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Abstract

We introduce a novel approach for build-
ing language models based on a system-
atic, recursive exploration of skip n-gram
models which are interpolated using modi-
fied Kneser-Ney smoothing. Our approach
generalizes language models as it contains
the classical interpolation with lower or-
der models as a special case. In this pa-
per we motivate, formalize and present
our approach. In an extensive empirical
experiment over English text corpora we
demonstrate that our generalized language
models lead to a substantial reduction of
perplexity between 3.1% and 12.7% in
comparison to traditional language mod-
els using modified Kneser-Ney smoothing.
Furthermore, we investigate the behaviour
over three other languages and a domain
specific corpus where we observed consis-
tent improvements. Finally, we also show
that the strength of our approach lies in
its ability to cope in particular with sparse
training data. Using a very small train-
ing data set of only 736 KB text we yield
improvements of even 25.7% reduction of
perplexity.

1 Introduction motivation

Language Models are a probabilistic approach for
predicting the occurrence of a sequence of words.
They are used in many applications, e.g. word
prediction (Bickel et al., 2005), speech recogni-
tion (Rabiner and Juang, 1993), machine trans-
lation (Brown et al., 1990), or spelling correc-
tion (Mays et al., 1991). The task language models
attempt to solve is the estimation of a probability
of a given sequence of words wl

1 = w1, . . . , wl.
The probability P (wl

1) of this sequence can be
broken down into a product of conditional prob-
abilities:

P (wl
1) =P (w1) · P (w2|w1) · . . . · P (wl|w1 · · ·wl−1)

=

l∏
i=1

P (wi|w1 · · ·wi−1) (1)

Because of combinatorial explosion and data
sparsity, it is very difficult to reliably estimate the
probabilities that are conditioned on a longer sub-
sequence. Therefore, by making a Markov as-
sumption the true probability of a word sequence
is only approximated by restricting conditional
probabilities to depend only on a local context
wi−1

i−n+1 of n − 1 preceding words rather than the
full sequence wi−1

1 . The challenge in the construc-
tion of language models is to provide reliable esti-
mators for the conditional probabilities. While the
estimators can be learnt—using, e.g., a maximum
likelihood estimator over n-grams obtained from
training data—the obtained values are not very re-
liable for events which may have been observed
only a few times or not at all in the training data.

Smoothing is a standard technique to over-
come this data sparsity problem. Various smooth-
ing approaches have been developed and ap-
plied in the context of language models. Chen
and Goodman (Chen and Goodman, 1999) in-
troduced modified Kneser-Ney Smoothing, which
up to now has been considered the state-of-the-
art method for language modelling over the last
15 years. Modified Kneser-Ney Smoothing is
an interpolating method which combines the es-
timated conditional probabilities P (wi|wi−1

i−n+1)
recursively with lower order models involving a
shorter local context wi−1

i−n+2 and their estimate for
P (wi|wi−1

i−n+2). The motivation for using lower
order models is that shorter contexts may be ob-
served more often and, thus, suffer less from data
sparsity. However, a single rare word towards the
end of the local context will always cause the con-
text to be observed rarely in the training data and
hence will lead to an unreliable estimation.
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Because of Zipfian word distributions, most
words occur very rarely and hence their true prob-
ability of occurrence may be estimated only very
poorly. One word that appears at the end of a local
context wi−1

i−n+1 and for which only a poor approx-
imation exists may adversely affect the conditional
probabilities in language models of all lengths —
leading to severe errors even for smoothed lan-
guage models. Thus, the idea motivating our ap-
proach is to involve several lower order models
which systematically leave out one position in the
context (one may think of replacing the affected
word in the context with a wildcard) instead of
shortening the sequence only by one word at the
beginning.

This concept of introducing gaps in n-grams
is referred to as skip n-grams (Ney et al., 1994;
Huang et al., 1993). Among other techniques, skip
n-grams have also been considered as an approach
to overcome problems of data sparsity (Goodman,
2001). However, to best of our knowledge, lan-
guage models making use of skip n-grams mod-
els have never been investigated to their full ex-
tent and over different levels of lower order mod-
els. Our approach differs as we consider all pos-
sible combinations of gaps in a local context and
interpolate the higher order model with all possi-
ble lower order models derived from adding gaps
in all different ways.

In this paper we make the following contribu-
tions:

1. We provide a framework for using modified
Kneser-Ney smoothing in combination with a
systematic exploration of lower order models
based on skip n-grams.

2. We show how our novel approach can indeed
easily be interpreted as a generalized version
of the current state-of-the-art language mod-
els.

3. We present a large scale empirical analysis
of our generalized language models on eight
data sets spanning four different languages,
namely, a wikipedia-based text corpus and
the JRC-Acquis corpus of legislative texts.

4. We empirically observe that introducing skip
n-gram models may reduce perplexity by
12.7% compared to the current state-of-the-
art using modified Kneser-Ney models on
large data sets. Using small training data sets

we observe even higher reductions of per-
plexity of up to 25.6%.

The rest of the paper is organized as follows.
We start with reviewing related work in Section 2.
We will then introduce our generalized language
models in Section 3. After explaining the evalua-
tion methodology and introducing the data sets in
Section 4 we will present the results of our evalu-
ation in Section 5. In Section 6 we discuss why a
generalized language model performs better than
a standard language model. Finally, in Section 7
we summarize our findings and conclude with an
overview of further interesting research challenges
in the field of generalized language models.

2 Related Work

Work related to our generalized language model
approach can be divided in two categories: var-
ious smoothing techniques for language models
and approaches making use of skip n-grams.

Smoothing techniques for language models
have a long history. Their aim is to overcome data
sparsity and provide more reliable estimators—in
particular for rare events. The Good Turing es-
timator (Good, 1953), deleted interpolation (Je-
linek and Mercer, 1980), Katz backoff (Katz,
1987) and Kneser-Ney smoothing (Kneser and
Ney, 1995) are just some of the approaches to
be mentioned. Common strategies of these ap-
proaches are to either backoff to lower order mod-
els when a higher order model lacks sufficient
training data for good estimation, to interpolate
between higher and lower order models or to inter-
polate with a prior distribution. Furthermore, the
estimation of the amount of unseen events from
rare events aims to find the right weights for in-
terpolation as well as for discounting probability
mass from unreliable estimators and to retain it for
unseen events.

The state of the art is a modified version of
Kneser-Ney smoothing introduced in (Chen and
Goodman, 1999). The modified version imple-
ments a recursive interpolation with lower order
models, making use of different discount values
for more or less frequently observed events. This
variation has been compared to other smooth-
ing techniques on various corpora and has shown
to outperform competing approaches. We will
review modified Kneser-Ney smoothing in Sec-
tion 2.1 in more detail as we reuse some ideas to
define our generalized language model.
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Smoothing techniques which do not rely on us-
ing lower order models involve clustering (Brown
et al., 1992; Ney et al., 1994), i.e. grouping to-
gether similar words to form classes of words, as
well as skip n-grams (Ney et al., 1994; Huang et
al., 1993). Yet other approaches make use of per-
mutations of the word order in n-grams (Schukat-
Talamazzini et al., 1995; Goodman, 2001).

Skip n-grams are typically used to incorporate
long distance relations between words. Introduc-
ing the possibility of gaps between the words in
an n-gram allows for capturing word relations be-
yond the level of n consecutive words without an
exponential increase in the parameter space. How-
ever, with their restriction on a subsequence of
words, skip n-grams are also used as a technique
to overcome data sparsity (Goodman, 2001). In re-
lated work different terminology and different def-
initions have been used to describe skip n-grams.
Variations modify the number of words which can
be skipped between elements in an n-gram as well
as the manner in which the skipped words are de-
termined (e.g. fixed patterns (Goodman, 2001) or
functional words (Gao and Suzuki, 2005)).

The impact of various extensions and smooth-
ing techniques for language models is investigated
in (Goodman, 2001; Goodman, 2000). In partic-
ular, the authors compared Kneser-Ney smooth-
ing, Katz backoff smoothing, caching, clustering,
inclusion of higher order n-grams, sentence mix-
ture and skip n-grams. They also evaluated com-
binations of techniques, for instance, using skip
n-gram models in combination with Kneser-Ney
smoothing. The experiments in this case followed
two paths: (1) interpolating a 5-gram model with
lower order distribution introducing a single gap
and (2) interpolating higher order models with
skip n-grams which retained only combinations of
two words. Goodman reported on small data sets
and in the best case a moderate improvement of
cross entropy in the range of 0.02 to 0.04.

In (Guthrie et al., 2006), the authors investi-
gated the increase of observed word combinations
when including skips in n-grams. The conclusion
was that using skip n-grams is often more effective
for increasing the number of observations than in-
creasing the corpus size. This observation aligns
well with our experiments.

2.1 Review of Modified Kneser-Ney
Smoothing

We briefly recall modified Kneser-Ney Smoothing
as presented in (Chen and Goodman, 1999). Mod-
ified Kneser-Ney implements smoothing by inter-
polating between higher and lower order n-gram
language models. The highest order distribution
is interpolated with lower order distribution as fol-
lows:

PMKN(wi|wi−1
i−n+1) =

max{c(wi
i−n+1) − D(c(wi

i−n+1)), 0}
c(wi−1

i−n+1)

+ γhigh(wi−1
i−n+1)P̂MKN(wi|wi−1

i−n+2) (2)

where c(wi
i−n+1) provides the frequency count

that sequence wi
i−n+1 occurs in training data, D is

a discount value (which depends on the frequency
of the sequence) and γhigh depends on D and is the
interpolation factor to mix in the lower order dis-
tribution1. Essentially, interpolation with a lower
order model corresponds to leaving out the first
word in the considered sequence. The lower order
models are computed differently using the notion
of continuation counts rather than absolute counts:

P̂MKN(wi|(wi−1
i−n+1)) =

max{N1+(•wi
i−n+1) − D(c(wi

i−n+1)), 0}
N1+(•wi−1

i−n+1•)
+ γmid(wi−1

i−n+1)P̂MKN(wi|wi−1
i−n+2)) (3)

where the continuation counts are defined as
N1+(•wi

i−n+1) = |{wi−n : c(wi
i−n) > 0}|, i.e.

the number of different words which precede the
sequence wi

i−n+1. The term γmid is again an inter-
polation factor which depends on the discounted
probability mass D in the first term of the for-
mula.

3 Generalized Language Models

3.1 Notation for Skip n-gram with k Skips
We express skip n-grams using an operator no-
tation. The operator ∂i applied to an n-gram
removes the word at the i-th position. For in-
stance: ∂3w1w2w3w4 = w1w2 w4, where is
used as wildcard placeholder to indicate a re-
moved word. The wildcard operator allows for

1The factors γ and D are quite technical and lengthy. As
they do not play a significant role for understanding our novel
approach we refer to Appendix A for details.
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larger number of matches. For instance, when
c(w1w2w3aw4) = x and c(w1w2w3bw4) = y then
c(w1w2 w4) ≥ x + y since at least the two se-
quences w1w2w3aw4 and w1w2w3bw4 match the
sequence w1w2 w4. In order to align with stan-
dard language models the skip operator applied to
the first word of a sequence will remove the word
instead of introducing a wildcard. In particular the
equation ∂1w

i
i−n+1 = wi

i−n+2 holds where the
right hand side is the subsequence of wi

i−n+1 omit-
ting the first word. We can thus formulate the in-
terpolation step of modified Kneser-Ney smooth-
ing using our notation as P̂MKN(wi|wi−1

i−n+2) =
P̂MKN(wi|∂1w

i−1
i−n+1).

Thus, our skip n-grams correspond to n-grams
of which we only use k words, after having applied
the skip operators ∂i1 . . . ∂in−k

3.2 Generalized Language Model
Interpolation with lower order models is motivated
by the problem of data sparsity in higher order
models. However, lower order models omit only
the first word in the local context, which might not
necessarily be the cause for the overall n-gram to
be rare. This is the motivation for our general-
ized language models to not only interpolate with
one lower order model, where the first word in a
sequence is omitted, but also with all other skip n-
gram models, where one word is left out. Combin-
ing this idea with modified Kneser-Ney smoothing
leads to a formula similar to (2).

PGLM(wi|wi−1
i−n+1) =

max{c(wi
i−n+1) − D(c(wi

i−n+1)), 0}
c(wi−1

i−n+1)

+ γhigh(wi−1
i−n+1)

n−1∑
j=1

1

n−1
P̂GLM(wi|∂jw

i−1
i−n+1)

(4)

The difference between formula (2) and formula
(4) is the way in which lower order models are
interpolated.

Note, the sum over all possible positions in
the context wi−1

i−n+1 for which we can skip a
word and the according lower order models
PGLM(wi|∂j(wi−1

i−n+1)). We give all lower order
models the same weight 1

n−1 .
The same principle is recursively applied in the

lower order models in which some words of the
full n-gram are already skipped. As in modi-
fied Kneser-Ney smoothing we use continuation
counts for the lower order models, incorporating

the skip operator also for these counts. Incor-
porating this directly into modified Kneser-Ney
smoothing leads in the second highest model to:

P̂GLM(wi|∂j(w
i−1
i−n+1)) = (5)

max{N1+(∂j(w
i
i−n)) − D(c(∂j(w

i
i−n+1))), 0}

N1+(∂j(w
i−1
i−n+1)•)

+γmid(∂j(w
i−1
i−n+1))

n−1∑
k=1
k 6=j

1

n−2
P̂GLM(wi|∂j∂k(wi−1

i−n+1))

Given that we skip words at different positions,
we have to extend the notion of the count function
and the continuation counts. The count function
applied to a skip n-gram is given by c(∂j(wi

i−n))=∑
wj

c(wi
i−n), i.e. we aggregate the count informa-

tion over all words which fill the gap in the n-
gram. Regarding the continuation counts we de-
fine:

N1+(∂j(w
i
i−n)) = |{wi−n+j−1 :c(wi

i−n)>0}| (6)

N1+(∂j(w
i−1
i−n)•) = |{(wi−n+j−1, wi) :c(wi

i−n)>0}| (7)

As lowest order model we use—just as done for
traditional modified Kneser-Ney (Chen and Good-
man, 1999)—a unigram model interpolated with a
uniform distribution for unseen words.

The overall process is depicted in Figure 1, il-
lustrating how the higher level models are recur-
sively smoothed with several lower order ones.

4 Experimental Setup and Data Sets

To evaluate the quality of our generalized lan-
guage models we empirically compare their abil-
ity to explain sequences of words. To this end we
use text corpora, split them into test and training
data, build language models as well as generalized
language models over the training data and apply
them on the test data. We employ established met-
rics, such as cross entropy and perplexity. In the
following we explain the details of our experimen-
tal setup.

4.1 Data Sets
For evaluation purposes we employed eight differ-
ent data sets. The data sets cover different domains
and languages. As languages we considered En-
glish (en), German (de), French (fr), and Italian
(it). As general domain data set we used the full
collection of articles from Wikipedia (wiki) in the
corresponding languages. The download dates of
the dumps are displayed in Table 1.
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Figure 1: Interpolation of models of different or-
der and using skip patterns. The value of n in-
dicates the length of the raw n-grams necessary
for computing the model, the value of k indicates
the number of words actually used in the model.
The wild card symbol marks skipped words in
an n-gram. The arrows indicate how a higher or-
der model is interpolated with lower order mod-
els which skips one word. The bold arrows cor-
respond to interpolation of models in traditional
modified Kneser-Ney smoothing. The lighter ar-
rows illustrate the additional interpolations intro-
duced by our generalized language models.

de en fr it
Nov 22nd Nov 04th Nov 20th Nov 25th

Table 1: Download dates of Wikipedia snapshots
in November 2013.

Special purpose domain data are provided by
the multi-lingual JRC-Acquis corpus of legislative
texts (JRC) (Steinberger et al., 2006). Table 2
gives an overview of the data sets and provides
some simple statistics of the covered languages
and the size of the collections.

Statistics
Corpus total words unique words

in Mio. in Mio.

wiki-de 579 9.82
JRC-de 30.9 0.66
wiki-en 1689 11.7
JRC-en 39.2 0.46
wiki-fr 339 4.06
JRC-fr 35.8 0.46
wiki-it 193 3.09
JRC-it 34.4 0.47

Table 2: Word statistics and size of of evaluation
corpora

The data sets come in the form of structured text
corpora which we cleaned from markup and tok-
enized to generate word sequences. We filtered the
word tokens by removing all character sequences
which did not contain any letter, digit or common
punctuation marks. Eventually, the word token se-
quences were split into word sequences of length
n which provided the basis for the training and
test sets for all algorithms. Note that we did not
perform case-folding nor did we apply stemming
algorithms to normalize the word forms. Also,
we did our evaluation using case sensitive training
and test data. Additionally, we kept all tokens for
named entities such as names of persons or places.

4.2 Evaluation Methodology

All data sets have been randomly split into a train-
ing and a test set on a sentence level. The train-
ing sets consist of 80% of the sentences, which
have been used to derive n-grams, skip n-grams
and corresponding continuation counts for values
of n between 1 and 5. Note that we have trained
a prediction model for each data set individually.
From the remaining 20% of the sequences we have
randomly sampled a separate set of 100, 000 se-
quences of 5 words each. These test sequences
have also been shortened to sequences of length 3,
and 4 and provide a basis to conduct our final ex-
periments to evaluate the performance of the dif-
ferent algorithms.

We learnt the generalized language models on
the same split of the training corpus as the stan-
dard language model using modified Kneser-Ney
smoothing and we also used the same set of test se-
quences for a direct comparison. To ensure rigour
and openness of research the data set for training
as well as the test sequences and the entire source
code is open source. 2 3 4 We compared the
probabilities of our language model implementa-
tion (which is a subset of the generalized language
model) using KN as well as MKN smoothing with
the Kyoto Language Model Toolkit 5. Since we
got the same results for small n and small data sets
we believe that our implementation is correct.

In a second experiment we have investigated
the impact of the size of the training data set.
The wikipedia corpus consists of 1.7 bn. words.

2http://west.uni-koblenz.de/Research
3https://github.com/renepickhardt/generalized-language-

modeling-toolkit
4http://glm.rene-pickhardt.de
5http://www.phontron.com/kylm/
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Thus, the 80% split for training consists of 1.3 bn.
words. We have iteratively created smaller train-
ing sets by decreasing the split factor by an order
of magnitude. So we created 8% / 92% and 0.8%
/ 99.2% split, and so on. We have stopped at the
0.008%/99.992% split as the training data set in
this case consisted of less words than our 100k
test sequences which we still randomly sampled
from the test data of each split. Then we trained
a generalized language model as well as a stan-
dard language model with modified Kneser-Ney
smoothing on each of these samples of the train-
ing data. Again we have evaluated these language
models on the same random sample of 100, 000
sequences as mentioned above.

4.3 Evaluation Metrics

As evaluation metric we use perplexity: a standard
measure in the field of language models (Manning
and Schütze, 1999). First we calculate the cross
entropy of a trained language model given a test
set using

H(Palg) = −
∑
s∈T

PMLE(s) · log2 Palg(s) (8)

Where Palg will be replaced by the probability
estimates provided by our generalized language
models and the estimates of a language model us-
ing modified Kneser-Ney smoothing. PMLE, in-
stead, is a maximum likelihood estimator of the
test sequence to occur in the test corpus. Finally,
T is the set of test sequences. The perplexity is
defined as:

Perplexity(Palg) = 2H(Palg) (9)

Lower perplexity values indicate better results.

5 Results

5.1 Baseline

As a baseline for our generalized language model
(GLM) we have trained standard language models
using modified Kneser-Ney Smoothing (MKN).
These models have been trained for model lengths
3 to 5. For unigram and bigram models MKN and
GLM are identical.

5.2 Evaluation Experiments

The perplexity values for all data sets and various
model orders can be seen in Table 3. In this table

we also present the relative reduction of perplexity
in comparison to the baseline.

model length
Experiments n = 3 n = 4 n = 5

wiki-de MKN 1074.1 778.5 597.1
wiki-de GLM 1031.1 709.4 521.5
rel. change 4.0% 8.9% 12.7%

JRC-de MKN 235.4 138.4 94.7
JRC-de GLM 229.4 131.8 86.0
rel. change 2.5% 4.8% 9.2%
wiki-en MKN 586.9 404 307.3
wiki-en GLM 571.6 378.1 275
rel. change 2.6% 6.1% 10.5%

JRC-en MKN 147.2 82.9 54.6
JRC-en GLM 145.3 80.6 52.5
rel. change 1.3% 2.8% 3.9%
wiki-fr MKN 538.6 385.9 298.9
wiki-fr GLM 526.7 363.8 272.9
rel. change 2.2% 5.7% 8.7%

JRC-fr MKN 155.2 92.5 63.9
JRC-fr GLM 153.5 90.1 61.7
rel. change 1.1% 2.5% 3.5%
wiki-it MKN 738.4 532.9 416.7
wiki-it GLM 718.2 500.7 382.2
rel. change 2.7% 6.0% 8.3%

JRC-it MKN 177.5 104.4 71.8
JRC-it GLM 175.1 101.8 69.6
rel. change 1.3% 2.6% 3.1%

Table 3: Absolute perplexity values and relative
reduction of perplexity from MKN to GLM on all
data sets for models of order 3 to 5

As we can see, the GLM clearly outperforms
the baseline for all model lengths and data sets.
In general we see a larger improvement in perfor-
mance for models of higher orders (n = 5). The
gain for 3-gram models, instead, is negligible. For
German texts the increase in performance is the
highest (12.7%) for a model of order 5. We also
note that GLMs seem to work better on broad do-
main text rather than special purpose text as the
reduction on the wiki corpora is constantly higher
than the reduction of perplexity on the JRC cor-
pora.

We made consistent observations in our second
experiment where we iteratively shrank the size
of the training data set. We calculated the rela-
tive reduction in perplexity from MKN to GLM
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for various model lengths and the different sizes
of the training data. The results for the English
Wikipedia data set are illustrated in Figure 2.

We see that the GLM performs particularly well
on small training data. As the size of the training
data set becomes smaller (even smaller than the
evaluation data), the GLM achieves a reduction of
perplexity of up to 25.7% compared to language
models with modified Kneser-Ney smoothing on
the same data set. The absolute perplexity values
for this experiment are presented in Table 4.

model length
Experiments n = 3 n = 4 n = 5

80% MKN 586.9 404 307.3
80% GLM 571.6 378.1 275
rel. change 2.6% 6.5% 10.5%

8% MKN 712.6 539.8 436.5
8% GLM 683.7 492.8 382.5
rel. change 4.1% 8.7% 12.4%

0.8% MKN 894.0 730.0 614.1
0.8% GLM 838.7 650.1 528.7
rel. change 6.2% 10.9% 13.9%

0.08% MKN 1099.5 963.8 845.2
0.08% GLM 996.6 820.7 693.4
rel. change 9.4% 14.9% 18.0%

0.008% MKN 1212.1 1120.5 1009.6
0.008% GLM 1025.6 875.5 750.3
rel. change 15.4% 21.9% 25.7%

Table 4: Absolute perplexity values and relative
reduction of perplexity from MKN to GLM on
shrunk training data sets for the English Wikipedia
for models of order 3 to 5

Our theory as well as the results so far suggest
that the GLM performs particularly well on sparse
training data. This conjecture has been investi-
gated in a last experiment. For each model length
we have split the test data of the largest English
Wikipedia corpus into two disjoint evaluation data
sets. The data set unseen consists of all test se-
quences which have never been observed in the
training data. The set observed consists only of
test sequences which have been observed at least
once in the training data. Again we have calcu-
lated the perplexity of each set. For reference, also
the values of the complete test data set are shown
in Table 5.

model length
Experiments n = 3 n = 4 n = 5

MKNcomplete 586.9 404 307.3
GLMcomplete 571.6 378.1 275
rel. change 2.6% 6.5% 10.5%

MKNunseen 14696.8 2199.8 846.1
GLMunseen 13058.7 1902.4 714.4
rel. change 11.2% 13.5% 15.6%

MKNobserved 220.2 88.0 43.4
GLMobserved 220.6 88.3 43.5
rel. change −0.16% −0.28% −0.15%

Table 5: Absolute perplexity values and relative
reduction of perplexity from MKN to GLM for the
complete and split test file into observed and un-
seen sequences for models of order 3 to 5. The
data set is the largest English Wikipedia corpus.

As expected we see the overall perplexity values
rise for the unseen test case and decline for the ob-
served test case. More interestingly we see that the
relative reduction of perplexity of the GLM over
MKN increases from 10.5% to 15.6% on the un-
seen test case. This indicates that the superior per-
formance of the GLM on small training corpora
and for higher order models indeed comes from its
good performance properties with regard to sparse
training data. It also confirms that our motivation
to produce lower order n-grams by omitting not
only the first word of the local context but system-
atically all words has been fruitful. However, we
also see that for the observed sequences the GLM
performs slightly worse than MKN. For the ob-
served cases we find the relative change to be neg-
ligible.

6 Discussion

In our experiments we have observed an im-
provement of our generalized language models
over classical language models using Kneser-Ney
smoothing. The improvements have been ob-
served for different languages, different domains
as well as different sizes of the training data. In
the experiments we have also seen that the GLM
performs well in particular for small training data
sets and sparse data, encouraging our initial mo-
tivation. This feature of the GLM is of partic-
ular value, as data sparsity becomes a more and
more immanent problem for higher values of n.
This known fact is underlined also by the statis-
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Figure 2: Variation of the size of the training data on 100k test sequences on the English Wikipedia data
set with different model lengths for GLM.

tics shown in Table 6. The fraction of total n-
grams which appear only once in our Wikipedia
corpus increases for higher values of n. However,
for the same value of n the skip n-grams are less
rare. Our generalized language models leverage
this additional information to obtain more reliable
estimates for the probability of word sequences.

wn
1 total unique

w1 0.5% 64.0%

w1w2 5.1% 68.2%
w1 w3 8.0% 79.9%
w1 w4 9.6% 72.1%
w1 w5 10.1% 72.7%

w1w2w3 21.1% 77.5%
w1 w3w4 28.2% 80.4%
w1w2 w4 28.2% 80.7%
w1 w4w5 31.7% 81.9%
w1 w3 w5 35.3% 83.0%
w1w2 w5 31.5% 82.2%

w1w2w3w4 44.7% 85.4%
w1 w3w4w5 52.7% 87.6%
w1w2 w4w5 52.6% 88.0%
w1w2w3 w5 52.3% 87.7%

w1w2w3w4w5 64.4% 90.7%

Table 6: Percentage of generalized n-grams which
occur only once in the English Wikipedia cor-
pus. Total means a percentage relative to the total
amount of sequences. Unique means a percentage
relative to the amount of unique sequences of this
pattern in the data set.

Beyond the general improvements there is an
additional path for benefitting from generalized

language models. As it is possible to better lever-
age the information in smaller and sparse data sets,
we can build smaller models of competitive per-
formance. For instance, when looking at Table 4
we observe the 3-gram MKN approach on the full
training data set to achieve a perplexity of 586.9.
This model has been trained on 7 GB of text and
the resulting model has a size of 15 GB and 742
Mio. entries for the count and continuation count
values. Looking for a GLM with comparable but
better performance we see that the 5-gram model
trained on 1% of the training data has a perplexity
of 528.7. This GLM model has a size of 9.5 GB
and contains only 427 Mio. entries. So, using a far
smaller set of training data we can build a smaller
model which still demonstrates a competitive per-
formance.

7 Conclusion and Future Work

7.1 Conclusion

We have introduced a novel generalized language
model as the systematic combination of skip n-
grams and modified Kneser-Ney smoothing. The
main strength of our approach is the combination
of a simple and elegant idea with an an empiri-
cally convincing result. Mathematically one can
see that the GLM includes the standard language
model with modified Kneser-Ney smoothing as a
sub model and is consequently a real generaliza-
tion.

In an empirical evaluation, we have demon-
strated that for higher orders the GLM outper-
forms MKN for all test cases. The relative im-
provement in perplexity is up to 12.7% for large
data sets. GLMs also performs particularly well
on small and sparse sets of training data. On a very
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small training data set we observed a reduction of
perplexity by 25.7%. Our experiments underline
that the generalized language models overcome in
particular the weaknesses of modified Kneser-Ney
smoothing on sparse training data.

7.2 Future work

A desirable extension of our current definition of
GLMs will be the combination of different lower
lower order models in our generalized language
model using different weights for each model.
Such weights can be used to model the statistical
reliability of the different lower order models. The
value of the weights would have to be chosen ac-
cording to the probability or counts of the respec-
tive skip n-grams.

Another important step that has not been con-
sidered yet is compressing and indexing of gen-
eralized language models to improve the perfor-
mance of the computation and be able to store
them in main memory. Regarding the scalability
of the approach to very large data sets we intend to
apply the Map Reduce techniques from (Heafield
et al., 2013) to our generalized language models in
order to have a more scalable calculation.

This will open the path also to another interest-
ing experiment. Goodman (Goodman, 2001) ob-
served that increasing the length of n-grams in
combination with modified Kneser-Ney smooth-
ing did not lead to improvements for values of
n beyond 7. We believe that our generalized
language models could still benefit from such an
increase. They suffer less from the sparsity of
long n-grams and can overcome this sparsity when
interpolating with the lower order skip n-grams
while benefiting from the larger context.

Finally, it would be interesting to see how ap-
plications of language models—like next word
prediction, machine translation, speech recogni-
tion, text classification, spelling correction, e.g.—
benefit from the better performance of generalized
language models.
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A Discount Values and Weights in
Modified Kneser Ney

The discount value D(c) used in formula (2) is de-
fined as (Chen and Goodman, 1999):

D(c) =


0 if c = 0

D1 if c = 1

D2 if c = 2

D3+ if c > 2

(10)

The discounting values D1, D2, and D3+ are de-
fined as (Chen and Goodman, 1998)

D1 = 1 − 2Y
n2

n1
(11a)

D2 = 2 − 3Y
n3

n2
(11b)

D3+ = 3 − 4Y
n4

n3
(11c)

with Y = n1
n1+n2

and ni is the total number of n-
grams which appear exactly i times in the training
data. The weight γhigh(wi−1

i−n+1) is defined as:

γhigh(wi−1
i−n+1) = (12)

D1N1(w
i−1
i−n+1•)+D2N2(w

i−1
i−n+1•)+D3+N3+(wi−1

i−n+1•)
c(wi−1

i−n+1)

And the weight γmid(wi−1
i−n+1) is defined as:

γmid(wi−1
i−n+1) = (13)

D1N1(w
i−1
i−n+1•)+D2N2(w

i−1
i−n+1•)+D3+N3+(wi−1

i−n+1•)
N1+(•wi−1

i−n+1•)

where N1(wi−1
i−n+1•), N2(wi−1

i−n+1•), and
N3+(wi−1

i−n+1•) are analogously defined to
N1+(wi−1

i−n+1•).
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