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Abstract

We investigate coreference relationships
between NPs with the same head noun.
It is relatively common in unsupervised
work to assume that such pairs are
coreferent– but this is not always true, es-
pecially if realistic mention detection is
used. We describe the distribution of non-
coreferent same-head pairs in news text,
and present an unsupervised generative
model which learns not to link some same-
head NPs using syntactic features, improv-
ing precision.

1 Introduction

Full NP coreference, the task of discovering which
non-pronominal NPs in a discourse refer to the
same entity, is widely known to be challenging.
In practice, however, most work focuses on the
subtask of linking NPs with different head words.
Decisions involving NPs with the same head word
have not attracted nearly as much attention, and
many systems, especially unsupervised ones, op-
erate under the assumption that all same-head
pairs corefer. This is by no means always the case–
there are several systematic exceptions to the rule.
In this paper, we show that these exceptions are
fairly common, and describe an unsupervised sys-
tem which learns to distinguish them from coref-
erent same-head pairs.

There are several reasons why relatively little
attention has been paid to same-head pairs. Pri-
marily, this is because they are a comparatively
easy subtask in a notoriously difficult area; Stoy-
anov et al. (2009) shows that, among NPs headed
by common nouns, those which have an exact
match earlier in the document are the easiest to

resolve (variant MUC score .82 on MUC-6) and
while those with partial matches are quite a bit
harder (.53), by far the worst performance is on
those without any match at all (.27). This effect
is magnified by most popular metrics for coref-
erence, which reward finding links within large
clusters more than they punish proposing spu-
rious links, making it hard to improve perfor-
mance by linking conservatively. Systems that
use gold mention boundaries (the locations of NPs
marked by annotators)1 have even less need to
worry about same-head relationships, since most
NPs which disobey the conventional assumption
are not marked as mentions.

In this paper, we count how often same-head
pairs fail to corefer in the MUC-6 corpus, show-
ing that gold mention detection hides most such
pairs, but more realistic detection finds large num-
bers. We also present an unsupervised genera-
tive model which learns to make certain same-
head pairs non-coreferent. The model is based
on the idea that pronoun referents are likely to
be salient noun phrases in the discourse, so we
can learn about NP antecedents using pronom-
inal antecedents as a starting point. Pronoun
anaphora, in turn, is learnable from raw data
(Cherry and Bergsma, 2005; Charniak and Elsner,
2009). Since our model links fewer NPs than the
baseline, it improves precision but decreases re-
call. This tradeoff is favorable for CEAF, but not
for b3.

2 Related work

Unsupervised systems specify the assumption of
same-head coreference in several ways: by as-

1Gold mention detection means something slightly differ-
ent in the ACE corpus, where the system input contains every
NP annotated with an entity type.
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sumption (Haghighi and Klein, 2009), using
a head-prediction clause (Poon and Domingos,
2008), and using a sparse Dirichlet prior on word
emissions (Haghighi and Klein, 2007). (These
three systems, perhaps not coincidentally, use gold
mentions.) An exception is Ng (2008), who points
out that head identity is not an entirely reliable cue
and instead uses exact string match (minus deter-
miners) for common NPs and an alias detection
system for proper NPs. This work uses mentions
extracted with an NP chunker. No specific results
are reported for same-head NPs. However, while
using exact string match raises precision, many
non-matching phrases are still coreferent, so this
approach cannot be considered a full solution to
the problem.

Supervised systems do better on the task, but
not perfectly. Recent work (Stoyanov et al., 2009)
attempts to determine the contributions of various
categories of NP to coreference scores, and shows
(as stated above) that common NPs which partially
match an earlier mention are not well resolved by
the state-of-the-art RECONCILE system, which
uses pairwise classification. They also show that
using gold mention boundaries makes the corefer-
ence task substantially easier, and argue that this
experimental setting is “rather unrealistic”.

3 Descriptive study: MUC-6

We begin by examining how often non-same-head
pairs appear in the MUC-6 coreference dataset.
To do so, we compare two artificial coreference
systems: the link-all strategy links all, and only,
full (non-pronominal) NP pairs with the same head
which occur within 10 sentences of one another.
The oracle strategy links NP pairs with the same
head which occur within 10 sentences, but only if
they are actually coreferent (according to the gold
annotation)2 The link-all system, in other words,
does what most existing unsupervised systems do
on the same-head subset of NPs, while the oracle
system performs perfectly.

We compare our results to the gold standard us-
ing two metrics. b3(Bagga and Baldwin, 1998)
is a standard metric which calculates a precision
and recall for each mention. The mention CEAF
(Luo, 2005) constructs a maximum-weight bipar-

2The choice of 10 sentences as the window size captures
most, but not all, of the available recall. Using nouns mention
detection, it misses 117 possible same-head links, or about
10%. However, precision drops further as the window size
increases.

tite matching between gold and proposed clusters,
then gives the percentage of entities whose gold
label and proposed label match. b3 gives more
weight to errors involving larger clusters (since
these lower scores for several mentions at once);
for mention CEAF, all mentions are weighted
equally.

We annotate the data with the self-trained Char-
niak parser (McClosky et al., 2006), then extract
mentions using three different methods. The gold
mentions method takes only mentions marked by
annotators. The nps method takes all base noun
phrases detected by the parser. Finally, the nouns
method takes all nouns, even those that do not
head NPs; this method maximizes recall, since it
does not exclude prenominals in phrases like “a
Bush spokesman”. (High-precision models of the
internal structure of flat Penn Treebank-style NPs
were investigated by Vadas and Curran (2007).)
For each experimental setting, we show the num-
ber of mentions detected, and how many of them
are linked to some antecedent by the system.

The data is shown in Table 1. b3 shows a large
drop in precision when all same-head pairs are
linked; in fact, in the nps and nouns settings, only
about half the same-headed NPs are actually coref-
erent (864 real links, 1592 pairs for nps). This
demonstrates that non-coreferent same-head pairs
not only occur, but are actually rather common in
the dataset. The drop in precision is much less
obvious in the gold mentions setting, however;
most unlinked same-head pairs are not annotated
as mentions in the gold data, which is one reason
why systems run in this experimental setting can
afford to ignore them.

Improperly linking same-head pairs causes a
loss in precision, but scores are dominated by re-
call3. Thus, reporting b3 helps to mask the impact
of these pairs when examining the final f-score.

We roughly characterize what sort of same-
headed NPs are non-coreferent by hand-
examining 100 randomly selected pairs. 39
pairs denoted different entities (“recent employ-
ees” vs “employees who have worked for longer”)
disambiguated by modifiers or sometimes by
discourse position. The next largest group (24)
consists of time and measure phrases like “ten
miles”. 12 pairs refer to parts or quantities

3This bias is exaggerated for systems which only link
same-head pairs, but continues to apply to real systems; for
instance (Haghighi and Klein, 2009) has a b3 precision of 84
and recall of 67.

34



Mentions Linked b3 pr rec F mention CEAF
Gold mentions

Oracle 1929 1164 100 32.3 48.8 54.4
Link all 1929 1182 80.6 31.7 45.5 53.8
Alignment 1929 495 93.7 22.1 35.8 40.5

NPs
Oracle 3993 864 100 30.6 46.9 73.4
Link all 3993 1592 67.2 29.5 41.0 62.2
Alignment 3993 518 87.2 24.7 38.5 67.0

Nouns
Oracle 5435 1127 100 41.5 58.6 83.5
Link all 5435 2541 56.6 40.9 45.7 67.0
Alignment 5435 935 83.0 32.8 47.1 74.4

Table 1: Oracle, system and baseline scores on MUC-6 test data. Gold mentions leave little room
for improvement between baseline and oracle; detecting more mentions widens the gap between
them. With realistic mention detection, precision and CEAF scores improve over baselines, while recall
and f-scores drop.

(“members of...”), and 12 contained a generic
(“In a corporate campaign, a union tries...”). 9
contained an annotator error. The remaining 4
were mistakes involving proper noun phrases
headed by Inc. and other abbreviations; this case
is easy to handle, but apparently not the primary
cause of errors.

4 System

Our system is a version of the popular IBM model
2 for machine translation. To define our generative
model, we assume that the parse trees for the en-
tire document D are given, except for the subtrees
with root nonterminal NP, denoted ni, which our
system will generate. These subtrees are related
by a hidden set of alignments, ai, which link each
NP to another NP (which we call a generator) ap-
pearing somewhere before it in the document, or
to a null antecedent. The set of potential genera-
tors G (which plays the same role as the source-
language text in MT) is taken to be all the NPs
occurring within 10 sentences of the target, plus a
special null antecedent which plays the same role
as the null word in machine translation– it serves
as a dummy generator for NPs which are unrelated
to any real NP in G.

The generative process fills in all the NP nodes
in order, from left to right. This process ensures
that, when generating node ni, we have already
filled in all the NPs in the set G (since these all
precede ni). When deciding on a generator for
NP ni, we can extract features characterizing its

relationship to a potential generator gj . These fea-
tures, which we denote f(ni, gj , D), may depend
on their relative position in the document D, and
on any features of gj , since we have already gener-
ated its tree. However, we cannot extract features
from the subtree under ni, since we have yet to
generate it!

As usual for IBM models, we learn using EM,
and we need to start our alignment function off
with a good initial set of parameters. Since an-
tecedents of NPs and pronouns (both salient NPs)
often occur in similar syntactic environments, we
use an alignment function for pronoun corefer-
ence as a starting point. This alignment can be
learned from raw data, making our approach un-
supervised.

We take the pronoun model of Charniak and El-
sner (2009)4 as our starting point. We re-express
it in the IBM framework, using a log-linear model
for our alignment. Then our alignment (parame-
terized by feature weights w) is:

p(ai = j|G,D) ∝ exp(f(ni, gj , D) • w)

The weights w are learned by gradient descent
on the log-likelihood. To use this model within
EM, we alternate an E-step where we calculate
the expected alignments E[ai = j], then an M-
step where we run gradient descent. (We have also
had some success with stepwise EM as in (Liang
and Klein, 2009), but this requires some tuning to
work properly.)

4Downloaded from http://bllip.cs.brown.edu.
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As features, we take the same features as Char-
niak and Elsner (2009): sentence and word-count
distance between ni and gj , sentence position of
each, syntactic role of each, and head type of gj

(proper, common or pronoun). We add binary fea-
tures for the nonterminal directly over gj (NP, VP,
PP, any S type, or other), the type of phrases mod-
ifying gj (proper nouns, phrasals (except QP and
PP), QP, PP-of, PP-other, other modifiers, or noth-
ing), and the type of determiner of gj (possessive,
definite, indefinite, deictic, other, or nothing). We
designed this feature set to distinguish prominent
NPs in the discourse, and also to be able to detect
abstract or partitive phrases by examining modi-
fiers and determiners.

To produce full NPs and learn same-head coref-
erence, we focus on learning a good alignment
using the pronoun model as a starting point. For
translation, we use a trivial model, p(ni|gai) = 1
if the two have the same head, and 0 otherwise,
except for the null antecedent, which draws heads
from a multinomial distribution over words.

While we could learn an alignment and then
treat all generators as antecedents, so that only
NPs aligned to the null antecedent were not la-
beled coreferent, in practice this model would
align nearly all the same-head pairs. This is
true because many words are “bursty”; the prob-
ability of a second occurrence given the first is
higher than the a priori probability of occurrence
(Church, 2000). Therefore, our model is actually a
mixture of two IBM models, pC and pN , where pC

produces NPs with antecedents and pN produces
pairs that share a head, but are not coreferent. To
break the symmetry, we allow pC to use any pa-
rameters w, while pN uses a uniform alignment,
w ≡ ~0. We interpolate between these two models
with a constant λ, the single manually set parame-
ter of our system, which we fixed at .9.

The full model, therefore, is:

p(ni|G,D) =λpT (ni|G,D)
+ (1− λ)pN (ni|G,D)

pT (ni|G,D) =
1
Z

∑
j∈G

exp(f(ni, gj , D) • w)

× I{head(ni) = head(j)}

pT (ni|G,D) =
∑
j∈G

1
|G|

I{head(ni) = head(gj)}

NPs for which the maximum-likelihood gener-

ator (the largest term in either of the sums) is from
pT and is not the null antecedent are marked as
coreferent to the generator. Other NPs are marked
not coreferent.

5 Results

Our results on the MUC-6 formal test set are
shown in Table 1. In all experimental settings,
the model improves precision over the baseline
while decreasing recall– that is, it misses some le-
gitimate coreferent pairs while correctly exclud-
ing many of the spurious ones. Because of the
precision-recall tradeoff at which the systems op-
erate, this results in reduced b3 and link F. How-
ever, for the nps and nouns settings, where the
parser is responsible for finding mentions, the
tradeoff is positive for the CEAF metrics. For in-
stance, in the nps setting, it improves over baseline
by 57%.

As expected, the model does poorly in the gold
mentions setting, doing worse than baseline on
both metrics. Although it is possible to get very
high precision in this setting, the model is far too
conservative, linking less than half of the available
mentions to anything, when in fact about 60% of
them are coreferent. As we explain above, this ex-
perimental setting makes it mostly unnecessary to
worry about non-coreferent same-head pairs be-
cause the MUC-6 annotators don’t often mark
them.

6 Conclusions

While same-head pairs are easier to resolve than
same-other pairs, they are still non-trivial and de-
serve further attention in coreference research. To
effectively measure their effect on performance,
researchers should report multiple metrics, since
under b3 the link-all heuristic is extremely diffi-
cult to beat. It is also important to report results
using a realistic mention detector as well as gold
mentions.
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