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Abstract

The core-adjunct argument distinction is a
basic one in the theory of argument struc-
ture. The task of distinguishing between
the two has strong relations to various ba-
sic NLP tasks such as syntactic parsing,
semantic role labeling and subcategoriza-
tion acquisition. This paper presents a
novel unsupervised algorithm for the task
that uses no supervised models, utilizing
instead state-of-the-art syntactic induction
algorithms. This is the first work to tackle
this task in a fully unsupervised scenario.

1 Introduction

The distinction between core arguments (hence-
forth, cores) and adjuncts is included in most the-
ories on argument structure (Dowty, 2000). The
distinction can be viewed syntactically, as one
between obligatory and optional arguments, or
semantically, as one between arguments whose
meanings are predicate dependent and indepen-
dent. The latter (cores) are those whose function in
the described event is to a large extent determined
by the predicate, and are obligatory. Adjuncts are
optional arguments which, like adverbs, modify
the meaning of the described event in a predictable
or predicate-independent manner.

Consider the following examples:

1. The surgeon operated [on his colleague].

2. Ron will drop by [after lunch].

3. Yuri played football [in the park].

The marked argument is a core in 1 and an ad-
junct in 2 and 3. Adjuncts form an independent
semantic unit and their semantic role can often be
inferred independently of the predicate (e.g., [af-
ter lunch] is usually a temporal modifier). Core
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roles are more predicate-specific, e.g., [on his col-
league] has a different meaning with the verbs ‘op-
erate’ and ‘count’.

Sometimes the same argument plays a different
role in different sentences. In (3), [in the park]
places a well-defined situation (Yuri playing foot-
ball) in a certain location. However, in “The troops
are based [in the park]”, the same argument is
obligatory, since being based requires a place to
be based in.

Distinguishing between the two argument types
has been discussed extensively in various formu-
lations in the NLP literature, notably in PP attach-
ment, semantic role labeling (SRL) and subcatego-
rization acquisition. However, no work has tack-
led it yet in a fully unsupervised scenario. Unsu-
pervised models reduce reliance on the costly and
error prone manual multi-layer annotation (POS
tagging, parsing, core-adjunct tagging) commonly
used for this task. They also allow to examine the
nature of the distinction and to what extent it is
accounted for in real data in a theory-independent
manner.

In this paper we present a fully unsupervised al-
gorithm for core-adjunct classification. We utilize
leading fully unsupervised grammar induction and
POS induction algorithms. We focus on preposi-
tional arguments, since non-prepositional ones are
generally cores. The algorithm uses three mea-
sures based on different characterizations of the
core-adjunct distinction, and combines them us-
ing an ensemble method followed by self-training.
The measures used are based on selectional prefer-
ence, predicate-slot collocation and argument-slot
collocation.

We evaluate against PropBank (Palmer et al.,
2005), obtaining roughly 70% accuracy when
evaluated on the prepositional arguments and
more than 80% for the entire argument set. These
results are substantially better than those obtained
by a non-trivial baseline.
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Section 2 discusses the core-adjunct distinction.
Section 3 describes the algorithm. Sections 4 and
5 present our experimental setup and results.

2 Core-Adjunct in Previous Work

PropBank. PropBank (PB) (Palmer et al., 2005)
is a widely used corpus, providing SRL annotation
for the entire WSJ Penn Treebank. Its core labels
are predicate specific, while adjunct (or modifiers
under their terminology) labels are shared across
predicates. The adjuncts are subcategorized into
several classes, the most frequent of which are
locative, temporal and manner1.

The organization of PropBank is based on
the notion of diathesis alternations, which are
(roughly) defined to be alternations between two
subcategorization frames that preserve meaning or
change it systematically. The frames in which
each verb appears were collected and sets of al-
ternating frames were defined. Each such set was
assumed to have a unique set of roles, named ‘role-
set’. These roles include all roles appearing in any
of the frames, except of those defined as adjuncts.

Adjuncts are defined to be optional arguments
appearing with a wide variety of verbs and frames.
They can be viewed as fixed points with respect to
alternations, i.e., as arguments that do not change
their place or slot when the frame undergoes an
alternation. This follows the notions of optionality
and compositionality that define adjuncts.

Detecting diathesis alternations automatically
is difficult (McCarthy, 2001), requiring an initial
acquisition of a subcategorization lexicon. This
alone is a challenging task tackled in the past us-
ing supervised parsers (see below).

FrameNet. FrameNet (FN) (Baker et al., 1998)
is a large-scale lexicon based on frame semantics.
It takes a different approach from PB to semantic
roles. Like PB, it distinguishes between core and
non-core arguments, but it does so for each and
every frame separately. It does not commit that a
semantic role is consistently tagged as a core or
a non-core across frames. For example, the se-
mantic role ‘path’ is considered core in the ‘Self
Motion’ frame, but as non-core in the ‘Placing’
frame. Another difference is that FN does not al-
low any type of non-core argument to attach to
a given frame. For instance, while the ‘Getting’

1PropBank annotates modals and negation words as mod-
ifiers. Since these are not arguments in the common usage of
the term, we exclude them from the discussion in this paper.

frame allows a ‘Duration’ non-core argument, the
‘Active Perception’ frame does not.

PB and FN tend to agree in clear (prototypical)
cases, but to differ in others. For instance, both
schemes would tag “Yuri played football [in the
park]” as an adjunct and “The commander placed
a guard [in the park]” as a core. However, in “He
walked [into his office]”, the marked argument is
tagged as a directional adjunct in PB but as a ‘Di-
rection’ core in FN.

Under both schemes, non-cores are usually con-
fined to a few specific semantic domains, no-
tably time, place and manner, in contrast to cores
that are not restricted in their scope of applica-
bility. This approach is quite common, e.g., the
COBUILD English grammar (Willis, 2004) cate-
gorizes adjuncts to be of manner, aspect, opinion,
place, time, frequency, duration, degree, extent,
emphasis, focus and probability.

Semantic Role Labeling. Work in SRL does
not tackle the core-adjunct task separately but as
part of general argument classification. Super-
vised approaches obtain an almost perfect score
in distinguishing between the two in an in-domain
scenario. For instance, the confusion matrix in
(Toutanova et al., 2008) indicates that their model
scores 99.5% accuracy on this task. However,
adaptation results are lower, with the best two
models in the CoNLL 2005 shared task (Carreras
and Màrquez, 2005) achieving 95.3% (Pradhan et
al., 2008) and 95.6% (Punyakanok et al., 2008) ac-
curacy in an adaptation between the relatively sim-
ilar corpora WSJ and Brown.

Despite the high performance in supervised sce-
narios, tackling the task in an unsupervised man-
ner is not easy. The success of supervised methods
stems from the fact that the predicate-slot com-
bination (slot is represented in this paper by its
preposition) strongly determines whether a given
argument is an adjunct or a core (see Section 3.4).
Supervised models are provided with an anno-
tated corpus from which they can easily learn the
mapping between predicate-slot pairs and their
core/adjunct label. However, induction of the
mapping in an unsupervised manner must be based
on inherent core-adjunct properties. In addition,
supervised models utilize supervised parsers and
POS taggers, while the current state-of-the-art in
unsupervised parsing and POS tagging is consid-
erably worse than their supervised counterparts.

This challenge has some resemblance to un-
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supervised detection of multiword expressions
(MWEs). An important MWE sub-class is that
of phrasal verbs, which are also characterized by
verb-preposition pairs (Li et al., 2003; Sporleder
and Li, 2009) (see also (Boukobza and Rappoport,
2009)). Both tasks aim to determine semantic
compositionality, which is a highly challenging
task.

Few works addressed unsupervised SRL-related
tasks. The setup of (Grenager and Manning,
2006), who presented a Bayesian Network model
for argument classification, is perhaps closest to
ours. Their work relied on a supervised parser
and a rule-based argument identification (both dur-
ing training and testing). Swier and Stevenson
(2004, 2005), while addressing an unsupervised
SRL task, greatly differ from us as their algorithm
uses the VerbNet (Kipper et al., 2000) verb lex-
icon, in addition to supervised parses. Finally,
Abend et al. (2009) tackled the argument identi-
fication task alone and did not perform argument
classification of any sort.

PP attachment. PP attachment is the task of de-
termining whether a prepositional phrase which
immediately follows a noun phrase attaches to the
latter or to the preceding verb. This task’s relation
to the core-adjunct distinction was addressed in
several works. For instance, the results of (Hindle
and Rooth, 1993) indicate that their PP attachment
system works better for cores than for adjuncts.

Merlo and Esteve Ferrer (2006) suggest a sys-
tem that jointly tackles the PP attachment and the
core-adjunct distinction tasks. Unlike in this work,
their classifier requires extensive supervision in-
cluding WordNet, language-specific features and
a supervised parser. Their features are generally
motivated by common linguistic considerations.
Features found adaptable to a completely unsuper-
vised scenario are used in this work as well.

Syntactic Parsing. The core-adjunct distinction
is included in many syntactic annotation schemes.
Although the Penn Treebank does not explicitly
annotate adjuncts and cores, a few works sug-
gested mapping its annotation (including func-
tion tags) to core-adjunct labels. Such a mapping
was presented in (Collins, 1999). In his Model
2, Collins modifies his parser to provide a core-
adjunct prediction, thereby improving its perfor-
mance.

The Combinatory Categorial Grammar (CCG)

formulation models the core-adjunct distinction
explicitly. Therefore, any CCG parser can be used
as a core-adjunct classifier (Hockenmaier, 2003).

Subcategorization Acquisition. This task spec-
ifies for each predicate the number, type and order
of obligatory arguments. Determining the allow-
able subcategorization frames for a given predi-
cate necessarily involves separating its cores from
its allowable adjuncts (which are not framed). No-
table works in the field include (Briscoe and Car-
roll, 1997; Sarkar and Zeman, 2000; Korhonen,
2002). All these works used a parsed corpus in
order to collect, for each predicate, a set of hy-
pothesized subcategorization frames, to be filtered
by hypothesis testing methods.

This line of work differs from ours in a few
aspects. First, all works use manual or super-
vised syntactic annotations, usually including a
POS tagger. Second, the common approach to the
task focuses on syntax and tries to identify the en-
tire frame, rather than to tag each argument sep-
arately. Finally, most works address the task at
the verb type level, trying to detect the allowable
frames for each type. Consequently, the common
evaluation focuses on the quality of the allowable
frames acquired for each verb type, and not on the
classification of specific arguments in a given cor-
pus. Such a token level evaluation was conducted
in a few works (Briscoe and Carroll, 1997; Sarkar
and Zeman, 2000), but often with a small num-
ber of verbs or a small number of frames. A dis-
cussion of the differences between type and token
level evaluation can be found in (Reichart et al.,
2010).

The core-adjunct distinction task was tackled in
the context of child language acquisition. Villav-
icencio (2002) developed a classifier based on
preposition selection and frequency information
for modeling the distinction for locative preposi-
tional phrases. Her approach is not entirely corpus
based, as it assumes the input sentences are given
in a basic logical form.

The study of prepositions is a vibrant research
area in NLP. A special issue ofComputational Lin-
guistics, which includes an extensive survey of re-
lated work, was recently devoted to the field (Bald-
win et al., 2009).
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3 Algorithm

We are given a (predicate, argument) pair in a test
sentence, and we need to determine whether the
argument is a core or an adjunct. Test arguments
are assumed to be correctly bracketed. We are al-
lowed to utilize a training corpus of raw text.

3.1 Overview

Our algorithm utilizes statistics based on the
(predicate, slot, argument head) (PSH) joint dis-
tribution (a slot is represented by its preposition).
To estimate this joint distribution, PSH samples
are extracted from the training corpus using unsu-
pervised POS taggers (Clark, 2003; Abend et al.,
2010) and an unsupervised parser (Seginer, 2007).
As current performance of unsupervised parsers
for long sentences is low, we use only short sen-
tences (up to 10 words, excluding punctuation).
The length of test sentences is not bounded. Our
results will show that the training data accounts
well for the argument realization phenomena in
the test set, despite the length bound on its sen-
tences. The sample extraction process is detailed
in Section 3.2.

Our approach makes use of both aspects of the
distinction – obligatoriness and compositionality.
We define three measures, one quantifying the
obligatoriness of the slot, another quantifying the
selectional preference of the verb to the argument
and a third that quantifies the association between
the head word and the slot irrespective of the pred-
icate (Section 3.3).

The measures’ predictions are expected to coin-
cide in clear cases, but may be less successful in
others. Therefore, an ensemble-based method is
used to combine the three measures into a single
classifier. This results in a high accuracy classifier
with relatively low coverage. A self-training step
is now performed to increase coverage with only a
minor deterioration in accuracy (Section 3.4).

We focus on prepositional arguments. Non-
prepositional arguments in English tend to be
cores (e.g., in more than 85% of the cases in
PB sections 2–21), while prepositional arguments
tend to be equally divided between cores and ad-
juncts. The difficulty of the task thus lies in the
classification of prepositional arguments.

3.2 Data Collection

The statistical measures used by our classifier
are based on the (predicate, slot, argument head)

(PSH) joint distribution. This section details the
process of extracting samples from this joint dis-
tribution given a raw text corpus.

We start by parsing the corpus using the Seginer
parser (Seginer, 2007). This parser is unique in its
ability to induce a bracketing (unlabeled parsing)
from raw text (without even using POS tags) with
strong results. Its high speed (thousands of words
per second) allows us to use millions of sentences,
a prohibitive number for other parsers.

We continue by tagging the corpus using
Clark’s unsupervised POS tagger (Clark, 2003)
and the unsupervised Prototype Tagger (Abend et
al., 2010)2. The classes corresponding to preposi-
tions and to verbs are manually selected from the
induced clusters3. A preposition is defined to be
any word which is the first word of an argument
and belongs to a prepositions cluster. A verb is
any word belonging to a verb cluster. This manual
selection requires only a minute, since the number
of classes is very small (34 in our experiments).
In addition, knowing what is considered a prepo-
sition is part of the task definition itself.

Argument identification is hard even for super-
vised models and is considerably more so for un-
supervised ones (Abend et al., 2009). We there-
fore confine ourselves to sentences of length not
greater than 10 (excluding punctuation) which
contain a single verb. A sequence of words will
be marked as an argument of the verb if it is a con-
stituent that does not contain the verb (according
to the unsupervised parse tree), whose parent is
an ancestor of the verb. This follows the pruning
heuristic of (Xue and Palmer, 2004) often used by
SRL algorithms.

The corpus is now tagged using an unsupervised
POS tagger. Since the sentences in question are
short, we consider every word which does not be-
long to a closed class cluster as a head word (an
argument can have several head words). A closed
class is a class of function words with relatively
few word types, each of which is very frequent.
Typical examples include determiners, preposi-
tions and conjunctions. A class which is not closed
is open. In this paper, we define closed classes to
be clusters in which the ratio between the number
of word tokens and the number of word types ex-

2Clark’s tagger was replaced by the Prototype Tagger
where the latter gave a significant improvement. See Sec-
tion 4.

3We also explore a scenario in which they are identified
by a supervised tagger. See Section 4.
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ceeds a thresholdT 4.
Using these annotation layers, we traverse the

corpus and extract every (predicate, slot, argument
head) triplet. In case an argument has several head
words, each of them is considered as an inde-
pendent sample. We denote the number of times
that a triplet occurred in the training corpus by
N(p, s, h).

3.3 Collocation Measures

In this section we present the three types of mea-
sures used by the algorithm and the rationale be-
hind each of them. These measures are all based
on the PSH joint distribution.

Given a (predicate, prepositional argument) pair
from the test set, we first tag and parse the argu-
ment using the unsupervised tools above5. Each
word in the argument is now represented by its
word form (without lemmatization), its unsuper-
vised POS tag and its depth in the parse tree of the
argument. The last two will be used to determine
which are the head words of the argument (see be-
low). The head words themselves, once chosen,
are represented by the lemma. We now compute
the following measures.

Selectional Preference (SP). Since the seman-
tics of cores is more predicate dependent than the
semantics of adjuncts, we expect arguments for
which the predicate has a strong preference (in a
specific slot) to be cores.

Selectional preference induction is a well-
established task in NLP. It aims to quantify the
likelihood that a certain argument appears in a
certain slot of a predicate. Several methods have
been suggested (Resnik, 1996; Li and Abe, 1998;
Schulte im Walde et al., 2008).

We use the paradigm of (Erk, 2007). For a given
predicate slot pair(p, s), we define its preference
to the argument headh to be:

SP (p, s, h) =
∑

h′∈Heads

Pr(h′|p, s) · sim(h, h′)

Pr(h|p, s) =
N(p, s, h)

Σh′N(p, s, h′)

sim(h, h′) is a similarity measure between argu-
ment heads.Heads is the set of all head words.

4We use sections 2–21 of the PTB WSJ for these counts,
containing 0.95M words. OurT was set to 50.

5Note that while current unsupervised parsers have low
performance on long sentences, arguments, even in long sen-
tences, are usually still short enough for them to operate well.
Their average length in the test set is 5.1 words.

This is a natural extension of the naive (and sparse)
maximum likelihood estimatorPr(h|p, s), which
is obtained by takingsim(h, h′) to be 1 ifh = h′

and 0 otherwise.
The similarity measure we use is based on the

slot distributions of the arguments. That is, two
arguments are considered similar if they tend to
appear in the same slots. Each head wordh is as-
signed a vector where each coordinate corresponds
to a slots. The value of the coordinate is the num-
ber of timesh appeared ins, i.e. Σp′N(p′, s, h)
(p′ is summed over all predicates). The similarity
measure between two head words is then defined
as the cosine measure of their vectors.

Since arguments in the test set can be quite long,
not every open class word in the argument is taken
to be a head word. Instead, only those appearing in
the top level (depth = 1) of the argument under its
unsupervised parse tree are taken. In case there are
no such open class words, we take those appearing
in depth 2. The selectional preference of the whole
argument is then defined to be the arithmetic mean
of this measure over all of its head words. If the ar-
gument has no head words under this definition or
if none of the head words appeared in the training
corpus, the selectional preference is undefined.

Predicate-Slot Collocation. Since cores are
obligatory, when a predicate persistently appears
with an argument in a certain slot, the arguments
in this slot tends to be cores. This notion can be
captured by the(predicate, slot) joint distribu-
tion. We use the Pointwise Mutual Information
measure (PMI) to capture the slot and the predi-
cate’s collocation tendency. Letp be a predicate
ands a slot, then:

PS(p, s) = PMI(p, s) = log
Pr(p, s)

Pr(s) · Pr(p)
=

= log
N(p, s)Σp′,s′N(p′, s′)

Σs′N(p, s′)Σp′N(p′, s)

Since there is only a meager number of possi-
ble slots (that is, of prepositions), estimating the
(predicate, slot) distribution can be made by the
maximum likelihood estimator with manageable
sparsity.

In order not to bias the counts towards predi-
cates which tend to take more arguments, we de-
fine hereN(p, s) to be the number of times the
(p, s) pair occurred in the training corpus, irre-
spective of the number of head words the argu-
ment had (and not e.g.,ΣhN(p, s, h)). Argu-
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ments with no prepositions are included in these
counts as well (withs = NULL), so not to bias
against predicates which tend to have less non-
prepositional arguments.

Argument-Slot Collocation. Adjuncts tend to
belong to one of a few specific semantic domains
(see Section 2). Therefore, if an argument tends to
appear in a certain slot in many of its instances, it
is an indication that this argument tends to have a
consistent semantic flavor in most of its instances.
In this case, the argument and the preposition can
be viewed as forming a unit on their own, indepen-
dent of the predicate with which they appear. We
therefore expect such arguments to be adjuncts.

We formalize this notion using the following
measure. Letp, s, h be a predicate, a slot and a
head word respectively. We then use6:

AS(s, h) = 1−Pr(s|h) = 1−
Σp′N(p′, s, h)

Σp′,s′N(p′, s′, h)

We select the head words of the argument as
we did with the selectional preference measure.
Again, the AS of the whole argument is defined
to be the arithmetic mean of the measure over all
of its head words.

Thresholding. In order to turn these measures
into classifiers, we set a threshold below which ar-
guments are marked as adjuncts and above which
as cores. In order to avoid tuning a parameter for
each of the measures, we set the threshold as the
median value of this measure in the test set. That
is, we find the threshold which tags half of the ar-
guments as cores and half as adjuncts. This relies
on the prior knowledge that prepositional argu-
ments are roughly equally divided between cores
and adjuncts7.

3.4 Combination Model

The algorithm proceeds to integrate the predic-
tions of the weak classifiers into a single classi-
fier. We use an ensemble method (Breiman, 1996).
Each of the classifiers may either classify an argu-
ment as an adjunct, classify it as a core, or ab-
stain. In order to obtain a high accuracy classifier,
to be used for self-training below, the ensemble
classifier only tags arguments for which none of

6The conditional probability is subtracted from 1 so that
higher values correspond to cores, as with the other measures.

7In case the test data is small, we can use the median value
on the training data instead.

the classifiers abstained, i.e., when sufficient infor-
mation was available to make all three predictions.
The prediction is determined by the majority vote.

The ensemble classifier has high precision but
low coverage. In order to increase its coverage, a
self-training step is performed. We observe that a
predicate and a slot generally determine whether
the argument is a core or an adjunct. For instance,
in our development data, a classifier which assigns
all arguments that share a predicate and a slot their
most common label, yields 94.3% accuracy on the
pairs appearing at least 5 times. This property of
the core-adjunct distinction greatly simplifies the
task for supervised algorithms (see Section 2).

We therefore apply the following procedure: (1)
tag the training data with the ensemble classifier;
(2) for each test samplex, if more than a ratio ofα
of the training samples sharing the same predicate
and slot withx are labeled as cores, tagx as core.
Otherwise, tagx as adjunct.

Test samples which do not share a predicate and
a slot with any training sample are considered out
of coverage. The parameterα is chosen so half
of the arguments are tagged as cores and half as
adjuncts. In our experimentsα was about 0.25.

4 Experimental Setup

Experiments were conducted in two scenarios. In
the ‘SID’ (supervised identification of prepositions
and verbs) scenario, a gold standard list of prepo-
sitions was provided. The list was generated by
taking every word tagged by the preposition tag
(‘IN’ ) in at least one of its instances under the
gold standard annotation of the WSJ sections 2–
21. Verbs were identified using MXPOST (Ratna-
parkhi, 1996). Words tagged with any of the verb
tags, except of the auxiliary verbs (‘have’, ‘be’ and
‘do’) were considered predicates. This scenario
decouples the accuracy of the algorithm from the
quality of the unsupervised POS tagging.

In the ‘Fully Unsupervised’ scenario, preposi-
tions and verbs were identified using Clark’s tag-
ger (Clark, 2003). It was asked to produce a tag-
ging into 34 classes. The classes corresponding
to prepositions and to verbs were manually identi-
fied. Prepositions in the test set were detected with
84.2% precision and 91.6% recall.

The prediction of whether a word belongs to an
open class or a closed was based on the output of
the Prototype tagger (Abend et al., 2010). The
Prototype tagger provided significantly more ac-
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curate predictions in this context than Clark’s.
The 39832 sentences of PropBank’s sections 2–

21 were used as a test set without bounding their
lengths8. Cores were defined to be any argument
bearing the labels ‘A0’ – ‘A5’, ‘C-A0’ – ‘C-A5’
or ‘R-A0’ – ‘R-A5’. Adjuncts were defined to
be arguments bearing the labels ‘AM’, ‘C-AM’ or
‘R-AM’. Modals (‘AM-MOD’) and negation mod-
ifiers (‘AM-NEG’) were omitted since they do not
represent adjuncts.

The test set includes 213473 arguments, 45939
(21.5%) are prepositional. Of the latter, 22442
(48.9%) are cores and 23497 (51.1%) are adjuncts.
The non-prepositional arguments include 145767
(87%) cores and 21767 (13%) adjuncts. The aver-
age number of words per argument is 5.1.

The NANC (Graff, 1995) corpus was used as a
training set. Only sentences of length not greater
than 10 excluding punctuation were used (see Sec-
tion 3.2), totaling 4955181 sentences. 7673878
(5635810) arguments were identified in the ‘SID’
(‘Fully Unsupervised’) scenario. The average
number of words per argument is 1.6 (1.7).

Since this is the first work to tackle this task
using neither manual nor supervised syntactic an-
notation, there is no previous work to compare
to. However, we do compare against a non-trivial
baseline, which closely follows the rationale of
cores as obligatory arguments.

Our Window Baselinetags a corpus using MX-
POST and computes, for each predicate and
preposition, the ratio between the number of times
that the preposition appeared in a window ofW

words after the verb and the total number of
times that the verb appeared. If this number ex-
ceeds a certain thresholdβ, all arguments hav-
ing that predicate and preposition are tagged as
cores. Otherwise, they are tagged as adjuncts. We
used 18.7M sentences from NANC of unbounded
length for this baseline.W andβ were fine-tuned
against the test set9.

We also report results for partial versions of
the algorithm, starting with the three measures
used (selectional preference, predicate-slot col-
location and argument-slot collocation). Results
for the ensemble classifier (prior to the bootstrap-
ping stage) are presented in two variants: one

8The first 15K arguments were used for the algorithm’s
development and therefore excluded from the evaluation.

9Their optimal value was found to beW=2, β=0.03. The
low optimal value ofβ is an indication of the noisiness of this
technique.

in which the ensemble is used to tag arguments
for which all three measures give a prediction
(the ‘Ensemble(Intersection)’ classifier) and one
in which the ensemble tags all arguments for
which at least one classifier gives a prediction (the
‘Ensemble(Union)’ classifier). For the latter, a tie
is broken in favor of the core label. The ‘Ensem-
ble(Union)’ classifier is not a part of our model
and is evaluated only as a reference.

In order to provide a broader perspective on the
task, we compare the measures in the basis of our
algorithm to simplified or alternative measures.
We experiment with the following measures:

1. Simple SP– a selectional preference measure
defined to bePr(head|slot, predicate).

2. Vast Corpus SP– similar to ‘Simple SP’
but with a much larger corpus. It uses roughly
100M arguments which were extracted from the
web-crawling based corpus of (Gabrilovich and
Markovitch, 2005) and the British National Cor-
pus (Burnard, 2000).

3.Thesaurus SP– a selectional preference mea-
sure which follows the paradigm of (Erk, 2007)
(Section 3.3) and defines the similarity between
two heads to be the Jaccard affinity between their
two entries in Lin’s automatically compiled the-
saurus (Lin, 1998)10.

4. Pr(slot|predicate)– an alternative to the used
predicate-slot collocation measure.

5. PMI(slot, head)– an alternative to the used
argument-slot collocation measure.

6. Head Dependence– the entropy of the pred-
icate distribution given the slot and the head (fol-
lowing (Merlo and Esteve Ferrer, 2006)):

HD(s, h) = −ΣpPr(p|s, h) · log(Pr(p|s, h))

Low entropy implies a core.
For each of the scenarios and the algorithms,

we report accuracy, coverage and effective accu-
racy. Effective accuracy is defined to be the ac-
curacy obtained when all out of coverage argu-
ments are tagged as adjuncts. This procedure al-
ways yields a classifier with 100% coverage and
therefore provides an even ground for comparing
the algorithms’ performance.

We see accuracy as important on its own right
since increasing coverage is often straightforward
given easily obtainable larger training corpora.

10Since we aim for a minimally supervised scenario,
we used the proximity-based version of his thesaurus
which does not require parsing as pre-processing.
http://webdocs.cs.ualberta.ca/∼lindek/Downloads/sims.lsp.gz
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Collocation Measures Ensemble + Cov.
Sel. Preference Pred-Slot Arg-Slot Ensemble(I) Ensemble(U) E(I) + ST

SIDScenario Accuracy 65.6 64.5 72.4 74.1 68.7 70.6
Coverage 35.6 77.8 44.7 33.2 88.1 74.2
Eff. Acc. 56.7 64.8 58.8 58.8 67.8 68.4

Fully Unsupervised Accuracy 62.6 61.1 69.4 70.6 64.8 68.8
Scenario Coverage 24.8 59.0 38.7 22.8 74.2 56.9

Eff. Acc. 52.6 57.5 55.8 53.8 61.0 61.4

Table 1: Results for the various models. Accuracy, coverage and effective accuracy are presented in percents. Effective
accuracy is defined to be the accuracy resulting from labeling each out of coverage argument with an adjunct label. The
rows represent the following models (left to right): selectional preference, predicate-slot collocation, argument-slot collocation,
‘Ensemble(Intersection)’, ‘ Ensemble(Union)’ and the ‘Ensemble(Intersection)’ followed by self-training (see Section 3.4). ‘En-
semble(Intersection)’ obtains the highest accuracy. The ensemble + self-training obtains the highest effective accuracy.

Selectional Preference Measures Pred-Slot Measures Arg-Slot Measures
SP∗ S. SP V.C. SP Lin SP PS∗ Pr(s|p) Window AS∗ PMI(s, h) HD

Acc. 65.6 41.6 44.8 49.9 64.5 58.9 64.1 72.4 67.5 67.4
Cov. 35.6 36.9 45.3 36.7 77.8 77.8 92.6 44.7 44.7 44.7

Eff. Acc. 56.7 48.2 47.7 51.3 64.8 60.5 65.0 58.8 56.6 56.6

Table 2:Comparison of the measures used by our model to alternative measures in the ‘SID’ scenario. Results are in percents.
The sections of the table are (from left to right): selectional preferencemeasures, predicate-slot measures, argument-slot mea-
sures and head dependence. The measures are (left to right): SP∗, Simple SP, Vast Corpus SP, Lin SP, PS∗, Pr(slot|predicate),
Window Baseline, AS∗, PMI(slot, head) and Head Dependence. The measures marked with∗ are the ones used by our model.
See Section 4.

Another reason is that a high accuracy classifier
may provide training data to be used by subse-
quent supervised algorithms.

For completeness, we also provide results for
the entire set of arguments. The great majority of
non-prepositional arguments are cores (87% in the
test set). We therefore tag all non-prepositional as
cores and tag prepositional arguments using our
model. In order to minimize supervision, we dis-
tinguish between the prepositional and the non-
prepositional arguments using Clark’s tagger.

Finally, we experiment on a scenario where
even argument identification on the test set is
not provided, but performed by the algorithm of
(Abend et al., 2009), which uses neither syntactic
nor SRL annotation but does utilize a supervised
POS tagger. We therefore run it in the ‘SID’ sce-
nario. We apply it to the sentences of length at
most 10 contained in sections 2–21 of PB (11586
arguments in 6007 sentences). Non-prepositional
arguments are invariably tagged as cores and out
of coverage prepositional arguments as adjuncts.

We report labeled and unlabeled recall, preci-
sion and F-scores for this experiment. An un-
labeled match is defined to be an argument that
agrees in its boundaries with a gold standard ar-
gument and a labeled match requires in addition
that the arguments agree in their core/adjunct la-
bel. We also report labeling accuracy which is the
ratio between the number of labeled matches and

the number of unlabeled matches11.

5 Results

Table 1 presents the results of our main experi-
ments. In both scenarios, the most accurate of the
three basic classifiers was the argument-slot col-
location classifier. This is an indication that the
collocation between the argument and the prepo-
sition is more indicative of the core/adjunct label
than the obligatoriness of the slot (as expressed by
the predicate-slot collocation).

Indeed, we can find examples where adjuncts,
although optional, appear very often with a certain
verb. An example is ‘meet’, which often takes a
temporal adjunct, as in ‘Let’s meet [in July]’. This
is a semantic property of ‘meet’, whose syntactic
expression is not obligatory.

All measures suffered from a comparable dete-
rioration of accuracy when moving from the ‘SID’
to the ‘Fully Unsupervised’ scenario. The dete-
rioration in coverage, however, was considerably
lower for the argument-slot collocation.

The ‘Ensemble(Intersection)’ model in both
cases is more accurate than each of the basic clas-
sifiers alone. This is to be expected as it combines
the predictions of all three. The self-training step
significantly increases the ensemble model’s cov-

11Note that the reported unlabeled scores are slightly lower
than those reported in the 2009 paper, due to the exclusion of
the modals and negation modifiers.

233



Precision Recall F-score lAcc.
Unlabeled 50.7 66.3 57.5 –
Labeled 42.4 55.4 48.0 83.6

Table 3: Unlabeled and labeled scores for the experi-
ments using the unsupervised argument identification system
of (Abend et al., 2009). Precision, recall, F-score and label-
ing accuracy are given in percents.

erage (with some loss in accuracy), thus obtaining
the highest effective accuracy. It is also more accu-
rate than the simpler classifier ‘Ensemble(Union)’
(although the latter’s coverage is higher).

Table 2 presents results for the comparison to
simpler or alternative measures. Results indicate
that the three measures used by our algorithm
(leftmost column in each section) obtain superior
results. The only case in which performance is
comparable is the window baseline compared to
the Pred-Slot measure. However, the baseline’s
score was obtained by using a much larger corpus
and a careful hand-tuning of the parameters12.

The poor performance ofSimple SPcan be as-
cribed to sparsity. This is demonstrated by the
median value of 0, which this measure obtained
on the test set. Accuracy is only somewhat better
with a much larger corpus (Vast Corpus SP). The
Thesaurus SPmost probably failed due to insuffi-
cient coverage, despite its applicability in a similar
supervised task (Zapirain et al., 2009).

The Head Dependence measure achieves a rel-
atively high accuracy of 67.4%. We therefore at-
tempted to incorporate it into our model, but failed
to achieve a significant improvement to the overall
result. We expect a further study of the relations
between the measures will suggest better ways of
combining their predictions.

The obtained effective accuracy for the entire
set of arguments, where the prepositional argu-
ments are automatically identified, was 81.6%.

Table 3 presents results of our experiments with
the unsupervised argument identification model
of (Abend et al., 2009). The unlabeled scores
reflect performance on argument identification
alone, while the labeled scores reflect the joint per-
formance of both the 2009 and our algorithms.
These results, albeit low, are potentially benefi-
cial for unsupervised subcategorization acquisi-
tion. The accuracy of our model on the entire
set (prepositional argument subset) of correctly
identified arguments was 83.6% (71.7%). This is

12We tried about 150 parameter pairs for the baseline. The
average of the five best effective accuracies was 64.3%.

somewhat higher than the score on the entire test
set (‘SID’ scenario), which was 83.0% (68.4%),
probably due to the bounded length of the test sen-
tences in this case.

6 Conclusion

We presented a fully unsupervised algorithm for
the classification of arguments into cores and ad-
juncts. Since most non-prepositional arguments
are cores, we focused on prepositional arguments,
which are roughly equally divided between cores
and adjuncts. The algorithm computes three sta-
tistical measures and utilizes ensemble-based and
self-training methods to combine their predictions.

The algorithm applies state-of-the-art unsuper-
vised parser and POS tagger to collect statistics
from a large raw text corpus. It obtains an accu-
racy of roughly 70%. We also show that (some-
what surprisingly) an argument-slot collocation
measure gives more accurate predictions than a
predicate-slot collocation measure on this task.
We speculate the reason is that the head word dis-
ambiguates the preposition and that this disam-
biguation generally determines whether a preposi-
tional argument is a core or an adjunct (somewhat
independently of the predicate). This calls for
a future study into the semantics of prepositions
and their relation to the core-adjunct distinction.
In this context two recent projects,The Preposi-
tion Project(Litkowski and Hargraves, 2005) and
PrepNet (Saint-Dizier, 2006), which attempt to
characterize and categorize the complex syntactic
and semantic behavior of prepositions, may be of
relevance.

It is our hope that this work will provide a better
understanding of core-adjunct phenomena. Cur-
rent supervised SRL models tend to perform worse
on adjuncts than on cores (Pradhan et al., 2008;
Toutanova et al., 2008). We believe a better under-
standing of the differences between cores and ad-
juncts may contribute to the development of better
SRL techniques, in both its supervised and unsu-
pervised variants.
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