
Proceedings of the ACL 2014 Student Research Workshop, pages 56–63,
Baltimore, Maryland USA, June 22-27 2014. c©2014 Association for Computational Linguistics

Going beyond sentences when applying tree kernels 

Dmitry Ilvovsky 

School of Applied Mathematics and Information Science 

National Research University Higher School of Economics 

Moscow, Russia 

dilvovsky@hse.ru 

 

 

Abstract 

We go beyond the level of individual 

sentences applying parse tree kernels to 

paragraphs. We build a set of extended 

trees for a paragraph of text from the in-

dividual parse trees for sentences and 

learn short texts such as search results 

and social profile postings to take ad-

vantage of additional discourse-related 

information. Extension is based on coref-

erences and rhetoric structure relations 

between the phrases in different sentenc-

es. We evaluate our approach, tracking 

relevance classification improvement for 

multi-sentence search task. The search 

problem is formulated as classification of 

search results into the classes of relevant 

and irrelevant, learning from the Bing 

search results. We compare performances 

of individual sentence kernels with the 

ones for extended parse trees and show 

that adding discourse information to 

learning data helps to improve classifica-

tion results. 

1 Introduction 

In spite of substantial efforts to formulate a com-

plete linking theory between syntax and seman-

tics, it is not available yet. Hence the design of 

syntactic features for automated learning of syn-

tactic structures is still an art. One of the solu-

tions to systematically treat these syntactic fea-

tures ‒ tree kernels built over syntactic parse 

trees. Convolution tree kernel (Collins and 

Duffy, 2002) defines a feature space consisting 

of all subtree types of parse trees and counts the 

number of common subtrees as the syntactic sim-

ilarity between two parse trees. They have found 

a number of applications in several natural lan-

guage tasks, e.g. syntactic parsing re-ranking, 

relation extraction (Zelenko et al., 2003; Zhang 

et al 2006), named entity recognition (Cumby 

and Roth, 2003) and Semantic Role Labeling 

(Moschitti, 2004), pronoun resolution (Yang et 

al., 2006), question classification (Zhang and 

Lee, 2003) and machine translation (Zhang and 

Li, 2009). 

The kernel ability to generate large feature sets 

is useful to quickly model new and not well un-

derstood linguistic phenomena in learning ma-

chines. However, it is often possible to manually 

design features for linear kernels that produce 

high accuracy and fast computation time whereas 

the complexity of tree kernels may prevent their 

application in real scenarios. 

Many learning algorithms, such as SVM 

(Vapnik, 1998) can work directly with kernels by 

replacing the dot product with a particular kernel 

function. This useful property of kernel methods, 

that implicitly calculates the dot product in a 

high-dimensional space over the original repre-

sentations of objects such as sentences, has made 

kernel methods an effective solution to modeling 

structured objects in NLP. A number of NL tasks 

require computing of semantic features over par-

agraphs of text containing multiple sentences. 

Doing it in a sentence pair-wise manner is not 

always accurate, since it is strongly dependent on 

how information (phrases) is distributed through 

sentences. 

An approach to build a kernel based on more 

than a single parse tree has been proposed 

(Severyn et.al., 2012), however without any rela-

tions between parse trees or for a different pur-

pose than treating multi-sentence portions of 

text. To compensate for parsing errors (Zhang et 

al., 2008), a convolution kernel over packed 

parse forest (Severyn and Moschitti, 2012; Aioli 

et.al, 2007) is used to mine syntactic features 

from it directly. A packed forest compactly en-

codes exponential number of n-best parse trees, 

and thus containing much more rich structured 

features than a single parse tree. This advantage 

enables the forest kernel not only to be more ro-

bust against parsing errors, but also to be able to 

learn more reliable feature values and help to 
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solve the data sparseness issue that exists in the 

traditional tree kernel. 

On the contrary, in this study we form a tree for-

est of sequence of sentences in a paragraph of 

text. Currently, kernel methods tackle individual 

sentences. However, in learning settings where 

texts include multiple sentences, structures which 

include paragraph-level information need to be 

employed. We demonstrate that in certain do-

mains and certain cases discourse structure is 

essential for proper classification of texts. 

2 Necessity to extend parse trees 

We introduce a domain where a pair-wise com-

parison of sentences is insufficient to properly 

learn certain semantic features of texts. This is 

due to the variability of ways information can be 

communicated in multiple sentences, and varia-

tions in possible discourse structures of text 

which needs to be taken into account. 

We consider an example of text classification 

problem, where short portions of text belong to 

two classes: 

 Tax liability of a landlord renting office 

to a business. 

 Tax liability of a business owner renting 

an office from landlord. 

I rent an office space. This office is for my busi-

ness. I can deduct office rental expense from my 

business profit to calculate net income. 

 

To run my business, I have to rent an office. The 

net business profit is calculated as follows. Rental 

expense needs to be subtracted from revenue. 

 

To store goods for my retail business I rent some 

space. When I calculate the net income, I take revenue 

and subtract business expenses such as office rent. 

 
I rent out a first floor unit of my house to a travel 

business. I need to add the rental income to my profit. 

However, when I repair my house, I can deduct the 

repair expense from my rental income. 

 

I receive rental income from my office. I have to 

claim it as a profit in my tax forms. I need to add my 

rental income to my profits, but subtract rental ex-

penses such as repair from it. 

 

I advertised my property as a business rental. Ad-

vertisement and repair expenses can be subtracted 

from the rental income. Remaining rental income 

needs to be added to my profit and be reported as tax-

able profit. 

Firstly, note that keyword-based analysis does 

not help to separate the first three paragraphs and 

the second three paragraphs. They all share the 

same keywords rent-

al/office/income/profit/add/subtract. Phrase-

based analysis does not help, since both sets of 

paragraphs share similar phrases. Secondly, pair-

wise sentence comparison does not solve the 

problem either. Anaphora resolution is helpful 

but insufficient. All these sentences include ‘I’ 

and its mention, but other links between words or 

phrases in different sentences need to be used.  

Rhetoric structures need to come into play to 

provide additional links between sentences. The 

structure to distinguish between  

renting for yourself and deducting from total in-

come  

and  

renting to someone and adding to income  

embraces multiple sentences. The second clause 

about adding/subtracting incomes is linked by 

means of the rhetoric relation of elaboration with 

the first clause for landlord/tenant. This rhetoric 

relation may link discourse units within a sen-

tence, between consecutive sentences and even 

between first and third sentence in a paragraph. 

Other rhetoric relations can play similar role for 

forming essential links for text classification. 

Which representations for these paragraphs of 

text would produce such common sub-structure 

between the structures of these paragraphs? We 

believe that extended trees, which include the 

first, second, and third sentence for each para-

graph together can serve as a structure to differ-

entiate the two above classes. 

The dependency parse trees for the first text in 

our set and its coreferences are shown in Fig. 1. 

There are multiple ways the nodes from parse 

trees of different sentences can be connected: we 

choose the rhetoric relation of elaboration which 

links the same entity office and helps us to form 

the structure rent-office-space – for-my-business 

– deduct-rental-expense which is the base for our 

classification. We used Stanford Core NLP, co-

references resolution (Lee et al., 2012) and its 

visualization to form Figs. 1 and 2. 

Fig. 2 shows the resultant extended tree with 

the root ‘I’ from the first sentence. It includes the 

whole first sentence, a verb phrase from the sec-

ond sentence and a verb phrase from the third 

sentence according to rhetoric relation of elabo-

ration. Notice that this extended tree can be intui-

tively viewed as representing the ‘main idea’ of 

this text compared to other texts in our set. All 

extended trees need to be formed for a text and 
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then compared with that of the other texts, since 

we don’t know in advance which extended tree is 

essential. From the standpoint of tree kernel 

learning, extended trees are learned the same 

way as regular parse trees. 

 

 
Fig.1: Coreferences and the set of dependency trees 

for the first text. 

 

 
Fig. 2: Extended tree which includes 3 sentences 

3 Building extended trees 

For every arc which connects two parse trees, we 

derive the extension of these trees, extending 

branches according to the arc (Fig. 3). 

In this approach, for a given parse tree, we 

will obtain a set of its extension, so the elements 

of kernel will be computed for many extensions, 

instead of just a single tree. The problem here is 

that we need to find common sub-trees for a 

much higher number of trees than the number of 

sentences in text, however by subsumption (sub-

tree relation) the number of common sub-trees 

will be substantially reduced. 

If we have two parse trees P1 and P2 for two 

sentences in a paragraph, and a relation 

R12: P1i →P2j between the nodes P1i and P2j, we 

form the pair of extended trees P1*P2: 

…, P1i-2, P1i-1, P1i, P2j, P2j+1, P2j+2,… 

…, P2j-2, P2j-1, P2j, P1i, P1i+1, P2i+2,…, 

which would form the feature set for tree kernel 

learning in addition to the original trees P1 and 

P2. Notice that the original order of nodes of 

parse trees is retained under operation ‘*’ (Fig. 

3). 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: An arc which connects two parse trees for two 

sentences in a text (on the top) and the derived set of 

extended trees (on the bottom). 

The algorithm for building an extended tree for a 

set of parse trees T is presented below: 

Input:  

1) Set of parse trees T. 

2) Set of relations R, which includes relations Rijk be-

tween the nodes of Ti and Tj: Ti T, Tj T, Rijk R. 

We use index k to range over multiple relations be-

tween the nodes of parse tree for a pair of sentences. 

 

Output: the exhaustive set of extended trees E. 

 
Set E = ; 

For each tree i=1:|T| 

   For each relation Rijk,  k= 1: |R| 

     Obtain Tj 

     Form the pair of extended trees Ti * Tj; 

     Verify that each of the extended trees do not have 

a super-tree in E 

      If verified, add to E; 

Return E. 

 

 

 
 

Notice that the resultant trees are not the prop-

er parse trees for a sentence, but nevertheless 

form an adequate feature space for tree kernel 

learning. 

P11 

P1i P2j 

P21 

P2j+

1 
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To obtain the inter-sentence links, we em-

ployed the following sources: 

 Coreferences from Stanford NLP (Re-

casens et al., 2013, Lee et al., 2013). 

 Rhetoric relation extractor based on the 

rule-based approach to finding relations 

between elementary discourse units 

(Galitsky et al., 2013). We combined 

manual rules with automatically learned 

derived from the available discourse cor-

pus by means of syntactic generalization. 

4 Assessment of classification improve-

ment 

To confirm that using a set of extended parse 

trees for paragraphs leverages additional seman-

tic information compared to a set of parse trees 

for all sentences in a paragraph, we perform an 

evaluation of relevance in search domain: 

 As a baseline, we take all trees for sen-

tences in paragraphs 

 As an expected improvement, we take all 

extended trees in a paragraph. 

Since a benchmarking database for answering 

complex multi-sentence questions is not availa-

ble, we form our own dataset for product-related 

opinions. The question answering problem is 

formulated as finding information on the web, 

relevant to a user posting / opinion expression in 

a blog, forum or social network. 

For the purpose of this evaluation it is not es-

sential to provide the best possible set of an-

swers. Instead, we are concerned with the com-

parison of relevance improvement by using ex-

tended parse tree, as long as the evaluation set-

tings of question answering are identical. The 

details of the evaluation are given in Section 7. 

5 Implementation of kernel learning for 

extended trees 

The evaluation framework described here is im-

plemented as an OpenNLP contribution. It relies 

on the following systems:  

 OpenNLP/Stanford NLP parser; 

 Stanford NLP Coreference; 

 Bing search; 

 Wrapper of TK-Light kernel learner 

(Moschitti, 2006). 

Framework includes the following compo-

nents of Apache OpenNLP.similarity project: 

 Rhetoric parser 

 Parse thicket builder and generalizer 

(Galitsky et al., 2012). Not used in this 

evaluation. 

 A number of applications based on the 

above component, including search (re-

quest handler for SOLR), speech recog-

nition, content generation and others. 

One of the use cases of this 

OpenNLP.similarity component is a Java wrap-

per for tree kernel algorithms implemented in 

C++. It allows seamless integration of tree kernel 

algorithms into other open source systems avail-

able in Java for search, information retrieval and 

machine learning. Moreover, tree kernel algo-

rithms can be embedded into Hadoop framework 

in the domains where offline performance is es-

sential. Libraries and evaluation results described 

in this paper are also available at 

http://code.google.com/p/relevance-based-on-

parse-trees and 

http://svn.apache.org/repos/asf/opennlp/sandbox/

opennlp-similarity/. 

6 Complexity estimation 

To estimate the complexity of building extended 

trees, let us consider an average case with 5 sen-

tences in each paragraph and 15 words in each 

sentence. We have on average 10 inter-sentence 

arcs, which give us up to 20 extended trees 

formed from two sentences, and 60 extended 

trees formed from 3 sentences. Hence we have to 

apply tree learning to up to 100 trees (of a bigger 

size) instead of just 5 original trees. We observe 

that kernel learning of extended trees has to han-

dle at least 20 times bigger input set. 

However, most of the smaller subtrees are re-

petitive and will be reduced in the course of di-

mensionality reduction. 

7 Evaluation 

To estimate whether additional high-level se-

mantic and discourse information contributes to 

classical kernel based approach, we compare two 

sources for trees: 

 Regular parse trees 

 Extended parse trees 
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To perform this estimation, we need a corpus 

including a high number of short texts similar to 

our example in Introduction. These texts should 

have high similarity (otherwise keyword ap-

proach would do well), certain discourse struc-

ture, and describe some objects (products) in a 

meaningful application domain. Unfortunately, 

to the best of our knowledge such corpus is not 

available. Therefore, for comparison of tree ker-

nel performances we decided to use search re-

sults, given the query which is a short text. We 

rely on search engine APIs following the evalua-

tion settings in the studies on answering complex 

questions (Galitsky et al., 2013). 

Search results typically include texts of fairly 

high similarity, which is leveraged in our evalua-

tion. To formulate classification problem on the 

set of texts obtained as search results, we need to 

form positive and negative sets. To do that, we 

select the first n search results as relevant (posi-

tive) and also n results towards to tail of search 

results lists as irrelevant (negative). In this case 

each search session yields an individual training 

(and evaluation) dataset. The same nature of such 

data allows averaging of precision and recall, 

having individual training dataset of a limited 

size. Hence reliability of our results is achieved 

not via the size of individual dataset, but instead 

by the increased number of search sessions. To 

assure an abrupt change in relevance proceeding 

from the head to the tail of search results lists, 

we use complicated queries including multiple 

sentences, which are not handled by modern 

search engines well. 

The preparation of search queries (which in-

clude multiple sentences) is based on the follow-

ing steps: 

1. Forming the names of products and their 

short descriptions 

2. Given (1), find a text including an ex-

tended review or opinion about this 

product. 

3. Texts (2) cannot be used as queries as 

they are. To form the queries from (2), 

we need to extract most significant 

phrases from them; otherwise, search 

engines are confused which keywords to 

choose and give either duplicate, or irrel-

evant results. These were the longest 

noun and selected verb phrases from (2). 

The analogous steps were conducted for Ya-

hoo Answers data. We manually select a 100 

most interesting search queries for each domain. 

The training/evaluation datasets is formed 

from search results in the following way. We 

obtain a first hundred search results (or less if 

hundred is not available). We select 1..20 (or 

first 20%) of search results as a positive set, and 

81..100 as a negative set. Search results 21..80 

form the basis of evaluation dataset, from which 

we randomly select 10 texts to be classified into 

the classes of positive or negative. Hence we 

have the ratio 4:1 between the training and eval-

uation datasets. 

To motivate our evaluation setting, we rely on 

the following observations. In case of searching 

for complex multi-sentence queries, relevance 

indeed drops abruptly with proceeding from the 

first 10-20 search results, as search evaluation 

results demonstrated (Galitsky et al., 2013). The 

order of search results in first 20% and last 20% 

does not affect our evaluation. Although the last 

20% of search results is not really a “gold stand-

ard”, it is nevertheless a set that can be reasona-

bly separated from the positive set. If such sepa-

ration is too easy or too difficult, it would be 

hard to adequately evaluate the difference be-

tween regular parse trees and extended trees for 

text classification. Search-based approach to col-

lect texts for evaluation of classification allows 

reaching maximum degree of experiment auto-

mation. 

It turned out that the use of tail search results 

as negative set helps to leverage the high level 

semantic and discourse information. Negative 

examples, as well as positive ones, include most 

keywords from the queries. However, the main 

difference between the positive and negative 

search results is that the former include much 

more coreferences and rhetoric structures similar 

to the query, than the latter set. The use of the 

extended trees was beneficial in the cases where 

phrases from queries are distributed through mul-

tiple sentences in search results. 

We conducted two independent experiments 

for each search session, classifying search result 

snippets and also original texts, extracted from 

webpages. For the snippets, we split them into 

sentence fragments and built extended trees for 

these fragments of sentences. For original texts, 

we extracted all sentences related to the snippet 

fragments and built extended trees for these sen-

tences. 

Training and classification occurs in the auto-

mated mode, and the classification assessment is 
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conducted by the members of research group 

guided by the authors. The assessors only con-

sulted the query and answer snippets. 

We used the standard parameters of tree se-

quence kernels from 

http://disi.unitn.it/moschitti/Tree-Kernel.htm 

(Moschitti, 2006). Tree kernel is applied to all 

tree pairs from two forests. The latest version of 

tree kernel learner was obtained from the author. 

Products  Basic 

kernels 

Extended ker-

nels (co-

refs+RST) 

Texts 

from the 

pages 

Precision 0,5679 0,5868 

Recall 0,7516 0,8458 

F-measure 0,6485 0,6752 

Snippets 

Precision 0,5625 0,6319 

Recall 0,7840 0,8313 

F-measure 0,6169 0,6695 

 

Table 1: Evaluation results for products domain 

Answers  Basic 

kernels 

Extended 

kernels 

(corefs) 

Extended 

kernels 

(corefs+ 

RST) 

Texts 

from the 

pages 

P 0,5167 0,5083 0,5437 

R 0,7361 0,7917 0,8333 

F 0,6008 0,5458 0,6278 

Snippets 

P 0,5950 0,6264 0,6794 

R 0,7329 0,7492 0,7900 

F 0,6249 0,6429 0,7067 
 

Table 2: Evaluation results for popular answers do-

main 

Evaluation results show visible improvement of 

classification accuracy achieved by extended 

trees. For Yahoo Answers one can observe that 

coreferences only provide a slight improvement 

of accuracy, whereas RST added to coreferences 

gives a stronger improvement. Stronger increase 

of recall in comparison to precision can be ex-

plained by the following. It is due to the acquired 

capability of extended trees to match phrases 

from the search results distributed through multi-

ple sentences, with questions. 

8 Conclusions and future work 

In this study we focused on how discourse in-

formation can help with text relevance tasks irre-

spectively of learning mechanisms. We com-

pared two sets of linguistic features: 

 The baseline, parse trees for individual 

sentences, 

 Parse trees and discourse information, 

and demonstrated that the enriched set of fea-

tures indeed improves the classification accura-

cy, having the learning framework fixed. This 

improvement varies from 2 to 8 % in different 

domains with different structure of texts. To 

tackle such enriched set of linguistic features, an 

adjustment of tree kernel algorithm itself was not 

necessary. 

The approach developed in this paper can also 

be applied to parse tree querying and manipula-

tion problem (Levy and Galen, 2006). A system 

such as Tregex is an expressive and flexible way 

for single sentence parse tree querying and ma-

nipulation. Extending parse trees of individual 

sentences towards paragraph of text, the recall of 

a tree querying system would dramatically in-

crease, and dependence on how phrases are dis-

tributed through sentences would decrease. 

There are a few possible directions of future 

development. One interesting continuation of this 

study is to applying standard ranking mecha-

nisms such as NDCG. We can draw the compari-

son between the standard and extended kernels in 

terms of standard Bing ranking, as well as spe-

cial ranking based on syntactic similarity be-

tween the query and search results (Galitsky et 

al., 2013). 

We also plan to generalize extended tree ker-

nels towards graphs (DAGs) (Suzuki et al., 

2003). In this case we can perform learning on 

Parse thickets (Galitsky et al., 2013) ‒ the struc-

tures which are the sets of parse trees for a para-

graph. It will be fruitful to compare performanc-

es of various ways of kernel computation and 

estimate the contribution of a particular way of 

paragraph representation to the quality of classi-

fication. 

It is possible to apply the outlined approach to 

perform question answering in the case where 

the latter are extensive portions of paragraph-

sized text and the former include multiple sen-

tences. 

Another obvious direction is applying tree 

kernels to classify short texts based on standard 

corpus data. However, a corpus of short texts, 

where advantages of kernel methods over alter-

natives would become visible, does not exist. 

One of our next tasks is to form such a corpus.  
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