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Abstract

Zero-shot methods in language, vision and
other domains rely on a cross-space map-
ping function that projects vectors from
the relevant feature space (e.g., visual-
feature-based image representations) to a
large semantic word space (induced in
an unsupervised way from corpus data),
where the entities of interest (e.g., objects
images depict) are labeled with the words
associated to the nearest neighbours of the
mapped vectors. Zero-shot cross-space
mapping methods hold great promise as a
way to scale up annotation tasks well be-
yond the labels in the training data (e.g.,
recognizing objects that were never seen
in training). However, the current perfor-
mance of cross-space mapping functions
is still quite low, so that the strategy is
not yet usable in practical applications.
In this paper, we explore some general
properties, both theoretical and empirical,
of the cross-space mapping function, and
we build on them to propose better meth-
ods to estimate it. In this way, we attain
large improvements over the state of the
art, both in cross-linguistic (word trans-
lation) and cross-modal (image labeling)
zero-shot experiments.

1 Introduction

In many supervised problems, the parameters of
a classification function are estimated on (x, y)
pairs, where x is a vector representing a training
instance in some feature space, and y is the label
assigned to the instance. For example, in image
labeling x contains visual features extracted from
a picture and y is the name of the object depicted
in the picture (Grauman and Leibe, 2011). Since
each label is treated as an unanalyzed primitive,

this approach requires ad-hoc annotation for each
label of interest, and it will not scale up to chal-
lenges where the potential label set is vast (for ex-
ample, bilingual dictionary induction, where the
label set corresponds to the full vocabulary of the
target language).

Zero-shot methods (Palatucci et al., 2009) ad-
dress the scalability problem by building on the
observation that the labels of interest are often
words (or longer linguistic expressions), which
stand in a semantic similarity relation to each
other. Moreover, distributional approaches allow
us to estimate very large semantic word spaces
in an efficient and unsupervised manner, using
just unannotated text corpora as input (Turney and
Pantel, 2010). Extensive evidence has shown that
the similarity estimates obtained by representing
words as vectors in such corpus-induced seman-
tic spaces are extremely accurate (Baroni et al.,
2014). Under the assumption that the domain of
interest (e.g., objects in pictures, words in a source
language) exhibits comparable similarity structure
to that manifested in language, we can rephrase the
learning task, from inducing multiple functions
from the source feature space onto independent
atomic labels, to that of estimating a single cross-
space mapping function from vectors in the source
feature space onto vectors for the corresponding
word labels in distributional semantic space. The
induced function can then also be applied to a
data-point whose label was not used for training.
The word corresponding to the nearest neighbour
of the mapped vector in the latter space is used
as the label of the data point. Zero-shot learn-
ing using distributional semantic spaces was origi-
nally proposed for brain signal decoding (Mitchell
et al., 2008), but it has since been extensively ap-
plied in other domains, including image labeling
(Frome et al., 2013; Lazaridou et al., 2014; Socher
et al., 2013) and bilingual dictionary/phrase table
induction (Dinu and Baroni, 2014; Mikolov et al.,
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2013a), the two applications we focus on here.

Effective zero-shot learning by cross-space
mapping could get us through the manual anno-
tation bottleneck that hampers many applications.
However, in practice, the accuracy in label re-
trieval with current mapping methods is still too
low for practical uses. In image labeling, when
a search space of realistic size is considered, ac-
curacy is just above 1% (which is still well above
chance for large search spaces). In bilingual lex-
icon induction, accuracy reaches values around
30% (across words of varying frequency), which
are definitely more encouraging, but still indicate
that only 1 word in 3 will be translated correctly.

In this article, we look at some general prop-
erties of the linear cross-modal mapping function
standardly used for zero-shot learning, in order
to achieve a better understanding of its shortcom-
ings, and improve its quality by devising meth-
ods to overcome them. First, when the mapping
function is estimated with least-squares error tech-
niques, we observe a systematic increase in hub-
ness (Radovanović et al., 2010b), that is, in the
tendency of some vectors (“hubs”) to appear in the
top neighbour lists of many test items. We connect
hubness to least-squares estimation, and we show
how it is greatly mitigated when the mapping func-
tion is estimated with a max-margin ranking loss
instead. Still, switching to max-margin greatly
improves accuracy in the cross-linguistic context,
but not for vision-to-language mapping. In the
cross-modal setting, we observe indeed a differ-
ent problem, that we name (training instance) pol-
lution: The neighbourhoods of mapped test items
are “polluted” by the target vectors used in train-
ing. This suggests that cross-modal mapping
suffers from overfitting issues, and consequently
from poor generalization power. Taking inspi-
ration from domain adaptation, which addresses
similar generalization concerns, and self-learning,
we propose a technique to augment the training
data with automatically constructed examples that
force the function to generalize better. Having
shown the advantages of a ranking loss, our fi-
nal contribution is the adaptation of some insights
from the max-margin literature to our setting, in
particular concerning the choice of negative ex-
amples. This leads to further accuracy improve-
ments. We thus conclude the paper by reporting
zero-shot performances in both cross-modal and
cross-language settings that are well above the cur-

cross-linguistic cross-modal
former state of art 33.0 0.5
standard mapping 29.7 1.1
max-margin - §3 39.4 1.9
data augmentation - §4 NA 3.7
negative evidence - §5 40.2 5.6

Table 1: Roadmap. Proposed changes to cross-
space mapping training and resulting percentage
Precision @1 in our two experimental setups.

rent state of the art. Table 1 provides a roadmap
and summary of our results.

2 Experimental Setup

Cross-linguistic experiments In the cross-
linguistic experiments, we learn a mapping from
the semantic space of language A to the semantic
space of language B, which can then be used for
translating words outside the training set. Specifi-
cally, given the vector representation of a word in
language A, we apply the mapping to obtain an
estimate of the vector representation of its mean-
ing in language B, returning the nearest neigh-
bour of the mapped vector in the B space as can-
didate translation. We focus on translating from
English to Italian and adopt the setup (word vec-
tors, training and test data) of Dinu et al. (2015).
For a set of 200K words, 300-dimensional vectors
were built using the word2vec toolkit,1 choosing
the CBOW method.2 CBOW, which learns to pre-
dict a target word from the ones surrounding it,
produces state-of-the-art results in many linguis-
tic tasks (Baroni et al., 2014). The word vectors
were induced from corpora of 2.8 and 1.6 billion
tokens, respectively, for English and Italian.3 The
train and test English-to-Italian translation pairs
were extracted from a Europarl-derived dictionary
(Tiedemann, 2012).4 The 5K most frequent trans-
lation pairs were used for training, while the test
set includes 1.5K English words equally split into
5 frequency bins. The search for the correct trans-
lation is performed in a semantic space of 200K

1https://code.google.com/p/word2vec/
2Other hyperparameters, which we adopted without fur-

ther tuning, include a context window size of 5 words to
either side of the target, setting the sub-sampling option to
1e-05 and estimating the probability of target words by neg-
ative sampling, drawing 10 samples from the noise distribu-
tion (Mikolov et al., 2013b).

3Corpus sources: http://wacky.sslmit.unibo.
it, http://www.natcorp.ox.ac.uk

4http://opus.lingfil.uu.se/

271



Italian words.5

Cross-modal experiments In the cross-modal
experiments, we induce a mapping from visual
to linguistic space. Specifically, given an image,
we apply the mapping to its visual vector repre-
sentation to obtain an estimate of its representa-
tion in linguistic space, where the word associated
to the nearest neighbour is retrieved as the image
label. Similarly to translation pairs in the cross-
linguistic setup, we create a list of “visual transla-
tion” pairs between images and their correspond-
ing noun labels. Our starting point are the 5.1K
labels in ImageNet (Deng et al., 2009) that oc-
cur at least 500 times in our English corpus and
have concreteness score ≥5, according to Turney
et al. (2011). For each label, we sample 100 pic-
tures from its ImageNet entry, and associate each
picture with the 4094-dimensional layer (fc7) at
the top of the pre-trained convolutional neural net-
work model of Krizhevsky et al. (2012), using the
Caffe toolkit (Jia et al., 2014). The target word
space is identical to the English space used in the
cross-linguistic experiment. Finally, we use 75%
of the labels (and the respective images) for train-
ing and the remaining 25% of the labels for test-
ing.6 From the 127.5K images corresponding to
test labels, we sample 1K images as our test set.
For zero-shot evaluation purposes, the search for
the correct label is performed in the space of 5.1K
possible labels, unless otherwise specified. How-
ever, when quantifying hubness and pollution, in
order to have a setting comparable to that of cross-
language mapping, we use the full set of 200K En-
glish words as search space.

Learning objectives We assume that we have
cross-space “translation” pairs available for a set
of |Tr| items (xi,yi) = {xi ∈ Rd1,yi ∈ Rd2}.
Moreover, following previous work, we assume
that the mapping function is linear. For estimat-
ing its parameters W ∈ Rd1×d2, we consider two
objectives. The first is L2-penalized least squares

5Faithful to the zero-shot setup, in our experiments there
is never any overlap between train and test words; however,
to make the task more challenging, we include the train words
in the search space, except where expressly indicated.

6At training time, we average the 100 vectors associated
to a label into a single representation, to reduce training set
size while minimizing information loss. At test time, as nor-
mally done, we present the model with single image visual
vectors.

(ridge):

Ŵ = argmin
W∈Rd1×d2

‖XW −Y‖+ λ‖W‖,

which has an analytical solution.
The second objective is a margin-based rank-

ing loss (max-margin) similar in spirit to the one
used in similar cross-modal experiments with WS-
ABIE (Weston et al., 2011) and DeViSE (Frome
et al., 2013). The loss for a given pair of train-
ing items (xi,yi) and the corresponding mapping-
based prediction ŷi = Wxi is defined as

k∑
j 6=i

max{0, γ + dist(ŷi,yi)− dist(ŷi,yj)},

where dist is a distance measure, in our case the
inverse cosine, and γ and k are tunable hyperpa-
rameters denoting the margin and the number of
negative examples, respectively. Intuitively, the
goal of the max-margin objective is to rank the
correct translation yi of xi higher than any other
possible translation yj . In theory, the summation
in the equation could range over all possible la-
bels, but in practice this is too expensive (e.g., in
the cross-linguistic experiments the search space
contains 200K candidate labels!), and it is usually
computed over just a portion of the label space.
In Weston et al. (2011), the authors propose an
efficient way of selecting negative examples, in
which they randomly sample, for each training
item, labels from the complete set, and pick as
negative sample the first label violating the mar-
gin. This guarantees that there will be exactly as
many weight updates as training items. Another
possibility is proposed in Mikolov et al. (2013b),
where negative samples are picked from a non-
item specific distribution (e.g., the uniform distri-
bution).7 For the experiments in Sections 3 and
4, we follow a more general setup in which the
size of the margin and number of negative sam-
ples is tuned for each task. In this way, for a
sufficiently large margin and number of negative
samples, we increase the probability of perform-
ing a weight update per training item. We estimate
the mapping parameters W with stochastic gradi-
ent descent and per-parameter learning rates tuned
with Adagrad (Duchi et al., 2011). The tuning of
hyperparameters γ and k is performed on a ran-
dom 25% subset of the training data.

7The notion of negative samples is not unique to margin-
based learning; in Mikolov et al. (2013b), the authors used it
to efficiently estimate a word probability distribution.
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Figure 1: Hubness distribution in cross-linguistic (left) and cross-modal (right) search spaces. The
hubness score (N20) is computed on the top-20 neighbour lists of the test items, using their original
(gold), ridge- or max-margin-mapped vectors as query terms.

3 Hubness

High-dimensional spaces are often affected by
hubness (Radovanović et al., 2010b; Radovanović
et al., 2010a), that is, they contain certain ele-
ments – hubs – that are near many other points
in space without being similar to the latter in any
meaningful way. As recently noted by Dinu et
al. (2015), the hubness problem is greatly exacer-
bated when one looks at the nearest neighbours of
vectors that have been mapped across spaces with
ridge.8 Given a set of query vectors with the cor-
responding top-k nearest neighbour lists, we can
quantify the degree of hubness of an item in the
search space (parameterized by k) by the number
of lists in which it occurs. Nk(y), the hubness at k
of an item y, is computed as follows:

Nk(y) = |{x ∈ T|y ∈ NNk(x, S)}|,

where S denotes the search space, T denotes the
set of query items and NNk(x,S) denotes the k
nearest neighbors of x in S.

Figure 1 reports N20 distributions across the
cross-linguistic and cross-modal search spaces,
using the respective test items as query vectors.
The blue line shows the distributions for the
“gold” vectors (that is, the vectors in the target
space we would like to approximate). The red line
shows the same distributions when neighbours are

8Dinu et al. (2015) observe, but do not attempt to under-
stand hubness, as we do here. They propose to address it with
methods to re-rank neighbour lists, which are less general and
should be largely complementary to our effort to improve es-
timation of the cross-mapping function.

Cross-linguistic Cross-modal
blockmonthon (50) smilodon (40)
hashim (28) pintle (33)
akayev (27) knurled (27)
autogiustificazione (27) handwheel (24)
limassol (26) circlip (23)
regulars (26) black-footed (23)
18 (25) flatbread (22)

Table 2: Top ridge hubs, together with N20

scores. Note that cross-linguistic hubs are sup-
posed to be Italian words.

queried for the ridge-mapped test vectors (ignore
black lines for now). In both spaces, when the
query vectors are mapped, hubness increases dra-
matically. The largest hubs for the original test
items occur in 15 neighbour lists or less. With
the mapped vectors, we find hubs occurring in
40 lists or more. The figure also shows that, in
both spaces, we observe more points with smaller
but non-negligible N20 (e.g., around 10) when
mapped vectors are queried. In both spaces, the
difference in hubness is very significant according
to a cross-tab test (p<10−30). Finally, as Table 2
shows, the largest hubs are by no means terms that
we might expect to occur as neighbours of many
other items on semantic grounds (e.g., very gen-
eral terms), but rather very specific and rare words
whose high hubness cannot possibly be a genuine
semantic property.

Causes of hubness Why should the mapping
function lead to an increase in hubness? We con-
jecture that this is due to an intrinsic property of
least-squares estimation. Given the training ma-
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trices X and Y, and the projection matrix W ob-
tained by minimizing squared error, each column
ŷ∗,i of Ŷ = XW is the orthogonal projection of
y∗,i, the corresponding Y column onto the col-
umn space of X (Strang, 2003, Ch. 4). Conse-
quently, y∗,i = εi + ŷ∗,i, where the εi error vector
is orthogonal to ŷ∗,i. It follows that ||y∗,i||2 ≥=
||ŷ∗,i||2. Since y∗,i and ŷ∗,i have equal means (be-
cause the error terms in εi must sum to 0), it imme-
diately follows from the squared length inequality
that ŷ∗,i has lower or equal variance to y∗,i. Since
this holds for all columns of Ŷ, it follows in turn
that the set of mapped vectors in Ŷ has lower or
equal variance to the corresponding set of origi-
nal vectors in Y. Coming back to hubness, a set
of lower variance points (such as the mapped vec-
tors) will result in higher hubness since the points
will on average be closer to each other. The prob-
lem is likely to be further exacerbated by the prop-
erty of least-squares to ignore relative distances
between points (the objective only aims at mak-
ing predicted and observed vectors look like each
other),

Strictly, the theoretical result only holds for the
training points. However, to the extent that the
training set is representative of what will be en-
countered in the test set, it should also extend
to test data (and if training and testing data are
very different, the mapping function will gener-
alize very poorly anyway). Moreover, the result
holds for a pure least-squares solution, without the
ridge L2 regularization term. Whether it also ap-
plies to ridge-based estimates will depend on the
relative impact of the least-squares and L2 terms
on the final solution (and it is not excluded that
the L2 term might also independently reduce vari-
ance, of course). Empirically, we find that, in-
deed, lower variance also characterizes test vectors
mapped with a ridge-estimated function.

Interestingly, in the literature on cross-space
mapping we find that authors choose a different
cost function than ridge, without motivating the
choice. Socher et al. (2014) mention in pass-
ing that max-margin outperforms a least-squared-
error cost for cross-modal mapping.

Max-margin as a solution to hubness Re-
ferring back to Figure 1, we see that when
ridge estimation is replaced by max-margin (black
line), there is a considerable decrease in hub-
ness in both settings. This is directly reflected
in a large increase in performance in our cross-

linguistic (English-to-Italian) zero-shot task (left
two columns of Table 3), with the largest im-
provement for the all important P@1 measure
(equivalent to accuracy).9 These results are well
above the current best cross-language accuracy for
cross-modal mapping without added orthographic
cues (33%), attained by Mikolov et al. (2013a).10

The absolute performance figures are low in the
challenging cross-modal setting, but here too we
observe a considerable improvement in accuracy
when max-margin is applied. Indeed, we are al-
ready above the cross-modal zero-shot mapping
state of the art for a search space of similar size
(0.5% accuracy in Frome et al. (2013)). Still, the
improvement over ridge (while present) is not as
large for the less strict (higher ranks) performance
scores.

Table 4 confirms that the improvement brought
about by max-margin is indeed (at least partially)
due to hubness reduction. A large proportion
of vectors retrieved as top-1 predictions (trans-
lations/labels) are hubs when mapping is trained
with ridge, but the proportion drops dramatically
with max-margin. Still, more than 1/5 top predic-
tions for cross-modal mapping with max-margin
are hubs (vs. less than 1/10 for the original vec-
tors). Now, the mathematical properties we re-
viewed above suggest that, for least-squares es-
timation, hubness is caused by general reduced
variance of the space after mapping. Thus, hubs
should be vectors that are near the mean of the
space. The first row of Table 5 confirms that
the hubs found in the neighbourhoods of ridge-
mapped query terms are items that tend to be
closer to the search space mean vector, and that
this effect is radically reduced with max-margin
estimation. However, the second row of the table
shows another factor at play, that has a major role
in the cross-modal setting, and it is only partially
addressed by max-margin estimation: Namely, in
vision-to-language mapping, there is a strong ten-
dency for hubs (that, recall, have an important ef-
fect on performance, as they enter many nearest
neighbour lists) to be close to a training data point.

9We have no realistic upper-bound estimate, but due to
different word senses, synonymy, etc., it is certainly not
100%.

10Although the numbers are not fully comparable because
of different language pairs and various methodological de-
tails, their method is essentially equivalent to our ridge ap-
proach we are clearly outperforming.
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Cross-linguistic Cross-modal
ridge max-margin ridge max-margin

P@1 29.7 38.4 1.1 1.9
P@5 44.2 54.2 4.8 5.4
P@10 49.1 60.4 7.9 9.0

Table 3: Ridge vs. max-margin in zero-
shot experiments. Precision @N results cross-
linguistically (test items: 1.5K, search space:
200K) and cross-modally (test items: 1K, search
space: 5.1K).

Cross-linguistic Cross-modal
ridge max-margin gold ridge max-margin gold
19.6 9.8 0.6 55.8 21.6 7.8

Table 4: Hubs as top predictions. Percentage of
top-1 neighbours of test vectors in zero-shot ex-
periments of Table 3 with N20 > 5.

Cross-linguistic Cross-modal
cosine with ridge max-margin ridge max-margin

full-space mean 0.21 0.06 0.13 -0.01
training point 0.15 0.12 0.34 0.24

Table 5: Properties of hubs. Spearman ρ of
N20 scores with cosines to mean vector of full
search space (top) and nearest training item (bot-
tom), across all search space elements. All corre-
lations significant (p<0.001) except cross-modal
max-margin hubness/full-space mean.

4 Pollution

The quantitative results and post-hoc analysis of
hubs in Section 3 suggest that cross-modal map-
ping is facing a serious generalization problem. To
get a better grasp of the phenomenon, we define a
binary measure of (training data) pollution for a
queried item x and parameterized by k, such that
pollution is 1 if x has a (target) training item y
among its k nearest neighbours, 0 otherwise. For-
mally:

Npol
k,S(x) = [[∃y ∈ YTr : y ∈ NNk,S(x)]],

where YTr is the matrix of target vectors used in
training, NNk,S(y) denotes the top k neighbors of
y in search space S, and [[z]] is an indicator func-
tion.11

11Pollution is of course an effect of overfitting, but we use
this more specific term to refer to the tendency of training
vectors to “pollute” nearest neighbour lists of mapped vec-
tors.

The average pollution Npol
1,S of all test items in

the cross-modal experiment, when |S|=200K is
18%, which indicates that in 1/5 of cases the re-
turned label is that of a training point. The equiv-
alent statistic in the cross-linguistic experiment
drops to 8.7% (words tend to be more varied than
the set of concrete, imageable concepts used for
image annotation tasks, and so the cross-linguistic
training set is probably less uniform than the one
used in the vision-to-language setting).

The real extent of the generalization problem
in the cross-modal setup becomes more obvious
if we restrict the search space to labels effectively
associated to an image in our data set (|S|=5.1K).
In this case, the average pollution Npol

1,S across all
test items jumps to 88%, that is, the vast major-
ity of test images are annotated with a label com-
ing from the training data. Clearly, there is a seri-
ous problem of overfitting to the training subspace.
While we came to this observation by inspecting
the properties of hubs, other work in zero-shot
for image labeling has indirectly noted the same.
Frome et al. (2013) empirically showed that the
performance of the system is higher when remov-
ing training labels from the search space, while
Norouzi et al. (2014) proposed a zero-shot method
that avoids explicit cross-modal mapping.

Adapting to the full search space by data
augmentation High training-data pollution in-
dicates that cross-modal mapping does not gener-
alize well beyond the kind of data points it encoun-
tered in learning. This is a special case of the data-
set bias problem (Torralba and Efros, 2011) and,
given that the latter has been addressed as a do-
main adaptation problem (Gong et al., 2012; Don-
ahue et al., 2013), we adopt here a similar view.
Self-training has been successfully used for do-
main adaptation in NLP, e.g., in syntactic parsing.
Given the limited amount of syntactically anno-
tated data coming from monotonous sources (e.g.,
the Wall Street Journal), parsers show a big drop
in performance when applied to different domains
(e.g., reviews), since training and test domains dif-
fer dramatically, thus affecting their generalization
performance. In a nutshell, the idea behind self-
training (McClosky et al., 2006; Reichart and Rap-
poport, 2007) is to use manually annotated data
(xA

i , .., x
A
N, y

A
i , .., y

A
N) from domain A to train a

parser, feed the trained parser with data xB
i , .., x

B
K

from domain B in order to obtain their automated
annotations ŷB

i , .., ŷ
B
K and then retrain the parser
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dolphin tarantula highland

whale anteater whisky
orca arachnid lowland
porpoise spider bagpipe
cetacean opossum glen
shark scorpion distillery

Table 6: Visual chimeras for dolphin, tarantula
and highland.

with a combination of “clean” data from domain
A and “noisy” data from domain B.

In our setup, self-training would be applied by
labeling a larger set of images with a cross-modal
mapping function estimated on the initial train-
ing data, and then using both sources of labeled
data to retrain the function. Although the idea
of self-training for inducing cross-modal map-
ping functions is appealing, especially given the
vast amount of unlabeled data available out there,
the very low performance of current cross-modal
mapping functions makes the effort questionable.
We would like to exploit unannotated data repre-
sentative of the search space, without relying on
the output of cross-modal mapping for their an-
notation. One way to achieve this is to use data
augmentation techniques that are representative of
the search space. Data augmentation is popular
in computer vision, where it is performed (among
others) by data jittering, visual sampling or image
perturbations. It has proven beneficial for both
“deep” (Krizhevsky et al., 2012; Zeiler and Fer-
gus, 2014) and “shallow” (Chatfield et al., 2014)
systems, and it was recently introduced to NLP
tasks (Zhang and LeCun, 2015).

Specifically, in order to train the mapping func-
tion using both annotated data and points that are
representative of the full search space, we rely on
a form of data augmentation that we call visual
chimera creation. For every item yi /∈ YTr in the
search space S, we use linguistic similarity as a
proxy of visual similarity, and create its visual vec-
tor x̂i by averaging the visual vectors correspond-
ing to the nearest words in language space that do
occur as labels in the training set. Table 6 presents
some examples of visual chimeras. For yi=dol-
phin, the visual vectors of other cetacean mam-

none chimera-5 chimera-10
P@1 1.9 3.7 3.2
P@5 5.4 10.9 10.5
P@10 9.0 15.8 15.9

Table 7: Cross-modal zero-shot experiment
with data augmentation. Labeling precision @N
with no data augmentation (none) and when us-
ing top 5 (chimera-5) and top 10 (chimera-10) near-
est neighbors from training set of each item in the
search space to build the corresponding chimeras
(1K test items, 5.1K search space).

mals are averaged to create the chimera x̂i. Since
linguistic similarity is not always determined by
visual factors, the method also produces noisy data
points. For yi=tarantula, opossums enter the pic-
ture, while for yi=highland images of “topically”
similar concepts are used (e.g., bagpipe).

Table 7 reports cross-modal zero-shot labeling
when training with max-margin and data augmen-
tation. We experiment with visual chimeras con-
structed using 5 vs. 10 nearest neighbours. While
the examples above suggest that the process injects
some noise in the training data, we also observe a
decrease of pollution Npol

1,S from 88% when using
the “clean” training data, to 71% and 73% when
expanding them with chimeras (for chimera-5 and
chimera-10, respectively). Reflecting this drop in
pollution, we see large improvements in precision
at all levels, when chimeras are used (no big dif-
ferences between 5 or 10 neighbours).

The improvements brought about by the
chimera method are robust. First, Table 8 reports
performance when the search space excludes the
training labels, showing that data augmentation is
beneficial beyond mitigating the bias in favor of
the latter. In this setup, chimera-5 is clearly out-
performing chimera-10 (longer neighbour lists will
include more noise), and we focus on it from here
on.

All experiments up to here follow the stan-
dard cross-modal zero-shot protocol, in which the
search space is given by the union of the test and
training labels, or a subset thereof. Next, we make
the task more challenging by increasing it with 1K
extra elements acting as distractors. The distrac-
tors are either randomly sampled from our usual
200K English word space, or, in the most chal-
lenging scenario, picked among those words, in
the same space, that are among the top-5 near-
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none chimera-5 chimera-10
P@1 6.7 9.3 8.3
P@5 21.7 25.2 21.3
P@10 29.9 34.3 29.7

Table 8: Cross-modal zero-shot experiment
with data augmentation, disjoint train/search
spaces. Same setup as Table 8, but search space
excludes training elements (1K test items, 1K
search space).

random related
none chimera-5 none chimera-5

P@1 0.8 3.3 1.9 2.8
P@5 5.3 9.0 4.8 8.8
P@10 8.8 13.3 7.9 12.6

Table 9: Cross-modal zero-shot experiment
with data augmentation, enlarged search space.
Labeling precision @N with no data augmenta-
tion (none) and when using top 5 (chimera-5) near-
est neighbors from training set of each item in the
search space to build the corresponding chimeras.
Test items: 1K. Search space: 5.1K+1K extra dis-
tractors from a 200K word space, either randomly
picked (random), or related to the training items.

est neighbours of a training element. Again, we
create one visual chimera for each label in the
search space. Results are presented in Table 9.
As expected, performance is negatively affected
with both plain and data-augmented models, but
the latter is still better in absolute terms. While
chimera-5 undergoes a larger drop when the search
contains many elements similar to the training data
(“related” column), which is explained by the fact
that visual chimeras will often include the distrac-
tor items of this setup, it appears to be more resis-
tant against random labels, which in many cases
are words that bear no resemblance to the training
data (e.g., naushad, yamato, 13-14). The picture
when using no data augmentation is exactly the
opposite, with the model being more harmed, at
P@1, by the random labels.

Finally, Table 10 presents results in the cross-
linguistic setup, when applying the same data aug-
mentation technique. In this case, we augment
the 5K training elements with 11.5K chimeras, for
the 1.5K test elements and 10K randomly sam-
pled distractors. For these 11.5K elements, we as-
sociate their Italian (target space) label yi with a

none chimera-5
P@1 38.4 31.1
P@5 54.2 46.1
P@10 60.4 51.3

Table 10: Cross-linguistic zero-shot experiment
with data augmentation. Translation precision
@N when learning with max-margin and no data
augmentation (none) or data augmentation using
the top 5 (chimera-5) nearest neighbors of 11.5K
items in the 200K-word search space (1.5K test
items).

cat
dog

truck

Figure 2: Looking for intruders. We pick truck
rather than dog as negative example for cat.

“pseudo-translation” vector x̂i obtained by averag-
ing the vectors of the English (source space) trans-
lations of the nearest Italian words to yi included
in the training set. Results, in Table 10, show that
in this case our data augmentation method is ac-
tually hampering performance. We saw that pol-
lution affects the cross-linguistic setup much less
than it affects the cross-modal one, and we con-
jecture that, consequently, in the translation task,
there is not a large-enough generalization gain to
make up for the extra noise introduced by augmen-
tation.

5 Picking informative negative examples

An interesting feature of the ranking max-margin
objective lies in its active use of negative exam-
ples. While previous work in cross-space map-
ping has paid little attention to the properties that
negative samples should possess, this has not gone
unnoticed in the NLP literature on structured pre-
diction tasks. Smith and Eisner (2005) propose a
contrastive estimation framework in the context of
POS-tagging, in which positive evidence derived
from gold sentence annotations is extended with
negative evidence derived by various neighbour-
hood functions that corrupt the data in particular
ways (e.g., by deleting 1 word).

Having shown the effectiveness of max-margin
estimation in the previous sections, we now take
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Cross-linguistic Cross-modal
random intruder random intruder

P@1 38.4 40.2 3.7 5.6
P@5 54.2 55.5 10.9 12.4
P@10 60.4 61.8 15.8 17.8

Table 11: Random vs. intruding negative exam-
ples. Zero-shot precision @N results when cross-
space function is estimated using max-margin with
random or “intruder” negative examples, cross-
linguistically (test items: 1.5K, search space:
200K) and cross-modally (test items: 1K, search
space: 5.1K).

a first step towards engineering the negative evi-
dence exploited by this method, in the context of
inducing cross-space mapping functions. In par-
ticular, our idea is that, given a training instance
xi, an informative negative example would be near
the mapped vector ŷi, but far from the actual gold
target space vector yi. Intuitively, such “intruders”
correspond to cases where the mapping function
is getting the predictions seriously wrong, and thus
they should be very informative in “correcting” the
function mapping trajectories. This can seen as a
vector-space interpretation of the max-loss update
protocol (Crammer et al., 2006) that picks nega-
tive samples expected to harm performance more.
Figure 2 illustrates the idea with a cartoon exam-
ple. If cat is the gold target vector yi and ŷi the
corresponding mapped vector, then we are going
to pick truck as negative example, since it is an in-
truder (near the mapped vector, far from the gold
one).

More formally, at each step of stochastic gra-
dient descent, given a source space vector xi, its
target gold label/translation yi in YTr and the
mapped vector ŷi, we compute sj = cos(ŷi, yj) −
cos(yi, yj), for all vectors yj in YTr s.t. j 6= i, and
pick as negative example for xi the vector with the
largest sj.

Table 11 presents zero-shot mapping results
when intruding negative examples are used for
max-margin estimation. For cross-modal map-
ping, we apply data augmentation as described in
the previous section. While the absolute perfor-
mance increase is relatively small (less than 2% in
both setups), it is consistent. Furthermore, the pro-
posed protocol results in lower Npol

1,S pollution in
the cross-modal setup (from 71% to 63%). Finally,
we observe that the learning behaviour of the two

Number of Epochs
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Pr
ec
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io
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random
intruder

Figure 3: Learning curve with random or in-
truding negative samples in the cross-linguistic
experiment.

protocols (intruders vs. random) is different; the
intruder approach is already achieving good perfor-
mance after just few training epochs, since it can
rely on more informative negative samples (see
Figure 3).

6 Conclusion

We have considered some general mathemati-
cal and empirical properties of linear cross-space
mapping functions, suggesting one well-known
(max-margin estimation) and two new (chimera
augmentation and “intruder” negative sample ad-
justment) methods to improve their performance.
With them, we achieve results well above the state
of the art in both the cross-linguistic and the cross-
modal setting. Both chimera and the intruder
methods are flexible, and we plan to explore them
further in future research. In particular, we want
to devise more semantically-motivated methods to
select chimera components and negative samples.
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