
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 1392–1402,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

CoSimRank: A Flexible & Efficient Graph-Theoretic Similarity Measure

Sascha Rothe and Hinrich Schütze
Center for Information & Language Processing

University of Munich
sascha@cis.lmu.de

Abstract

We present CoSimRank, a graph-theoretic
similarity measure that is efficient because
it can compute a single node similarity
without having to compute the similarities
of the entire graph. We present equivalent
formalizations that show CoSimRank’s
close relationship to Personalized Page-
Rank and SimRank and also show how
we can take advantage of fast matrix mul-
tiplication algorithms to compute CoSim-
Rank. Another advantage of CoSimRank
is that it can be flexibly extended from ba-
sic node-node similarity to several other
graph-theoretic similarity measures. In an
experimental evaluation on the tasks of
synonym extraction and bilingual lexicon
extraction, CoSimRank is faster or more
accurate than previous approaches.

1 Introduction

Graph-theoretic algorithms have been successfully
applied to many problems in NLP (Mihalcea and
Radev, 2011). These algorithms are often based on
PageRank (Brin and Page, 1998) and other central-
ity measures (e.g., (Erkan and Radev, 2004)). An
alternative for tasks involving similarity is Sim-
Rank (Jeh and Widom, 2002). SimRank is based
on the simple intuition that nodes in a graph should
be considered as similar to the extent that their
neighbors are similar. Unfortunately, SimRank
has time complexity O(n3) (where n is the num-
ber of nodes in the graph) and therefore does not
scale to the large graphs that are typical of NLP.

This paper introduces CoSimRank,1 a new
graph-theoretic algorithm for computing node
similarity that combines features of SimRank and
PageRank. Our key observation is that to compute
the similarity of two nodes, we need not consider

1Code available at code.google.com/p/cistern

all other nodes in the graph as SimRank does; in-
stead, CoSimRank starts random walks from the
two nodes and computes their similarity at each
time step. This offers large savings in computa-
tion time if we only need the similarities of a small
subset of all n2 node similarities.

These two cases – computing a few similari-
ties and computing many similarities – correspond
to two different representations we can compute
CoSimRank on: a vector representation, which is
fast for only a few similarities, and a matrix repre-
sentation, which can take advantage of fast matrix
multiplication algorithms.

CoSimRank can be used to compute many vari-
ations of basic node similarity – including similar-
ity for graphs with weighted and typed edges and
similarity for sets of nodes. Thus, CoSimRank has
the added advantage of being a flexible tool for dif-
ferent types of applications.

The extension of CoSimRank to similarity
across graphs is important for the application of
bilingual lexicon extraction: given a set of corre-
spondences between nodes in two graphsA andB
(corresponding to two different languages), a pair
of nodes (a ∈ A, b ∈ B) is a good candidate for a
translation pair if their node similarity is high. In
an experimental evaluation, we show that CoSim-
Rank is more efficient and more accurate than both
SimRank and PageRank-based algorithms.

This paper is structured as follows. Section 2
discusses related work. Section 3 introduces
CoSimRank. In Section 4, we compare CoSim-
Rank and SimRank. By providing some useful
extensions, we demonstrate the great flexibility of
CoSimRank (Section 5). We perform an exper-
imental evaluation of CoSimRank in Section 6.
Section 7 summarizes the paper.

2 Related Work

Our work is unsupervised. We therefore do not
review graph-based methods that make extensive
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use of supervised learning (e.g., de Melo and
Weikum (2012)).

Since the original version of SimRank (Jeh and
Widom, 2002) has complexity O(n4), many ex-
tensions have been proposed to speed up its calcu-
lation. A Monte Carlo algorithm, which is scalable
to the whole web, was suggested by Fogaras and
Rácz (2005). However, in an evaluation of this al-
gorithm we found that it does not give competitive
results (see Section 6). A matrix representation of
SimRank called SimFusion (Xi et al., 2005) im-
proves the computational complexity from O(n4)
to O(n3). Lizorkin et al. (2010) also reduce com-
plexity to O(n3) by selecting essential node pairs
and using partial sums. They also give a useful
overview of SimRank, SimFusion and the Monte
Carlo methods of Fogaras and Rácz (2005). A
non-iterative computation for SimRank was intro-
duced by Li et al. (2010). This is especially useful
for dynamic graphs. However, all of these meth-
ods have to run SimRank on the entire graph and
are not efficient enough for very large graphs. We
are interested in applications that only need a frac-
tion of all O(n2) pairwise similarities. The algo-
rithm we propose below is an order of magnitude
faster in such applications because it is based on a
local formulation of the similarity measure.2

Apart from SimRank, many other similarity
measures have been proposed. Leicht et al. (2006)
introduce a similarity measure that is also based on
the idea that nodes are similar when their neigh-
bors are, but that is designed for bipartite graphs.
However, most graphs in NLP are not bipartite and
Jeh and Widom (2002) also proposed a SimRank
variant for bipartite graphs.

Another important similarity measure is cosine
similarity of Personalized PageRank (PPR) vec-
tors. We will refer to this measure as PPR+cos.
Hughes and Ramage (2007) find that PPR+cos
has high correlation with human similarity judg-
ments on WordNet-based graphs. Agirre et al.
(2009) use PPR+cos for WordNet and for cross-
lingual studies. Like CoSimRank, PPR+cos is
efficient when computing single node pair simi-
larities; we therefore use it as one of our base-
lines below. This method is also used by Chang
et al. (2013) for semantic relatedness. They also
experimented with Euclidean distance and KL-

2A reviewer suggests that CoSimRank is an efficient ver-
sion of SimRank in a way analogous to SALSA’s (Lempel
and Moran, 2000) relationship to HITS (Kleinberg, 1999) in
that different aspects of similarity are decoupled.

divergence. Interestingly, a simpler method per-
formed best when comparing with human simi-
larity judgments. In this method only the entries
corresponding to the compared nodes are used for
a similarity score. Rao et al. (2008) compared
PPR+cos to other graph based similarity mea-
sures like shortest-path and bounded-length ran-
dom walks. PPR+cos performed best except for
a new similarity measure based on commute time.
We do not compare against this new measure as it
uses the graph Laplacian and so cannot be com-
puted for a single node pair.

One reason CoSimRank is efficient is that we
need only compute a few iterations of the random
walk. This is often true of this type of algorithm;
cf. (Schütze and Walsh, 2008).

LexRank (Erkan and Radev, 2004) is similar to
PPR+cos in that it combines PageRank and cosine;
it initializes the sentence similarity matrix of a
document using cosine and then applies PageRank
to compute lexical centrality. Despite this superfi-
cial relatedness, applications like lexicon extrac-
tion that look for similar entities and applications
that look for central entities are quite different.

In addition to faster versions of SimRank, there
has also been work on extensions of SimRank.
Dorow et al. (2009) and Laws et al. (2010) ex-
tend SimRank to edge weights, edge labels and
multiple graphs. We use their Multi-Edge Extrac-
tion (MEE) algorithm as one of our baselines be-
low. A similar graph of dependency structures was
built by Minkov and Cohen (2008). They applied
different similarity measures, e.g., cosine of de-
pendency vectors or a new algorithm called path-
constrained graph walk, on synonym extraction
(Minkov and Cohen, 2012). We compare CoSim-
Rank with their results in our experiments (see
Section 6).

Some other applications of SimRank or other
graph based similarity measures in NLP include
work on document similarity (Li et al., 2009),
the transfer of sentiment information between lan-
guages (Scheible et al., 2010) and named entity
disambiguation (Han and Zhao, 2010). Hoang and
Kan (2010) use SimRank for related work sum-
marization. Muthukrishnan et al. (2010) combine
link based similarity and content based similarity
for document clustering and classification.

These approaches use at least one of cosine sim-
ilarity, PageRank and SimRank. CoSimRank can
either be interpreted as an efficient version of Sim-
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Rank or as a version of Personalized PageRank
for similarity measurement. The novelty is that
we compute similarity for vectors that are induced
using a new algorithm, so that the similarity mea-
surement is much more efficient when an applica-
tion only needs a fraction of all O(n2) pairwise
similarities.

3 CoSimRank

We first first give an intuitive introduction of
CoSimRank as a Personalized PageRank (PPR)
derivative. Later on, we will give a matrix formu-
lation to compare CoSimRank with SimRank.

3.1 Personalized PageRank

Haveliwala (2002) introduced Personalized Page-
Rank – or topic-sensitive PageRank – based on the
idea that the uniform damping vector p(0) can be
replaced by a personalized vector, which depends
on node i. We usually set p(0)(i) = ei, with ei be-
ing a vector of the standard basis, i.e., the ith entry
is 1 and all other entries are 0. The PPR vector of
node i is given by:

p(k)(i) = dAp(k−1)(i) + (1− d)p(0)(i) (1)

where A is the stochastic matrix of the Markov
chain, i.e., the row normalized adjacency matrix.
The damping factor d ∈ (0, 1) ensures that the
computation converges. The PPR vector after k
iterations is given by p(k).

To visualize this formula, one can imagine a
random surfer starting at node i and following one
of the links with probability d or jumping back to
the starting node i with probability (1− d). Entry
i of the converged PPR vector represents the prob-
ability that the random surfer is on node i after an
unlimited number of steps.

To simulate the behavior of SimRank we will
simplify this equation and set the damping factor
d = 1. We will re-add a damping factor later in
the calculation.

p(k) = Ap(k−1) (2)

Note that the personalization vector p(0) was elim-
inated, but is still present as the starting vector of
the iteration.

3.2 Similarity of vectors

Let p(i) be the PPR vector of node i. The cosine
of two vectors u and v is computed by dividing

Figure 1: Graph motivating CoSimRank algo-
rithm. Whereas PPR gives relatively high similar-
ity to the pair (law,suit), CoSimRank assigns the
pair similarity 0.

the inner product 〈u, v〉 by the lengths of the vec-
tors. The cosine of two PPR vectors can be used as
a similarity measure for the corresponding nodes
(Hughes and Ramage, 2007; Agirre et al., 2009):

s(i, j) =
〈p(i), p(j)〉
|p(i)||p(j)| (3)

This measure s(i, j) looks at the probability that
a random walker is on a certain edge after an un-
limited number of steps. This is potentially prob-
lematic as the example in Figure 1 shows. The
PPR vectors of suit and dress will have some
weight on tailor, which is good. However, the
PPR vector of law will also have a non-zero weight
for tailor. So law and dress are similar because of
the node tailor. This is undesirable.

We can prevent this type of spurious similarity
by taking into account the path the random surfer
took to get to a particular node. We formalize this
by defining CoSimRank s(i, j) as follows:

s(i, j) =
∞∑
k=0

ck〈p(k)(i), p(k)(j)〉 (4)

where p(k)(i) is the PPR vector of node i from
Eq. 2 after k iterations. We compare the PPR vec-
tors at each time step k. The sum of all similarities
is the value of CoSimRank, i.e., the final similar-
ity. We add a damping factor c, so that early meet-
ings are more valuable than later meetings.

To compute the similarity of two vectors u and
v we use the inner product 〈·, ·〉 in Eq. 4 for two
reasons:

1. This is similar to cosine similarity except that
the 1-norm is used instead of the 2-norm.
Since our vectors are probability vectors, we
have

〈p(i), p(j)〉
|p(i)||p(j)| = 〈p(i), p(j)〉
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for the 1-norm.3

2. Without expensive normalization, we can
give a simple matrix formalization of CoSim-
Rank and compute it efficiently using fast
matrix multiplication algorithms.

Later on, the following iterative computation of
CoSimRank will prove useful:

s(k)(i, j) = ck〈p(k)(i), p(k)(j)〉+ s(k−1)(i, j)
(5)

3.3 Matrix formulation
The matrix formulation of CoSimRank is:

S(0) = E

S(1) = cAAT + S(0)

S(2) = c2A2(AT )2 + S(1)

. . .

S(k) = ckAk(AT )k + S(k−1) (6)

We will see in Section 5 that this formulation is the
basis for a very efficient version of CoSimRank.

3.4 Convergence properties
As the PPR vectors have only positive values, we
can easily see in Eq. 4 that the CoSimRank of
one node pair is monotonically non-decreasing.
For the dot product of two vectors, the Cauchy-
Schwarz inequality gives the upper bound:

〈u, v〉 ≤ ‖u‖ ‖v‖

where ‖x‖ is the norm of x. From Eq. 2 we get∥∥p(k)
∥∥

1
= 1, where ‖·‖1 is the 1-norm. We also

know from elementary functional analysis that the
1-norm is the biggest of all p-norms and so one
has
∥∥p(k)

∥∥ ≤ 1. It follows that CoSimRank grows
more slowly than a geometric series and converges
if |c| < 1:

s(i, j) ≤
∞∑
k=0

ck =
1

1− c

If an upper bound of 1 is desired for s(i, j) (in-
stead of 1/(1− c)), then we can use s′:

s′(i, j) = (1− c)s(i, j)
3This type of similarity measure has also been used and

investigated by Ó Séaghdha and Copestake (2008), Cha
(2007), Jebara et al. (2004) (probability product kernel) and
(Jaakkola et al., 1999) (Fisher kernel) among others.

4 Comparison to SimRank

The original SimRank equation can be written as
follows (Jeh and Widom, 2002):

r(i, j) =


1, if i = j

c
|N(i)||N(j)|

∑
k∈N(i)
l∈N(j)

r(k, l), else

where N(i) denotes the nodes connected to i.
SimRank is computed iteratively. With A be-
ing the normalized adjacency matrix we can write
SimRank in matrix formulation:

R(0) = E

R(k) = max{cAR(k−1)AT , R(0)} (7)

where the maximum of two matrices refers to the
element-wise maximum. We will now prove by in-
duction that the matrix formulation of CoSimRank
(Eq. 6) is equivalent to:

S′(k) = cAS′(k−1)AT + S(0) (8)

and thus very similar to SimRank (Eq. 7).
The base case S(1) = S′(1) is trivial. Inductive

step:

S′(k)
(8)
= cAS′(k−1)AT + S(0)

= cA(ck−1Ak−1(AT )k−1 + S(k−2))AT + S(0)

= ckAk(AT )k + cAS(k−2)AT + S(0)

= ckAk(AT )k + S(k−1) (6)
= S(k)

Comparing Eqs. 7 and 8, we see that SimRank
and CoSimRank are very similar except that they
initialize the similarities on the diagonal differ-
ently. Whereas SimRank sets each of these en-
tries back to one at each iteration, CoSimRank
adds one. Thus, when computing the two similar-
ity measures iteratively, the diagonal element (i, i)
will be set to 1 by both methods for those initial it-
erations for which this entry is 0 for cAS(k−1)AT

(i.e., before applying either max or add). The
methods diverge when the entry is 6= 0 for the first
time.

Complexity of computing all n2 similarities.
The matrix formulas of both SimRank (Eq. 7)
and CoSimRank (Eq. 8) have time complexity
O(n3) or – if we want to take the higher efficiency
of computation for sparse graphs into account –
O(dn2) where n is the number of nodes and d the
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average degree. Space complexity is O(n2) for
both algorithms.

Complexity of computing k2 � n2 similar-
ities. In most cases, we only want to compute
k2 similarities for k nodes. For CoSimRank, we
compute the k PPR vectors inO(kdn) (Eq. 2) and
compute the k2 similarities in O(k2n) (Eq. 5). If
d < k, then the time complexity of CoSimRank
is O(k2n). If we only compute a single similar-
ity, then the complexity is O(dn). In contrast, the
complexity of SimRank is the same as in the all-
similarities case: O(dn2). It is not obvious how to
design a lower-complexity version of SimRank for
this case. Thus, we have reduced SimRank’s cu-
bic time complexity to a quadratic time complex-
ity for CoSimRank or – assuming that the aver-
age degree d does not depend on n – SimRank’s
quadratic time complexity to linear time complex-
ity for the case of computing few similarities.

Space complexity for computing k2 similarities
is O(kn) since we need only store k vectors, not
the complete similarity matrix. This complexity
can be exploited even for the all similarities appli-
cation: If the matrix formulation cannot be used
because the O(n2) similarity matrix is too big for
available memory, then we can compute all sim-
ilarities in batches – and if desired in parallel –
whose size is chosen such that the vectors of each
batch still fit in memory.

In summary, CoSimRank and SimRank have
similar space and time complexities for comput-
ing all n2 similarities. For the more typical case
that we only want to compute a fraction of all sim-
ilarities, we have recast the global SimRank for-
mulation as a local CoSimRank formulation. As a
result, time and space complexities are much im-
proved. In Section 6, we will show that this is also
true in practice.

5 Extensions

We will show now that the basic CoSimRank algo-
rithm can be extended in a number of ways and is
thus a flexible tool for different NLP applications.

5.1 Weighted edges

The use of weighted edges was first proposed in
the PageRank patent. It is straightforward and
easy to implement by replacing the row normal-
ized adjacency matrixA with an arbitrary stochas-
tic matrix P . We can use this edge weighted Page-
Rank for CoSimRank.

5.2 CoSimRank across graphs

We often want to compute the similarity of nodes
in two different graphs with a known node-node
correspondence; this is the scenario we are faced
with in the lexicon extraction task (see Section 6).
A variant of SimRank for this task was presented
by Dorow et al. (2009). We will now present an
equivalent method for CoSimRank. We denote the
number of nodes in the two graphs U and V by
|U | and |V |, respectively. We compute PPR vec-
tors p ∈ R|U | and q ∈ R|V | for each graph. Let
S(0) ∈ R|U |×|V | be the known node-node corre-
spondences. The analog of CoSimRank (Eq. 4)
for two graphs is then:

s(i, j) =
∞∑
k=0

ck
∑

(u,v)∈S(0)

p(k)
u (i)q(k)v (j) (9)

The matrix formulation (cf. Eq. 6) is:

S(k) = ckAkS(0)(BT )k + S(k−1) (10)

whereA andB are row-normalized adjacency ma-
trices. We can interpret S(0) as a change of basis.
A similar approach for word embeddings was pub-
lished by Mikolov et al. (2013). They call S(0) the
translation matrix.

5.3 Typed edges

To be able to directly compare to prior work in our
experiments, we also present a method to integrate
a set of typed edges T in the CoSimRank calcula-
tion. For this we will compute a similarity matrix
for each edge type τ and merge them into one ma-
trix for the next iteration:

S(k) =

(
c

|T |
∑
τ∈T

AτS
(k−1)BT

τ

)
+ S(0) (11)

This formula is identical to the random surfer
model where two surfers only meet iff they are
on the same node and used the same edge type to
get there. A more strict claim would be to use the
same edge type at any time of their journey:

S(k) =
ck

|T |k
∑
τ∈T k

(
k∏
i=1

Aτi

)
S(0)

(
k−1∏
i=0

BT
τk−i

)
+ S(k−1) (12)

We will not use Eq. 12 due to its space complexity.

1396



5.4 Similarity of sets of nodes
CoSimRank can also be used to compute the sim-
ilarity s(V,W ) of two sets V and W of nodes,
e.g., short text snippets. We are not including this
method in our experiments, but we will give the
equation here, as traditional document similarity
measures (e.g., cosine similarity) perform poorly
on this task although there also are known alter-
natives with good results (Sahami and Heilman,
2006). For a set V , the initial PPR vector is given
by:

p
(0)
i (V ) =

{
1
|V | , if i ∈ V
0, else

We then reuse Eq. 4 to compute s(V,W ):

s(V,W ) =
∞∑
k=0

ck〈p(k)(V ), p(k)(W )〉

In summary, modifications proposed for Sim-
Rank (weighted and typed edges, similarity across
graphs) as well as modifications proposed for
PageRank (sets of nodes) can also be applied to
CoSimRank. This makes CoSimRank a very flex-
ible similarity measure.

We will test the first three extensions experi-
mentally in the next section and leave similarity
of node sets for future work.

6 Experiments

We evaluate CoSimRank for the tasks of syn-
onym extraction and bilingual lexicon extraction.
We use the basic version of CoSimRank (Eq. 4)
for synonym extraction and the two-graph version
(Eq. 9) for lexicon extraction, both with weighted
edges. Our motivation for this application is that
two words that are synonyms of each other should
have similar lexical neighbors and that two words
that are translations of each other should have
neighbors that correspond to each other; thus, in
each case the nodes should be similar in the graph-
theoretic sense and CoSimRank should be able to
identify this similarity.

We use the English and German graphs pub-
lished by Laws et al. (2010), including edge
weighting and normalization. Nodes are nouns,
adjectives and verbs occurring in Wikipedia.
There are three types of edges, corresponding to
three types of syntactic configurations extracted
from the parsed Wikipedias: adjective-noun, verb-
object and noun-noun coordination. Table 1 gives
examples and number of nodes and edges.

Edge types
relation entities description example

amod a, v adjective-noun a fast car
dobj v, n verb-object drive a car
ncrd n, n noun-noun cars and busses

Graph statistics
nodes nouns adjectives verbs

de 34,544 10,067 2,828
en 22,258 12,878 4,866

edges ncrd amod dobj

de 65,299 417,151 143,905
en 288,878 686,069 510,351

Table 1: Edge types (above) and number of nodes
and edges (below)

6.1 Baselines
We propose CoSimRank as an efficient algorithm
for computing the similarity of nodes in a graph.
Consequently, we compare against the two main
methods for this task in NLP: SimRank and exten-
sions of PageRank.

We also compare against the MEE (Multi-Edge
Extraction) variant of SimRank (Dorow et al.,
2009), which handles labeled edges more effi-
ciently than SimRank:

S′(k) =
c

|T |
∑
τ∈T

AτS
(k−1)BT

τ

S(k) = max{S′(k), S(0)}
where Aτ is the row-normalized adjacency matrix
for edge type τ (see edge types in Table 1).

Apart from SimRank, extensions of PageRank
are the main methods for computing the similar-
ity of nodes in graphs in NLP (e.g., Hughes and
Ramage (2007), Agirre et al. (2009) and other pa-
pers discussed in related work). Generally, these
methods compute the Personalized PageRank for
each node (see Eq. 1). When the computation has
converged, the similarity of two nodes is given by
the cosine similarity of the Personalized PageRank
vectors. We implemented this method for our ex-
periments and call it PPR+cos.

6.2 Synonym Extraction
We use TS68, a test set of 68 synonym pairs pub-
lished by Minkov and Cohen (2012) for evalua-
tion. This gold standard lists a single word as the
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P@1 P@10 MRR

one-synonym

PPR+cos 20.6% 52.9% 0.32
SimRank 25.0% 61.8% 0.37
CoSimRank 25.0% 61.8% 0.37
Typed CoSimRank 23.5% 63.2% 0.37

extended

PPR+cos 32.6% 73.5% 0.48
SimRank 45.6% 83.8% 0.59
CoSimRank 45.6% 83.8% 0.59
Typed CoSimRank 44.1% 83.8% 0.59

Table 2: Results for synonym extraction on TS68.
Best result in each column in bold.

correct synonym even if there are several equally
acceptable near-synonyms (see Table 3 for exam-
ples). We call this the one-synonym evaluation.
Three native English speakers were asked to mark
synonyms, that were proposed by a baseline or by
CoSimRank, i.e. ranked in the top 10. If all three
of them agreed on one word as being a synonym
in at least one meaning, we added this as a correct
answer to the test set. We call this the “extended”
evaluation (see Table 2).

Synonym extraction is run on the English graph.
To calculate PPR+cos, we computed 20 iterations
with a decay factor of 0.8 and used the cosine sim-
ilarity with the 2-norm in the denominator to com-
pare two vectors. For the other three methods, we
also used a decay factor of 0.8 and computed 5 it-
erations. Recall that CoSimRank uses the simple
inner product 〈·, ·〉 to compare vectors.

Our evaluation measures are proportion of
words correctly translated by word in the top
position (P@1), proportion of words correctly
translated by a word in one of the top 10 posi-
tions (P@10) and Mean Reciprocal Rank (MRR).
CoSimRank’s MRR scores of 0.37 (one-synonym)
and 0.59 (extended) are the same or better than all
baselines (see Table 2). CoSimRank and SimRank
have the same P@1 and P@10 accuracy (although
they differed on some decisions). CoSimRank is
better than PPR+cos on both evaluations, but as
this test set is very small, the results are not signif-
icant. Table 3 shows a sample of synonyms pro-
posed by CoSimRank.

Minkov and Cohen (2012) tested cosine and
random-walk measures on grammatical relation-

keyword expected extracted

movie film film
modern contemporary contemporary
demonstrate protest show
attractive appealing beautiful
economic profitable financial
close shut open

Table 3: Examples for extracted synonyms. Cor-
rect synonyms according to extended evaluation in
bold.

ships (similar to our setup) as well as on cooccur-
rence statistics. The MRR scores for these meth-
ods range from 0.29 to 0.59. (MRR is equivalent
to MAP as reported by Minkov and Cohen (2012)
when there is only one correct answer.) Their
best number (0.59) is better than our one-synonym
result; however, they performed manual postpro-
cessing of results – e.g., discarding words that are
morphologically or semantically related to other
words in the list – so our fully automatic results
cannot be directly compared.

6.3 Lexicon Extraction

We evaluate lexicon extraction on TS1000, a test
set of 1000 items, (Laws et al., 2010) each con-
sisting of an English word and its German transla-
tions. For lexicon extraction, we use the same pa-
rameters as in the synonym extraction task for all
four similarity measures. We use a seed dictionary
of 12,630 word pairs to establish node-node corre-
spondences between the two graphs. We remove
a search keyword from the seed dictionary before
calculating similarities for it, something that the
architecture of CoSimRank makes easy because
we can use a different seed dictionary S(0) for ev-
ery keyword.

Both CoSimRank methods outperform Sim-
Rank significantly (see Table 4). The differ-
ence between CoSimRank with and without typed
edges is not significant. (This observation was also
made for SimRank on a smaller graph and test set
(Laws et al., 2010).)

PPR+cos’s performance at 14.8% correct trans-
lations is much lower than SimRank and CoSim-
Rank. The disadvantage of this similarity mea-
sure is significant and even more visible on bilin-
gual lexicon extraction than on synonym extrac-
tion (see Table 2). The reason might be that we
are not comparing the whole PPR vector anymore,
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P@1 P@10

PPR+cos 14.8%† 45.7%†

SimRank MEE 48.0%† 76.0%†

CoSimRank 61.1% 84.0%
Typed CoSimRank 61.4% 83.9%

Table 4: Results for bilingual lexicon extraction
(TS1000 EN → DE). Best result in each column
in bold.

but only entries which occur in the seed dictionary
(see Eq. 9). As the seed dictionary contains 12,630
word pairs, this means that only every fourth entry
of the PPR vector (the German graph has 47,439
nodes) is used for similarity calculation. This is
also true for CoSimRank, but it seems that CoSim-
Rank is more stable because we compare more
than one vector.†

We also experimented with the method of Fog-
aras and Rácz (2005). We tried a number of differ-
ent ways of modifying it for weighted graphs: (i)
running the random walks with the weighted ad-
jacency matrix as Markov matrix, (ii) storing the
weight (product of each edge weight) of a random
walk and using it as a factor if two walks meet
and (iii) a combination of both. We needed about
10,000 random walks in all three conditions. As a
result, the computational time was approximately
30 minutes per test word, so this method is even
slower than SimRank for our application. The ac-
curacies P@1 and P@10 were worse in all experi-
ments than those of CoSimRank.

6.4 Run time performance
Table 5 compares the run time performance of
CoSimRank with the baselines. We ran all exper-
iments on a 64-bit Linux machine with 64 Intel
Xenon X7560 2.27Ghz CPUs and 1TB RAM. The
calculated time is the sum of the time spent in user
mode and the time spent in kernel mode. The ac-
tual wall clock time was significantly lower as we
used up to 64 CPUs.

Compared to SimRank, CoSimRank is more
than 40 times faster on synonym extraction and six
times faster on lexicon extraction. SimRank is at
a disadvantage because it computes all similarities
in the graph regardless of the size of the test set;
it is particularly inefficient on synonym extraction
because the English graph contains a large number
†significantly worse than CoSimRank (α = 0.05, one-

tailed Z-Test)

synonym extraction lexicon extraction
(68 word pairs) (1000 word pairs)

PPR+cos 2,228 2,195
SimRank 23,423 14,418
CoSimRank 524 2,342
Typed CoSimRank 615 6,108

Table 5: Execution times in minutes for CoSim-
Rank and the baselines. Best result in each column
in bold.

of edges (see Table 1).
Compared to PPR+cos, CoSimRank is roughly

four times faster on synonym extraction and has
comparable performance on lexicon extraction.
We compute 20 iterations of PPR+cos to reach
convergence and then calculate a single cosine
similarity. For CoSimRank, we need only com-
pute five iterations to reach convergence, but we
have to compute a vector similarity in each itera-
tion. The counteracting effects of fewer iterations
and more vector similarity computations can give
either CoSimRank or PPR+cos an advantage, as
is the case for synonym extraction and lexicon ex-
traction, respectively.

CoSimRank should generally be three times
faster than typed CoSimRank since the typed ver-
sion has to repeat the computation for each of
the three types. This effect is only visible on the
larger test set (lexicon extraction) because the gen-
eral computation overhead is about the same on a
smaller test set.

6.5 Comparison with WINTIAN

Here we address inducing a bilingual lexicon from
a seed set based on grammatical relations found
by a parser. An alternative approach is to in-
duce a bilingual lexicon from Wikipedia’s inter-
wiki links (Rapp et al., 2012). These two ap-
proaches have different strengths and weaknesses;
e.g., the interwiki-link-based approach does not
require a seed set, but it can only be applied to
comparable corpora that consist of corresponding
– although not necessarily “parallel” – documents.

Despite these differences it is still interesting to
compare the two algorithms. Rapp et al. (2012)
kindly provided their test set to us. It contains
1000 English words and a single correct German
translation for each. We evaluate on a subset we
call TS774 that consists of the 774 test word pairs
that are in the intersection of words covered by the
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P@1 P@10

Wintian 43.8% 55.4%†

CoSimRank 43.0% 73.6%

Table 6: Results for bilingual lexicon extraction
(TS774 DE→ EN). Best result in each column in
bold.

WINTIAN Wikipedia data (Rapp et al., 2012) and
words covered by our data. Most of the 226 miss-
ing word pairs are adverbs, prepositions and plural
forms that are not covered by our graphs due to the
construction algorithm we use: lemmatization, re-
striction to adjectives, nouns and verbs etc.

Table 6 shows that CoSimRank is slightly, but
not significantly worse than WINTIAN on P@1
(43.0 vs 43.8), but significantly better on P@10
(73.6 vs 55.4).4 The reason could be that CoSim-
Rank is a more effective algorithm than WIN-
TIAN; but the different initializations (seed set vs
interwiki links) or the different linguistic represen-
tations (grammatical relations vs bag-of-words)
could also be responsible.

6.6 Error Analysis

The results on TS774 can be considered conserva-
tive since only one translation is accepted as being
correct. In reality other translations might also be
acceptable (e.g., both street and road for Straße).
In contrast, TS1000 accepts more than one cor-
rect translation. Additionally, TS774 was created
by translating English words into German (using
Google translate). We are now testing the reverse
direction. So we are doomed to fail if the original
English word is a less common translation of an
ambiguous German word. For example, the En-
glish word gulf was translated by Google to Golf,
but the most common sense of Golf is the sport.
Hence our algorithm will incorrectly translate it
back to golf.

As we can see in Table 7, we also face the prob-
lems discussed by Laws et al. (2010): the algo-
rithm sometimes picks cohyponyms (which can
still be seen as reasonable) and antonyms (which
are clear errors).

Contrary to our intuition, the edge-typed vari-
ant of CoSimRank did not perform significantly
better than the non-edge-typed version. Looking

4We achieved better results for CoSimRank by optimizing
the damping factor, but in this paper, we only present results
for a fixed damping factor of 0.8.

keyword gold standard CoSimRank

arm poor impoverished
erreichen reach achieve
gehen go walk
direkt directly direct
weit far further
breit wide narrow
reduzieren reduce increase
Stunde hour second
Westen west southwest
Junge boy child

Table 7: Examples for CoSimRank translation er-
rors on TS774. We counted translations as incor-
rect if they were not listed in the gold standard
even if they were correct translations according to
www.dict.cc (in bold).

at Table 1, we see that there is only one edge type
connecting adjectives. The same is true for verbs.
The random surfer only has a real choice between
different edge types when she is on a noun node.
Combined with the fact that only the last edge type
is important this has absolutely no effect for a ran-
dom surfer meeting at adjectives or verbs.

Two possible solutions would be (i) to use more
fine-grained edge types, (ii) to apply Eq. 12, in
which the edge type of each step is important.
However, this will increase the memory needed for
calculation.

7 Summary

We have presented CoSimRank, a new similar-
ity measure that can be computed for a single
node pair without relying on the similarities in the
whole graph. We gave two different formaliza-
tions of CoSimRank: (i) a derivation from Person-
alized PageRank and (ii) a matrix representation
that can take advantage of fast matrix multipli-
cation algorithms. We also presented extensions
of CoSimRank for a number of applications, thus
demonstrating the flexibility of CoSimRank as a
similarity measure.

We showed that CoSimRank is superior to
SimRank in time and space complexity; and
we demonstrated that CoSimRank performs bet-
ter than PPR+cos on two similarity computation
tasks.
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