performance in-
creases with the depth of the tree. For the task of
user type classification, Table 4 shows that we at-
tain the best performance with tree depth d = 1
for GLSTMN for the training ratio of 80%. Note
that we could not train the GRNN models with tree
depth 2 (GNRNN d2 and GLSTMN d2) on the
UserType dataset on our Linux server with 64G
memory due to the lack of memory. As shown in
Table 1, the average degree of UserType is roughly
10 times larger than that of Gender or Age. The
degree of a vertex in a graph indicates the num-
ber of edges connected to adjacent vertices. It
means that the GRNN models could have approx-
imately 625 (= 25 × 25) vertices in average for
the tree depth of 2. Our experiments show that a
dense graph consisting of high degree vertices is
intractable under the GRNN model.

Interestingly, LR and LP are effective meth-
ods for Gender and Age compared to TADW and
TriDNR. In particular, TADW performs poorly
on Gender, and TriDNR marginally outperforms
GLSTMN on the dense social network, UserType.

To summarise, we observed four findings:

1. The GRNN models (GNRNN and GLSTMN)
overall outperform the existing models by a
noticeable margin in most cases (except for
UserType), showing the benefit of RNNs for
social network inferences on vertices.

2. The LSTM unit in GLSTMN gives superior

performance over the NRN unit in GNRNN
regardless of datasets. Our results are in line
with other findings, showing that the LSTM
works consistently better than the standard
recurrent neural network.

3. GRNNs have different optimal tree depths for
each demographic inference task. Tree depth
does not improve inference performance for
Gender, indicating that only text informa-
tion is sufficient without incorporating net-
work information. For age, tree depth al-
lows GRNNs to be more effective although
its increase does not consistently lead to bet-
ter performance for GLSTMN. Similarly, tree
depth increases the performance of GRNNs
for UserType. We hypothesise this may be re-
lated to the nature of social interactions (e.g.,
Twitter users in the similar age group are
more likely to interact).

4. The matrix factorisation-based methods
(TADW and TriDNR) relatively work
well on datasets having high degree vertices,
whereas the GRNN models achieve relatively
good performance on graphs containing low
degree vertices.

5 Conclusions and Future Work

In this paper we tackled the demographic infer-
ence problem on Twitter as vertex classification
on a graph using GRNNs, demonstrating their
effectiveness against strong models for selected
datasets. The RNN framework provides an ef-
fective way to incorporate network, text and label
information for Twitter demographic inference.
However, different demographic inference tasks
benefit to varying the tree depth of GRNN mod-
els.

As our future work, we plan to employ other
state-of-the-art deep learning models (Yang et al.,
2016; Kipf and Welling, 2017) that vary in the
nature of the dependency between network, text
and label information for demographic inference
to confirm the effectiveness of our proposals.
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