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Abstract

Quality estimation models provide feed-
back on the quality of machine translated
texts. They are usually trained on human-
annotated datasets, which are very costly
due to its task-specific nature. We in-
vestigate active learning techniques to re-
duce the size of these datasets and thus
annotation effort. Experiments on a num-
ber of datasets show that with as little as
25% of the training instances it is possible
to obtain similar or superior performance
compared to that of the complete datasets.
In other words, our active learning query
strategies can not only reduce annotation
effort but can also result in better quality
predictors.

1 Introduction

The purpose of machine translation (MT) qual-
ity estimation (QE) is to provide a quality pre-
diction for new, unseen machine translated texts,
without relying on reference translations (Blatz et
al., 2004; Specia et al., 2009; Callison-Burch et
al., 2012). This task is usually addressed with
machine learning models trained on datasets com-
posed of source sentences, their machine transla-
tions, and a quality label assigned by humans. A
common use of quality predictions is the decision
between post-editing a given machine translated
sentence and translating its source from scratch,
based on whether its post-editing effort is esti-
mated to be lower than the effort of translating the
source sentence.

Since quality scores for the training of QE mod-
els are given by human experts, the annotation pro-
cess is costly and subject to inconsistencies due to
the subjectivity of the task. To avoid inconsisten-
cies because of disagreements among annotators,
it is often recommended that a QE model is trained

for each translator, based on labels given by such
a translator (Specia, 2011). This further increases
the annotation costs because different datasets are
needed for different tasks. Therefore, strategies to
reduce the demand for annotated data are needed.
Such strategies can also bring the possibility of se-
lecting data that is less prone to inconsistent anno-
tations, resulting in more robust and accurate pre-
dictions.

In this paper we investigate Active Learning
(AL) techniques to reduce the size of the dataset
while keeping the performance of the resulting
QE models. AL provides methods to select in-
formative data points from a large pool which,
if labelled, can potentially improve the perfor-
mance of a machine learning algorithm (Settles,
2010). The rationale behind these methods is to
help the learning algorithm achieve satisfactory re-
sults from only on a subset of the available data,
thus incurring less annotation effort.

2 Related Work

Most research work on QE for machine transla-
tion is focused on feature engineering and feature
selection, with some recent work on devising more
reliable and less subjective quality labels. Blatz et
al. (2004) present the first comprehensive study on
QE for MT: 91 features were proposed and used
to train predictors based on an automatic metric
(e.g. NIST (Doddington, 2002)) as the quality la-
bel. Quirk (2004) showed that small datasets man-
ually annotated by humans for quality can result
in models that outperform those trained on much
larger, automatically labelled sets.

Since quality labels are subjective to the anno-
tators’ judgements, Specia and Farzindar (2010)
evaluated the performance of QE models using
HTER (Snover et al., 2006) as the quality score,
i.e., the edit distance between the MT output and
its post-edited version. Specia (2011) compared
the performance of models based on labels for
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post-editing effort, post-editing time, and HTER.
In terms of learning algorithms, by and large

most approaches use Support Vector Machines,
particularly regression-based approaches. For an
overview on various feature sets and machine
learning algorithms, we refer the reader to a re-
cent shared task on the topic (Callison-Burch et
al., 2012).

Previous work use supervised learning methods
(“passive learning” following the AL terminol-
ogy) to train QE models. On the other hand, AL
has been successfully used in a number of natural
language applications such as text classification
(Lewis and Gale, 1994), named entity recognition
(Vlachos, 2006) and parsing (Baldridge and Os-
borne, 2004). See Olsson (2009) for an overview
on AL for natural language processing as well as
a comprehensive list of previous work.

3 Experimental Settings

3.1 Datasets

We perform experiments using four MT datasets
manually annotated for quality:

English-Spanish (en-es): 2, 254 sentences
translated by Moses (Koehn et al., 2007), as pro-
vided by the WMT12 Quality Estimation shared
task (Callison-Burch et al., 2012). Effort scores
range from 1 (too bad to be post-edited) to 5 (no
post-editing needed). Three expert post-editors
evaluated each sentence and the final score was
obtained by a weighted average between the three
scores. We use the default split given in the shared
task: 1, 832 sentences for training and 432 for
test.

French-English (fr-en): 2, 525 sentences trans-
lated by Moses as provided in Specia (2011), an-
notated by a single translator. Human labels in-
dicate post-editing effort ranging from 1 (too bad
to be post-edited) to 4 (little or no post-editing
needed). We use a random split of 90% sentences
for training and 10% for test.

Arabic-English (ar-en): 2, 585 sentences trans-
lated by two state-of-the-art SMT systems (de-
noted ar-en-1 and ar-en-2), as provided in (Specia
et al., 2011). A random split of 90% sentences for
training and 10% for test is used. Human labels in-
dicate the adequacy of the translation ranging from
1 (completely inadequate) to 4 (adequate). These
datasets were annotated by two expert translators.

3.2 Query Methods
The core of an AL setting is how the learner will
gather new instances to add to its training data. In
our setting, we use a pool-based strategy, where
the learner queries an instance pool and selects
the best instance according to an informativeness
measure. The learner then asks an “oracle” (in this
case, the human expert) for the true label of the in-
stance and adds it to the training data.

Query methods use different criteria to predict
how informative an instance is. We experiment
with two of them: Uncertainty Sampling (US)
(Lewis and Gale, 1994) and Information Density
(ID) (Settles and Craven, 2008). In the following,
we denote M(x) the query score with respect to
method M .

According to the US method, the learner selects
the instance that has the highest labelling variance
according to its model:

US(x) = V ar(y|x)

The ID method considers that more dense regions
of the query space bring more useful information,
leveraging the instance uncertainty and its similar-
ity to all the other instances in the pool:

ID(x) = V ar(y|x)×
(

1

U

U∑

u=1

sim(x, x(u))

)β

The β parameter controls the relative importance
of the density term. In our experiments, we set it
to 1, giving equal weights to variance and density.
The U term is the number of instances in the query
pool. As similarity measure sim(x, x(u)), we use
the cosine distance between the feature vectors.
With each method, we choose the instance that
maximises its respective equation.

3.3 Experiments
To build our QE models, we extracted the 17 fea-
tures used by the baseline approach in the WMT12
QE shared task.1 These features were used with a
Support Vector Regressor (SVR) with radial basis
function and fixed hyperparameters (C=5, γ=0.01,
ε=0.5), using the Scikit-learn toolkit (Pedregosa
et al., 2011). For each dataset and each query
method, we performed 20 active learning simu-
lation experiments and averaged the results. We

1We refer the reader to (Callison-Burch et al., 2012) for
a detailed description of the feature set, but this was a very
strong baseline, with only five out of 19 participating systems
outperforming it.
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started with 50 randomly selected sentences from
the training set and used all the remaining train-
ing sentences as our query pool, adding one new
sentence to the training set at each iteration.

Results were evaluated by measuring Mean Ab-
solute Error (MAE) scores on the test set. We
also performed an “oracle” experiment: at each it-
eration, it selects the instance that minimises the
MAE on the test set. The oracle results give an
upper bound in performance for each test set.

Since an SVR does not supply variance values
for its predictions, we employ a technique known
as query-by-bagging (Abe and Mamitsuka, 1998).
The idea is to build an ensemble of N SVRs
trained on sub-samples of the training data. When
selecting a new query, the ensemble is able to re-
turnN predictions for each instance, from where a
variance value can be inferred. We used 20 SVRs
as our ensemble and 20 as the size of each training
sub-sample.2 The variance values are then used
as-is in the case of US strategy and combined with
query densities in case of the ID strategy.

4 Results and Discussion

Figure 1 shows the learning curves for all query
methods and all datasets. The “random” curves
are our baseline since they are equivalent to pas-
sive learning (with various numbers of instances).
We first evaluated our methods in terms of how
many instances they needed to achieve 99% of the
MAE score on the full dataset. For three datasets,
the AL methods significantly outperformed the
random selection baseline, while no improvement
was observed on the ar-en-1 dataset. Results are
summarised in Table 1.

The learning curves in Figure 1 show an inter-
esting behaviour for most AL methods: some of
them were able to yield lower MAE scores than
models trained on the full dataset. This is par-
ticularly interesting in the fr-en case, where both
methods were able to obtain better scores using
only ∼25% of the available instances, with the
US method resulting in 0.03 improvement. The
random selection strategy performs surprisingly
well (for some datasets it is better than the AL
strategies with certain number of instances), pro-
viding extra evidence that much smaller annotated

2We also tried sub-samples with the same size of the cur-
rent training data but this had a large impact in the query
methods running time while not yielding significantly better
results.

Figure 1: Learning curves for different query se-
lection strategies in the four datasets. The horizon-
tal axis shows the number of instances in the train-
ing set and the vertical axis shows MAE scores.
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US ID Random Full dataset#instances MAE #instances MAE #instances MAE
en-es 959 (52%) 0.6818 549 (30%) 0.6816 1079 (59%) 0.6818 0.6750
fr-en 79 (3%) 0.5072 134 (6%) 0.5077 325 (14%) 0.5070 0.5027
ar-en-1 51 (2%) 0.6067 51 (2%) 0.6052 51 (2%) 0.6061 0.6058
ar-en-2 209 (9%) 0.6288 148 (6%) 0.6289 532 (23%) 0.6288 0.6290

Table 1: Number (proportion) of instances needed to achieve 99% of the performance of the full dataset.
Bold-faced values indicate the best performing datasets.

Best MAE US Best MAE ID Full dataset#instances MAE US MAE Random #instances MAE ID MAE Random
en-es 1832 (100%) 0.6750 0.6750 1122 (61%) 0.6722 0.6807 0.6750
fr-en 559 (25%) 0.4708 0.5010 582 (26%) 0.4843 0.5008 0.5027
ar-en-1 610 (26%) 0.5956 0.6042 351 (15%) 0.5987 0.6102 0.6058
ar-en-2 1782 (77%) 0.6212 0.6242 190 (8%) 0.6170 0.6357 0.6227

Table 2: Best MAE scores obtained in the AL experiments. For each method, the first column shows the
number (proportion) of instances used to obtain the best MAE, the second column shows the MAE score
obtained and the third column shows the MAE score for random instance selection at the same number
of instances. The last column shows the MAE obtained using the full dataset. Best scores are shown in
bold and are significantly better (paired t-test, p < 0.05) than both their randomly selected counterparts
and the full dataset MAE.

datasets than those used currently can be sufficient
for machine translation QE.

The best MAE scores achieved for each dataset
are shown in Table 2. The figures were tested for
significance using pairwise t-test with 95% confi-
dence,3 with bold-faced values in the table indicat-
ing significantly better results.

The lower bounds in MAE given by the ora-
cle curves show that AL methods can indeed im-
prove the performance of QE models: an ideal
query method would achieve a very large improve-
ment in MAE using fewer than 200 instances in all
datasets. The fact that different datasets present
similar oracle curves suggests that this is not re-
lated for a specific dataset but actually a common
behaviour in QE. Although some of this gain in
MAE may be due to overfitting to the test set, the
results obtained with the fr-en and ar-en-2 datasets
are very promising, and therefore we believe that
it is possible to use AL to improve QE results in
other cases, as long as more effective query tech-
niques are designed.

5 Further analysis on the oracle
behaviour

By analysing the oracle curves we can observe an-
other interesting phenomenon which is the rapid
increase in error when reaching the last ∼200 in-
stances of the training data. A possible explana-

3We took the average of the MAE scores obtained from
the 20 runs with each query method for that.

tion for this behaviour is the existence of erro-
neous, inconsistent or contradictory labels in the
datasets. Quality annotation is a subjective task by
nature, and it is thus subject to noise, e.g., due to
misinterpretations or disagreements. Our hypothe-
sis is that these last sentences are the most difficult
to annotate and therefore more prone to disagree-
ments.

To investigate this phenomenon, we performed
an additional experiment with the en-es dataset,
the only dataset for which multiple annotations
are available (from three judges). We measure the
Kappa agreement index (Cohen, 1960) between all
pairs of judges in the subset containing the first
300 instances (the 50 initial random instances plus
250 instances chosen by the oracle). We then mea-
sured Kappa in windows of 300 instances until the
last instance of the training set is selected by the
oracle method. We also measure variances in sen-
tence length using windows of 300 instances. The
idea of this experiment is to test whether sentences
that are more difficult to annotate (because of their
length or subjectivity, generating more disagree-
ment between the judges) add noise to the dataset.

The resulting Kappa curves are shown in Fig-
ure 2: the agreement between judges is high for
the initial set of sentences selected, tends to de-
crease until it reaches ∼1000 instances, and then
starts to increase again. Figure 3 shows the results
for source sentence length, which follow the same
trend (in a reversed manner). Contrary to our hy-
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Figure 2: Kappa curves for the en-es dataset. The
horizontal axis shows the number of instances and
the vertical axis shows the kappa values. Each
point in the curves shows the kappa index for a
window containing the last 300 sentences chosen
by the oracle.

pothesis, these results suggest that the most diffi-
cult sentences chosen by the oracle are those in the
middle range instead of the last ones. If we com-
pare this trend against the oracle curve in Figure 1,
we can see that those middle instances are the ones
that do not change the performance of the oracle.

The resulting trends are interesting because they
give evidence that sentences that are difficult to an-
notate do not contribute much to QE performance
(although not hurting it either). However, they do
not confirm our hypothesis about the oracle be-
haviour. Another possible source of disagreement
is the feature set: the features may not be discrim-
inative enough to distinguish among different in-
stances, i.e., instances with very similar features
but different labels might be genuinely different,
but the current features are not sufficient to indi-
cate that. In future work we plan to further inves-
tigate this by hypothesis by using other feature sets
and analysing their behaviour.

6 Conclusions and Future Work

We have presented the first known experiments us-
ing active learning for the task of estimating ma-
chine translation quality. The results are promis-
ing: we were able to reduce the number of in-
stances needed to train the models in three of the
four datasets. In addition, in some of the datasets
active learning yielded significantly better models
using only a small subset of the training instances.

Figure 3: Average source and target sentence
lengths for the en-es dataset. The horizontal axis
shows the number of instances and the vertical
axis shows the length values. Each point in the
curves shows the average length for a window con-
taining the last 300 sentences chosen by the oracle.

The oracle results give evidence that it is possi-
ble to go beyond these encouraging results by em-
ploying better selection strategies in active learn-
ing. In future work we will investigate more
advanced query techniques that consider features
other than variance and density of the data points.
We also plan to further investigate the behaviour
of the oracle curves using not only different fea-
ture sets but also different quality scores such as
HTER and post-editing time. We believe that a
better understanding of this behaviour can guide
further developments not only for instance selec-
tion techniques but also for the design of better
quality features and quality annotation schemes.
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