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Preface: From the General Chair

Welcome back to Europe at ACL 2010! After three years, the ACL crowd is meeting again in Europe,
this time at the very north, to escape from the Central European heat it experienced in 2007.

This year, some significant changes can be found under the hood. The call for papers was formulated
much more broadly than usual, and this idea brought up by the ACL membership and the Exec and
then developed in detail by this year’s program chairs, Sandra Carberry and Stephen Clark, really caught
on - the number of submissions has been the highest of all times, forcing us to put some activities,
such as the SRW, as the fifth track on Tuesday morning. The number of reviewers is hard to compute
exactly - but a glimpse into their lists in this year’s and previous years’ proceedings reveals that we
almost certainly set a new record here, too (thank you all!). Also, the proceedings have switched to
electronic-only for all events, and adaptation of the START conference automation software has begun
towards a fully automated workflow from submission to the production of the final proceedings in pdf
format. It has been made possible thanks to Philipp Koehn’s and Jing-Shin Chang’s willingness to serve
as Publication Chairs two years in a row in order to ensure a smooth transition from the semi-manual
process employed in the past. However, there was one thing that overshadowed it all: the enthusiastic,
meticulously precise and absolutely professional yet in every situation very polite approach of the local
arrangements committee headed by Joakim Nivre. His efforts have made my job, as the General Chair, a
piece of cake, limited essentially to watching the tons of emails exchanged between the local and other
committees and to answering emails like “why wasn’t I asked to be an invited speaker?” (obviously,
from people no one would consider for this honor anyway).

Joakim has been helped by Bedta Megyesi, Rolf Carlson, Mats Dahllof, Marco Kuhlmann, Mattias
Nilsson, Markus Saers, Anna Sagvall Hein, Per Starbdck, Oscar Tdckstrom, Jorg Tiedemann, Reut
Tsarfaty and by the Akademikonferens team affiliated to Uppsala University headed by Ulla Conti; from
her team, I would like to thank specifically Maria Carlson, Maria Bickstrom and Johanna Thyselius
Nilsson for taking care of the website.

There are traditional ACL conference features as well - the workshops (with CoNLL-2010 as the big
one), tutorials and the Student Research Workshop, the banquet (at the Uppsala Castle), the invited
talks (albeit not-so-traditional this year, please come and see yourself), the Lifetime Achievement award,
the business meeting and the closing session where the “conference torch” will be handed over to the
Americas, as planned.

The Workshop Chairs (Pushpak Bhattacharyya and David Weir) had a hard time deciding which
workshops to turn down, and tutorials had to be kept to a reasonable number, too: quite an uneasy job for
the Tutorials Chairs, Lluis Marquez and Haifeng Wang. Demos have been selected by Sandra Kiibler, and
exhibitions handled by Jorg Tiedemann. Publicity has been the responsibility of Koenraad de Smedt and
Beata Megyesi, the local ararngements vice-chair. Students had again the opportunity to submit papers to
the Student Research Workshop, organized by the SRW Chairs Nils Reiter, Seniz Demir, and Jan Raab,
helped by their Faculty Advisor Tomek Strzalkowski, who also handled the application for the usual
NSF grant supporting the SRW. Markéta Lopatkova, the other Faculty Advisor, then centrally handled
the student travel grants. Mentoring was the responsibility of Bjorn Gambick and Diana McCarthy.
Taking about money and the budget, the sponsoring committee has been quite successful this year by
securing grants both locally and internationally: Mats Wirén, Hercules Dalianis, Christy Doran, Srinivas
Bangalore, Frédérique Segond, and Steven Pulman assembled and impressive lineup of sponsors. Thanks
to them, all of you can benefit from low registration fees, subsidized banquet, the conference bag, and
student scholarships and prizes.

No thank-you would be complete without mentioning Priscilla Rasmussen - her experience, insight, and
ability to predict the numbers and other things was extremely helpful, to say the least. The secretary-



treasurer, Graeme Hirst, has helped to reassure us whenever there was doubt or an open budgetary
question. And Steven Bird, who chaired the coordinating committee (a subcommittee of the ACL
and EACL executive boards) which selected the conference venue and appointed the general chair and
program chairs, has been with us throughout almost two years of preparations, helping to make sure we
all (read and) follow the Conference organization handbook, and address all possible problems.

Finally, a conference without your contributions (and you as participants, of course) would not happen
at all. Thank you for working hard, for submitting solid work and for preparing interesting talks and
posters!

Enjoy the conference.
Jan Haji¢

ACL 2010 General Chair
July 2010
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Preface: Program Committee Co-Chairs

Our goal this year has been to provide a broad conference program that acknowledges the very diverse
field of computational linguistics and that recognizes the importance of both theoretical and empirical,
data-driven research. In addition, we explicitly sought non-traditional conference papers such as surveys
of important topics or emerging areas and papers that pose a challenge to the research community. A
novel feature of the review process was the construction of different review forms for long and short
papers and for the different types of papers, leading to a total of 20 different review forms. Not only were
the review criteria for survey and challenge papers very different from the review criteria for research
papers, but also the review criteria for theoretical research papers differed significantly from the review
criteria for empirical research papers. Consequently, the program for the ACL 2010 conference includes a
diverse set of papers, including papers in areas such as psycholinguistics and multimodal communication,
as well as three survey papers and three challenge papers.

Both the number of paper submissions and attendance at ACL conferences continues to grow. Once
again, the number of paper submissions to ACL 2010 broke the record set by the preceding year’s
conference. Discounting papers that were withdrawn or not reviewed due to failure to adhere to the
specifications in the Call for Papers, there were 638 long paper submissions and 318 short paper
submissions. Each submission was categorized according to topic and assigned to one of our paper tracks
which were overseen by our 27 Area Chairs who selected expert reviewers to evaluate the submissions.
Long paper submissions received at least three reviews and short paper submissions received at least two
reviews. If there was a lack of consensus among the reviews for a paper, the reviewers then engaged
in a discussion period in order to resolve disagreements. 25% of the long paper submissions and 22%
of the short paper submissions were accepted for presentation at the conference. Unfortunately, even
with adding a fifth parallel session, space prevented many very good papers from being accepted. As an
experiment this year, authors were allowed to add an extra page of content to their final paper in order to
enable them to address the comments and suggestions of their reviewers.

The conference program consists of three kinds of presentations: long 25 minute oral presentations, short
10 minute oral talks along with a subsequent poster presentation, and solely poster presentations. While
the conference proceedings differentiates papers according to whether they are long or short papers, there
is no distinction in the proceedings with respect to the mode of presentation.

We are delighted to have two invited speakers who will give what promise to be exciting plenary lectures.
Andrei Broder (Vice-president, Yahoo! Research) will discuss the emerging field of computational
advertising. Zenzi Griffin (Professor, University of Texas) will discuss language processing in
interpersonal interactions. In addition, the recipient of the ACL Lifetime Achievement Award will
present a plenary lecture on the second day of the conference.

As is traditional, there will be an award for the best long paper, the best long paper by a student, and
the best short paper. Reviewers were asked to indicate whether a paper might merit a best paper prize.
Area chairs then reviewed suggested papers and nominated deserving papers for further consideration.
Two Best Paper Prize Committees were formed, one for long papers and one for short papers; each
committee consisted of 5-6 senior researchers. The committees, along with the Program Chairs, then
selected the award recipients. The Best Long Paper Prize will be presented at the plenary final session
of the conference on Wednesday afternoon, and the recipient will present his or her paper during this
session. The prize for Best Long Paper by a Student and the prize for the Best Short Paper will be
presented at the oral talks given by the recipients during one of the regular paper sessions.

As usual, there are many individuals to thank for their contributions to the conference program. Most
notably, we thank our 27 Area Chairs who did a superb job of overseeing the review of papers in their
domain, the members of the Best Paper Committees, and the over 600 reviewers who in almost all cases
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provided detailed, comprehensive reviews. We also owe a tremendous debt of gratitude to Rich Gerber;
his START system made the review and scheduling process manageable. Moreover, his quick response
to questions and requested modifications were very much appreciated. We want to thank Jason Eisner
for his web site that provides invaluable advice on “How to Serve as a Program Chair of a Conference”.
We were very fortunate to work with wonderful organizers: Jan Hajic as General Chair, Joakim Nivre
as Local Arrangements Chair, Jing-Shin Chang and Philipp Koehn as Publications Co-Chairs, and the
ACL 2010 Coordinating Committee. We also thank last year’s program chairs, Jian Su and Jan Wiebe,
for their advice and responses to our questions.

But the ACL conference is more than just the main technical presentations. We would like to
acknowledge the efforts of Seniz Demir, Jan Raab, and Nils Reiter, along with the faculty advisers
Marketa Lopatkova and Tomek Strzalkowski, for organizing the Student Research Workshop. We would
also like to acknowledge the work of Lluis Marquez and Haifeng Wang for soliciting an excellent set of
pre-conference tutorials, Pushpak Bhattacharyia and David Weir for compiling a set of very interesting
post-conference workshops, Sandra Kubler for assembling informative system demonstrations, and Jorg
Tiedemann for handling exhibits.

We hope that you enjoy the conference!

ACL 2010 Program Co-Chairs
Sandra Carberry, University of Delaware
Stephen Clark, University of Cambridge
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Abstract

We present algorithms for higher-order de-
pendency parsing that are “third-order”
in the sense that they can evaluate sub-
structures containing three dependencies,
and “efficient” in the sense that they re-
quire only O(n?*) time. Importantly, our
new parsers can utilize both sibling-style
and grandchild-style interactions. We
evaluate our parsers on the Penn Tree-
bank and Prague Dependency Treebank,
achieving unlabeled attachment scores of
93.04% and 87.38%, respectively.

1 Introduction

Dependency grammar has proven to be a very use-
ful syntactic formalism, due in no small part to the
development of efficient parsing algorithms (Eis-
ner, 2000; McDonald et al., 2005b; McDonald
and Pereira, 2006; Carreras, 2007), which can be
leveraged for a wide variety of learning methods,
such as feature-rich discriminative models (Laf-
ferty et al., 2001; Collins, 2002; Taskar et al.,
2003). These parsing algorithms share an impor-
tant characteristic: they factor dependency trees
into sets of parts that have limited interactions. By
exploiting the additional constraints arising from
the factorization, maximizations or summations
over the set of possible dependency trees can be
performed efficiently and exactly.

A crucial limitation of factored parsing algo-
rithms is that the associated parts are typically
quite small, losing much of the contextual in-
formation within the dependency tree. For the
purposes of improving parsing performance, it is
desirable to increase the size and variety of the
parts used by the factorization.! At the same
time, the need for more expressive factorizations

"For examples of how performance varies with the degree
of the parser’s factorization see, e.g., McDonald and Pereira

(2006, Tables 1 and 2), Carreras (2007, Table 2), Koo et al.
(2008, Tables 2 and 4), or Suzuki et al. (2009, Tables 3-6).

1

must be balanced against any resulting increase in
the computational cost of the parsing algorithm.
Consequently, recent work in dependency pars-
ing has been restricted to applications of second-
order parsers, the most powerful of which (Car-
reras, 2007) requires O(n*) time and O(n?) space,
while being limited to second-order parts.

In this paper, we present new third-order pars-
ing algorithms that increase both the size and vari-
ety of the parts participating in the factorization,
while simultaneously maintaining computational
requirements of O(n*) time and O(n?) space. We
evaluate our parsers on the Penn WSJ Treebank
(Marcus et al., 1993) and Prague Dependency
Treebank (Haji€ et al., 2001), achieving unlabeled
attachment scores of 93.04% and 87.38%. In sum-
mary, we make three main contributions:

1. Efficient new third-order parsing algorithms.
2. Empirical evaluations of these parsers.
3. A free distribution of our implementation.”

The remainder of this paper is divided as follows:
Sections 2 and 3 give background, Sections 4 and
5 describe our new parsing algorithms, Section 6
discusses related work, Section 7 presents our ex-
perimental results, and Section 8 concludes.

2 Dependency parsing

In dependency grammar, syntactic relationships
are represented as head-modifier dependencies:
directed arcs between a head, which is the more
“essential” word in the relationship, and a modi-
fier, which supplements the meaning of the head.
For example, Figure 1 contains a dependency be-
tween the verb “report” (the head) and its object
“sales” (the modifier). A complete analysis of a
sentence is given by a dependency tree: a set of de-
pendencies that forms a rooted, directed tree span-
ning the words of the sentence. Every dependency
tree is rooted at a special “*” token, allowing the

2http://groups.csail.mit.edu/nlp/dpo3/
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*¢ Insiders must report purchases and sales immediately

Figure 1: An example dependency structure.

selection of the sentential head to be modeled as if
it were a dependency.

For a sentence x, we define dependency parsing
as a search for the highest-scoring analysis of x:

argmax SCORE(x,y) (1)
yeY(x)

y'(z) =

Here, )(x) is the set of all trees compatible with
a and SCORE(x, y) evaluates the event that tree y
is the analysis of sentence x. Since the cardinal-
ity of V() grows exponentially with the length of
the sentence, directly solving Eq. 1 is impractical.
A common strategy, and one which forms the fo-
cus of this paper, is to factor each dependency tree
into small parts, which can be scored in isolation.
Factored parsing can be formalized as follows:

SCORE(%,y) = Y SCOREPART(z,p)
PE€Y

That is, we treat the dependency tree y as a set
of parts p, each of which makes a separate contri-
bution to the score of y. For certain factorizations,
efficient parsing algorithms exist for solving Eq. 1.
We define the order of a part according to the
number of dependencies it contains, with analo-
gous terminology for factorizations and parsing al-
gorithms. In the remainder of this paper, we focus

on factorizations utilizing the following parts:

A e
h m h s m g h m
dependency grandchild

g h s m h t s m

grand-sibling

sibling

tri-sibling

Specifically, Sections 4.1, 4.2, and 4.3 describe
parsers that, respectively, factor trees into grand-
child parts, grand-sibling parts, and a mixture of
grand-sibling and tri-sibling parts.

3 Existing parsing algorithms

Our new third-order dependency parsers build on
ideas from existing parsing algorithms. In this
section, we provide background on two relevant
parsers from previous work.

RN

~
o
N
Il

h e h m m e
ol =\ v
h m h r r+1 m

Figure 2: The dynamic-programming structures
and derivations of the Eisner (2000) algorithm.
Complete spans are depicted as triangles and in-
complete spans as trapezoids. For brevity, we elide
the symmetric right-headed versions.

3.1 First-order factorization

The first type of parser we describe uses a “first-
order” factorization, which decomposes a depen-
dency tree into its individual dependencies. Eis-
ner (2000) introduced a widely-used dynamic-
programming algorithm for first-order parsing; as
it is the basis for many parsers, including our new
algorithms, we summarize its design here.

The Eisner (2000) algorithm is based on two
interrelated types of dynamic-programming struc-
tures: complete spans, which consist of a head-
word and its descendents on one side, and incom-
plete spans, which consist of a dependency and the
region between the head and modifier.

Formally, we denote a complete span as Cj, .
where h and e are the indices of the span’s head-
word and endpoint. An incomplete span is de-
noted as I, ,, where h and m are the index of the
head and modifier of a dependency. Intuitively,
a complete span represents a “half-constituent”
headed by h, whereas an incomplete span is only
a partial half-constituent, since the constituent can
be extended by adding more modifiers to m.

Each type of span is created by recursively
combining two smaller, adjacent spans; the con-
structions are specified graphically in Figure 2.
An incomplete span is constructed from a pair
of complete spans, indicating the division of the
range [h,m] into constituents headed by h and
m. A complete span is created by ‘“complet-
ing” an incomplete span with the other half of
m’s constituent. The point of concatenation in
each construction—m in Figure 2(a) or r in Fig-
ure 2(b)—is the split point, a free index that must
be enumerated to find the optimal construction.

In order to parse a sentence x, it suffices to
find optimal constructions for all complete and
incomplete spans defined on x. This can be
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Figure 3: The dynamic-programming structures
and derivations of the second-order sibling parser;
sibling spans are depicted as boxes. For brevity,
we elide the right-headed versions.

accomplished by adapting standard chart-parsing
techniques (Cocke and Schwartz, 1970; Younger,
1967; Kasami, 1965) to the recursive derivations
defined in Figure 2. Since each derivation is de-
fined by two fixed indices (the boundaries of the
span) and a third free index (the split point), the
parsing algorithm requires O(n?) time and O(n?)
space (Eisner, 1996; McAllester, 1999).

3.2 Second-order sibling factorization

As remarked by Eisner (1996) and McDonald
and Pereira (2006), it is possible to rearrange the
dynamic-programming structures to conform to an
improved factorization that decomposes each tree
into sibling parts—pairs of dependencies with a
shared head. Specifically, a sibling part consists
of a triple of indices (h,m,s) where (h, m) and
(h, s) are dependencies, and where s and m are
successive modifiers to the same side of h.

In order to parse this factorization, the second-
order parser introduces a third type of dynamic-
programming structure: sibling spans, which rep-
resent the region between successive modifiers of
some head. Formally, we denote a sibling span
as Sy ,, where s and m are a pair of modifiers in-
volved in a sibling relationship. Modified versions
of sibling spans will play an important role in the
new parsing algorithms described in Section 4.

Figure 3 provides a graphical specification of
the second-order parsing algorithm. Note that in-
complete spans are constructed in a new way: the
second-order parser combines a smaller incom-
plete span, representing the next-innermost depen-
dency, with a sibling span that covers the region
between the two modifiers. Sibling parts (h, m, s)
can thus be obtained from Figure 3(b). Despite
the use of second-order parts, each derivation is

g h e g h m h m e
o~ = AN

g h m g h r h r+1 m
GISN=-EN +

h e g h m g h m e
W\ =N +

h m g h r g h r+1 m

Figure 4: The dynamic-programming structures
and derivations of Model 0. For brevity, we elide
the right-headed versions. Note that (c) and (d)
differ from (a) and (b) only in the position of g.

still defined by a span and split point, so the parser
requires O(n?) time and O(n?) space.

4 New third-order parsing algorithms

In this section we describe our new third-order de-
pendency parsing algorithms. Our overall method
is characterized by the augmentation of each span
with a “grandparent” index: an index external to
the span whose role will be made clear below. This
section presents three parsing algorithms based on
this idea: Model 0, a second-order parser, and
Models 1 and 2, which are third-order parsers.

4.1 Model 0: all grandchildren

The first parser, Model 0, factors each dependency
tree into a set of grandchild parts—pairs of de-
pendencies connected head-to-tail. Specifically,
a grandchild part is a triple of indices (g, h,m)
where (g, h) and (h, m) are dependencies.’

In order to parse this factorization, we augment
both complete and incomplete spans with grand-
parent indices; for brevity, we refer to these aug-
mented structures as g-spans. Formally, we denote
a complete g-span as Cf _, where C}, e is a normal
complete span and g is an index lying outside the
range [h, e|, with the implication that (g, h) is a
dependency. Incomplete g-spans are defined anal-
ogously and are denoted as I7 .

Figure 4 depicts complete’ and incomplete g-
spans and provides a graphical specification of the

3The Carreras (2007) parser also uses grandchild parts but
only in restricted cases; see Section 6 for details.



OPTIMIZEALLSPANS(x)
1. Yg,i leq’i =0 < base case
2. forw=1...(n—-1) < span width

3. fori=1...(n—w) < span start index

4. j=i+w < span end index

5. forg<iorg>j < grandparent index

6. IZgJ = mMaX;<r<j {Clg’r + C;,r+1} +
SCOREG(z, g,1,7)

7. I}, = maxic,<; {C], 1 + C],} +
ScorReG(x, g, j, 1)

8. Cig,j = MaX j<m<;j {Igm + C’,Z?m-}

9. CJQ’Z = MaX;<m<j {Ijg,m -+ ern,i

10. endfor

11.  endfor

12. endfor

Figure 5: A bottom-up chart parser for Model 0.
SCOREG is the scoring function for grandchild
parts. We use the g-span identities as shorthand
for their chart entries (e.g., Iff j refers to the entry
containing the maximum score of that g-span).

Model 0 dynamic-programming algorithm. The
algorithm resembles the first-order parser, except
that every recursive construction must also set the
grandparent indices of the smaller g-spans; for-
tunately, this can be done deterministically in all
cases. For example, Figure 4(a) depicts the de-
composition of C{ _ into an incomplete half and
a complete half. The grandparent of the incom-
plete half is copied from CY _ while the grandpar-
ent of the complete half is set to h, the head of m
as defined by the construction. Clearly, grandchild
parts (g, h,m) can be read off of the incomplete
g-spans in Figure 4(b,d). Moreover, since each
derivation copies the grandparent index g into suc-
cessively smaller g-spans, grandchild parts will be
produced for all grandchildren of g.

Model 0 can be parsed by adapting standard
top-down or bottom-up chart parsing techniques.
For concreteness, Figure 5 provides a pseudocode
sketch of a bottom-up chart parser for Model 0;
although the sketch omits many details, it suf-
fices for the purposes of illustration. The algo-
rithm progresses from small widths to large in
the usual manner, but after defining the endpoints
(i,7) there is an additional loop that enumerates
all possible grandparents. Since each derivation is
defined by three fixed indices (the g-span) and one
free index (the split point), the complexity of the
algorithm is O(n*) time and O(n?) space.

Note that the grandparent indices cause each g-
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Figure 6: The dynamic-programming structures
and derivations of Model 1. Right-headed and
right-grandparented versions are omitted.

span to have non-contiguous structure. For ex-
ample, in Figure 4(a) the words between ¢ and h
will be controlled by some other g-span. Due to
these discontinuities, the correctness of the Model
0 dynamic-programming algorithm may not be
immediately obvious. While a full proof of cor-
rectness is beyond the scope of this paper, we note
that each structure on the right-hand side of Fig-
ure 4 lies completely within the structure on the
left-hand side. This nesting of structures implies,
in turn, that the usual properties required to ensure
the correctness of dynamic programming hold.

4.2 Model 1: all grand-siblings

We now describe our first third-order parsing al-
gorithm. Model 1 decomposes each tree into a
set of grand-sibling parts—combinations of sib-
ling parts and grandchild parts. Specifically, a
grand-sibling is a 4-tuple of indices (g, h,m,s)
where (h,m, s) is a sibling part and (g, h, m) and
(g, h, s) are grandchild parts. For example, in Fig-
ure 1, the words “must,” “report,” “sales,” and
“immediately” form a grand-sibling part.

In order to parse this factorization, we intro-
duce sibling g-spans Sﬁl’ <» Which are composed of
a normal sibling span S, ; and an external index
h, with the implication that (h, m, s) forms a valid
sibling part. Figure 6 provides a graphical specifi-
cation of the dynamic-programming algorithm for
Model 1. The overall structure of the algorithm re-
sembles the second-order sibling parser, with the
addition of grandparent indices; as in Model 0, the
grandparent indices can be set deterministically in
all cases. Note that the sibling g-spans are crucial:
they allow grand-sibling parts (g, h,m,s) to be
read off of Figure 6(b), while simultaneously prop-
agating grandparent indices to smaller g-spans.
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Figure 7: The dynamic-programming structures
and derivations of Model 2. Right-headed and
right-grandparented versions are omitted.

Like Model 0, Model 1 can be parsed via adap-
tations of standard chart-parsing techniques; we
omit the details for brevity. Despite the move to
third-order parts, each derivation is still defined by
a g-span and a split point, so that parsing requires
only O(n*) time and O(n?) space.

4.3 Model 2: grand-siblings and tri-siblings

Higher-order parsing algorithms have been pro-
posed which extend the second-order sibling fac-
torization to parts containing multiple siblings
(McDonald and Pereira, 2006, also see Section 6
for discussion). In this section, we show how our
g-span-based techniques can be combined with a
third-order sibling parser, resulting in a parser that
captures both grand-sibling parts and tri-sibling
parts—4-tuples of indices (h,m,s,t) such that
both (h,m, s) and (h, s, t) are sibling parts.

In order to parse this factorization, we intro-
duce a new type of dynamic-programming struc-
ture: sibling-augmented spans, or s-spans. For-
mally, we denote an incomplete s-span as I .
where [, is anormal incomplete span and s isan
index lyiﬁg in the strict interior of the range [h, m],
such that (h, m, s) forms a valid sibling part.

Figure 7 provides a graphical specification of
the Model 2 parsing algorithm. An incomplete
s-span is constructed by combining a smaller in-
complete s-span, representing the next-innermost
pair of modifiers, with a sibling g-span, covering
the region between the outer two modifiers. As
in Model 1, sibling g-spans are crucial for propa-
gating grandparent indices, while allowing the re-
covery of tri-sibling parts (h, m, s, t). Figure 7(b)

shows how an incomplete s-span can be converted
into an incomplete g-span by exchanging the in-
ternal sibling index for an external grandparent in-
dex; in the process, grand-sibling parts (g, h, m, s)
are enumerated. Since every derivation is defined
by an augmented span and a split point, Model 2
can be parsed in O(n*) time and O(n?) space.

It should be noted that unlike Model 1, Model
2 produces grand-sibling parts only for the outer-
most pair of grandchildren,* similar to the behav-
ior of the Carreras (2007) parser. In fact, the re-
semblance is more than passing, as Model 2 can
emulate the Carreras (2007) algorithm by “demot-
ing” each third-order part into a second-order part:

SCOREGS(x, g, h, m,s) = SCOREG(x, g, h, m)
SCORETS(x, h,m, s,t) = SCORES(x, h,m, s)

where SCOREG, SCORES, SCOREGS and
SCORETS are the scoring functions for grand-
children, siblings, grand-siblings and tri-siblings,
respectively. The emulated version has the same
computational complexity as the original, so there
is no practical reason to prefer it over the original.
Nevertheless, the relationship illustrated above
highlights the efficiency of our approach: we
are able to recover third-order parts in place of
second-order parts, at no additional cost.

4.4 Discussion

The technique of grandparent-index augmentation
has proven fruitful, as it allows us to parse ex-
pressive third-order factorizations while retaining
an efficient O(n*) runtime. In fact, our third-
order parsing algorithms are “optimally” efficient
in an asymptotic sense. Since each third-order part
is composed of four separate indices, there are
O(n*) distinct parts. Any third-order parsing al-
gorithm must at least consider the score of each
part, hence third-order parsing is Q(n*) and it fol-
lows that the asymptotic complexity of Models 1
and 2 cannot be improved.

The key to the efficiency of our approach is a
fundamental asymmetry in the structure of a di-
rected tree: a head can have any number of mod-
ifiers, while a modifier always has exactly one
head. Factorizations like that of Carreras (2007)
obtain grandchild parts by augmenting spans with
the indices of modifiers, leading to limitations on

“The reason for the restriction is that in Model 2, grand-
siblings can only be derived via Figure 7(b), which does not
recursively copy the grandparent index for reuse in smaller
g-spans as Model 1 does in Figure 6(b).



the grandchildren that can participate in the fac-
torization. Our method, by “inverting” the modi-
fier indices into grandparent indices, exploits the
structural asymmetry.

As a final note, the parsing algorithms described
in this section fall into the category of projective
dependency parsers, which forbid crossing depen-
dencies. If crossing dependencies are allowed, it
is possible to parse a first-order factorization by
finding the maximum directed spanning tree (Chu
and Liu, 1965; Edmonds, 1967; McDonald et al.,
2005b). Unfortunately, designing efficient higher-
order non-projective parsers is likely to be chal-
lenging, based on recent hardness results (McDon-
ald and Pereira, 2006; McDonald and Satta, 2007).

5 Extensions

We briefly outline a few extensions to our algo-
rithms; we hope to explore these in future work.

5.1 Probabilistic inference

Many statistical modeling techniques are based on
partition functions and marginals—summations
over the set of possible trees )Y (x). Straightfor-
ward adaptations of the inside-outside algorithm
(Baker, 1979) to our dynamic-programming struc-
tures would suffice to compute these quantities.

5.2 Labeled parsing

Our parsers are easily extended to labeled depen-
dencies. Direct integration of labels into Models 1
and 2 would result in third-order parts composed
of three labeled dependencies, at the cost of in-
creasing the time and space complexities by fac-
tors of O(L?) and O(L?), respectively, where L
bounds the number of labels per dependency.

5.3 Word senses

If each word in = has a set of possible “senses,”
our parsers can be modified to recover the best
joint assignment of syntax and senses for x, by
adapting methods in Eisner (2000). Complex-
ity would increase by factors of O(S%) time and
O(S3) space, where S bounds the number of
senses per word.

5.4 Increased context

If more vertical context is desired, the dynamic-
programming structures can be extended with ad-
ditional ancestor indices, resulting in a “spine” of

ancestors above each span. Each additional an-
cestor lengthens the vertical scope of the factor-
ization (e.g., from grand-siblings to “great-grand-
siblings”), while increasing complexity by a factor
of O(n). Horizontal context can also be increased
by adding internal sibling indices; each additional
sibling widens the scope of the factorization (e.g.,
from grand-siblings to “grand-tri-siblings”), while
increasing complexity by a factor of O(n).

6 Related work

Our method augments each span with the index
of the head that governs that span, in a manner
superficially similar to parent annotation in CFGs
(Johnson, 1998). However, parent annotation is
a grammar transformation that is independent of
any particular sentence, whereas our method an-
notates spans with indices into the current sen-
tence. These indices allow the use of arbitrary fea-
tures predicated on the position of the grandparent
(e.g., word identity, POS tag, contextual POS tags)
without affecting the asymptotic complexity of the
parsing algorithm. Efficiently encoding this kind
of information into a sentence-independent gram-
mar transformation would be challenging at best.

Eisner (2000) defines dependency parsing mod-
els where each word has a set of possible “senses”
and the parser recovers the best joint assignment
of syntax and senses. Our new parsing algorithms
could be implemented by defining the “sense” of
each word as the index of its head. However, when
parsing with senses, the complexity of the Eisner
(2000) parser increases by factors of O(S?) time
and O(S?) space (ibid., Section 4.2). Since each
word has n potential heads, a direct application
of the word-sense parser leads to time and space
complexities of O(n%) and O(n?), respectively, in
contrast to our O(n*) and O(n3).>

Eisner (2000) also uses head automata to score
or recognize the dependents of each head. An in-
teresting question is whether these automata could
be coerced into modeling the grandparent indices
used in our parsing algorithms. However, note
that the head automata are defined in a sentence-
independent manner, with two automata per word
in the vocabulary (ibid., Section 2). The automata
are thus analogous to the rules of a CFG and at-

5In brief, the reason for the inefficiency is that the word-
sense parser is unable to exploit certain constraints, such as
the fact that the endpoints of a sibling g-span must have the
same head. The word-sense parser would needlessly enumer-
ate all possible pairs of heads in this case.



tempts to use them to model grandparent indices
would face difficulties similar to those already de-
scribed for grammar transformations in CFGs.

It should be noted that third-order parsers
have previously been proposed by McDonald and
Pereira (2006), who remarked that their second-
order sibling parser (see Figure 3) could easily
be extended to capture m > 1 successive modi-
fiers in O(n™*1) time (ibid., Section 2.2). To our
knowledge, however, Models 1 and 2 are the first
third-order parsing algorithms capable of model-
ing grandchild parts. In our experiments, we find
that grandchild interactions make important con-
tributions to parsing performance (see Table 3).

Carreras (2007) presents a second-order parser
that can score both sibling and grandchild parts,
with complexities of O(n*) time and O(n?) space.
An important limitation of the parser’s factoriza-
tion is that it only defines grandchild parts for
outermost grandchildren: (g, h, m) is scored only
when m is the outermost modifier of & in some di-
rection. Note that Models 1 and 2 have the same
complexity as Carreras (2007), but strictly greater
expressiveness: for each sibling or grandchild part
used in the Carreras (2007) factorization, Model 1
defines an enclosing grand-sibling, while Model 2
defines an enclosing tri-sibling or grand-sibling.

The factored parsing approach we focus on is
sometimes referred to as “graph-based” parsing;
a popular alternative is “transition-based” parsing,
in which trees are constructed by making a se-
ries of incremental decisions (Yamada and Mat-
sumoto, 2003; Attardi, 2006; Nivre et al., 2006;
McDonald and Nivre, 2007). Transition-based
parsers do not impose factorizations, so they can
define arbitrary features on the tree as it is being
built. As a result, however, they rely on greedy or
approximate search algorithms to solve Eq. 1.

7 Parsing experiments

In order to evaluate the effectiveness of our parsers
in practice, we apply them to the Penn WSJ Tree-
bank (Marcus et al., 1993) and the Prague De-
pendency Treebank (Haji¢ et al., 2001; Hajic,
1998).° We use standard training, validation, and
test splits’ to facilitate comparisons. Accuracy is

SFor English, we extracted dependencies using Joakim
Nivre’s Penn2Malt tool with standard head rules (Yamada
and Matsumoto, 2003); for Czech, we “projectivized” the
training data by finding best-match projective trees.

"For Czech, the PDT has a predefined split; for English,
we split the Sections as: 2-21 training, 22 validation, 23 test.

measured with unlabeled attachment score (UAS):
the percentage of words with the correct head.?

7.1 Features for third-order parsing

Our parsing algorithms can be applied to scores
originating from any source, but in our experi-
ments we chose to use the framework of structured
linear models, deriving our scores as:

SCOREPART(x,p) = w - f(x,p)

Here, f is a feature-vector mapping and w is a
vector of associated parameters. Following stan-
dard practice for higher-order dependency parsing
(McDonald and Pereira, 2006; Carreras, 2007),
Models 1 and 2 evaluate not only the relevant
third-order parts, but also the lower-order parts
that are implicit in their third-order factoriza-
tions. For example, Model 1 defines feature map-
pings for dependencies, siblings, grandchildren,
and grand-siblings, so that the score of a depen-
dency parse is given by:

MODELISCORE(x,y) =

Z wdep : fdep(m) hvm)
(hym)ey

Z Wgip, - fsib(w7h7mas)

(h,m,s)€y

Z Wech - fgCh(:Bag7h'7 m)
(g,h,m)€y

Z Wgsib - fgsib(magvha m, S)
(g,h,m,s)e€y

Above, y is simultaneously decomposed into sev-
eral different types of parts; trivial modifications
to the Model 1 parser allow it to evaluate all of
the necessary parts in an interleaved fashion. A
similar treatment of Model 2 yields five feature
mappings: the four above plus fun(x, h,m, s,t),
which represents tri-sibling parts.

The lower-order feature mappings fep, fsin, and
Secn are based on feature sets from previous work
(McDonald et al., 2005a; McDonald and Pereira,
2006; Carreras, 2007), to which we added lexical-
ized versions of several features. For example, foc,
contains lexicalized “in-between” features that de-
pend on the head and modifier words as well as a
word lying in between the two; in contrast, pre-
vious work has generally defined in-between fea-
tures for POS tags only. As another example, our

8 As in previous work, English evaluation ignores any to-
ken whose gold-standard POS tag is one of {** 7/ :



second-order mappings f, and f,q define lexical
trigram features, while previous work has gener-
ally used POS trigrams only.

Our third-order feature mappings fu, and fip
consist of four types of features. First, we define
4-gram features that characterize the four relevant
indices using words and POS tags; examples in-
clude POS 4-grams and mixed 4-grams with one
word and three POS tags. Second, we define 4-
gram context features consisting of POS 4-grams
augmented with adjacent POS tags: for exam-
ple, fein(x, g, h,m,s) includes POS 7-grams for
the tags at positions (g, h, m, s, g+1, h+1, m+1).
Third, we define backed-off features that track bi-
gram and trigram interactions which are absent
in the lower-order feature mappings: for exam-
ple, fiiv(x, h, m, s, t) contains features predicated
on the trigram (m,s,t) and the bigram (m,t),
neither of which exist in any lower-order part.
Fourth, noting that coordinations are typically an-
notated as grand-siblings (e.g., “report purchases
and sales” in Figure 1), we define coordination
features for certain grand-sibling parts. For exam-
ple, fuiv(x, g, h,m,s) contains features examin-
ing the implicit head-modifier relationship (g, m)
that are only activated when the POS tag of s is a
coordinating conjunction.

Finally, we make two brief remarks regarding
the use of POS tags. First, we assume that input
sentences have been automatically tagged in a pre-
processing step.” Second, for any feature that de-
pends on POS tags, we include two copies of the
feature: one using normal POS tags and another
using coarsened versions!'? of the POS tags.

7.2 Averaged perceptron training

There are a wide variety of parameter estima-
tion methods for structured linear models, such
as log-linear models (Lafferty et al., 2001) and
max-margin models (Taskar et al., 2003). We
chose the averaged structured perceptron (Freund
and Schapire, 1999; Collins, 2002) as it combines
highly competitive performance with fast training
times, typically converging in 5—-10 iterations. We
train each parser for 10 iterations and select pa-

°For Czech, the PDT provides automatic tags; for English,
we used MXPOST (Ratnaparkhi, 1996) to tag validation and
test data, with 10-fold cross-validation on the training set.
Note that the reliance on POS-tagged input can be relaxed
slightly by treating POS tags as word senses; see Section 5.3
and McDonald (2006, Table 6.1).

OFor Czech, we used the first character of the tag; for En-
glish, we used the first two characters, except PRP and PRP S.

| Beam [ Pass Orac|Accl Acc2|Timel Time2
0.00011| 26.5 99.92]93.49 93.49| 49.6m 73.5m
0.001|] 16.7 99.72193.37 93.29| 259m 24.2m

0.01| 9.1 99.19(93.26 93.16/ 6.7m 7.9m

Table 1: Effect of the marginal-probability beam
on English parsing. For each beam value, parsers
were trained on the English training set and evalu-
ated on the English validation set; the same beam
value was applied to both training and validation
data. Pass = %dependencies surviving the beam in
training data, Orac = maximum achievable UAS
on validation data, Accl/Acc2 = UAS of Models
1/2 on validation data, and Timel/Time2 = min-
utes per perceptron training iteration for Models
1/2, averaged over all 10 iterations. For perspec-
tive, the English training set has a total of 39,832
sentences and 950,028 words. A beam of 0.0001
was used in all experiments outside this table.

rameters from the iteration that achieves the best
score on the validation set.

7.3 Coarse-to-fine pruning

In order to decrease training times, we follow
Carreras et al. (2008) and eliminate unlikely de-
pendencies using a form of coarse-to-fine pruning
(Charniak and Johnson, 2005; Petrov and Klein,
2007). In brief, we train a log-linear first-order
parser'! and for every sentence « in training, val-
idation, and test data we compute the marginal
probability P(h, m|x) of each dependency. Our
parsers are then modified to ignore any depen-
dency (h, m) whose marginal probability is below
0.0001 x maxy P(h’,m | z). Table 1 provides in-
formation on the behavior of the pruning method.

7.4 Main results

Table 2 lists the accuracy of Models 1 and 2 on the
English and Czech test sets, together with some
relevant results from related work.'> The mod-
els marked “}” are nor directly comparable to our
work as they depend on additional sources of in-
formation that our models are trained without—
unlabeled data in the case of Koo et al. (2008) and

"For English, we generate marginals using a projective
parser (Baker, 1979; Eisner, 2000); for Czech, we generate
marginals using a non-projective parser (Smith and Smith,
2007; McDonald and Satta, 2007; Koo et al., 2007). Param-
eters for these models are obtained by running exponentiated
gradient training for 10 iterations (Collins et al., 2008).

2Model 0 was not tested as its factorization is a strict sub-
set of the factorization of Model 1.



Parser | Eng | Cze |
McDonald et al. (2005a,2005b) || 90.9 | 84.4
McDonald and Pereira (2006) 91.5 85.2
Koo et al. (2008), standard 92.02 | 86.13
Model 1 93.04 | 87.38
Model 2 92.93 | 87.37
Koo et al. (2008), serni-supT 93.16 | 87.13
Suzuki et al. (2009)t 93.79 | 88.05
Carreras et al. (2008)1 93.5 —_

Table 2: UAS of Models 1 and 2 on test data, with
relevant results from related work. Note that Koo
et al. (2008) is listed with standard features and
semi-supervised features. {: see main text.

Suzuki et al. (2009) and phrase-structure annota-
tions in the case of Carreras et al. (2008). All three
of the “4”” models are based on versions of the Car-
reras (2007) parser, so modifying these methods to
work with our new third-order parsing algorithms
would be an interesting topic for future research.
For example, Models 1 and 2 obtain results com-
parable to the semi-supervised parsers of Koo et
al. (2008), and additive gains might be realized by
applying their cluster-based feature sets to our en-
riched factorizations.

7.5 Ablation studies

In order to better understand the contributions of
the various feature types, we ran additional abla-
tion experiments; the results are listed in Table 3,
in addition to the scores of Model 0 and the emu-
lated Carreras (2007) parser (see Section 4.3). In-
terestingly, grandchild interactions appear to pro-
vide important information: for example, when
Model 2 is used without grandchild-based features
(“Model 2, no-G” in Table 3), its accuracy suffers
noticeably. In addition, it seems that grandchild
interactions are particularly useful in Czech, while
sibling interactions are less important: consider
that Model 0, a second-order grandchild parser
with no sibling-based features, can easily outper-
form “Model 2, no-G,” a third-order sibling parser
with no grandchild-based features.

8 Conclusion

We have presented new parsing algorithms that are
capable of efficiently parsing third-order factoriza-
tions, including both grandchild and sibling inter-
actions. Due to space restrictions, we have been
necessarily brief at some points in this paper; some
additional details can be found in Koo (2010).

Parser [ Eng | Cze |
Model 0 93.07 | 87.39
Carreras (2007) emulation || 93.14 | 87.25
Model 1 93.49 | 87.64
Model 1, no-3™ 93.17 | 87.57
Model 2 93.49 | 87.46
Model 2, no-3™ 93.20 | 87.43
Model 2, no-G 92.92 | 86.76

Table 3: UAS for modified versions of our parsers
on validation data. The term no-3" indicates a
parser that was trained and tested with the third-
order feature mappings f., and fi, deactivated,
though lower-order features were retained; note
that “Model 2, no-3""" is not identical to the Car-
reras (2007) parser as it defines grandchild parts
for the pair of grandchildren. The term no-G indi-
cates a parser that was trained and tested with the
grandchild-based feature mappings fon and fop
deactivated; note that “Model 2, no-G” emulates
the third-order sibling parser proposed by McDon-
ald and Pereira (2006).

There are several possibilities for further re-
search involving our third-order parsing algo-
rithms. One idea would be to consider extensions
and modifications of our parsers, some of which
have been suggested in Sections 5 and 7.4. A sec-
ond area for future work lies in applications of de-
pendency parsing. While we have evaluated our
new algorithms on standard parsing benchmarks,
there are a wide variety of tasks that may bene-
fit from the extended context offered by our third-
order factorizations; for example, the 4-gram sub-
structures enabled by our approach may be useful
for dependency-based language modeling in ma-
chine translation (Shen et al., 2008). Finally, in
the hopes that others in the NLP community may
find our parsers useful, we provide a free distribu-
tion of our implementation.?
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Abstract For dependency projection, the relationship be-
tween words in the parsed sentences can be sim-
ply projected across the word alignment to words
in the unparsed sentences, according to the DCA
assumption (Hwa et al., 2005). Such a projec-
tion procedure suffers much from the word align-
ment errors and syntactic isomerism between lan-
guages, which usually lead to relationship projec-
tion conflict and incomplete projected dependency
structures. To tackle this problem, Hwa et al.
(2005) use some filtering rules to reduce noise,
and some hand-designed rules to handle language
heterogeneity. Smith and Eisner (2009) perform
dependency projection and annotation adaptation
with quasi-synchronous grammar features. Jiang
and Liu (2009) resort to a dynamic programming
procedure to search for a completed projected tree.
However, these strategies are all confined to the
same category that dependency projection must
produce completed projected trees. Because of the
] free translation, the syntactic isomerism between
1 Introduction languages and word alignment errors, it would

Supervised dependency parsing achieves the staf@€ strained to completely project the dependency
of-the-art in recent years (McDonald et al., 2005aStructure from one language to another.

McDonald and Pereira, 2006; Nivre et al., 2006). We propose an effective method for depen-
Since it is costly and difficult to build human- dency projection, which does not have to pro-
annotated treebanks, a lot of works have also beetluce complete projected trees. Given a word-
devoted to the utilization of unannotated text. Foraligned bilingual corpus with source language sen-
example, the unsupervised dependency parsingnces parsed, the dependency relationships of the
(Klein and Manning, 2004) which is totally based word pairs in the source language are projected to
on unannotated data, and the semisupervised déie word pairs of the target language. A depen-
pendency parsing (Koo et al.,, 2008) which isdency relationship is a boolean value that repre-
based on both annotated and unannotated datsents whether this word pair forms a dependency
Considering the higher complexity and lower per-edge. Thus a set of classification instances are ob-
formance in unsupervised parsing, and the need dghdined. Meanwhile, we propose an intuitionistic
reliable priori knowledge in semisupervised pars-model for dependency parsing, which uses a clas-
ing, it is a promising strategy to project the de-sifier to determine whether a pair of words form
pendency structures from a resource-rich language dependency edge. The classifier can then be
to a resource-scarce one across a bilingual corpusained on the projected classification instance set,
(Hwaetal., 2002; Hwa et al., 2005; Ganchev et al.so as to build a projected dependency parser with-
2009; Smith and Eisner, 2009; Jiang et al., 2009).out the need of complete projected trees.

In this paper we describe an intuitionistic

method for dependency parsing, where a
classifier is used to determine whether a
pair of words forms a dependency edge.
And we also propose an effective strategy
for dependency projection, where the de-
pendency relationships of the word pairs
in the source language are projected to the
word pairs of the target language, leading
to a set of classification instances rather
than a complete tree. Experiments show
that, the classifier trained on the projected
classification instances significantly out-

performs previous projected dependency
parsers. More importantly, when this clas-

sifier is integrated into a maximum span-

ning tree (MST) dependency parser, ob-
vious improvement is obtained over the

MST baseline.
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saw him with a telescope

(b)

¥ N I RN
I saw him with a telescope

Figure 1: lllegal (a) and incomplete (b) dependency treelyeced by the simple-collection method.

Experimental results show that, the classifiercan be a boolean value:
trained on the projected classification instances o
significantly outperforms the projected depen- C@i,j) =p p€{0,1} @)
dency parsers in previous works. The classifier,g produced by a support vector machine (SVM)

trained on the Chinese projected classification ing|assifier (Vapnik, 1998)p = 1 indicates that the
stances achieves a precision of 58.59% on the CTB5ssifier supports the candidate edgej), and
standard test set. More importantly, when this, _  the contrary. C(i, j) can also be a real-
classifier is integrated into a 2nd-ordered maxsy,ged probability:

imum spanning tree (MST) dependency parser

(McDonald and Pereira, 2006) in a weighted aver- C(i,j)=p 0<p<1 2

age manner, significant improvement is obtained s produced by an maximum entropy (ME) classi-
over the MST baselines. For the 2nd-order MST?S P y ) by { .
parser trained on Penn Chinese Treebank (CTBT er. (Berger etal., 1996 is a probablllty which
5.0, the classifier give an precision increment of dicates the degree the classifier support the can-

0.5 points. Especially for the parser trained on thed'date edge(i, j). Ideglly, given th? classifica-
smaller CTB 1.0, more than 1 points precision in_t|on results for all candidate word pairs, the depen-
crement is obtair11 ed dency parse tree can be composed of the candidate

In the rest of this paper, we first describeedges with higher score (1 for the boolean-valued

. e classifier, and large for the real-valued classi-
the word-pair classification model for dependencyﬁer)' However, more robust strategies should be

parsing (section 2) and the generation metho‘flnvestigated since the ambiguity of the language

of projected classification instances (section 3). e
) o . yntax and the classification errors usually lead to
Then we describe an application of the projecte . . .
) . ljlegal or incomplete parsing result, as shown in
parser: boosting a state-of-the-art 2nd-ordered..
MST parser (section 4). After the comparisons igure 1. o

. . ) Follow the edge based factorization method
with previous works on dependency parsing an

. , . : Eisner, 1996), we factorize the score of a de-
projection, we finally five the experimental results. . .
pendency treg(x,y) into its dependency edges,

and design a dynamic programming algorithm
to search for the candidate parse with maximum
21  Model Definition score. This strategy alleviate the classification er-
rors to some degree and ensure a valid, complete
Following (McDonald et al., 2005ak is used to  dependency parsing tree. If a boolean-valued clas-

denote the sentence to be parsed, anih denote  sifier is used, the search algorithm can be formal-
the i-th word in the sentencey denotes the de- jzed as:

pendency tree for sentenge and (i, j) € y rep-

resents a dependency edge from woydo word -

xj, wherez; is the parent of;. .
The task of the word-pair classification model - argymax Z C(i.J)

is to determine whether any candidate word pair, )&y

xzyandz; s.it. 1 < 4,5 < [x|andi # j, forms a And if a probability-valued classifier is used in-

dependency edge. The classification reS@lt j)  stead, we replace the accumulation with cumula-

2 Word-Pair Classification Model

y = argmax s(x,y)

®)
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Type Features

Unigram word; o pos; word; POS;
word; o pos; word; POS;

Bigram word; o pos; o word; o pos; pos; o word; o pos; word; o word; o pos;
word; o pos; © pos; word; o pos; o word; word; o word,;
DPOS; © POS; word; o pos; pos; o word,;

Surrounding| pos; © posi+1 0 PoSj—1 ©POS;  POSi—1 O POS; O POSj—1 O POSj  POS; O POSi+1 O POSj O POSj+1
POS;—1 O POS; O POS; O POSj41 POSi—1 © pOS; © pOS;—1 POSi—1 © pOS; © pOSj+1
POS; © POS;41 O POS;—1 POS; O POSi41 O POSj+1 POS;—1 © PpOS;—1 © POS;
POS;—1 © POS; O POSj+1 POSi41 © POS;—1 O POS; POSi4+1 O POS; O POSj4+1
POS; © pOS;j—1 © pOS; POS; © POS; © POS;j41 POS;—1 © pOS; © poOS;
POS; O POS;41 O POS;

Table 1: Feature templates for the word-pair classificatiadel.

tive product: to enrich the features with word distance infor-
- mation. However, in order to utilize some syntax
Y= arg;naxs(x’ y) information between the pair of words, we adopt
. (4) the syntactic distance representation of (Collins,
N arg;nax (igleyC(W) 199_6), ngmed:ollins di3mce for convenience. A
’ Collins distance comprises the answers of 6 ques-
Wherey is searched from the set of well-formed tions:
dependency trees.

In our work we choose a real-valued ME clas-
sifier. Here we give the calculation of dependency
probabilityC (i, j). We usew to denote the param-
eter vector of the ME model, arfi{, j, ) to de- e Is there a verb between wotaénd word;?
note the feature vector for thessumption that the
word pairi andj has a dependency relationship
The symbol- indicates the supposed classification
result, where* = + means we suppose itas a de- 4 |s there a comma immediately following the
pendency edge and= — means the contrary. A first of words and word;?
featurefy (i, j,r) € f(i,4,r) equals 1 if it is ac-
tivated by the assumption and equals 0 otherwise. ® Is there a comma immediately preceding the
The dependency probability can then be defined  second of word and word;?
as:

e Does wordi precede or follow worg?

e Are word: and word; adjacent?

e Are there 0O, 1, 2 or more than 2 commas be-
tween word: and word;?

Besides the original features generated according

Cli. ) = exp(w - f(%j_a Jf)) to the templates in Table 1, the enhanced features

’ > exp(w - £(i, 5,7)) g With Collins distance as posfixes are also used in
exp(d . Wi % £i.(4,5,+)) ) training and decoding of the word-pair classifier.

> exp(3oy wi X £y (i, 4, 7)) 2.3 Parsing Algorithm

2.2 Features for Classification We adopt logarithmic dependency probabilities
The feature templates for the classifier are simiin decoding, therefore the cumulative product of
lar to those of 1st-ordered MST model (McDon- probabilities in formula 6 can be replaced by ac-
ald et al., 2005a).! Each feature is composed cumulation of logarithmic probabilities:

of some words and POS tags surrounded wiord
and/or wordj, as well as an optional distance rep-

y = argmax s(x,y)

resentations between this two words. Table shows Y .

the feature templates we use. - argrynax H €. j) (6)
Previous graph-based dependency models usu- (g)ey

ally use the index distance of woidand word; = argmax Z log(C(,7))

T Iwe exclude Y Ggey

\We exclude thén between features of McDonald et al.

(2005a) since preliminary experiments show that these feas . .
tures bring no improvement to the word-pair classificatior?Thus’ the deCOdmg algorlthm for 1st-ordered MST

model. model, such as the Chu-Liu-Edmonds algorithm

14



Algorithm 1 Dependency Parsing Algorithm. wo [0.900.00{0.15]0.00|0.05|0.00
1: Input: sentencex to be parsed yong [0.05]0.00]|0.00]0.95|0.05]0.00
2: for (i, ) C (1, |x|) in topological ordedo wangyuanjing {0.00|0.10]0.00[0.05[0.10[0.95
31 buf <90 kanjian |0.00]0.85]0.00[0.15]0.10]0.00
4. for k < i..j —1do > all partitions le [0.00]10.3010.0010.0010.0010.05
5: for I € V[i, k] andr € V[k + 1, j] do

6 insert CERIV(, 7) into buf ta |0.05]0.00(0.95[0.00|0.00|0.00
7: insert DERIV(.T,Z? into buf Vot «-\Qo 2 0096
8. VI[i,j] «— top K derivations ofbuf &

[(e]

: Output: the best derivation oV [1, |x|]

10: function DERIV(p, ¢) . . . .
11:  d«—pUcU{(p-root,c-root)} >new derivation Figure 2: The word alignment matrix between a

12 d-evl «— EVAL(d) > evaluation function ~ Chinese sentence and its English translation. Note
13:  return d that probabilities need not to be normalized across
rows or columns.

used in McDonald et al. (2005b), is also appli-

cable here. In this work, however, we still adopts+ (¢, j), can be defined as:

the more general, bottom-up dynamic program-

ming algor%[hm Algorithm 1 irr)1 o?lder to frfcili?ate s (i.0) = ) Avw X Ajjr X 8(ye, 1.5, +) (8)

the possible expansions. Helé[i, j] contains the i’

candidate parsing segments of the spaji, and  The score that they do not form a projected depen-
the function B/AL (d) accumulates the scores of gency edge can be defined similarly:

all the edges in dependency segmeéntin prac-

tice, the cube-pruning strategy (Huang and Chis_(i,j) = ZAW X Aj i x6(ye,i, 5, —) (9)
ang, 2005) is used to speed up the enumeration of il

derivations (loops started by line 4 and 5). Note that for simplicity, the condition factong.

3 Projected Classification Instance and A are omitted from these two formulas. We
finally define the probability of the supposed pro-

After the introduction of the word-pair classifica- jected dependency edge as:

tion model, we now describe the extraction of pro- o

jected dependency instances. In order to allevi- ¢ (; j) = @p(u(u])) ___ (10)

ate the effect of word alignment errors, we base exp(s4 (i, j)) + exp(s—(i, j))

the projection on the alignment matrix, a compact The probabilityC, (i, j) is a real value between
representation of multiple GIZA++ (Och and Ney, 0 and 1. ObviouslyC,(i,j) = 0.5 indicates the
2000) results, rather than a single word alignmenf,, ambiguous case, where we can not distin-
in previous dependency projection works. Figuréy ish hetween positive and negative at all. On the

2 shows an exgmple. _ other hand, there are as many2&(|f|—1) candi-
Suppose a bilingual sentence pair, composed Qiate projected dependency instances for the target

a source sentengeand its target translatiof ye  gentence. Therefore, we need choose a threshold

Is the parse tree of the source sentendeis the 1o ¢ (; ) to filter out the ambiguous instances:

alignment matrix between them, e_md each element,e instances witlt, (i, ) > b are selected as the
A; ; denotes the degree of the alignment betWeeBositive, and the instances with (i, j) < 1 — b
word e; and wordf;. We define a boolean-valued gre selected as the negative.

functiond(y, 1, j,r) to investigate the dependency
relationship of word and wordj in parse treey: 4 Boosting an MST Parser

(i,7) €y and r = + The classifier can be used to boost a existing parser
1 or trained on human-annotated trees. We first estab-
8y, i,j,7) = (i,j)¢yandr=— (7) lish a unified framework for the enhanced parser.
For a sentence to be parsegthe enhanced parser
selects the best pargeaccording to both the base-
line modelB and the projected classifi&r.

0 otherwise

Then the score that woticand wordj in the target

sentencey forms a projected dependency edge, Y — argmax(sg(x,y) +Asc(x,y)] (1)

y
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Here, sg andsc denote the evaluation functions they differ from each other in the classification re-
of the baseline model and the projected classisults. The classifier in our model predicates a de-
fier, respectively. The parametaris the relative pendency probability for each pair of words, while
weight of the projected classifier against the basethe classifier in a transition-based model gives a
line model. possible next transition operation suchshst or

There are several strategies to integrate the tweeduce. Another difference lies in the factoriza-
evaluation functions. For example, they can be intion strategy. For our method, the evaluation score
tegrated deeply at each decoding step (Carreras et a candidate parse is factorized into each depen-
al., 2008; Zhang and Clark, 2008; Huang, 2008)dency edge, while for the transition-based models,
or can be integrated shallowly in a reranking man+the score is factorized into each transition opera-
ner (Collins, 2000; Charniak and Johnson, 2005)tion.

As described previously, the score of a depen- Thanks to the reminding of the third reviewer
dency tree given by a word-pair classifier can beof our paper, we find that the pairwise classifica-
factored into each candidate dependency edge iton schema has also been used in Japanese de-
this tree. Therefore, the projected classifier campendency parsing (Uchimoto et al., 1999; Kudo
be integrated with a baseline model deeply at eachnd Matsumoto, 2000). However, our work shows
dependency edge, if the evaluation score given bynore advantage in feature engineering, model
the baseline model can also be factored into detraining and decoding algorithm.

pendency edges.

We choose the 2nd-ordered MST model (Mc-
Donald and Pereira, 2006) as the baseline. Edvlany works try to learn parsing knowledge from
pecially, the effect of the Collins distance in thebilingual corpora. LU et al. (2002) aims to
baseline model is also investigated. The relativédbtain Chinese bracketing knowledge via ITG
weight\ is adjusted to maximize the performance(Wu, 1997) alignment. Hwa et al. (2005) and
on the development set, using an algorithm similaf5anchev et al. (2009) induce dependency gram-

5.2 Dependency Projection

to minimum error-rate training (Och, 2003). mar via projection from aligned bilingual cor-
pora, and use some thresholds to filter out noise
5 Related Works and some hand-written rules to handle heterogene-

ity.  Smith and Eisner (2009) perform depen-
dency projection and annotation adaptation with
Both the graph-based (McDonald et al., 2005aQuasi-Synchronous Grammar features. Jiang and
McDonald and Pereira, 2006; Carreras et al.Liu (2009) refer to alignment matrix and a dy-
2006) and the transition-based (Yamada and Matramic programming search algorithm to obtain
sumoto, 2003; Nivre et al., 2006) parsing algo-better projected dependency trees.
rithms are related to our word-pair classification All previous works for dependency projection
model. (Hwa et al., 2005; Ganchev et al., 2009; Smith and
Similar to the graph-based method, our modeEisner, 2009; Jiang and Liu, 2009) need complete
is factored on dependency edges, and its decogbrojected trees to train the projected parsers. Be-
ing procedure also aims to find a maximum spancause of the free translation, the word alignment
ning tree in a fully connected directed graph. Fromerrors, and the heterogeneity between two lan-
this point, our model can be classified into theguages, it is reluctant and less effective to project
graph-based category. On the training methodthe dependency tree completely to the target lan-
however, our model obviously differs from other guage sentence. On the contrary, our dependency
graph-based models, that we only need a set gfrojection strategy prefer to extract a set of depen-
word-pair dependency instances rather than a reglency instances, which coincides our model’s de-
ular dependency treebank. Therefore, our model imand for training corpus. An obvious advantage
more suitable for the partially bracketed or noisyof this strategy is that, we can select an appropriate
training corpus. filtering threshold to obtain dependency instances
The most apparent similarity between ourof good quality.
model and the transition-based category is that In addition, our word-pair classification model
they all need a classifier to perform classificationcan be integrated deeply into a state-of-the-art
conditioned on a certain configuration. However,MST dependency model. Since both of them are

5.1 Dependency Parsing
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Corpus Train Dev Test

WSJ (section) 2-21 22 23 = g7 T T T ]
CTB 5.0 (chapter)| others| 301-325| 271-300 EE 865 L |
K]
Table 2: The corpus partition for WSJ and CTB § 86 - 8
5.0. %‘ 855 |- //X\“*\X_
o 85 | i
g X
: . . . 845 - -
factorized into dependency edges, the integration g S CTE\;NSS(%
B 0 -
can be conducted at each dependency edge, by 841, . ! ) ,
1 1.5 2 2.5 3

weightedly averaging their evaluation scores for

this dependency edge. This strategy makes better
use of the projected parser while with faster deFigure 3: Performance curves of the word-pair
coding, compared with the cascaded approach dflassification model on the development sets of

Ratio r (#negative/#positive)

Jiang and Liu (2009). WSJ and CTB 5.0, with respect to a series of ratio
T.
Experimen
6 pe ents Corpus | System P %
. . . : Al WSJ Yamada and Matsumoto (2003) 90.3
In thl_s_ se_ctlon, we first vallfjate f[he word-pair Nivre and Scholz (2004) 873
classification model by experimenting on human- 1st-ordered MST 90.7
annotated treebanks. Then we investigate the ef- 2”d-0f%efled MST gé-g
. . . our moade .
fecyveness of_the depend_e_ncy prqjectlon by eval- =555 Tstordered VST 8653
uating the projected classifiers trained on the pro- 2nd-ordered MST 87.15
jected classification instances. Finally, we re- our model 82.06

port the performance of the integrated dependenc¥able 3: Performance of the word-pair classifica-

parser which integrates the projected classifier anﬂon model on WSJ and CTB 5.0, compared with
the 2nd-ordered MST dependency parser. We. . .. rent state-of-the-art model’s.

evaluate the parsing accuracy by the precision of
lexical heads, which is the percentage of the words

that have found their correct parents. For example, = 2 means we reserve negative
instances two times as many as the positive ones.
6.1 Word-Pair Classification Model The MaxEnt toolkit by Zhand is adopted to

We experiment on two popular treebanks, the Walfrain the ME classifier on extracted instances. We
Street Journal (WSJ) portion of the Penr'1 Englishset the gaussian prior as 1.0 and the iteration limit
Treebank (Marcus et al., 1993), and the Penn Chi2s 100, leaving other parameters as default values.

nese Treebank (CTB) 5.0 (Xue et al., 2005). The''e first investigate the impaf:_t of the rataio_on :
constituent trees in the two treebanks are transi'® p;\rf(;]rmanhc e of tfhe classmefr. hCuIrEves]'lr;] Flgél
formed to dependency trees according to the head'® ° 3 ow the per ormance of t € English an
finding rules of Yamada and Matsumoto (2003).Ch|nese parsers, each'of which is trqlned on an in-
For English, we use the automaticalIy-assignedsr:an?e Eetr?(l)zrref_pﬁndlr&gctﬁ_ a certmnWe find
POS tags produced by an implementation of thé‘f at for Ot_ nr?, 'S gn blnes_e,2maX|£nL_1rrE per-
POS tagger of Collins (2002). While for Chinese, ormance 1s achieve at a gut_ .'5' °
we just use the gold-standard POS tags foIIowingEng“Sh and Chinese classifiers trained on the in-

the tradition. Each treebank is splitted into threeStance sets with = 2.5 are used in the final eval-

partitions, for training, development and testing,uhatIon phase. fTﬁvtgi 3 (thg\_’l_\l; ?g performances on
respectively, as shown in Table 2. the test sets o an -

For a dependency tree withwords, onlyn, — We also compare them with previous works on

- ; the same test sets. On both English and Chinese,
1 positive dependency instances can be extractet. word-pair classification model falls behind of
They account for only a small proportion of all the he tot p?thc asi (\:/3 Oth' kotr?tz'it? © b b?
dependency instances. As we know, it isimportan{ € state-ol-ine-art. e think that 1L 1S probably
to balance the proportions of the positive and the *http://homepages.inf.ed.ac.uk/s0450736/

negative instances for a batched-trained classifiefraxenttoolkithtml. . _ o

We define a new parameteto denote the ratio of We did not investigate more fine-grained ratios, since the

i ) - performance curves show no dramatic fluctuation along with
the negative instances relative to the positive oneshe alteration of-.
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56 Corpus | System P %
= oot CTB2.0 | Hwa etal. (2005) 53.9
5’\; our model 56.9
S 5551 7 CTB5.0 | Jiang and Liu (2009) 53.28
3 our model 58.59
S ST 7 : .
g Table 4: The performance of the projected classi-
2 545 | . fier on the test sets of CTB 2.0 and CTB 5.0, com-
g pared with the performance of previous works on

54 - . ' . ' : : the corresponding test sets.

0.65 0.7 0.75 0.8 0.85 0.9 0.95
Threshold b

Corpus | Baseline P% | Integrated P%
Figure 4. The performance curve of the word- CcrB10 82.23 83.70
‘ o CTB5.0 87.15 87.65
pair classification model on the development set
of CTB 5.0, with respect to a series of threshdld Table 5: Performance improvement brought by
the projected classifier to the baseline 2nd-ordered

due to the local optimization of the training pro- ,g/lpse-(l:-tﬁlaerlys/ers trained on CTB 1.0 and CTB 5.0, re-

cedure. Given complete trees as training data, |
is easy for previous models to utilize structural,
global and linguistical information in order to ob- with different thresholds. Then, on each instance
tain more powerful parameters. The main advanset we train a classifier and test it on the develop-
tage of our model is that it doesn’t need completement set of CTB 5.0. Figure 4 presents the ex-
trees to tune its parameters. Therefore, if trainegherimental results. The curve shows that the max-
on instances extracted from human-annotated treémum performance is achieved at the threshold of
banks, the word-pair classification model wouldabout 0.85. The classifier corresponding to this
not demonstrate its advantage over existed stateéhreshold is evaluated on the test set of CTB 5.0,
of-the-art dependency parsing methods. and the test set of CTB 2.0 determined by Hwa et
al. (2005). Table 4 shows the performance of the
projected classifier, as well as the performance of
In this work we focus on the dependency projec-previous works on the corresponding test sets. The
tion from English to Chinese. We use the FBISprojected classifier significantly outperforms pre-
Chinese-English bitext as the bilingual corpus forvious works on both test sets, which demonstrates
dependency projection. It contains 239K senthat the word-pair classification model, although
tence pairs with about 6.9M/8.9M words in Chi- falling behind of the state-of-the-art on human-
nese/English. Both English and Chinese sentencenotated treebanks, performs well in projected
are tagged by the implementations of the POS tagdependency parsing. We give the credit to its good
ger of Collins (2002), which trained on WSJ andcollaboration with the word-pair classification in-
CTB 5.0 respectively. The English sentences arstance extraction for dependency projection.
then parsed by an implementation of 2nd-ordered
MST model of McDonald and Pereira (2006), 6-3 Integrated Dependency Parser
which is trained on dependency trees extractegVe integrate the word-pair classification model
from WSJ. The alignment matrixes for sentenceinto the state-of-the-art 2nd-ordered MST model.
pairs are generated according to (Liu etal., 2009)First, we implement a chart-based dynamic pro-
Similar to the ratior, the threshold need also gramming parser for the 2nd-ordered MST model,
be assigned an appropriate value to achieve a begnd develop a training procedure based on the
ter performance. Larger thresholds result in betteperceptron algorithm with averaged parameters
but less classification instances, the lower cover(Collins, 2002). On the WSJ corpus, this parser
age of the instances would hurt the performance oachieves the same performance as that of McDon-
the classifier. On the other hand, smaller threshald and Pereira (2006). Then, at each derivation
olds lead to worse but more instances, and toatep of this 2nd-ordered MST parser, we weight-
much noisy instances will bring down the classi-edly add the evaluation score given by the pro-
fier's discriminating power. jected classifier to the original MST evaluation
We extract a series of classification instance setscore. Such a weighted summation of two eval-

6.2 Dependency Projection
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uation scores provides better evaluation for cantal data. We also thank Dr. Yang Liu for sharing
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2003).
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Abstract

This paper proposes a dependency parsing
method that uses bilingual constraints to
improve the accuracy of parsing bilingual
texts (bitexts). In our method, a target-
side tree fragment that corresponds to a
source-side tree fragment is identified via
word alignment and mapping rules that
are automatically learned. Then it is ver-
ified by checking the subtree list that is
collected from large scale automatically
parsed data on the target side. Our method,
thus, requires gold standard trees only on
the source side of a bilingual corpus in
the training phase, unlike the joint parsing
model, which requires gold standard trees
on the both sides. Compared to the re-
ordering constraint model, which requires
the same training data as ours, our method
achieved higher accuracy because of richer
bilingual constraints. Experiments on the
translated portion of the Chinese Treebank
show that our system outperforms mono-
lingual parsers by 2.93 points for Chinese
and 1.64 points for English.

1 Introduction

Parsing bilingual texts (bitexts) is crucial for train-
ing machine translation systems that rely on syn-
tactic structures on either the source side or the
target side, or the both (Ding and Palmer, 2005;
Nakazawa et al., 2006). Bitexts could provide
more information, which is useful in parsing, than
a usual monolingual texts that can be called “bilin-
gual constraints”, and we expect to obtain more
accurate parsing results that can be effectively
used in the training of MT systems. With this mo-
tivation, there are several studies aiming at highly
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accurate bitext parsing (Smith and Smith, 2004;
Burkett and Klein, 2008; Huang et al., 2009).

This paper proposes a dependency parsing
method, which uses the bilingual constraints that
we call bilingual subtree constraints and statistics
concerning the constraints estimated from large
unlabeled monolingual corpora. Basically, a (can-
didate) dependency subtree in a source-language
sentence is mapped to a subtree in the correspond-
ing target-language sentence by using word align-
ment and mapping rules that are automatically
learned. The target subtree is verified by check-
ing the subtree list that is collected from unla-
beled sentences in the target language parsed by
a usual monolingual parser. The result is used as
additional features for the source side dependency
parser. In this paper, our task is to improve the
source side parser with the help of the translations
on the target side.

Many researchers have investigated the use
of bilingual constraints for parsing (Burkett and
Klein, 2008; Zhao et al., 2009; Huang et al.,
2009). For example, Burkett and Klein (2008)
show that parsing with joint models on bitexts im-
proves performance on either or both sides. How-
ever, their methods require that the training data
have tree structures on both sides, which are hard
to obtain. Our method only requires dependency
annotation on the source side and is much sim-
pler and faster. Huang et al. (2009) proposes a
method, bilingual-constrained monolingual pars-
ing, in which a source-language parser is extended
to use the re-ordering of words between two sides’
sentences as additional information. The input of
their method is the source trees with their trans-
lation on the target side as ours, which is much
easier to obtain than trees on both sides. However,
their method does not use any tree structures on

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 21-29,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



the target side that might be useful for ambiguity
resolution. Our method achieves much greater im-
provement because it uses the richer subtree con-
straints.

Our approach takes the same input as Huang
et al. (2009) and exploits the subtree structure on
the target side to provide the bilingual constraints.
The subtrees are extracted from large-scale auto-
parsed monolingual data on the target side. The
main problem to be addressed is mapping words
on the source side to the target subtree because
there are many to many mappings and reordering
problems that often occur in translation (Koehn et
al., 2003). We use an automatic way for generat-
ing mapping rules to solve the problems. Based
on the mapping rules, we design a set of features
for parsing models. The basic idea is as follows: if
the words form a subtree on one side, their corre-
sponding words on the another side will also prob-
ably form a subtree.

Experiments on the translated portion of the
Chinese Treebank (Xue et al., 2002; Bies et al.,
2007) show that our system outperforms state-of-
the-art monolingual parsers by 2.93 points for Chi-
nese and 1.64 points for English. The results also
show that our system provides higher accuracies
than the parser of Huang et al. (2009).

The rest of the paper is organized as follows:
Section 2 introduces the motivation of our idea.
Section 3 introduces the background of depen-
dency parsing. Section 4 proposes an approach
of constructing bilingual subtree constraints. Sec-
tion 5 explains the experimental results. Finally, in
Section 6 we draw conclusions and discuss future
work.

2 Motivation

In this section, we use an example to show the
idea of using the bilingual subtree constraints to
improve parsing performance.

Suppose that we have an input sentence pair as
shown in Figure 1, where the source sentence is in
English, the target is in Chinese, the dashed undi-
rected links are word alignment links, and the di-
rected links between words indicate that they have
a (candidate) dependency relation.

In the English side, it is difficult for a parser to
determine the head of word “with” because there
is a PP-attachment problem. However, in Chinese
it is unambiguous. Therefore, we can use the in-
formation on the Chinese side to help disambigua-
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He até the mé@t ‘:{\(i_th a fork

X F(fork)

i (He) )ﬂ(usé)

W(eat) P(meat) . ()

Figure 1: Example for disambiguation

tion.

There are two candidates “ate” and “meat” to be
the head of “with” as the dashed directed links in
Figure 1 show. By adding “fork”, we have two
possible dependency relations, “meat-with-fork”
and “‘ate-with-fork™, to be verified.

First, we check the possible relation of “meat”,
“with”, and “fork”. We obtain their corresponding
words “PJ(meat)”, “H(use)”, and “ X F(fork)” in
Chinese via the word alignment links. We ver-
ify that the corresponding words form a subtree
by looking up a subtree list in Chinese (described
in Section 4.1). But we can not find a subtree for
them.

Next, we check the possible relation of “ate”,
“with”, and “fork”. We obtain their correspond-
ing words “I'z (ate)”, “H(use)”, and “ X F-(fork)”.
Then we verify that the words form a subtree by
looking up the subtree list. This time we can find
the subtree as shown in Figure 2.

AN

Hl(use) X ¥(fork) Nz (eat)

Figure 2: Example for a searched subtree

Finally, the parser may assign “ate” to be the
head of “with” based on the verification results.
This simple example shows how to use the subtree
information on the target side.

3 Dependency parsing

For dependency parsing, there are two main types
of parsing models (Nivre and McDonald, 2008;
Nivre and Kubler, 2006): transition-based (Nivre,
2003; Yamada and Matsumoto, 2003) and graph-
based (McDonald et al., 2005; Carreras, 2007).
Our approach can be applied to both parsing mod-
els.

In this paper, we employ the graph-based MST
parsing model proposed by McDonald and Pereira



(2006), which is an extension of the projec-
tive parsing algorithm of Eisner (1996). To use
richer second-order information, we also imple-
ment parent-child-grandchild features (Carreras,
2007) in the MST parsing algorithm.

3.1 Parsing with monolingual features

Figure 3 shows an example of dependency pars-
ing. In the graph-based parsing model, features are
represented for all the possible relations on single
edges (two words) or adjacent edges (three words).
The parsing algorithm chooses the tree with the
highest score in a bottom-up fashion.

SONS NN

ROOT He ate the meat with a{\fork

Figure 3: Example of dependency tree

In our systems, the monolingual features in-
clude the first- and second- order features pre-
sented in (McDonald et al.,, 2005; McDonald
and Pereira, 2006) and the parent-child-grandchild
features used in (Carreras, 2007). We call the
parser with the monolingual features monolingual
parser.

3.2 Parsing with bilingual features

In this paper, we parse source sentences with the
help of their translations. A set of bilingual fea-
tures are designed for the parsing model.

3.2.1 Bilingual subtree features

We design bilingual subtree features, as described
in Section 4, based on the constraints between the
source subtrees and the target subtrees that are ver-
ified by the subtree list on the target side. The
source subtrees are from the possible dependency
relations.

3.2.2 Bilingual reordering feature

Huang et al. (2009) propose features based on
reordering between languages for a shift-reduce
parser. They define the features based on word-
alignment information to verify that the corre-
sponding words form a contiguous span for resolv-
ing shift-reduce conflicts. We also implement sim-
ilar features in our system.
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4 Bilingual subtree constraints

In this section, we propose an approach that uses
the bilingual subtree constraints to help parse
source sentences that have translations on the tar-
get side.

We use large-scale auto-parsed data to obtain
subtrees on the target side. Then we generate the
mapping rules to map the source subtrees onto the
extracted target subtrees. Finally, we design the
bilingual subtree features based on the mapping
rules for the parsing model. These features in-
dicate the information of the constraints between
bilingual subtrees, that are called bilingual subtree
constraints.

4.1 Subtree extraction

Chen et al. (2009) propose a simple method to ex-
tract subtrees from large-scale monolingual data
and use them as features to improve monolingual
parsing. Following their method, we parse large
unannotated data with a monolingual parser and
obtain a set of subtrees (S7;) in the target lan-
guage.

We encode the subtrees into string format that is
expressed as st = w : hid(—w : hid)+", where w
refers to a word in the subtree and hid refers to the
word ID of the word’s head (hid=0 means that this
word is the root of a subtree). Here, word ID refers
to the ID (starting from 1) of a word in the subtree
(words are ordered based on the positions of the
original sentence). For example, “He” and “ate”
have a left dependency arc in the sentence shown
in Figure 3. The subtree is encoded as “He:2-
ate:0”. There is also a parent-child-grandchild re-
lation among ‘“‘ate”, “with”, and “fork”. So the
subtree is encoded as “ate:0-with:1-fork:2”. If a
subtree contains two nodes, we call it a bigram-
subtree. If a subtree contains three nodes, we call
it a trigram-subtree.

From the dependency tree of Figure 3, we ob-
tain the subtrees, as shown in Figure 4 and Figure
5. Figure 4 shows the extracted bigram-subtrees
and Figure 5 shows the extracted trigram-subtrees.
After extraction, we obtain a set of subtrees. We
remove the subtrees occurring only once in the
data. Following Chen et al. (2009), we also group
the subtrees into different sets based on their fre-
quencies.

'+ refers to matching the preceding element one or more
times and is the same as a regular expression in Perl.



ate meat
.~ —He:1:2-ate:2:0 /= ther1:2-meat:2:0
He the
ate . 54| with
N, = aterti0-meat2: TR0 ith:1:0-fork:2:1
meat
fork
ate fork - .5
N = ate:1:0-with:2:1 |/ =>ati2forki2:0
with a

Figure 4: Examples of bigram-subtrees

ate ate

N T ater1:0-with:2:1-.:3:1
with .

ate

—> ate:1:0-meat:2:1-with:3:1
meat with
ate

—>He:1:3-NULL:2:3-ate:3:0
He NULL

—ate:1:0-NULL:2:1-meat:3:1
NULL meat

the:1:3-NULL:2:3-meat:3:0
a:1:3-NULL:2:3-fork:3:0

with:1:0-NULL:2:1-fork:3:1

ate:1:0-the:2:3-meat:3:1 ate:1:0-with:2:1-fork:3:2

with:1:0-a:2:3-fork:3:1 NULL:1:2-He:2:3-ate:3:0

He:1:3-NULL:2:1-ate:3:0 ate:1:0-meat:2:1-NULL:3:2

ate:1:0-NULL:2:3-with:3:1 with:1:0-fork:2:1-NULL:3:2

NULL:1:2-a:2:3-fork:3:0 a:1:3-NULL:2:1-fork:3:0

ate:1:0-NULL:2:3-.:3:1 ate:1:0-.:2:1-NULL:3:2

NULL:1:2-the:2:3-meat:3:0 the:1:3-NULL:2:1-meat:3:0

(b)

Figure 5: Examples of trigram-subtrees

4.2 Mapping rules

To provide bilingual subtree constraints, we need
to find the characteristics of subtree mapping for
the two given languages. However, subtree map-
ping is not easy. There are two main problems:
MtoN (words) mapping and reordering, which of-
ten occur in translation. MtoN (words) map-
ping means that a source subtree with M words
is mapped onto a target subtree with N words. For
example, 2to3 means that a source bigram-subtree
is mapped onto a target trigram-subtree.

Due to the limitations of the parsing algo-
rithm (McDonald and Pereira, 2006; Carreras,
2007), we only use bigram- and trigram-subtrees
in our approach. We generate the mapping rules
for the 2to2, 2to3, 3to3, and 3to2 cases. For
trigram-subtrees, we only consider the parent-
child-grandchild type. As for the use of other
types of trigram-subtrees, we leave it for future
work.

We first show the MtoN and reordering prob-
lems by using an example in Chinese-English
translation. Then we propose a method to auto-
matically generate mapping rules.
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4.2.1 Reordering and MtoN mapping in
translation

Both Chinese and English are classified as SVO
languages because verbs precede objects in simple
sentences. However, Chinese has many character-
istics of such SOV languages as Japanese. The
typical cases are listed below:

1) Prepositional phrases modifying a verb pre-
cede the verb. Figure 6 shows an example. In En-
glish the prepositional phrase “at the ceremony”
follows the verb “said”, while its corresponding
prepositional phrase “7E(NULL) 1 3\ (ceremony)
_I*(at)” precedes the verb “iii(say)” in Chinese.

R NN

Said at the ceremony

Figure 6: Example for prepositional phrases mod-
ifying a verb

2) Relative clauses precede head noun. Fig-
ure 7 shows an example. In Chinese the relative
clause “% K(today) %% F(signed)” precedes the
head noun “Zil H (project)”, while its correspond-
ing clause “signed today” follows the head noun
“projects” in English.

/\/\.//\x

SF BF M = A TH

Figure 7: Example for relative clauses preceding
the head noun

3) Genitive constructions precede head noun.
For example, ‘“VX %-(car) # f(wheel)” can be
translated as “the wheel of the car”.

4) Postposition in many constructions rather
than prepositions. For example, “% F(table)
_I(on)” can be translated as “on the table”.



We can find the MtoN mapping problem occur-
ring in the above cases. For example, in Figure 6,
trigram-subtree “7E(NULL):3-_I(at):1-1(say):0”
is mapped onto bigram-subtree “said:0-at:1”.

Since asking linguists to define the mapping
rules is very expensive, we propose a simple
method to easily obtain the mapping rules.

4.2.2 Bilingual subtree mapping

To solve the mapping problems, we use a bilingual
corpus, which includes sentence pairs, to automat-
ically generate the mapping rules. First, the sen-
tence pairs are parsed by monolingual parsers on
both sides. Then we perform word alignment us-
ing a word-level aligner (Liang et al., 2006; DeN-
ero and Klein, 2007). Figure 8 shows an example
of a processed sentence pair that has tree structures
on both sides and word alignment links.

/A@o

ROOT fiifil 4T i %

ROOT They are on the fringes of s&;iety .
NN T

Figure 8: Example of auto-parsed bilingual sen-
tence pair

From these sentence pairs, we obtain subtree
pairs. First, we extract a subtree (sts) from a
source sentence. Then through word alignment
links, we obtain the corresponding words of the
words of sts. Because of the MtoN problem, some
words lack of corresponding words in the target
sentence. Here, our approach requires that at least
two words of st have corresponding words and
nouns and verbs need corresponding words. If not,
it fails to find a subtree pair for sts. If the corre-
sponding words form a subtree (st;) in the target
sentence, sts; and st; are a subtree pair. We also
keep the word alignment information in the tar-
get subtree. For example, we extract subtree “ft:
£>(society):2-121Z (fringe):0” on the Chinese side
and get its corresponding subtree “fringes(W _2):0-
of:1-society(W_1):2” on the English side, where
W_1 means that the target word is aligned to the
first word of the source subtree, and W_2 means
that the target word is aligned to the second word
of the source subtree. That is, we have a sub-

25

tree pair: ‘4t £ (society):2-1J Z(fringe):0” and
“fringe(W_2):0-of:1-society(W_1):2”.

The extracted subtree pairs indicate the trans-
lation characteristics between Chinese and En-
glish. For example, the pair “ft 23(society):2-
12l Z(fringe):0” and “fringes:0-of:1-society:2”
is a case where “Genitive constructions pre-
cede/follow the head noun”.

4.2.3 Generalized mapping rules

To increase the mapping coverage, we general-
ize the mapping rules from the extracted sub-
tree pairs by using the following procedure. The
rules are divided by “=>" into two parts: source
(left) and target (right). The source part is
from the source subtree and the target part is
from the target subtree. For the source part,
we replace nouns and verbs using their POS
tags (coarse grained tags). For the target part,
we use the word alignment information to rep-
resent the target words that have correspond-
ing source words. For example, we have the
subtree pair: “ft £ (society):2-141 Z(fringe):0”
and “fringes(W_2):0-of:1-society(W_1):2”, where
“of”” does not have a corresponding word, the POS
tag of “#t. 2 (society)” is N, and the POS tag of
“i41 % (fringe)” is N. The source part of the rule
becomes “N:2-N:0” and the target part becomes
“W_2:0-of:1-W_1:2”.

Table 1 shows the top five mapping rules of
all four types ordered by their frequencies, where
W_1 means that the target word is aligned to the
first word of the source subtree, W_2 means that
the target word is aligned to the second word, and
W_3 means that the target word is aligned to the
third word. We remove the rules that occur less
than three times. Finally, we obtain 9,134 rules
for 2to2, 5,335 for 2to3, 7,450 for 3to3, and 1,244
for 3to2 from our data. After experiments with dif-
ferent threshold settings on the development data
sets, we use the top 20 rules for each type in our
experiments.

The generalized mapping rules might generate
incorrect target subtrees. However, as described in
Section 4.3.1, the generated subtrees are verified
by looking up list S'I; before they are used in the
parsing models.

4.3 Bilingual subtree features

Informally, if the words form a subtree on the
source side, then the corresponding words on the
target side will also probably form a subtree. For



# | rules [ freq
2to2 mapping

1 | N2N:O0=>W_1:2W_2:0 92776
2 | V:ON:1 =>W_1:.0W_2:1 62437
31 V:OV:l=>W_1:0W2:1 49633
4 | N2V:0=>W_1:2W_.2:0 43999
51 M2N:0=>W2:0W_1:2 25301
2to3 mapping

1 | N:2-N:0 => W_2:0-0of:1-W_1:2 10361
2 | V:0-N:1 => W_1:0-of:1-W_2:2 4521
3 | V:0-N:1 => W_1:0-to:1-W_2:2 2917
4 | N:2-V:0 => W_2:0-0f:1-W_1:2 2578
5 | N:2-N:0 => W_1:2-":3-W_2:0 2316
3to2 mapping

I [ V2-J/DEC:3-N:0 => W_1:0-W_3:1 873

2 | V:2-ff)/DEC:3-N:0 => W _3:2-W_1:0 634

3 | N:2-fJ/DEG:3-N:0 => W_1:0-W_3:1 319

4 | N:2-fJ/DEG:3-N:0 => W_3:2-W_1:0 301

5 | V:0-fJ/DEG:3-N:1 => W_3:0-W_1:1 247
3to3 mapping

1| V:O-V:I-N:2 => W_1:0-W_2:1-W_3:2 9580
2 | N:22-f)/DEG:3-N:0 => W_3:0-W_2:1-W_1:2 | 7010
3 | V:0-N:3-N:1 => W_1:0-W_2:3-W_3:1 5642
4 | V:0-V:1-V:2 => W_1:.0-W_2:1-W_3:2 4563
5 | N:2-N:3-N:0 => W_1:2-W_2:3-W_3:0 3570

Table 1: Top five mapping rules of 2to3 and 3to2

example, in Figure 8, words “ftf {/1(they)” and
“4bF-(be_on)” form a subtree , which is mapped
onto the words “they” and “are” on the target side.
These two target words form a subtree. We now
develop this idea as bilingual subtree features.

In the parsing process, we build relations for
two or three words on the source side. The con-
ditions of generating bilingual subtree features are
that at least two of these source words must have
corresponding words on the target side and nouns
and verbs must have corresponding words.

At first, we have a possible dependency relation
(represented as a source subtree) of words to be
verified. Then we obtain the corresponding target
subtree based on the mapping rules. Finally, we
verify that the target subtree is included in ST;. If
yes, we activate a positive feature to encourage the
dependency relation.

Those are the 3 projects signed today
Figure 9: Example of features for parsing

We consider four types of features based on
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2to02, 3to3, 3to2, and 2to3 mappings. In the 2to2,
3to3, and 3to2 cases, the target subtrees do not add
new words. We represent features in a direct way.
For the 2to3 case, we represent features using a
different strategy.

4.3.1 Features for 2to2, 3to3, and 3to2

We design the features based on the mapping
rules of 2to2, 3to3, and 3to2. For example, we
design features for a 3to2 case from Figure 9.
The possible relation to be verified forms source
subtree “Z% “F(signed)/VV:2-ffJ(NULL)/DEC:3-
i H (project)/NN:0” in which “Iji H (project)”
is aligned to “projects” and ‘%% F(signed)” is
aligned to “signed” as shown in Figure 9. The
procedure of generating the features is shown in
Figure 10. We explain Steps (1), (2), (3), and (4)
as follows:

%7 IVV:2-/DEC:3-51 L INN:O

projects(W._3) signed(W_1)

(1

873
634
319
301
247

V:2-[#)/DEC:3-N:0

)
W_3:0-W_1:1
W_3:2-W_1:0
)
projects:0-signed:1
projects:2-signed:0 STt
(4)
3to2:YES

Figure 10: Example of feature generation for 3to2
case

(1) Generate source part from the source

subtree. We obtain “V:2-fJ/DEC:3-N:0” from
“x “(signed)/VV:2-FI(NULL)/DEC:3-Jjl

H (project)/NN:0”.

(2) Obtain target parts based on the matched
mapping rules, whose source parts equal
“V:2-fJ/DEC:3-N:0”.  The matched rules are
“V:2-ffJ/DEC:3-N:0  =>W_3:0-W_1:1” and
“V:2-ffJ/DEC:3-N:0 => W_3:2-W_1:0". Thus,
we have two target parts “W_3:0-W_1:1” and
“W_3:2-W_1:0".

(3) Generate possible subtrees by consider-



ing the dependency relation indicated in the
target parts. We generate a possible subtree
“projects:0-signed:1” from the target part “W _3:0-
W_1:1", where “projects” is aligned to “Ii
H (project)(W_3)” and “signed” is aligned to “Z%
?(signed)(w,l)”. We also generate another pos-
sible subtree “projects:2-signed:0” from “W _3:2-
W_1:0".

(4) Verify that at least one of the generated
possible subtrees is a target subtree, which is in-
cluded in ST;. If yes, we activate this feature. In
the figure, “projects:0-signed:1” is a target subtree
in ST;. So we activate the feature “3to2:YES”
to encourage dependency relations among ‘%%
F-(signed)”, “AJ(NULL)”, and “Jii H (project)”.

4.3.2 Features for 2to3

In the 2to3 case, a new word is added on the target
side. The first two steps are identical as those in
the previous section. For example, a source part
“N:2-N:0” is generated from < 4-(car)/NN:2-4
F(wheel)/NN:0”. Then we obtain target parts
such as “W_2:0-of/IN:1-W_1:2, “W_2:0-in/IN:1-
W_1:2”, and so on, according to the matched map-
ping rules.

The third step is different. In the target parts,
there is an added word. We first check if the added
word is in the span of the corresponding words,
which can be obtained through word alignment
links. We can find that “of” is in the span “wheel
of the car”, which is the span of the corresponding
words of “JR Z-(car)/NN:2-#¢ -T-(wheel)/NN:0”.
Then we choose the target part “W_2:0-of/IN:1-
W_1:2” to generate a possible subtree. Finally,
we verify that the subtree is a target subtree in-
cluded in ST;. If yes, we say feature “2to3:YES”
to encourage a dependency relation between “i%,

% (car)” and “$¢F (wheel)”.

4.4 Source subtree features

Chen et al. (2009) shows that the source sub-
tree features (Fsrc.—s¢) significantly improve per-
formance. The subtrees are obtained from the
auto-parsed data on the source side. Then they are
used to verify the possible dependency relations
among source words.

In our approach, we also use the same source
subtree features described in Chen et al. (2009).
So the possible dependency relations are verified
by the source and target subtrees. Combining two
types of features together provides strong discrim-
ination power. If both types of features are ac-
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tive, building relations is very likely among source
words. If both are inactive, this is a strong negative
signal for their relations.

5 Experiments

All the bilingual data were taken from the trans-
lated portion of the Chinese Treebank (CTB)
(Xue et al., 2002; Bies et al., 2007), articles
1-325 of CTB, which have English translations
with gold-standard parse trees. We used the tool
“Penn2Malt”? to convert the data into dependency
structures. Following the study of Huang et al.
(2009), we used the same split of this data: 1-270
for training, 301-325 for development, and 271-
300 for test. Note that some sentence pairs were
removed because they are not one-to-one aligned
at the sentence level (Burkett and Klein, 2008;
Huang et al., 2009). Word alignments were gen-
erated from the Berkeley Aligner (Liang et al.,
2006; DeNero and Klein, 2007) trained on a bilin-
gual corpus having approximately 0.8M sentence
pairs. We removed notoriously bad links in {a,
an, the} x {[’J(DE), | (LE)} following the work of
Huang et al. (2009).

For Chinese unannotated data, we used the
XIN_CMN portion of Chinese Gigaword Version
2.0 (LDC2009T14) (Huang, 2009), which has ap-
proximately 311 million words whose segmenta-
tion and POS tags are given. To avoid unfair com-
parison, we excluded the sentences of the CTB
data from the Gigaword data. We discarded the an-
notations because there are differences in annota-
tion policy between CTB and this corpus. We used
the MMA system (Kruengkrai et al., 2009) trained
on the training data to perform word segmentation
and POS tagging and used the Baseline Parser to
parse all the sentences in the data. For English
unannotated data, we used the BLLIP corpus that
contains about 43 million words of WSJ text. The
POS tags were assigned by the MXPOST tagger
trained on training data. Then we used the Base-
line Parser to parse all the sentences in the data.

We reported the parser quality by the unlabeled
attachment score (UAS), i.e., the percentage of to-
kens (excluding all punctuation tokens) with cor-
rect HEADs.

5.1

The results on the Chinese-source side are shown
in Table 2, where “Baseline” refers to the systems

Main results

*http://w3.msi.vxu.se/ nivre/research/Penn2Malt html



with monolingual features, “Baseline2” refers to
adding the reordering features to the Baseline,
“Fpr” refers to adding all the bilingual subtree
features to “Baseline2”, “Fj,._s refers to the
monolingual parsing systems with source subtree
features, “Order-1" refers to the first-order mod-
els, and “Order-2” refers to the second-order mod-
els. The results showed that the reordering fea-
tures yielded an improvement of 0.53 and 0.58
points (UAS) for the first- and second-order mod-
els respectively. Then we added four types of
bilingual constraint features one by one to “Base-
line2”. Note that the features based on 3to2 and
3to3 can not be applied to the first-order models,
because they only consider single dependencies
(bigram). That is, in the first model, F'g; only in-
cludes the features based on 2to2 and 2to3. The
results showed that the systems performed better
and better. In total, we obtained an absolute im-
provement of 0.88 points (UAS) for the first-order
model and 1.36 points for the second-order model
by adding all the bilingual subtree features. Fi-
nally, the system with all the features (OURS) out-
performed the Baseline by an absolute improve-
ment of 3.12 points for the first-order model and
2.93 points for the second-order model. The im-
provements of the final systems (OURS) were sig-
nificant in McNemar’s Test (p < 1074).

Order-1 Order-2
Baseline 84.35 87.20
Baseline2 84.88 87.78
+2t02 85.08 88.07
+2to3 85.23 88.14
+3to3 - 88.29
+3to2 - 88.56
Fpr 85.23(+0.88) | 88.56(+1.36)
Fore_st 86.54(+2.19) | 89.49(+2.29)
OURS 87.47(+3.12) | 90.13(+2.93)

Table 2: Dependency parsing results of Chinese-
source case

We also conducted experiments on the English-
source side. Table 3 shows the results, where ab-
breviations are the same as in Table 2. As in the
Chinese experiments, the parsers with bilingual
subtree features outperformed the Baselines. Fi-
nally, the systems (OURS) with all the features
outperformed the Baselines by 1.30 points for the
first-order model and 1.64 for the second-order
model. The improvements of the final systems
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(OURS) were significant in McNemar’s Test (p <
10793).

Order-1 Order-2
Baseline 86.41 87.37
Baseline2 86.86 87.66
+2t02 87.23 87.87
+2to3 87.35 87.96
+3to3 - 88.25
+3to2 - 88.37
Fpr 87.35(+0.94) | 88.37(+1.00)
Fore st 87.25(+0.84) | 88.57(+1.20)
OURS 87.71(+1.30) | 89.01(+1.64)

Table 3: Dependency parsing results of English-
source case

5.2 Comparative results

Table 4 shows the performance of the system we
compared, where Huang20009 refers to the result of
Huang et al. (2009). The results showed that our
system performed better than Huang2009. Com-
pared with the approach of Huang et al. (2009),
our approach used additional large-scale auto-
parsed data. We did not compare our system with
the joint model of Burkett and Klein (2008) be-
cause they reported the results on phrase struc-
tures.

Chinese | English
Huang2009 86.3 87.5
Baseline 87.20 87.37
OURS 90.13 89.01

Table 4: Comparative results

6 Conclusion

We presented an approach using large automati-
cally parsed monolingual data to provide bilingual
subtree constraints to improve bitexts parsing. Our
approach remains the efficiency of monolingual
parsing and exploits the subtree structure on the
target side. The experimental results show that the
proposed approach is simple yet still provides sig-
nificant improvements over the baselines in pars-
ing accuracy. The results also show that our sys-
tems outperform the system of previous work on
the same data.

There are many ways in which this research
could be continued. First, we may attempt to ap-
ply the bilingual subtree constraints to transition-



based parsing models (Nivre, 2003; Yamada and
Matsumoto, 2003). Here, we may design new fea-
tures for the models. Second, we may apply the
proposed method for other language pairs such as
Japanese-English and Chinese-Japanese. Third,
larger unannotated data can be used to improve the
performance further.
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Abstract

We present an efficient algorithm for com-
puting the weakest readings of semantically
ambiguous sentences. A corpus-based eval-
uation with a large-scale grammar shows
that our algorithm reduces over 80% of sen-
tences to one or two readings, in negligible
runtime, and thus makes it possible to work
with semantic representations derived by
deep large-scale grammars.

1 Introduction

Over the past few years, there has been consid-
erable progress in the ability of manually created
large-scale grammars, such as the English Resource
Grammar (ERG, Copestake and Flickinger (2000))
or the ParGram grammars (Butt et al., 2002), to
parse wide-coverage text and assign it deep seman-
tic representations. While applications should ben-
efit from these very precise semantic representa-
tions, their usefulness is limited by the presence
of semantic ambiguity: On the Rondane Treebank
(Oepen et al., 2002), the ERG computes an aver-
age of several million semantic representations for
each sentence, even when the syntactic analysis is
fixed. The problem of appropriately selecting one
of them to work with would ideally be solved by
statistical methods (Higgins and Sadock, 2003) or
knowledge-based inferences. However, no such
approach has been worked out in sufficient detail to
support the disambiguation of treebank sentences.

As an alternative, Bos (2008) proposes to com-
pute the weakest reading of each sentence and then
use it instead of the “true” reading of the sentence.
This is based on the observation that the readings
of a semantically ambiguous sentence are partially
ordered with respect to logical entailment, and the
weakest readings — the minimal (least informative)
readings with respect to this order — only express
“safe” information that is common to all other read-
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ings as well. However, when a sentence has mil-
lions of readings, finding the weakest reading is a
hard problem. It is of course completely infeasible
to compute all readings and compare all pairs for
entailment; but even the best known algorithm in
the literature (Gabsdil and Striegnitz, 1999) is only
an optimization of this basic strategy, and would
take months to compute the weakest readings for
the sentences in the Rondane Treebank.

In this paper, we propose a new, efficient ap-
proach to the problem of computing weakest read-
ings. We follow an underspecification approach
to managing ambiguity: Rather than deriving all
semantic representations from the syntactic analy-
sis, we work with a single, compact underspecified
semantic representation, from which the semantic
representations can then be extracted by need. We
then approximate entailment with a rewrite sys-
tem that rewrites readings into logically weaker
readings; the weakest readings are exactly those
readings that cannot be rewritten into some other
reading any more (the relative normal forms). We
present an algorithm that computes the relative nor-
mal forms, and evaluate it on the underspecified de-
scriptions that the ERG derives on a 624-sentence
subcorpus of the Rondane Treebank. While the
mean number of scope readings in the subcorpus
is in the millions, our system computes on average
4.5 weakest readings for each sentence, in less than
twenty milliseconds; over 80% of all sentences are
reduced to at most two weakest readings. In other
words, we make it feasible for the first time to build
an application that uses the individual (weakest)
semantic representations computed by the ERG,
both in terms of the remaining ambiguity and in
terms of performance. Our technique is not lim-
ited to the ERG, but should be applicable to other
underspecification-based grammars as well.

Technically, we use underspecified descriptions
that are regular tree grammars derived from dom-
inance graphs (Althaus et al., 2003; Koller et al.,

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 30-39,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



2008). We compute the weakest readings by in-
tersecting these grammars with other grammars
representing the rewrite rules. This approach can
be used much more generally than just for the com-
putation of weakest readings; we illustrate this by
showing how a more general version of the redun-
dancy elimination algorithm by Koller et al. (2008)
can be seen as a special case of our construction.
Thus our system can serve as a general framework
for removing unintended readings from an under-
specified representation.

The paper is structured as follows. Section 2
starts by reviewing related work. We recall domi-
nance graphs, regular tree grammars, and the basic
ideas of underspecification in Section 3, before we
show how to compute weakest readings (Section 4)
and logical equivalences (Section 5). In Section 6,
we define a weakening rewrite system for the ERG
and evaluate it on the Rondane Treebank. Section 7
concludes and points to future work.

2 Related work

The idea of deriving a single approximative seman-
tic representation for ambiguous sentences goes
back to Hobbs (1983); however, Hobbs only works
his algorithm out for a restricted class of quantifiers,
and his representations can be weaker than our
weakest readings. Rules that weaken one reading
into another were popular in the 1990s underspeci-
fication literature (Reyle, 1995; Monz and de Rijke,
2001; van Deemter, 1996) because they simplify
logical reasoning with underspecified representa-
tions. From a linguistic perspective, Kempson and
Cormack (1981) even go so far as to claim that
the weakest reading should be taken as the “basic”
reading of a sentence, and the other readings only
seen as pragmatically licensed special cases.

The work presented here is related to other ap-
proaches that reduce the set of readings of an un-
derspecified semantic representation (USR). Koller
and Niehren (2000) showed how to strengthen
a dominance constraint using information about
anaphoric accessibility; later, Koller et al. (2008)
presented and evaluated an algorithm for redun-
dancy elimination, which removes readings from
an USR based on logical equivalence. Our system
generalizes the latter approach and applies it to a
new inference problem (weakest readings) which
they could not solve.

This paper builds closely upon Koller and Thater
(2010), which lays the formal groundwork for the
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Figure 1: A dominance graph describing the five
readings of the sentence “it is not the case that
every representative of a company saw a sample.”

work presented here. Here we go beyond that paper
by applying a concrete implementation of our RTG
construction for weakest readings to a real-world
grammar, evaluating the system on practical inputs,
and combining weakest readings with redundancy
elimination.

3 Underspecification

This section briefly reviews two formalisms for
specifying sets of trees: dominance graphs and
regular tree grammars. Both of these formalisms
can be used to model scope ambiguities compactly
by regarding the semantic representations of a sen-
tence as trees. Some example trees are shown in
Fig. 2. These trees can be read as simplified for-
mulas of predicate logic, or as formulas involv-
ing generalized quantifiers (Barwise and Cooper,
1981). Formally, we assume a ranked signature
¥ of tree constructors {f,g,q,...}, each of which
is equipped with an arity ar(f) > 0. We take a
(finite constructor) tree t as a finite tree in which
each node is labelled with a symbol of X, and the
number of children of the node is exactly the arity
of this symbol. For instance, the signature of the
trees in Fig. 1 is {V|2,3,|2,comp_|0,...}. Finite
constructor trees can be seen as ground terms over
L that respect the arities. We write T'(X) for the
finite constructor trees over X.

3.1 Dominance graphs

A (labelled) dominance graph D (Althaus et al.,
2003) is a directed graph that consists of a col-
lection of trees called fragments, plus dominance
edges relating nodes in different fragments. We dis-
tinguish the roots Wp of the fragments from their
holes, which are the unlabelled leaves. We write
Lp : Wp — X for the labeling function of D.

The basic idea behind using dominance graphs
to model scope underspecification is to specify
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Figure 2: The five configurations of the dominance graph in Fig. 1.

the “semantic material” common to all readings
as fragments, plus dominance relations between
these fragments. An example dominance graph
D is shown in Fig. 1. It represents the five read-
ings of the sentence “it is not the case that every
representative of a company saw a sample.”

Each reading is encoded as a (labeled) configura-
tion of the dominance graph, which can be obtained
by “plugging” the tree fragments into each other,
in a way that respects the dominance edges: The
source node of each dominance edge must dom-
inate (be an ancestor of) the target node in each
configuration. The trees in Fig. 2 are the five la-
beled configurations of the example graph.

3.2 Regular tree grammars

Regular tree grammars (RTGs) are a general gram-
mar formalism for describing languages of trees
(Comon et al., 2007). An RTG is a 4-tuple G =
(S,N,XZ,P), where N and X are nonterminal and ter-
minal alphabets, S € N is the start symbol, and
P is a finite set of production rules. Unlike in
context-free string grammars (which look super-
ficially the same), the terminal symbols are tree
constructors from X. The production rules are of
the form A — ¢, where A is a nonterminal and ¢ is a
tree from 7 (X UN); nonterminals count as having
arity zero, i.e. they must label leaves. A derivation
starts with a tree containing a single node labeled
with S. Then in each step of the derivation, some
leaf u which is labelled with a nonterminal A is
expanded with a rule A — ¢; this results in a new
tree in which u has been replaced by 7, and the
derivation proceeds with this new tree. The lan-
guage L(G) generated by the grammar is the set of
all trees in 7' (X) that can be derived in this way.

Fig. 3 shows an RTG as an example. This gram-
mar uses sets of root names from D as nonterminal
symbols, and generates exactly the five configura-
tions of the graph in Fig. 1.

The languages that can be accepted by regular
tree grammars are called regular tree languages
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{1,2,3,4,5,6,7,8} — —({2,3,4,5,6,7,8})
{2,3,4,5,6,7,8} — V+({4,5,6},{3,7,8})
{2,3,4,5,6,7,8} — 3,({7},{2,4,5,6,8})
{2,3,4,5,6,7,8} — 3.({5},{2,3,6,7,8})

{2,4,5,6,8} — V,({4,5,6},{8})
| %({5},{2,6,8})
{2,3,6,7,8} — V,({6},{3,7,8})
|3) ({7}7{27678})
{2,6,8} — Vx({6},{8})
{3,781 = 3,({7},{8})
{4,5,6} = 3:({5},{6})

{5} — comp,
{6} — repr-ofy,

{7} — sample,

{8} — see,

Figure 3: A regular tree grammar that generates
the five trees in Fig. 2.

(RTLs), and regular tree grammars are equivalent
to finite tree automata, which are defined essen-
tially like the well-known finite string automata,
except that they assign states to the nodes in a tree
rather than the positions in a string. Regular tree
languages enjoy many of the closure properties of
regular string languages. In particular, we will later
exploit that RTLs are closed under intersection and
complement.

3.3 Dominance graphs as RTGs

An important class of dominance graphs are hy-
pernormally connected (hnc) dominance graphs
(Koller et al., 2003). The precise definition of hnc
graphs is not important here, but note that virtually
all underspecified descriptions that are produced
by current grammars are hypernormally connected
(Flickinger et al., 2005), and we will restrict our-
selves to hnc graphs for the rest of the paper.
Every hypernormally connected dominance
graph D can be automatically translated into an
equivalent RTG Gp that generates exactly the same
configurations (Koller et al., 2008); the RTG in
Fig. 3 is an example. The nonterminals of Gp are



always hnc subgraphs of D. In the worst case, Gp
can be exponentially bigger than D, but in practice
it turns out that the grammar size remains manage-
able: even the RTG for the most ambiguous sen-
tence in the Rondane Treebank, which has about
4.5 x 10'? scope readings, has only about 75 000
rules and can be computed in a few seconds.

4 Computing weakest readings

Now we are ready to talk about computing the
weakest readings of a hypernormally connected
dominance graph. We will first explain how we ap-
proximate logical weakening with rewrite systems.
We will then discuss how weakest readings can be
computed efficiently as the relative normal forms
of these rewrite systems.

4.1 Weakening rewrite systems

The different readings of a sentence with a scope
ambiguity are not a random collection of formulas;
they are partially ordered with respect to logical
entailment, and are structurally related in a way
that allows us to model this entailment relation
with simpler technical means.

To illustrate this, consider the five configurations
in Fig. 2. The formula represented by (d) logically
entails (c); we say that (c) is a weaker reading than
(d) because it is satisfied by more models. Similar
entailment relations hold between (d) and (e), (e)
and (b), and so on (see also Fig. 5). We can define
the weakest readings of the dominance graph as
the minimal elements of the entailment order; in
the example, these are (b) and (c). Weakest read-
ings capture “safe” information in that whichever
reading of the sentence the speaker had in mind,
any model of this reading also satisfies at least one
weakest reading; in the absence of convincing dis-
ambiguation methods, they can therefore serve as
a practical approximation of the intended meaning
of the sentence.

A naive algorithm for computing weakest read-
ings would explicitly compute the entailment order,
by running a theorem prover on each pair of config-
urations, and then pick out the minimal elements.
But this algorithm is quadratic in the number of
configurations, and therefore impractically slow
for real-life sentences.

Here we develop a fast algorithm for this prob-
lem. The fundamental insight we exploit is that
entailment among the configurations of a domi-
nance graph can be approximated with rewriting
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rules (Baader and Nipkow, 1999). Consider the re-
lation between (d) and (c). We can explain that (d)
entails (c) by observing that (c) can be built from
(d) by exchanging the positions of the adjacent
quantifiers V, and dJ,; more precisely, by applying
the following rewrite rule:

[F1V:(Q,3,(PR)) = (P Y(Q,R)) (D)

The body of the rule specifies that an occurrence of
V. which is the direct parent of an occurrence of 3,
may change positions with it; the subformulas P,
0, and R must be copied appropriately. The annota-
tion [—] specifies that we must only apply the rule
to subformulas in negative logical polarity: If the
quantifiers in (d) were not in the scope of a nega-
tion, then applying the rule would actually make
the formula stronger. We say that the rule (1) is
logically sound because applying it to a subformula
with the correct polarity of some configuration ¢
always makes the result ¢’ logically weaker than z.

We formalize these rewrite systems as follows.
We assume a finite annotation alphabet Ann with a
special starting annotation ag € Ann; in the exam-
ple, we had Ann = {+,—} and ap = +. We also
assume an annotator function ann : Ann x X x N —
Ann. The function ann can be used to traverse a
tree top-down and compute the annotation of each
node from the annotation of its parent: Its first
argument is the annotation and its second argu-
ment the node label of the parent, and the third
argument is the position of the child among the par-
ent’s children. In our example, the annotator ann
models logical polarity by mapping, for instance,
ann(+,3;,1) =ann(+,3;,2) =ann(+,3,,2) =+,
ann(—,3;,1)=ann(—,3;,2) =ann(+,V,,1) = —,
etc. We have labelled each node of the configura-
tions in Fig. 1 with the annotations that are com-
puted in this way.

Now we can define an annotated rewrite system
R to be a finite set of pairs (a, r) where a is an anno-
tation and r is an ordinary rewrite rule. The rule (1)
above is an example of an annotated rewrite rule
with a = —. A rewrite rule (a,r) can be applied at
the node u of a tree ¢ if ann assigns the annotation a
to u and r is applicable at u as usual. The rule then
rewrites ¢ as described above. In other words, an-
notated rewrite systems are rewrite systems where
rule applications are restricted to subtrees with spe-
cific annotations. We write t —g ¢’ if some rule of
R can be applied at a node of ¢, and the result of
rewriting is #'. The rewrite system R is called linear



if every variable that occurs on the left-hand side
of a rule occurs on its right-hand side exactly once.

4.2 Relative normal forms

The rewrite steps of a sound weakening rewrite sys-
tem are related to the entailment order: Because ev-
ery rewrite step transforms a reading into a weaker
reading, an actual weakest readings must be such
that there is no other configuration into which it
can be rewritten. The converse is not always true,
i.e. there can be non-rewritable configurations that
are not weakest readings, but we will see in Sec-
tion 6 that this approximation is good enough for
practical use. So one way to solve the problem of
computing weakest readings is to find readings that
cannot be rewritten further.

One class of configurations that “cannot be
rewritten” with a rewrite system R is the set of nor-
mal forms of R, i.e. those configurations to which
no rule in R can be applied. In our example, (b)
and (c) are indeed normal forms with respect to
a rewrite system that consists only of the rule (1).
However, this is not exactly what we need here.
Consider a rewrite system that also contains the fol-
lowing annotated rewrite rule, which is also sound
for logical entailment:

[+] =(3:(P,Q)) — (P, ~(Q)), (2)
This rule would allow wus to rewrite
the configuration (c¢) into the tree

3 (comp,, ~(3y(sample,, V. (repr—of, . seeyy)))).
But this is no longer a configuration of the graph.
If we were to equate weakest readings with normal
forms, we would erroneously classify (c) as not
being a weakest reading. The correct concept
for characterizing weakest readings in terms of
rewriting is that of a relative normal form. We
define a configuration ¢ of a dominance graph D to
be a R-relative normal form of (the configurations
of) D iff there is no other configuration ¢’ of D such
that t —g t’. These are the configurations that can’t
be weakened further without obtaining a tree that
is no longer a configuration of D. In other words,
if R approximates entailment, then the R-relative
normal forms approximate the weakest readings.

4.3 Computing relative normal forms

We now show how the relative normal forms of a
dominance graph can be computed efficiently. For
lack of space, we only sketch the construction and
omit all proofs. Details can be found in Koller and
Thater (2010).
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The key idea of the construction is to repre-
sent the relation —g in terms of a context tree
transducer M, and characterize the relative nor-
mal forms of a tree language L in terms of the
pre-image of L under M. Like ordinary regular
tree transducers (Comon et al., 2007), context tree
transducers read an input tree, assigning states to
the nodes, while emitting an output tree. But while
ordinary transducers read the input tree symbol by
symbol, a context tree transducer can read multiple
symbols at once. In this way, they are equivalent to
the extended left-hand side transducers of Graehl
et al. (2008).

We will now define context tree transducers. Let
Y be a ranked signature, and let X, be a set of m
variables. We write Con") (X) for the contexts with
m holes, i.e. those trees in 7' (XUX,, ) in which each
element of X, occurs exactly once, and always
as a leaf. If C € Con™(X), then C[ty,...,t,,] =
Clti/x1,. .. tm/Xm], Where xj,...,x,, are the vari-
ables from left to right.

A (top-down) context tree transducer from X to A
isa5-tuple M = (Q,X,A,qo,0). £ and A are ranked
signatures, Q is a finite set of states, and gg € Q is
the start state. J is a finite set of transition rules of
the form Q(C[xlv -.- >xn]) - D[‘Il (xil )7 e 7Qm(xim)]’
where C € Con™(Z) and D € Con™ (A).

If r e T(XUAUQ), then we say that M derives
¢ in one step from ¢, t — ), t', if ¢ is of the form
C'lq(Clt1,...,1,])] for some C" € Con)(X), ¢’ is
of the form C'[Dl[q:(t;,),...,qm(t;,)]], and there is
arule g(Clxi,...,x,)) — D[q1(xi,),- -, gm(xi,)] in
0. The derivation relation —}; is the reflexive,
transitive closure of — ;. The translation relation
Ty of M is

Ty ={(t,t') |t € T(X)andt € T(A)and go(t) —"1'}.

For each linear annotated rewrite system R, we
can now build a context tree transducer Mg such
that + —g 1" iff (7,1') € Tp,. The idea is that Mg
traverses ¢ from the root to the leaves, keeping
track of the current annotation in its state. Mg
can nondeterministically choose to either copy the
current symbol to the output tree unchanged, or to
apply a rewrite rule from R. The rules are built in
such a way that in each run, exactly one rewrite
rule must be applied.

We achieve this as follows. My takes as its
states the set {g} U{¢" | @ € Ann} and as its start
state the state ¢g®°. If Mg reads a node u in state
g“, this means that the annotator assigns annota-
tion a to u and Mgk will rewrite a subtree at or



below u. If Mg reads u in state g, this means
that Mz will copy the subtree below u unchanged
because the rewriting has taken place elsewhere.
Thus My has three types of rewrite rules. First,
for any f € X, we have a rule g(f(x,...,x,)) —
f(g(x1),...,q(xy)). Second, for any f and
1 <i<n, we have a rule ¢*(f(x1,...,%,)) —
£(Gx1),...,g*" @D (x,), ..., G(x,)), which non-
deterministically chooses under which child the
rewriting should take place, and assigns it the
correct annotation. Finally, we have a rule
q“(Clx1,y...,xa)) — C'[G(xi,),--.,q(x;,)] for every
rewrite rule Clxy,...,x,| — C'[x;,,...,x;,] with an-
notation a in R.

Now let’s put the different parts together. We
know that for each hnc dominance graph D, there is
a regular tree grammar G such that L(Gp) is the
set of configurations of D. Furthermore, the pre-
image 1,,' (L) = {t | exists ' € L with (¢,t') € Ty}
of a regular tree language L is also regular (Koller
and Thater, 2010) if M is linear, and regular tree
languages are closed under intersection and com-
plement (Comon et al., 2007). So we can compute
another RTG G’ such that

L(G') = L(Gp) N1y, } (L(Gp)).

L(G') consists of the members of L(Gp) which
cannot be rewritten by Mg into members of L(Gp);
that is, L(G’) is exactly the set of R-relative normal
forms of D. In general, the complement construc-
tion requires exponential time in the size of Mg and
Gp. However, it can be shown that if the rules in
R have at most depth two and Gp is deterministic,
then the entire above construction can be computed
in time O(|Gp| - |R|) (Koller and Thater, 2010).

In other words, we have shown how to compute
the weakest readings of a hypernormally connected
dominance graph D, as approximated by a weaken-
ing rewrite system R, in time linear in the size of
Gp and linear in the size of R. This is a dramatic im-
provement over the best previous algorithm, which
was quadratic in |conf(D)|.

4.4 An example

Consider an annotated rewrite system that contains
rule (1) plus the following rewrite rule:

[_] HZ(P7VX(Q7R)> - VX(HZ(Pa Q)aR) (3)

This rewrite system translates into a top-down
context tree transducer Mg with the following tran-
sition rules, omitting most rules of the first two
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{1,2,3,4,5,6,7,8}F — —({2,3,4,5,6,7,8} r)
{2,3,4,5,6,7,8}F — Ey({7}{q},{2,4,5,6,8}p)
1 3.{5} gy, 12,3.6,7,8}¢)
{2,3,6,7,8}F — 3({7}(g},Vx({6} (41, {8}(g)))
{2,4,5,6,8}F — Va({4,5,6} (5. {8} (7))
{4.5,6}g) — 3({Skg), {6}(g})

{5}igy — comp,  {6}(4y — repr-of, .
{7}igy — sample, {8} 5y — seexy

—~ o~ —~

Figure 4: RTG for the weakest readings of Fig. 1.

types for lack of space.

g (Vx(x1,3y(x2,x3))) — 3y(g(x2), Vx(q(x1),G(x3)))
g (3y(x1,Ve(x2,x3))) = Vi(3y(g(x1),4(x2)),G(x3))
g(—(x1)) = —=(q(x1))
g" (=(x1)) = =(g~ (x1))
G(Vi(x1,x2)) = Va(g(x1),G(x2))
g (Vx(x1,22)) = Va(q(x1), 4" (x2))
g (Va(x1,%2)) = V(g™ (x1),G(x2))

The grammar G’ for the relative normal forms
is shown in Fig. 4 (omitting rules that involve un-
productive nonterminals). We obtain it by starting
with the example grammar Gp in Fig. 3; then com-
puting a deterministic RTG Gy for r,gl_\{ (L(Gp));
and then intersecting the complement of Gr with
Gp. The nonterminals of G are subgraphs of D,
marked either with a set of states of Mg or the sym-
bol F, indicating that G had no production rule
for a given left-hand side. The start symbol of G/
is marked with F because G’ should only gener-
ate trees that Gg cannot generate. As expected, G’
generates precisely two trees, namely (b) and (c).

5 Redundancy elimination, revisited

The construction we just carried out — characterize
the configurations we find interesting as the rela-
tive normal forms of an annotated rewrite system
R, translate it into a transducer Mg, and intersect
conf(D) with the complement of the pre-image un-
der Mg — is more generally useful than just for the
computation of weakest readings. We illustrate this
on the problem of redundancy elimination (Vestre,
1991; Chaves, 2003; Koller et al., 2008) by show-
ing how a variant of the algorithm of Koller et al.
(2008) falls out of our technique as a special case.

Redundancy elimination is the problem of com-
puting, from a dominance graph D, another domi-
nance graph D' such that conf(D’) C conf(D) and



every formula in conf(D) is logically equivalent
to some formula in conf(D’). We can approximate
logical equivalence using a finite system of equa-
tions such as

3(P,3%(Q,R)) = %(Q,3,(PR)),

indicating that 3, and 3, can be permuted without
changing the models of the formula.

Following the approach of Section 4, we can
solve the redundancy elimination problem by trans-
forming the equation system into a rewrite system
R such that 7 —g ¢’ implies that 7 and ¢’ are equiv-
alent. To this end, we assume an arbitrary linear
order < on X, and orient all equations into rewrite
rules that respect this order. If we assume 4, < 4,
the example rule (4) translates into the annotated
rewrite rules

[a] 3:(P,3,(Q,R)) — 3,(Q, Z%:(P,R))

“4)

)

for all annotations a € Ann; logical equivalence
is not sensitive to the annotation. Finally, we can
compute the relative normal forms of conf(D) un-
der this rewrite system as above. The result will be
an RTG G’ describing a subset of conf(D). Every
tree 7 in conf(D) that is not in L(G’) is equivalent
to some tree ¢’ in L(G'), because if ¢ could not be
rewritten into such a #’, then ¢ would be in rela-
tive normal form. That is, the algorithm solves the
redundancy elimination problem. Furthermore, if
the oriented rewrite system is confluent (Baader
and Nipkow, 1999), no two trees in L(G’) will be
equivalent to each other, i.e. we achieve complete
reduction in the sense of Koller et al. (2008).

This solution shares much with that of Koller et
al. (2008), in that we perform redundancy elimina-
tion by intersecting tree grammars. However, the
construction we present here is much more general:
The algorithmic foundation for redundancy elim-
ination is now exactly the same as that for weak-
est readings, we only have to use an equivalence-
preserving rewrite system instead of a weakening
one. This new formal clarity also simplifies the
specification of certain equations, as we will see in
Section 6.

In addition, we can now combine the weakening
rules (1), (3), and (5) into a single rewrite system,
and then construct a tree grammar for the relative
normal forms of the combined system. This algo-
rithm performs redundancy elimination and com-
putes weakest readings at the same time, and in our
example retains only a single configuration, namely
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Figure 5: Structure of the configuration set of Fig. 1
in terms of rewriting.

(b); the configuration (c) is rejected because it can
be rewritten to (a) with (5). The graph in Fig. 5 il-
lustrates how the equivalence and weakening rules
conspire to exclude all other configurations.

6 Evaluation

In this section, we evaluate the effectiveness and
efficiency of our weakest readings algorithm on
a treebank. We compute RTGs for all sentences
in the treebank and measure how many weakest
readings remain after the intersection, and how
much time this computation takes.

Resources. For our experiment, we use the Ron-
dane treebank (version of January 2006), a “Red-
woods style” (Oepen et al., 2002) treebank con-
taining underspecified representations (USRs) in
the MRS formalism (Copestake et al., 2005) for
sentences from the tourism domain.

Our implementation of the relative normal forms
algorithm is based on Utool (Koller and Thater,
2005), which (among other things) can translate a
large class of MRS descriptions into hypernormally
connected dominance graphs and further into RTGs
as in Section 3. The implementation exploits cer-
tain properties of RTGs computed from dominance
graphs to maximize efficiency. We will make this
implementation publically available as part of the
next Utool release.

We use Utool to automatically translate the 999
MRS descriptions for which this is possible into
RTGs. To simplify the specification of the rewrite
systems, we restrict ourselves to the subcorpus in
which all scope-taking operators (labels with arity
> 0) occur at least ten times. This subset contains
624 dominance graphs. We refer to this subset as
“RON10.”

Signature and annotations. For each domi-
nance graph D that we obtain by converting an
MRS description, we take Gp as a grammar over
the signature £ = {f, | u € Wp, f = Lp(u)}. That
is, we distinguish possible different occurrences
of the same symbol in D by marking each occur-



rence with the name of the node. This makes Gp a
deterministic grammar.

We then specify an annotator over X that assigns
polarities for the weakening rewrite system. We
distinguish three polarities: + for positive occur-
rences, — for negative occurrences (as in predicate
logic), and L for contexts in which a weakening
rule neither weakens or strengthens the entire for-
mula. The starting annotation is +.

Finally, we need to decide upon each scope-
taking operator’s effects on these annotations. To
this end, we build upon Barwise and Cooper’s
(1981) classification of the monotonicity prop-
erties of determiners. A determiner is upward
(downward) monotonic if making the denotation of
the determiner’s argument bigger (smaller) makes
the sentence logically weaker. For instance, ev-
ery is downward monotonic in its first argument
and upward monotonic in its second argument,
i.e. every girl kissed a boy entails every blond
girl kissed someone. Thus ann(every,,a,1) = —a
and ann(every,,a,2) = a (where u is a node name
as above). There are also determiners with non-
monotonic argument positions, which assign the
annotation L to this argument. Negation reverses
positive and negative polarity, and all other non-
quantifiers simply pass on their annotation to the
arguments.

Weakest readings. We use the following weak-
ening rewrite system for our experiment, where
ie{1,2}:

1. [+] (E/i,D/1),(D/2,D/1)
2. [+] (E/i,P/1),(D/2,P/1)
3. [+] (E/i,A/2),(D/1,A/2)
4. [+] (A/2,N/1)

5. [+] (N/1,E/i), (N/1,D/2)
6. [+] (E/i,M/1), (D/1,M/1)

Here the symbols E, D, etc. stand for classes
of labels in X, and a rule schema [a] (C/i,C' /k) is
to be read as shorthand for a set of rewrite rules
which rearrange a tree where the i-th child of a
symbol from C is a symbol from C’ into a tree
where the symbol from C becomes the k-th child
of the symbol from C'. For example, because we
have all, € A and not, € N, Schema 4 licenses the
following annotated rewrite rule:

[+] all, (P, not,(Q)) — not, (all,(P, Q).
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We write E and D for existential and definite
determiners. P stands for proper names and pro-
nouns, A stands for universal determiners like all
and each, N for the negation not, and M for modal
operators like can or would. M also includes in-
tensional verbs like have to and want. Notice that
while the reverse rules are applicable in negative
polarities, no rules are applicable in polarity .

Rule schema 1 states, for instance, that the spe-
cific (wide-scope) reading of the indefinite in the
president of a company is logically stronger than
the reading in which a company is within the re-
striction of the definite determiner. The schema is
intuitively plausible, and it can also be proved to be
logically sound if we make the standard assumption
that the definite determiner the means “exactly one’
(Montague, 1974). A similar argument applies to
rule schema 2.

Rule schema 3 encodes the classical entailment
(1). Schema 4 is similar to the rule (2). Notice
that it is not, strictly speaking, logically sound;
however, because strong determiners like all or
every carry a presupposition that their restrictions
have a non-empty denotation (Lasersohn, 1993),
the schema becomes sound for all instances that
can be expressed in natural language. Similar ar-
guments apply to rule schemas 5 and 6, which are
potentially unsound for subtle reasons involving
the logical interpretation of intensional expressions.
However, these cases of unsoundness did not occur
in our test corpus.

bl

Redundancy elimination. In addition, we as-
sume the following equation system for redundancy
elimination for i, j € {1,2} and k € N (again writ-
ten in an analogous shorthand as above):

7. E/i=E/j
8. D/1=E/i, E/i=D/1
9. D/1=D/1
10. £/k =P/2

These rule schemata state that permuting exis-
tential determiners with each other is an equiva-
lence transformation, and so is permuting definite
determiners with existential and definite determin-
ers if one determiner is the second argument (in
the scope) of a definite. Schema 10 states that
proper names and pronouns, which the ERG ana-
lyzes as scope-bearing operators, can permute with
any other label.

We orient these equalities into rewrite rules by
ordering symbols in P before symbols that are not



| Al KRT08 | RE  RE+WR
#eonf=1| 85% 23.4% | 349%  66.7%
#eonf <2 | 205% 40.9% | 57.9%  80.6%
avg(#conf) | 3.2M  7603.1 | 119.0 4.5
med(#conf) 25 4 2 1
runtime | 8.1s  94s | 87s  O.ls

Figure 6: Analysis of the numbers of configurations
in RON10.

in P, and otherwise ordering a symbol f, before a
symbol g, if u < v by comparison of the (arbitrary)
node names.

Results. We used these rewrite systems to com-
pute, for each USR in RON10, the number of all
configurations, the number of configurations that
remain after redundancy elimination, and the num-
ber of weakest readings (i.e., the relative normal
forms of the combined equivalence and weakening
rewrite systems). The results are summarized in
Fig. 6. By computing weakest readings (WR), we
reduce the ambiguity of over 80% of all sentences
to one or two readings; this is a clear improvement
even over the results of the redundancy elimina-
tion (RE). Computing weakest readings reduces
the mean number of readings from several million
to 4.5, and improves over the RE results by a factor
of 30. Notice that the RE algorithm from Section 5
is itself an improvement over Koller et al.’s (2008)
system (“KRTO08” in the table), which could not
process the rule schema 10.

Finally, computing the weakest readings takes
only a tiny amount of extra runtime compared to
the RE elimination or even the computation of the
RTGs (reported as the runtime for “All”).! This re-
mains true on the entire Rondane corpus (although
the reduction factor is lower because we have no
rules for the rare scope-bearers): RE+WR compu-
tation takes 32 seconds, compared to 30 seconds
for RE. In other words, our algorithm brings the
semantic ambiguity in the Rondane Treebank down
to practically useful levels at a mean runtime in-
vestment of a few milliseconds per sentence.

It is interesting to note how the different rule
schemas contribute to this reduction. While the
instances of Schemata 1 and 2 are applicable in 340
sentences, the other schemas 3-6 together are only

'Runtimes were measured on an Intel Core 2 Duo CPU
at 2.8 GHz, under MacOS X 10.5.6 and Apple Java 1.5.0_16,
after allowing the JVM to just-in-time compile the bytecode.
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applicable in 44 sentences. Nevertheless, where
these rules do apply, they have a noticeable effect:
Without them, the mean number of configurations
in RON10 after RE+WR increases to 12.5.

7 Conclusion

In this paper, we have shown how to compute the
weakest readings of a dominance graph, charac-
terized by an annotated rewrite system. Evaluat-
ing our algorithm on a subcorpus of the Rondane
Treebank, we reduced the mean number of config-
urations of a sentence from several million to 4.5,
in negligible runtime. Our algorithm can be ap-
plied to other problems in which an underspecified
representation is to be disambiguated, as long as
the remaining readings can be characterized as the
relative normal forms of a linear annotated rewrite
system. We illustrated this for the case of redun-
dancy elimination.

The algorithm presented here makes it possible,
for the first time, to derive a single meaningful se-
mantic representation from the syntactic analysis
of a deep grammar on a large scale. In the future,
it will be interesting to explore how these semantic
representations can be used in applications. For in-
stance, it seems straightforward to adapt MacCart-
ney and Manning’s (2008) “natural logic’-based
Textual Entailment system, because our annotator
already computes the polarities needed for their
monotonicity inferences. We could then perform
such inferences on (cleaner) semantic representa-
tions, rather than strings (as they do).

On the other hand, it may be possible to re-
duce the set of readings even further. We retain
more readings than necessary in many treebank sen-
tences because the combined weakening and equiv-
alence rewrite system is not confluent, and there-
fore may not recognize a logical relation between
two configurations. The rewrite system could be
made more powerful by running the Knuth-Bendix
completion algorithm (Knuth and Bendix, 1970).
Exploring the practical tradeoff between the further
reduction in the number of remaining configura-
tions and the increase in complexity of the rewrite
system and the RTG would be worthwhile.

Acknowledgments. We are indebted to Joachim
Niehren, who pointed out a crucial simplification
in the algorithm to us. We also thank our reviewers
for their constructive comments.



References

E. Althaus, D. Duchier, A. Koller, K. Mehlhorn,
J. Niehren, and S. Thiel. 2003. An efficient graph
algorithm for dominance constraints. Journal of Al-
gorithms, 48:194-219.

F. Baader and T. Nipkow. 1999. Term rewriting and all
that. Cambridge University Press.

J. Barwise and R. Cooper. 1981. Generalized quanti-
fiers and natural language. Linguistics and Philoso-
phy, 4:159-219.

J. Bos. 2008. Let’s not argue about semantics. In
Proceedings of the 6th international conference on
Language Resources and Evaluation (LREC 2008).

M. Butt, H. Dyvik, T. Holloway King, H. Masuichi,
and C. Rohrer. 2002. The parallel grammar
project. In Proceedings of COLING-2002 Workshop
on Grammar Engineering and Evaluation.

R. P. Chaves. 2003. Non-redundant scope disambigua-
tion in underspecified semantics. In Proceedings of
the 8th ESSLLI Student Session.

H. Comon, M. Dauchet, R. Gilleron, C. Loding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. 2007. Tree automata techniques and appli-
cations.
univ-1lille3.fr/tata.

A. Copestake and D. Flickinger. 2000. An open-
source grammar development environment and
broad-coverage english grammar using HPSG. In
Proceedings of the 2nd International Conference on
Language Resources and Evaluation (LREC).

A. Copestake, D. Flickinger, C. Pollard, and 1. Sag.
2005. Minimal recursion semantics: An introduc-
tion. Journal of Language and Computation.

D. Flickinger, A. Koller, and S. Thater. 2005. A new
well-formedness criterion for semantics debugging.
In Proceedings of the 12th International Conference
on HPSG, Lisbon.

M. Gabsdil and K. Striegnitz. 1999. Classifying scope
ambiguities. In Proceedings of the First Intl. Work-
shop on Inference in Computational Semantics.

J. Graehl, K. Knight, and J. May. 2008. Training tree
transducers. Computational Linguistics, 34(3):391—
427.

D. Higgins and J. Sadock. 2003. A machine learning
approach to modeling scope preferences. Computa-
tional Linguistics, 29(1).

J. Hobbs. 1983. An improper treatment of quantifi-
cation in ordinary English. In Proceedings of the
21st Annual Meeting of the Association for Compu-
tational Linguistics (ACL’83).

R. Kempson and A. Cormack. 1981. Ambiguity and
quantification. Linguistics and Philosophy, 4:259—
309.

Available on: http://www.grappa.

39

D. Knuth and P. Bendix. 1970. Simple word problems
in universal algebras. In J. Leech, editor, Computa-
tional Problems in Abstract Algebra, pages 263-297.
Pergamon Press, Oxford.

A. Koller and J. Niehren. 2000. On underspecified
processing of dynamic semantics. In Proceedings of
the 18th International Conference on Computational
Linguistics (COLING-2000).

A. Koller and S. Thater. 2005. Efficient solving and ex-
ploration of scope ambiguities. In ACL-05 Demon-
stration Notes, Ann Arbor.

A. Koller and S. Thater. 2010. Computing relative nor-
mal forms in regular tree languages. In Proceedings
of the 21st International Conference on Rewriting
Techniques and Applications (RTA).

A. Koller, J. Niehren, and S. Thater. 2003. Bridg-
ing the gap between underspecification formalisms:
Hole semantics as dominance constraints. In Pro-
ceedings of the 10th EACL.

A. Koller, M. Regneri, and S. Thater. 2008. Regular
tree grammars as a formalism for scope underspeci-
fication. In Proceedings of ACL-08: HLT.

. Lasersohn. 1993. Existence presuppositions and
background knowledge.  Journal of Semantics,
10:113-122.

. MacCartney and C. Manning. 2008. Modeling
semantic containment and exclusion in natural lan-
guage inference. In Proceedings of the 22nd Inter-

national Conference on Computational Linguistics
(COLING).

. Montague. 1974. The proper treatment of quantifi-
cation in ordinary English. In R. Thomason, editor,
Formal Philosophy. Selected Papers of Richard Mon-
tague. Yale University Press, New Haven.

C. Monz and M. de Rijke. 2001. Deductions with
meaning. In Michael Moortgat, editor, Logical As-
pects of Computational Linguistics, Third Interna-
tional Conference (LACL’98), volume 2014 of LNAI.
Springer-Verlag, Berlin/Heidelberg.

. Oepen, K. Toutanova, S. Shieber, C. Manning,
D. Flickinger, and T. Brants. 2002. The LinGO
Redwoods treebank: Motivation and preliminary
applications.  In Proceedings of the 19th Inter-
national Conference on Computational Linguistics
(COLING).

Uwe Reyle. 1995. On reasoning with ambiguities. In
Proceedings of the 7th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL’95).

K. van Deemter. 1996. Towards a logic of ambiguous
expressions. In Semantic Ambiguity and Underspec-
ification. CSLI Publications, Stanford.

E. Vestre. 1991. An algorithm for generating non-
redundant quantifier scopings. In Proc. of EACL,
Berlin.



Identifying Generic Noun Phrases

Nils Reiter and Anette Frank
Department of Computational Linguistics
Heidelberg University, Germany
{reiter, frank}@cl.uni-heidelberg.de

Abstract

This paper presents a supervised approach
for identifying generic noun phrases in
context. Generic statements express rule-
like knowledge about kinds or events.
Therefore, their identification is important
for the automatic construction of know-
ledge bases. In particular, the distinction
between generic and non-generic state-
ments is crucial for the correct encoding
of generic and instance-level information.
Generic expressions have been studied ex-
tensively in formal semantics. Building
on this work, we explore a corpus-based
learning approach for identifying generic
NPs, using selections of linguistically mo-
tivated features. Our results perform well
above the baseline and existing prior work.

1 Introduction

Generic expressions come in two basic forms:
generic noun phrases and generic sentences. Both
express rule-like knowledge, but in different ways.

A generic noun phrase is a noun phrase that
does not refer to a specific (set of) individual(s),
but rather to a kind or class of individuals. Thus,
the NP The lion in (1.a)' is understood as a ref-
erence to the class “lion” instead of a specific in-
dividual. Generic NPs are not restricted to occur
with kind-related predicates as in (1.a). As seen
in (1.b), they may equally well be combined with
predicates that denote specific actions. In contrast
to (1.a), the property defined by the verb phrase in
(1.b) may hold of individual lions.

(1) a. The lion was the most widespread mam-
mal.

b. Lions eat up to 30 kg in one sitting.

! All examples are taken from Wikipedia unless stated oth-
erwise.
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Generic sentences are characterising sentences
that quantify over situations or events, expressing
rule-like knowledge about habitual actions or situ-
ations (2.a). This is in contrast with sentences that
refer to specific events and individuals, as in (2.b).

(2) a. After 1971 [Paul Erdds] also took am-
phetamines.

b. Paul Erdds was born [...] on March 26,
1913.

The genericity of an expression may arise from
the generic (kind-referring, class-denoting) inter-
pretation of the NP or the characterising interpre-
tation of the sentence predicate. Both sources may
concur in a single sentence, as illustrated in Ta-
ble 1, where we have cross-classified the exam-
ples above according to the genericity of the NP
and the sentence.

This classification is extremely difficult, be-
cause (i) the criteria for generic interpretation are
far from being clear-cut and (ii) both sources of
genericity may freely interact.

S[gen+] | S[gen-]
NP[gen+] (1.b) (1.a)
NP[gen-] (2.2) (2.b)

Table 1: Generic NPs and generic sentences

The above classification of generic expressions
is well established in traditional formal semantics
(cf. Krifka et al. (1995))>. As we argue in this
paper, these distinctions are relevant for semantic
processing in computational linguistics, especially
for information extraction and ontology learning
and population tasks. With appropriate semantic
analysis of generic statements, we can not only
formally capture and exploit generic knowledge,

2The literature draws some finer distinctions including as-
pects like specificity, which we will ignore in this work.
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but also distinguish between information pertain-
ing to individuals vs. classes. We will argue that
the automatic identification of generic expressions
should be cast as a machine learning problem in-
stead of a rule-based approach, as there is (i) no
transparent marking of genericity in English (as in
most other European languages) and (ii) the phe-
nomenon is highly context dependent.

In this paper, we build on insights from for-
mal semantics to establish a corpus-based ma-
chine learning approach for the automatic classi-
fication of generic expressions. In principle our
approach is applicable to the detection of both
generic NPs and generic sentences, and in fact it
would be highly desirable and possibly advanta-
geous to cover both types of genericity simulta-
neously. Our current work is confined to generic
NPs, as there are no corpora available at present
that contain annotations for genericity at the sen-
tence level.

The paper is organised as follows. Section 2 in-
troduces generic expressions and motivates their
relevance for knowledge acquisition and semantic
processing tasks in computational linguistics. Sec-
tion 3 reviews prior and related work. In section 4
we motivate the choice of feature sets for the au-
tomatic identification of generic NPs in context.
Sections 5 and 6 present our experiments and re-
sults obtained for this task on the ACE-2 data set.
Section 7 concludes.

2 Generic Expressions & their Relevance
for Computational Linguistics

2.1 Interpretation of generic expressions

Generic NPs There are two contrasting views
on how to formally interpret generic NPs. Ac-
cording to the first one, a generic NP involves a
special form of quantification. Quine (1960), for
example, proposes a universally quantified read-
ing for generic NPs. This view is confronted with
the most important problem of all quantification-
based approaches, namely that the exact determi-
nation of the quantifier restriction (QR) is highly
dependent on the context, as illustrated in (3)3.

(3) a. Lions are mammals. QR: all lions

b. Mammals give birth to live young. QR:
less than half of all mammals

3Some of these examples are taken from Carlson (1977).
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c. Rats are bothersome to people. QR: few
rats4

In view of this difficulty, several approaches
restrict the quantification to only “relevant” (De-
clerck, 1991) or “normal” (Dahl, 1975) individu-
als.

According to the second view, generic noun
phrases denote kinds. Following Carlson (1977),
a kind can be considered as an individual that has
properties on its own. On this view, the generic NP
cannot be analysed as a quantifier over individuals
pertaining to the kind. For some predicates, this
is clearly marked. (1.a), for instance, attributes a
property to the kind lion that cannot be attributed
to individual lions.

Generic sentences are usually analysed using a
special dyadic operator, as first proposed by Heim
(1982). The dyadic operator relates two semantic
constituents, the restrictor and the matrix:

Q[xlv 7371]([‘7717 ...,IE»;]; 3y17 “'7yi[$17 <y LTy Y1, 7y’b])
N——

Restrictor Matrix

By choosing GEN as a generic dyadic operator,
it is possible to represent the two readings (a) and
(b) of the characterising sentence (4) by variation
in the specification of restrictor and matrix (Kriftka
et al., 1995).

4) Typhoons arise in this part of the pacific.
(a) Typhoons in general have a common ori-

gin in this part of the pacific.

(b) There arise typhoons in this part of the pa-
cific.
(a’) GENJz;y|(Typhoon(z);this-part-of-the-
pacific(y)Aarise-in(z, y))
(b’) GEN|z; y](this-part-of-the-
pacific(z); Typhoon(y)Aarise-in(y, x))

In order to cope with characterising sentences
as in (2.a), we must allow the generic operator
to quantify over situations or events, in this case,
“normal” situations which were such that ErdSs
took amphetamines.

2.2 Relevance for computational linguistics

Knowledge acquisition The automatic acquisi-
tion of formal knowledge for computational appli-
cations is a major endeavour in current research

“Most rats are not even noticed by people.



and could lead to big improvements of semantics-
based processing. Bos (2009), e.g., describes sys-
tems using automated deduction for language un-
derstanding tasks using formal knowledge.

There are manually built formal ontologies
such as SUMO (Niles and Pease, 2001) or Cyc
(Lenat, 1995) and linguistic ontologies like Word-
Net (Fellbaum, 1998) that capture linguistic and
world knowledge to a certain extent. However,
these resources either lack coverage or depth. Au-
tomatically constructed ontologies or taxonomies,
on the other hand, are still of poor quality (Cimi-
ano, 2006; Ponzetto and Strube, 2007).

Attempts to automatically induce knowledge
bases from text or encyclopaedic sources are cur-
rently not concerned with the distinction between
generic and non-generic expressions, concentrat-
ing mainly on factual knowledge. However, rule-
like knowledge can be found in textual sources in
the form of generic expressions>.

In view of the properties of generic expressions
discussed above, this lack of attention bears two
types of risks. The first concerns the distinction
between classes and instances, regarding the attri-
bution of properties. The second concerns mod-
elling exceptions in both representation and infer-
encing.

The distinction between classes and instances
is a serious challenge even for the simplest
methods in automatic ontology construction, e.g.,
Hearst (1992) patterns. The so-called IS-A pat-
terns do not only identify subclasses, but also in-
stances. Shakespeare, e.g., would be recognised
as a hyponym of author in the same way as temple
is recognised as a hyponym of civic building.

Such a missing distinction between classes and
instances is problematic. First, there are predicates
that can only attribute properties to a kind (1.a).
Second, even for properties that in principle can be
attributed to individuals of the class, this is highly
dependent on the selection of the quantifier’s re-
striction in context (3). In both cases, it holds that
properties attributed to a class are not necessarily

>In the field of cognitive science, research on the ac-
quisition of generic knowledge in humans has shown that
adult speakers tend to use generic expressions very often
when talking to children (Pappas and Gelman, 1998). We
are not aware of any detailed assessment of the proportion
of generic noun phrases in educational text genres or ency-
clopaedic resources like Wikipedia. Concerning generic sen-
tences, Mathew and Katz (2009) report that 19.9% of the sen-
tences in their annotated portion of the Penn Treebank are
habitual (generic) and 80.1% episodic (non-generic).
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inherited by any or all instances pertaining to the
class.

Zirn et al. (2008) are the first to present fully au-
tomatic, heuristic methods to distinguish between
classes and instances in the Wikipedia taxonomy
derived by Ponzetto and Strube (2007). They re-
port an accuracy of 81.6% and 84.5% for differ-
ent classification schemes. However, apart from a
plural feature, all heuristics are tailored to specific
properties of the Wikipedia resource.

Modelling exceptions is a cumbersome but
necessary problem to be handled in ontology
building, be it manually or by automatic means,
and whether or not the genericity of knowledge
is formalised explicitly. In artificial intelligence
research, this area has been tackled for many
years. Default reasoning (Reiter, 1980) is con-
fronted with severe efficiency problems and there-
fore has not extended beyond experimental sys-
tems. However, the emerging paradigm of Answer
Set Programming (ASP, Lifschitz (2008)) seems
to be able to model exceptions efficiently. In ASP
a given problem is cast as a logic program, and
an answer set solver calculates all possible answer
sets, where an answer set corresponds to a solution
of the problem. Efficient answer set solvers have
been proposed (Gelfond, 2007). Although ASP
may provide us with very efficient reasoning sys-
tems, it is still necessary to distinguish and mark
default rules explicitly (Lifschitz, 2002). Hence,
the recognition of generic expressions is an impor-
tant precondition for the adequate representation
and processing of generic knowledge.

3 Prior Work

Suh (2006) applied a rule-based approach to auto-
matically identify generic noun phrases. Suh used
patterns based on part of speech tags that iden-
tify bare plural noun phrases, reporting a precision
of 28.9% for generic entities, measured against
an annotated corpus, the ACE 2005 (Ferro et al.,
2005). Neither recall nor f-measure are reported.
To our knowledge, this is the single prior work on
the task of identifying generic NPs.

Next to the ACE corpus (described in more de-
tail below), Herbelot and Copestake (2008) offer a
study on annotating genericity in a corpus. Two
annotators annotated 48 noun phrases from the
British National Corpus for their genericity (and
specificity) properties, obtaining a kappa value of
0.744. Herbelot and Copestake (2008) leave su-



pervised learning for the identification of generic
expressions as future work.

Recent work by Mathew and Katz (2009)
presents automatic classification of generic and
non-generic sentences, yet restricted to habitual
interpretations of generic sentences. They use a
manually annotated part of the Penn TreeBank
as training and evaluation set’. Using a selec-
tion of syntactic and semantic features operating
mainly on the sentence level, they achieved preci-
sion between 81.2% and 84.3% and recall between
60.6% and 62.7% for the identification of habitual
generic sentences.

4 Characterising Generic Expressions
for Automatic Classification

4.1 Properties of generic expressions

Generic NPs come in various syntactic forms.
These include definite and indefinite singular
count nouns, bare plural count and singular and
plural mass nouns as in (5.a-f). (5.f) shows a
construction that makes the kind reading unam-
biguous. As Carlson (1977) observed, the generic
reading of “well-established” kinds seems to be
more prominent (g vs. h).

(5) a. The lion was the most widespread mam-
mal.

. A lioness is weaker [...] than a male.
. Lions died out in northern Eurasia.
Metals are good conductors.

Metal is also used for heat sinks.

lmz]

The zoo has one kind of tiger.
g. The Coke bottle has a narrow neck.
h. The green bottle has a narrow neck.

Apart from being all NPs, there is no obvious
syntactic property that is shared by all examples.
Similarly, generic sentences come in a range of
syntactic forms (6).

(6) a. John walks to work.

b. John walked to work
(when he lived in California).

c. John will walk to work
(when he moves to California).

SThe corpus has not been released.
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Although generic NPs and generic sentences
can be combined freely (cf. Section 1; Table 1),
both phenomena highly interact and quite often
appear in the same sentence (Krifka et al., 1995).
Also, genericity is highly dependent on contex-
tual factors. Present tense, e.g., may be indica-
tive for genericity, but with appropriate temporal
modification, generic sentences may occur in past
or future tense (6). Presence of a copular con-
struction as in (5.a,b,d) may indicate a generic NP
reading, but again we find generic NPs with event
verbs, as in (5.e) or (1.b). Lexical semantic fac-
tors, such as the semantic type of the clause predi-
cate (5.c,e), or “well-established” kinds (5.g) may
favour a generic reading, but such lexical factors
are difficult to capture in a rule-based setting.

In our view, these observations call for a corpus-
based machine learning approach that is able to
capture a variety of factors indicating genericity in
combination and in context.

4.2 Feature set and feature classes

In Table 2 we give basic information about the
individual features we investigate for identifying
generic NPs. In the following, we will structure
this feature space along two dimensions, distin-
guishing NP- and sentence-level factors as well as
syntactic and semantic (including lexical seman-
tic) factors. Table 3 displays the grouping into cor-
responding feature classes.

NP-level features are extracted from the local
NP without consideration of the sentence context.

Sentence-level features are extracted from the
clause (in which the NP appears), as well as sen-
tential and non-sentential adjuncts of the clause.
We also included the (dependency) relations be-
tween the target NP and its governing clause.

Syntactic features are extracted from a parse
tree or shallow surface-level features. The feature
set includes NP-local and global features.

Semantic features include semantic features
abstracted from syntax, such as tense and aspect
or type of modification, but also lexical semantic
features such as word sense classes, sense granu-
larity or verbal predicates.

Our aim is to determine indicators for genericity
from combinations of these feature classes.



[ Feature | Description

Number sg, pl

Person 1,2,3

Countability ambig, no noun, count, uncount

Noun Type common, proper, pronoun

Determiner Type def, indef, demon

Granularity The number of edges in the WordNet hypernymy graph between the synset of the entity and
a top node

Part of Speech POS-tag (Penn TreeBank tagset; Marcus et al. (1993)) of the head of the phrase

Bare Plural false, true

Sense[0-3] WordNet sense. Sense[0] represents the sense of the head of the entity, Sense[1] its direct
hypernym sense and so forth.

Sense[Top] The top sense in the hypernym hierarchy (often referred to as “super sense’)

Dependency Relation [0-4]

Dependency Relations. Relation[0] represents the relation between entity and its governor,
Relation[1] the relation between the governor and its governor and so forth.

Embedded Predicate.Pred

Lemma of the head of the directly governing predicate of the entity

C.Tense

past, pres, fut

C.Progressive false, true

C.Perfective false, true

C.Mood indicative, imperative, subjunctive

C.Passive false, true

C.Temporal Modifier? false, true

C.Number of Modifiers numeric

C.Part of Speech POS-tag (Penn TreeBank tagset; Marcus et al. (1993)) of the head of the phrase
C.Pred Lemma of the head of the clause

C.Adjunct.Time true, false

C.Adjunct.VType main, copular

C.Adjunct.Adverbial Type | vpadv, sadv

C.Adjunct.Degree positive, comparative, superlative

C.Adjunct.Pred Lemma of the head of the adjunct of the clause

XLE.Quality How complete is the parse by the XLE parser? fragmented, complete, no parse

Table 2: The features used in our system. C stands for the clause in which the noun phrase appears,
“Embedding Predicate” its direct predicate. In most cases, we just give the value range, if necessary, we
give descriptions. All features may have a NULL value.

pendency Relation[0-4], Clause.Adjunct.{Verbal Type, Adver-
bial Type}, XLE.Quality

Syntactic Semantic
NP-level | Number, Person, Part of Speech, Determiner Type, Bare Plural Countability, Granularity, Sense[0-3, Top]
S-level Clause.{Part of Speech, Passive, Number of Modifiers}, De- | Clause.{Tense, Progressive, Perfective,

Mood, Pred, Has temporal Modifier},
Clause.Adjunct.{Time, Pred}, Embedded
Predicate.Pred

Table 3: Feature classes

’ Name ‘ Descriptions and Features

Set 1

Five best single features: Bare Plural, Person, Sense [0], Clause.Pred, Embedding Predicate.Pred

Set 2 | Five best feature tuples:
a. Number, Part of Speech

b. Countability, Part of Speech
c. Sense [0], Part of Speech

d. Number, Countability

e. Noun Type, Part of Speech

Five best feature triples:

a. Number, Clause.Tense, Part of Speech

b. Number, Clause.Tense, Noun Type

c. Number, Clause.Part of Speech, Part of Speech

d. Number, Part of Speech, Noun Type

e. Number, Clause.Part of Speech, Noun Type

Features, that appear most often among the single, tuple and triple tests: Number, Noun Type,
Part of Speech, Clause.Tense, Clause.Part of Speech, Clause.Pred, Embedding Predicate.Pred, Person, Sense
[0], Sense [1], Sense[2]

Features performing best in the ablation test: Number, Person, Clause.Part of Speech, Clause.Pred,
Embedding Predicate.Pred, Clause.Tense, Determiner Type, Part of Speech, Bare Plural, Dependency Relation
[2], Sense [0]

Set 3

Set 4

Set 5

Table 4: Derived feature sets
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S Experiments

5.1 Dataset

As data set we are using the ACE-2 (Mitchell et
al., 2003) corpus, a collection of newspaper texts
annotated with entities marked for their genericity.
In this version of the corpus, the classification of
entities is a binary one.

Annotation guidelines The ACE-2 annotation
guidelines describe generic NPs as referring to an
arbitrary member of the set in question, rather than
to a particular individual. Thus, a property at-
tributed to a generic NP is in principle applicable
to arbitrary members of the set (although not to
all of them). The guidelines list several tests that
are either local syntactic tests involving determin-
ers or tests that cannot be operationalised as they
involve world knowledge and context information.

The guidelines give a number of criteria to iden-
tify generic NPs referring to specific properties.
These are (i) types of entities (lions in 3.a), (ii)
suggested attributes of entities (rmammals in 3.a),
(iii) hypothetical entities (7) and (iv) generalisa-
tions across sets of entities (5.d).

(7) If a person steps over the line, they must be
punished.

The general description of generic NPs as de-
noting arbitrary members of sets obviously does
not capture kind-referring readings. However, the
properties characterised (i) can be understood to
admit kinds. Also, some illustrations in the guide-
lines explicitly characterise kind-referring NPs as
generic. Thus, while at first sight the guidelines
do not fully correspond to the characterisation of
generics we find in the formal semantics literature,
we argue that both characterisations have similar
extensions, i.e., include largely overlapping sets
of noun phrases. In fact, all of the examples
for generic noun phrases presented in this paper
would also be classified as generic according to
the ACE-2 guidelines.

We also find annotated examples of generic NPs
that are not discussed in the formal semantics liter-
ature (8.a), but that are well captured by the ACE-2
guidelines. However, there are also cases that are
questionable (8.b).

(8) a. “It’s probably not the perfect world, but
you kind of have to deal with what you
have to work with,” he said.
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b. Even more remarkable is the Internet,
where information of all kinds is available
about the government and the economy.

This shows that the annotation of generics is dif-
ficult, but also highlights the potential benefit of a
corpus-driven approach that allows us to gather a
wider range of realisations. This in turn can con-
tribute to novel insights and discussion.

Data analysis A first investigation of the corpus
shows that generic NPs are much less common
than non-generic ones, at least in the newspaper
genre at hand. Of the 40,106 annotated entities,
only 5,303 (13.2%) are marked as generic. In or-
der to control for bias effects in our classifier, we
will experiment with two different training sets, a
balanced and an unbalanced one.

5.2 Preprocessing

The texts have been (pre-)processed to add sev-
eral layers of linguistic annotation (Table 5). We
use MorphAdorner for sentence splitting and Tree-
Tagger with the standard parameter files for part
of speech tagging and lemmatisation. As we
do not have a word sense disambiguation system
available that outperforms the most frequent sense
baseline, we simply used the most frequent sense
(MFS). The countability information is taken from
Celex. Parsing was done using the English LFG
grammar (cf. Butt et al. (2002)) in the XLE pars-
ing platform and the Stanford Parser.

Task | Tool

MorphAdorner ’

TreeTagger (Schmid, 1994)

MEFS (according to WordNet 3.0)
Celex (Baayen et al., 1996)

XLE (Crouch et al., 2010)

Stanford (Klein and Manning, 2003)

Sentence splitting
POS, lemmatisation
WSD

Countability
Parsing

Table 5: Preprocessing pipeline

As the LFG-grammar produced full parses only
for the sentences of 56% of the entities (partial
parses: 37% of the entities), we chose to integrate
the Stanford parser as a fallback. If we are unable
to extract feature values from the f-structure pro-
duced by the XLE parser, we extract them from
the Stanford Parser, if possible. Experimentation
showed using the two parsers in tandem yields best
results, compared to individual use.

"http://morphadorner.northwestern.edu



Feature Set Generic Non generic Overall
P R F P R F P R F

Baseline Majority 0 0 0 |8.8 100 929|753 86.8 80.6
Baseline Person 60.5 102 175|879 99.0 93.1 | 84.3 87.2 85.7

Baseline Suh 28.9
NP 31.7 56.6 40.7|925 814 86.6|845 782 812
S 322 50.7 394|918 837 87.6|839 794 8l1.6
3 NP/Syntactic 39.2 584 469|932 862 895|860 825 84.2
2 | S/Syntactic 319 221 26.1|88.7 928 90.7|81.2 835 823
<= | NP/Semantic 282 535 369|918 792 8 |834 758 794
e | S/Semantic 32.1 36.6 342|90.1 882 89.2|825 814 819
2 = Syntactic 40.1 66.6 50.1 | 943 848 893 | 87.2 824 84.7
2 Semantic 345 56.0 427|926 838 88.0|849 80.1 824
O All 37.0 721 490 | 813 876 874 |80.1 80.1 83.6
g NP 30.1 71.0 422|944 748 835|859 743 797
= S 269 731 393|944 698 803|855 702 77.1
o NP/Syntactic 354 763 484|956 788 86.4 | 877 785 828
@ S/Syntactic 23.1 771 356|946 610 742|851 63.1 725
§ NP/Semantic 247 60.0 3501922 721 809|833 705 764
& | S/Semantic 264 663 377|933 71.8 812|845 711 772
Syntactic 30.8 853 453969 708 819|882 728 79.7
Semantic 30.1 67.5 416|939 76.1 84.1 855 750 799
All 337 81.0 47.6 963 758 848 |88.0 765 81.8
3 Set 1 495 374 426|908 942 925|853 86.7 86.0
2 | Set2a 373 427 39.8 191.1 89.1 90.1 | 84.0 829 835
§ = | Set3a 42.6 541 477|927 889 90.8 | 8.1 843 852
'g g Set 4 4277 69.6 529|949 858 90.1 | 88.0 83.6 85.7
g Set 5 4577 64.8 53.6 | 943 883 912|879 852 86.5
o Set 1 29.7 71.1 419|944 744 832|859 739 795
% @ Set 2a 36.5 705 48.1 948 813 875|871 798 833
= § Set 3a 362 70.8 479|948 810 874|871 79.7 832
R | Set4 359 831 50.1]968 774 86.0| 887 782 83.1
Set 5 370 819 51.0 | 966 78.7 86.8 | 88.8 792 83.7

Table 6: Results of the classification, using different feature and training sets

5.3 Experimental setup

Given the unclear dependencies of features, we
chose to use a Bayesian network. A Bayesian net-
work represents the dependencies of random vari-
ables in a directed acyclic graph, where each node
represents a random variable and each edge a de-
pendency between variables. In fact, a number
of feature selection tests uncovered feature depen-
dencies (see below). We used the Weka (Witten
and Frank, 2002) implementation BayesNet in all
our experiments.

To control for bias effects, we created balanced
data sets by oversampling the number of generic
entities and simultaneously undersampling non-
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generic entities. This results in a dataset of 20,053
entities with approx. 10,000 entities for each
class. All experiments are performed on balanced
and unbalanced data sets using 10-fold cross-
validation, where balancing has been performed
for each training fold separately (if any).

Feature classes We performed evaluation runs
for different combinations of feature sets: NP- vs.
S-level features (with further distinction between
syntactic and semantic NP-/S-level features), as
well as overall syntactic vs. semantic features.
This was done in order to determine the effect of
different types of linguistic factors for the detec-
tion of genericity (cf. Table 3).



Feature selection We experimented with two
methods for feature selection. Table 4 shows the
resulting feature sets.

In ablation testing, a single feature in turn is
temporarily omitted from the feature set. The fea-
ture whose omission causes the biggest drop in f-
measure is set aside as a strong feature. This pro-
cess is repeated until we are left with an empty
feature set. From the ranked list of features f; to
fn we evaluate increasingly extended feature sets
fi..fi for i = 2.n. We select the feature set that
yields the best balanced performance, at 45.7%
precision and 53.6% f-measure. The features are
given as Set 5 in Table 4.

As ablation testing does not uncover feature de-
pendencies, we also experimented with single, tu-
ple and triple feature combinations to determine
features that perform well in combination. We
ran evaluations using features in isolation and each
possible pair and triple of features. We select the
resulting five best features, tuples and triples of
features. The respective feature sets are given as
Set 1 to Set 3 in Table 4. The features that appear
most often in Set 1 to Set 3 are grouped in Set 4.

Baseline Our results are evaluated against three
baselines. Since the class distribution is unequal,
a majority baseline consists in classifying each en-
tity as non-generic. As a second baseline we chose
the performance of the feature Person, as this fea-
ture gave the best performance in precision among
those that are similarly easy to extract. Finally, we
compare our results to (Suh, 2006).

6 Results and Discussion

The results of classification are summarised in Ta-
ble 6. The columns Generic and Non-generic give
the results for the respective class. Overall shows
the weighted average of the classes.

Comparison to baselines Given the bias for
non-generic NPs in the unbalanced data, the ma-
jority baseline achieves high performance overall
(F: 80.6). Of course, it does not detect any generic
NPs. The Person-based baseline also suffers from
very low recall (R: 10.2%), but achieves the high-
est precision (P: 60.5 %). (Suh, 2006) reported
only precision of the generic class, so we can only
compare against this value (28.9 %). Most of
the features and feature sets yield precision values
above the results of Suh.
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Feature classes, unbalanced data For the
identification of generic NPs, syntactic features
achieve the highest precision and recall (P: 40.1%,
R: 66.6 %). Using syntactic features on the NP-
or sentence-level only, however, leads to a drop in
precision as well as recall. The recall achieved by
syntactic features can be improved at the cost of
precision by adding semantic features (R: 66.6 —
72.1, P: 40.1 — 37). Semantic features in sep-
aration perform lower than the syntactic ones, in
terms of recall and precision.

Even though our results achieve a lower pre-
cision than the Person baseline, in terms of f-
measure, we achieve a result of over 50%, which
is almost three times the baseline.

Feature classes, balanced data Balancing the
training data leads to a moderate drop in perfor-
mance. All feature classes perform lower than on
the unbalanced data set, yielding an increase in re-
call and a drop in precision. The overall perfor-
mance differences between the balanced and un-
balanced data for the best achieved values for the
generic class are -4.7 (P), +13.2 (R) and -1.7 (F).
This indicates that (i) the features prove to perform
rather effectively, and (ii) the distributional bias in
the data can be exploited in practical experiments,
as long as the data distribution remains constant.

We observe that generally, the recall for the
generic class improves for the balanced data. This
is most noticeable for the S-level features with
an increase of 55 (syntactic) and 29.7 (semantic).
This could indicate that S-level features are useful
for detecting genericity, but are too sparse in the
non-oversampled data to become prominent. This
holds especially for the lexical semantic features.

As a general conclusion, syntactic features
prove most important in both setups. We also ob-
serve that the margin between syntactic and se-
mantic features reduces in the balanced dataset,
and that both NP- and S-level features contribute
to classification performance, with NP-features
generally outperforming the S-level features. This
confirms our hypothesis that all feature classes
contribute important information.

Feature selection While the above figures were
obtained for the entire feature space, we now dis-
cuss the effects of feature selection both on per-
formance and the distribution over feature classes.
The results for each feature set are given in Ta-
ble 6. In general, we find a behaviour similar to



Syntactic Semantic

NP | Number, Person, Part of | Sense[0]
Speech, Determiner Type, Bare
Plural

S Clause.Part of Speech, Depen- | Clause.{Tense,
dency Relation[2] Pred}

Table 7: Best performing features by feature class

the homogeneous classes, in that balanced train-
ing data increases recall at the cost of precision.

With respect to overall f-measure, the best sin-
gle features are strong on the unbalanced data.
They even yield a relatively high precision for the
generic NPs (49.5%), the highest value among the
selected feature sets. This, however, comes at the
price of one of the lowest recalls. The best per-
forming feature in terms of f-measure on both bal-
anced and unbalanced data is Set 5 with Set 4 as a
close follow-up. Set 5 achieves an f-score of 53.6
(unbalanced) and 51.0 (balanced). The highest re-
call is achieved using Set 4 (69.6% on the unbal-
anced and 83.1% on the balanced dataset). The
results for Set 5 represent an improvement of 3.5
respectively 2.6 (unbalanced and balanced) over
the best achieved results on homogeneous feature
classes. In fact, Table 7 shows that these features,
selected by ablation testing, distribute over all ho-
mogeneous classes.

We trained a decision tree to gain insights into
the dependencies among these features. Figure 1
shows an excerpt of the obtained tree. The clas-
sifier learned to classify singular proper names
as non-generic, while the genericity of singular
nouns depends on their predicate. At this point,
the classifier can correctly classify some of the
NPs in (5) as kind-referring (given the training
data contains predicates like “widespread”, “die
out”, ...).

7 Conclusions and Future Work

This paper addresses a linguistic phenomenon that
has been thoroughly studied in the formal se-
mantics literature but only recently is starting to
be addressed as a task in computational linguis-
tics. We presented a data-driven machine learn-
ing approach for identifying generic NPs in con-
text that in turn can be used to improve tasks such
as knowledge acquisition and organisation. The
classification of generic NPs has proven difficult
even for humans. Therefore, a machine learning
approach seemed promising, both for the identifi-
cation of relevant features as for capturing contex-
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Figure 1: A decision tree trained on feature Set 5

tual factors. We explored a range of features using
homogeneous and mixed classes gained by alter-
native methods of feature selection. In terms of
f-measure on the generic class, all feature sets per-
formed above the baseline(s). In the overall clas-
sification, the selected sets perform above the ma-
jority and close to or above the Person baseline.

The final feature set that we established charac-
terises generic NPs as a phenomenon that exhibits
both syntactic and semantic as well as sentence-
and NP-level properties. Although our results are
satisfying, in future work we will extend the range
of features for further improvements. In particular,
we will address lexical semantic features, as they
tend to be effected by sparsity. As a next step,
we will apply our approach to the classification
of generic sentences. Treating both cases simul-
taneously could reveal insights into dependencies
between them.

The classification of generic expressions is only
a first step towards a full treatment of the chal-
lenges involved in their semantic processing. As
discussed, this requires a contextually appropriate
selection of the quantifier restriction®, as well as
determining inheritance of properties from classes
to individuals and the formalisation of defaults.
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Abstract

Name ambiguity problem has raised urgent
demands for efficient, high-quality named ent-
ity disambiguation methods. In recent years,
the increasing availability of large-scale, rich
semantic knowledge sources (such as Wikipe-
dia and WordNet) creates new opportunities to
enhance the named entity disambiguation by
developing algorithms which can exploit these
knowledge sources at best. The problem is that
these knowledge sources are heterogeneous
and most of the semantic knowledge within
them is embedded in complex structures, such
as graphs and networks. This paper proposes a
knowledge-based method, called Structural
Semantic Relatedness (SSR), which can en-
hance the named entity disambiguation by
capturing and leveraging the structural seman-
tic knowledge in multiple knowledge sources.
Empirical results show that, in comparison
with the classical BOW based methods and
social network based methods, our method can
significantly improve the disambiguation per-
formance by respectively 8.7% and 14.7%.

1 Introduction

Name ambiguity problem is common on the Web.

For example, the name “Michael Jordan”

represents more than ten persons in the Google

search results. Some of them are shown below:
Michael (Jeffrey) Jordan, Basketball Player

Michael (1.) Jordan, Professor of Berkeley
Michael (B.) Jordan, American Actor

The name ambiguity has raised serious prob-
lems in many relevant areas, such as web person
search, data integration, link analysis and know-

* Corresponding author

ledge base population. For example, in response
to a person query, search engine returns a long,
flat list of results containing web pages about
several namesakes. The users are then forced
either to refine their query by adding terms, or to
browse through the search results to find the per-
son they are seeking. Besides, an ever-increasing
number of question answering and information
extraction systems are coming to rely on data
from multi-sources, where name ambiguity will
lead to wrong answers and poor results. For ex-
ample, in order to extract the birth date of the
Berkeley professor Michael Jordan, a system
may return the birth date of his popular name-
sakes, e.g., the basketball player Michael Jordan.

So there is an urgent demand for efficient,
high-quality named entity disambiguation me-
thods. Currently, the common methods for
named entity disambiguation include name ob-
servation clustering (Bagga and Baldwin, 1998)
and entity linking with knowledge base (McNa-
mee and Dang, 2009). In this paper, we focus on
the method of name observation clustering. Giv-
en a set of observations O = {04, 0y, ..., 0} Of the
target name to be disambiguated, a named entity
disambiguation system should group them into a
set of clusters C = {cy, ¢y, ..., Cn}, With each re-
sulting cluster corresponding to one specific enti-
ty. For example, consider the following four ob-
servations of Michael Jordan:

1) Michael Jordan is a researcher in Computer
Science.

2) Michael Jordan plays basketball in Chicago Bulls.

3) Michael Jordan wins NBA MVP.

4) Learning in Graphical Models: Michael Jordan.

A named entity disambiguation system should
group the 1% and 4™ Michael Jordan observations
into one cluster for they both refer to the Berke-
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ley professor Michael Jordan, meanwhile group
the other two Michael Jordan into another clus-
ter as they refer to another person, the Basketball
Player Michael Jordan.

To a human, named entity disambiguation is
usually not a difficult task as he can make deci-
sions depending on not only contextual clues, but
also the prior background knowledge. For exam-
ple, as shown in Figure 1, with the background
knowledge that both Learning and Graphical
models are the topics related to Machine learning,
while Machine learning is the sub domain of
Computer science, a human can easily determine
that the two Michael Jordan in the 1% and 4™ ob-
servations represent the same person. In the same
way, a human can also easily identify that the
two Michael Jordan in the 2™ and 3™ observa-
tions represent the same person.

1) Michael Jordan is a in[Computer Science
Machine learning

4)(Learning]in(Graphical Models} Michael Jordan

2) Michael Jordan plays(basketball in[Chicago Bulls)
e
3) Michael Jordan wins MVB.

Figure 1. The exploitation of knowledge in human
named entity disambiguation

The development of systems which could rep-
licate the human disambiguation ability, however,
is not a trivial task because it is difficult to cap-
ture and leverage the semantic knowledge as
humankind. Conventionally, the named entity
disambiguation methods measure the similarity
between name observations using the bag of
words (BOW) model (Bagga and Baldwin (1998);
Mann and Yarowsky (2006); Fleischman and
Hovy (2004); Pedersen et al. (2005)), where a
name observation is represented as a feature vec-
tor consisting of the contextual terms. This mod-
el measures similarity based on only the co-
occurrence statistics of terms, without consider-
ing all the semantic relations like social related-
ness between named entities, associative related-
ness between concepts, and lexical relatedness
(e.g., acronyms, synonyms) between key terms.

Mathematic Computer Science

Machine learning

Probability Theory

Graphical model

Figure 2. Part of the link structure of Wikipedia
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Fortunately, in recent years, due to the evolu-
tion of Web (e.g., the Web 2.0 and the Semantic
Web) and many research efforts for the construc-
tion of knowledge bases, there is an increasing
availability of large-scale knowledge sources,
such as Wikipedia and WordNet. These large-
scale knowledge sources create new opportuni-
ties for knowledge-based named entity disam-
biguation methods as they contain rich semantic
knowledge. For example, as shown in Figure 2,
the link structure of Wikipedia contains rich se-
mantic relations between concepts. And we be-
lieve that the disambiguation performance can be
greatly improved by designing algorithms which
can exploit these knowledge sources at best.

The problem of these knowledge sources is
that they are heterogeneous (e.g., they contain
different types of semantic relations and different
types of concepts) and most of the semantic
knowledge within them is embedded in complex
structures, such as graphs and networks. For ex-
ample, as shown in Figure 2, the semantic rela-
tion between Graphical Model and Computer
Science is embedded in the link structure of the
Wikipedia. In recent years, some research has
investigated to exploit some specific semantic
knowledge, such as the social connection be-
tween named entities in the Web (Kalashnikov et
al. (2008), Wan et al. (2005) and Lu et al.
(2007)), the ontology connection in DBLP (Has-
sell et al., 2006) and the semantic relations in
Wikipedia (Cucerzan (2007), Han and Zhao
(2009)). These knowledge-based methods, how-
ever, usually are specialized to the knowledge
sources they used, so they often have the know-
ledge coverage problem. Furthermore, these me-
thods can only exploit the semantic knowledge to
a limited extent because they cannot take the
structural semantic knowledge into consideration.

To overcome the deficiencies of previous me-
thods, this paper proposes a knowledge-based
method, called Structural Semantic Relatedness
(SSR), which can enhance the named entity dis-
ambiguation by capturing and leveraging the
structural semantic knowledge from multiple
knowledge sources. The key point of our method
is a reliable semantic relatedness measure be-
tween concepts (including WordNet concepts,
NEs and Wikipedia concepts), called Structural
Semantic Relatedness, which can capture both
the explicit semantic relations between concepts
and the implicit semantic knowledge embedded
in graphs and networks. In particular, we first
extract the semantic relations between two con-
cepts from a variety of knowledge sources and



represent them using a graph-based model, se-
mantic-graph. Then based on the principle that
“two concepts are semantic related if they are
both semantic related to the neighbor concepts of
each other”, we construct our Structural Seman-
tic Relatedness measure. In the end, we leverage
the structural semantic relatedness measure for
named entity disambiguation and evaluate the
performance on the standard WePS data sets.
The experimental results show that our SSR me-
thod can significantly outperform the traditional
methods.

This paper is organized as follows. Section 2
describes how to construct the structural seman-
tic relatedness measure. Next in Section 3 we
describe how to leverage the captured knowledge
for named entity disambiguation. Experimental
results are demonstrated in Sections 4. Section 5
briefly reviews the related work. Section 6 con-
cludes this paper and discusses the future work.

2 The Structural Semantic Relatedness

Measure

In this section, we demonstrate the structural se-
mantic relatedness measure, which can capture
the structural semantic knowledge in multiple
knowledge sources. Totally, there are two prob-
lems we need to address:

1) How to extract and represent the seman-
tic relations between concepts, since there are
many types of semantic relations and they may
exist as different patterns (the semantic know-
ledge may exist as explicit semantic relations or
be embedded in complex structures).

2) How to capture all the extracted seman-
tic relations between concepts in our semantic
relatedness measure.

To address the above two problems, in follow-
ing we first introduce how to extract the semantic
relations from multiple knowledge sources; then
we represent the extracted semantic relations us-
ing the semantic-graph model; finally we build
our structural semantic relatedness measure.

2.1

We extract three types of semantic relations (se-
mantic relatedness between Wikipedia concepts,
lexical relatedness between WordNet concepts
and social relatedness between NES) correspon-
dingly from three knowledge sources: Wikipedia,
WordNet and NE Co-occurrence Corpus.

Knowledge Sources
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1.  Wikipedia', a large-scale online encyc-
lopedia, its English version includes more than
3,000,000 concepts and new articles are added
quickly and up-to-date. Wikipedia contains rich
semantic knowledge in the form of hyperlinks
between Wikipedia articles, such as Polysemy
(disambiguation pages), Synonym (redirect pages)
and Associative relation (hyperlinks between
Wikipedia articles). In this paper, we extract the
semantic relatedness sr between Wikipedia con-
cepts using the method described in Milne and
Witten(2008):

Sr(ab) =1 log(max(| A B\))—_Iog(\Aﬂ B|)

log(W|) —log(min(|A].|B|))
where a and b are the two concepts of interest, A
and B are the sets of all the concepts that are re-
spectively linked to a and b, and W is the entire
Wikipedia. For demonstration, we show the se-
mantic relatedness between four selected con-
cepts in Table 1.

’

Statistics | Basketball
Machine learning 0.58 0.00
MVP 0.00 0.45

Table 1. The semantic relatedness table of four se-
lected Wikipedia concepts

2. WordNet 3.0 (Fellbaum et al., 1998), a
lexical knowledge source includes over 110,000
WordNet concepts (word senses about English
words). Various lexical relations are recorded
between WordNet concepts, such as hyponyms,
holonym and synonym. The lexical relatedness Ir
between two WordNet concepts are measured
using the Lin (1998)’s WordNet semantic simi-
larity measure. Table 2 shows some examples of
the lexical relatedness.

school science
university 0.67 0.10
research 0.54 0.39
Table 2. The lexical relatedness table of four selected
WordNet concepts

3. NE Co-occurrence Corpus, a corpus of
documents for capturing the social relatedness
between named entities. According to the fuzzy
set theory (Baeza-Yates et al., 1999), the degree
of named entities co-occurrence in a corpus is a
measure of the relatedness between them. For
example, in Google search results, the “Chicago
Bulls” co-occurs with “NBA” in more than

L http:/iwww.wikipedia.org/
2 http:// wordnet.princeton.edu/



7,900,000 web pages, while only co-occurs with
“EMNLP” in less than 1,000 web pages. So the
co-occurrence statistics can be used to measure
the social relatedness between named entities. In
this paper, given a NE Co-occurrence Corpus D,
the social relatedness scr between two named
entities ne; and ne, is measured using the Google
Similarity Distance (Cilibrasi and Vitanyi, 2007):

log(max(|D,,|D, ) - log(|D, N D, )
log(|D|) - log(min(|D, |,| D,|))
where D; and D, are the document sets corres-
pondingly containing ne; and ne,. An example of
social relatedness is shown in Table 3, which is
computed using the Web corpus through Google.

scr(ne,ne,)=1-

ACL NBA
EMNLP 0.61 0.00
Chicago Bulls 0.19 0.55

Table 3. The social relatedness table of four selected
named entities

2.2  The Semantic-Graph Model

In this section we present a graph-based repre-
sentation, called semantic-graph, to model the
extracted semantic relations as a graph within
which the semantic relations are interconnected
and transitive. Concretely, the semantic-graph is
defined as follows:
A semantic-graph is a weighted graph G = (V,
E), where each node represents a distinct con-
cept; and each edge between a pair of nodes
represents the semantic relation between the
two concepts corresponding to these nodes,
with the edge weight indicating the strength of
the semantic relation.

For demonstration, Figure 3 shows a semantic-
graph which models the semantic knowledge
extracted from Wikipedia for the Michael Jordan
observations in Section 1.

Researcher Graphical

Model
0T 0.2
Computer 0.48
Science 04T Ledrning
Basketball 076

0.45 NBA

0.57 \

MVP

\ 0.58

Chicago Bulls

0.71

0.71

Figure 3. An example of semantic-graph
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Given a set of name observations, the con-
struction of semantic-graph takes two steps: con-
cept extraction and concept connection. In the
following we respectively describe each step.

1) Concept Extraction. In this step we ex-
tract all the concepts in the contexts of name ob-
servations and represent them as the nodes in the
semantic-graph. We first gather all the N-grams
(up to 8 words) and identify whether they corres-
pond to semantically meaningful concepts: if a
N-gram is contained in the WordNet, we identify
it as a WordNet concept, and use its primary
word sense as its semantic meaning; to find
whether a N-gram is a named entity, we match it
to the named entity list extracted using the open-
Calais API3, which contains more than 30 types
of named entities, such as Person, Organization
and Award; to find whether a N-gram is a Wiki-
pedia concept, we match it to the Wikipedia anc-
hor dictionary, then find its corresponding Wiki-
pedia concept using the method described in
(Medelyan et al, 2008). After concept identifica-
tion, we filter out all the N-grams which do not
correspond to the semantic meaningful concepts,
such as the N-grams “learning in” and “wins
NBA MVP”. The retained N-grams are identified
as concepts, corresponding with their semantic
meanings (a concept may have multiple semantic
meaning explanation, e.g., the “MVP” has three
semantic meaning, as “most valuable player,
MVP” in WordNet, as the “Most Valuable Play-
er” in Wikipedia and as a named entity of Award

type).

2) Concept Connection. In this step we
represent the semantic relations as the edges be-
tween nodes. That is, for each pair of extracted
concepts, we identify whether there are semantic
relations between them: 1) If there is only one
semantic relation between them, we connect
these two concepts with an edge, where the edge
weight is the strength of the semantic relation; 2)
If there is more than one semantic relations be-
tween them, we choose the most reliable seman-
tic relation, i.e., we choose the semantic relation
in the knowledge sources according to the order
of WordNet, Wikipedia and NE Co-concurrence
corpus (Suchanek et al., 2007). For example, if
both Wikipedia and WordNet provide the seman-
tic relation between MVP and NBA, we choose
the semantic relation provided by WordNet.

% http://www.opencalais.com/



2.3 The Structural Semantic Relatedness

Measure

In this section, we describe how to capture the
semantic relations between the concepts in se-
mantic-graph using a semantic relatedness meas-
ure. Totally, the semantic knowledge between
concepts is modeled in two forms:

1) The edges of semantic-graph. The
edges model the direct semantic relations be-
tween concepts. We call this form of semantic
knowledge as explicit semantic knowledge.

2) The structure of semantic-graph. Ex-
cept for the edges, the structure of the semantic-
graph also models the semantic knowledge of
concepts. For example, the neighbors of a con-
cept represent all the concepts which are explicit-
ly semantic-related to this concept; and the paths
between two concepts represent all the explicit
and implicit semantic relations between them.
We call this form of semantic knowledge as
structural semantic knowledge, or implicit se-
mantic knowledge.

Therefore, in order to deduce a reliable seman-
tic relatedness measure, we must take both the
edges and the structure of semantic-graph into
consideration. Under the semantic-graph model,
the measurement of semantic relatedness be-
tween concepts equals to quantifying the similar-
ity between nodes in a weighted graph. To simpl-
ify the description, we assign each node in se-
mantic-graph an integer index from 1 to |V| and
use this index to represent the node, then we can
write the adjacency matrix of the semantic-graph
G as A, where A[i,j] or Aj is the edge weight be-
tween node i and node j.

The problem of quantifying the relatedness be-
tween nodes in a graph is not a new problem, e.g.,
the structural equivalence and structural similar-
ity (the SimRank in Jeh and Widom (2002) and
the similarity measure in Leicht et al. (2006)).
However, these similarity measures are not suit-
able for our task, because all of them assume that
the edges are uniform so that they cannot take
edge weight into consideration.

In order to take both the graph structure and
the edge weight into account, we design the
structural semantic relatedness measure by ex-
tending the measure introduced in Leicht et al.
(2006). The fundamental principle behind our
measure is “a node u is semantically related to
another node v if its immediate neighbors are
semantically related to v”. This definition is natu-
ral, for example, as shown in Figure 3, the con-
cept Basketball and its neighbors NBA and Chi-
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cago Bulls are all semantically related to MVP.
This definition is recursive, and the starting point
we choose is the semantic relatedness in the edge.
Thus our structural semantic relatedness has two
components: the neighbor term of the previous
recursive phase which captures the graph struc-
ture and the semantic relatedness which captures
the edge information. Thus, the recursive form of
the structural semantic relatedness S; between
the node i and the node j can be written as:

S; = ﬂ.eZN“ig—iIS” +uA
where 2 and u control the relative importance
of the two components and
Ni={j | Aj > 0} is the set of the immediate
neighbors of node i;

d; j‘ii Ajj is the degree of node i.

In order to solve this formula, we introduce the

following two notations:
T: The relatedness transition matrix, where
T[i,j]=Ajj/d;, indicating the transition rate of re-
latedness from node j to its neighbor i.

S: The structural semantic relatedness matrix,

where S[i,j]=Sj.
Now we can turn our first form of structural se-
mantic relatedness into the matrix form:

S = ATS + uA
By solving this equation, we can get:
S=u(l-AT)'A
where | is the identity matrix. Since x is a pa-
rameter which only contributes an overall scale
factor to the relatedness value, we can ignore it
and get the final form of the structural semantic
relatedness as:
S=(1-AT)"A
Because the S is asymmetric, the finally related-
ness between node i and node j is the average of
Sij and Sji.
The meaning of 2: The last question of our
structural semantic relatedness measure is how to
set the free parameter 4. To understand the
meaning of 4, let us expand the similarity as a
power series thus:
S=(l4AT+2°T2 4.+ 2T+ )A

Noting that the [T*];; element is the relatedness
transition rate from node i to node j with path
length k, we can view the 4 as a penalty factor
for the transition path length: by setting the 2
with a value within (0, 1), a longer graph path
will contribute less to the final relatedness value.
The optimal value of 2 is 0.6 through a learning



process shown in Section 4. For demonstration,
Table 4 shows some structural semantic related-
ness values of the Semantic-graph in Figure 3
(CS represents computer science and GM
represents Graphical model). From Table 4, we
can see that the structural semantic relatedness
can successfully capture the semantic knowledge
embedded in the structure of semantic-graph,
such as the implicit semantic relation between
Researcher and Learning.

Researcher | CS | GM | Learning
Researcher 0.50 | 0.27 0.31
Cs 0.50 -- | 0.62 0.73
GM 0.27 062 | -- 0.80
Learning 0.31 0.73 | 0.80

Table 4. The structural semantic relatedness of the
semantic-graph shown in Figure 3

3 Named Entity Disambiguation by Le-

veraging Semantic Knowledge

In this section we describe how to leverage the
semantic knowledge captured in the structural
semantic relatedness measure for named entity
disambiguation. Because the key problem of
named entity disambiguation is to measure the
similarity between name observations, we inte-
grate the structural semantic relatedness in the
similarity measure, so that it can better reflect the
actual similarity between name observations.
Concretely, our named entity disambiguation
system works as follows: 1) Measuring the simi-
larity between name observations; 2) Grouping

name observations using the clustering algorithm.

In the following we describe each step in detail.

3.1 Measuring the Similarity between Name

Observations

Intuitively, if two observations of the target name
represent the same entity, it is highly possible
that the concepts in their contexts are closely re-
lated, i.e., the named entities in their contexts are
socially related and the Wikipedia concepts in
their contexts are semantically related. In con-
trast, if two name observations represent differ-
ent entities, the concepts within their contexts
will not be closely related. Therefore we can
measure the similarity between two name obser-
vations by summarizing all the semantic related-
ness between the concepts in their contexts.

To measure the similarity between name ob-
servations, we represent each name observation
as a weighted vector of concepts (including
named entities, Wikipedia concepts and Word-
Net concepts), where the concepts are extracted
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using the same method described in Section 2.2,
so they are just the same concepts within the se-
mantic-graph. Using the same concept index as
the semantic-graph, a name observation o; is then
represented as 0, ={W,, W,,,...,w, }, where wj is

the kK" concept’s weight in observation o0;, com-
puted using the standard TFIDF weight model,
where the DF is computed using the Google
Web1T 5-gram corpus®. Given the concept vec-
tor representation of two name observations o;
and o;, their similarity is computed as:

SIM (Oi’oj) = zzvvilekslk/zzvvilek

which is the weighted average of all the structur-
al semantic relatedness between the concepts in
the contexts of the two name observations.

3.2 Grouping Name Observations through

Hierarchical Agglomerative Clustering

Given the computed similarities, name observa-
tions are disambiguated by grouping them ac-
cording to their represented entities. In this paper,
we group name observations using the hierar-
chical agglomerative clustering(HAC) algorithm,
which is widely used in prior disambiguation
research and evaluation task (WePS1 and
WePS2). The HAC produce clusters in a bottom-
up way as follows: Initially, each name observa-
tion is an individual cluster; then we iteratively
merge the two clusters with the largest similarity
value to form a new cluster until this similarity
value is smaller than a preset merging threshold
or all the observations reside in one common
cluster. The merging threshold can be deter-
mined through cross-validation. We employ the
single-link method to compute the similarity be-
tween two clusters, which has been applied wide-
ly in prior research (Bagga and Baldwin (1998);
Mann and Yarowsky (2003)).

4  Experiments

To assess the performance of our method and
compare it with traditional methods, we conduct
a series of experiments. In the experiments, we
evaluate the proposed SSR method on the task of
personal name disambiguation, which is the most
common type of named entity disambiguation. In
the following, we first explain the general expe-
rimental settings in Section 4.1, 4.2 and 4.3; then
evaluate and discuss the performance of our me-
thod in Section 4.4.

4 www.ldc.upenn.edu/Catalog/docs/LDC2006T13/



4.1 Disambiguation Data Sets

We adopted the standard data sets used in the
First Web People Search Clustering Task
(WePS1) (Artiles et al., 2007) and the Second
Web People Search Clustering Task (WePS2)
(Avrtiles et al., 2009). The three data sets we used
are WePS1_training data set, WePS1 test data
set, and WePS2_test data set. Each of the three
data sets consists of a set of ambiguous personal
names (totally 109 personal names); and for each
name, we need to disambiguate its observations
in the web pages of the top N (100 for WePS1
and 150 for WePS2) Yahoo! search results.

The experiment made the standard “one per-
son per document” assumption, which is widely
used in the participated systems in WePS1 and
WePS2, i.e., all the observations of the same
name in a document are assumed to represent the
same entity. Based on this assumption, the fea-
tures within the entire web page are used to dis-
ambiguate personal names.

4.2  Knowledge Sources

There were three knowledge sources we used for
our experiments: the WordNet 3.0; the Sep. 9,
2007 English version of Wikipedia; and the Web
pages of each ambiguous name in WePS datasets
as the NE Co-occurrence Corpus.

4.3 Evaluation Criteria

We adopted the measures used in WePS1 to eva-
luate the performance of name disambiguation.
These measures are:

Purity (Pur): measures the homogeneity of
name observations in the same cluster;

Inverse purity (Inv_Pur): measures the com-
pleteness of a cluster;

F-Measure (F): the harmonic mean of purity
and inverse purity.

The detailed definitions of these measures can
be found in Amigo, et al. (2008). We use F-
measure as the primary measure just liking
WePS1 and WePS2.

4.4  Experimental Results

We compared our method with four baselines: (1)
BOW: The first one is the traditional Bag of
Words model (BOW) based methods: hierarchic-
al agglomerative clustering (HAC) over term
vector similarity, where the features including
single words and NEs, and all the features are
weighted using TFIDF. This baseline is also the
state-of-art method in WePS1 and WePS2. (2)
SocialNetwork: The second one is the social

network based methods, which is the same as the
method described in Malin et al. (2005): HAC
over the similarity obtained through random
walk over the social network built from the web
pages of the top N search results. (3)SSR-
NoKnowledge: The third one is used as a base-
line for evaluating the efficiency of semantic
knowledge: HAC over the similarity computed
on semantic-graph with no knowledge integrated,
i.e., the similarity is computed as:

SIM (Oivoj) = Zwilel/zzvvilek

(4) SSR-NoStructure: The fourth one is used as
a baseline for evaluating the efficiency of the
semantic knowledge embedded in complex struc-
tures: HAC over the similarity computed by only
integrating the explicit semantic relations, i.e.,
the similarity is computed as:

SIM (Oi'oj) ZZZWilekAk/ZZWHij

4.4.1 Overall Performance

We conducted several experiments on all the
three WePS data sets: the four baselines, the pro-
posed SSR method and the proposed SSR me-
thod with only one special type knowledge added,
respectively SSR-NE, SSR-WordNet and SSR-
Wikipedia. All the optimal merging thresholds
used in HAC were selected by applying leave-
one-out cross validation. The overall perfor-
mance is shown in Table 5.

WePS1 trainin
Method Pur Inv_Pur F
BOW 0.71 0.88 0.78
SocialNetwork 0.66 0.98 0.76
SSR-NoKnowledge 0.79 0.89 0.81
SSR-NoStructure 0.87 0.83 0.83
SSR-NE 0.80 0.86 0.82
SSR-WordNet 0.80 0.91 0.83
SSR-Wikipedia 0.82 0.90 0.84
SSR 0.82 0.92 0.85

WePS1 test
Pur Inv_Pur F
BOW 0.74 0.87 0.74
SocialNetwork 0.83 0.63 0.65
SSR-NoKnowledge 0.80 0.74 0.75
SSR-NoStructure 0.80 0.78 0.78
SSR-NE 0.73 0.80 0.74
SSR-WordNet 0.81 0.77 0.77
SSR-Wikipedia 0.88 0.77 0.81
SSR 0.85 0.83 0.84

WePS2 test
Pur Inv_Pur F
BOW 0.80 0.80 0.77
SocialNetwork 0.62 0.93 0.70
SSR-NoKnowledge 0.84 0.80 0.80
SSR-NoStructure 0.84 0.83 0.81
SSR-NE 0.78 0.88 0.80
SSR-WordNet 0.85 0.82 0.83
SSR-Wikipedia 0.84 0.81 0.82
SSR 0.89 0.84 0.86

Table 5. Performance results of baselines and SSR
methods



From the performance results in Table 5, we
can see that:

1) The semantic knowledge can greatly im-
prove the disambiguation performance: com-
pared with the BOW and the SocialNetwork
baselines, SSR respectively gets 8.7% and 14.7%
improvement on average on the three data sets.

2) By leveraging the semantic knowledge
from multiple knowledge sources, we can obtain
a better named entity disambiguation perfor-
mance: compared with the SSR-NE’s 0% im-
provement, the SSR-WordNet’s 2.3% improve-
ment and the SSR-Wikipedia’s 3.7% improve-
ment, the SSR gets 6.3% improvement over the
SSR-NoKnowledge baseline, which is larger than
all the SSR methods with only one type of se-
mantic knowledge integrated.

3) The exploitation of the structural seman-
tic knowledge can further improve the disambig-
uation performance: compared with SSR-
NoStructure, our SSR method achieves 4.3% im-
provement.

0.88

—&— \WePS1 Training
—+— WePS1 Test
—4— WePS2 Test

0.86 —|

0.84

F-Measure

Figure 4. The F-Measure vs. 4 on three data sets

4.4.2 Optimizing Parameters

There is only one parameter 2 needed to be con-
figured, which is the penalty factor for the rela-
tedness transition path length in the structural
semantic relatedness measure. Usually a smaller
A will make the structural semantic knowledge
contribute less in the resulting relatedness value.
Figure 4 plots the performance of our method
corresponding to the special 4 settings. As
shown in Figure 4, the SSR method is not very
sensitive to the 4 and can achieve its best aver-
age performance when the value of 1 is 0.6.

4.4.3 Detailed Analysis

To better understand the reasons why our SSR
method works well and how the exploitation of
structural semantic knowledge can improve per-
formance, we analyze the results in detail.

The Exploitation of Semantic Knowledge. The
primary advantage of our method is the exploita-
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tion of semantic knowledge. Our method exploits
the semantic knowledge in two directions:

1) The Integration of Multiple Semantic
Knowledge Sources. Using the semantic-graph
model, our method can integrate the semantic
knowledge extracted from multiple knowledge
sources, while most traditional knowledge-based
methods are usually specialized to one type of
knowledge. By integrating multiple semantic
knowledge sources, our method can improve the
semantic knowledge coverage.

2) The exploitation of Semantic Knowledge
embedded in complex structures. Using the struc-
tural semantic relatedness measure, our method
can exploit the implicit semantic knowledge em-
bedded in complex structures; while traditional
knowledge-based methods usually lack this abili-

ty.

The Rich Meaningful Features. One another
advantage of our method is the rich meaningful
features, which is brought by the multiple seman-
tic knowledge sources. With more meaningful
features, our method can better describe the
name observations with less information loss.
Furthermore, unlike the traditional N-gram fea-
tures, the features enriched by semantic know-
ledge sources are all semantically meaningful
units themselves, so little noisy features will be
added. The effect of rich meaningful features can
also be shown in Table 5: by adding these fea-
tures, the SSR-NoKnowledge respectively
achieves 2.3% and 9.7% improvement over the
BOW and the SocialNetwork baseline.

5 Related Work

In this section, we briefly review the related
work. Totally, the traditional named entity dis-
ambiguation methods can be classified into two
categories: the shallow methods and the know-
ledge-based methods.

Most of previous named entity disambiguation
researches adopt the shallow methods, which are
mostly the natural extension of the bag of words
(BOW) model. Bagga and Baldwin (1998)
represented a name as a vector of its contextual
words, then two names were predicted to be the
same entity if their cosine similarity is above a
threshold. Mann and Yarowsky (2003) and Niu
et al. (2004) extended the vector representation
with extracted biographic facts. Pedersen et al.
(2005) employed significant bigrams to represent



a name observation. Chen and Martin (2007) ex-
plored a range of syntactic and semantic features.

In recent years some research has investigated
employing knowledge sources to enhance the
named entity disambiguation. Bunescu and Pasca
(2006) disambiguated the names using the cate-
gory information in Wikipedia. Cucerzan (2007)
disambiguated the names by combining the BOW
model with the Wikipedia category information.
Han and Zhao (2009) leveraged the Wikipedia
semantic knowledge for computing the similarity
between name observations. Bekkerman and
McCallum (2005) disambiguated names based
on the link structure of the Web pages between a
set of socially related persons. Kalashnikov et al.
(2008) and Lu et al. (2007) used the co-
occurrence statistics between named entities in
the Web. The social network was also exploited
for named entity disambiguation, where similari-
ty is computed through random walking, such as
the work introduced in Malin (2005), Malin and
Airoldi (2005), Yang et al.(2006) and Minkov et
al. (2006). Hassell et al. (2006) used the relation-
ships from DBLP to disambiguate names in re-
search domain.

6

In this paper we demonstrate how to enhance the
named entity disambiguation by capturing and
exploiting the semantic knowledge existed in
multiple knowledge sources. In particular, we
propose a semantic relatedness measure, Struc-
tural Semantic Relatedness, which can capture
both the explicit semantic relations and the im-
plicit structural semantic knowledge. The expe-
rimental results on the WePS data sets demon-
strate the efficiency of the proposed method. For
future work, we want to develop a framework
which can uniformly model the semantic know-
ledge and the contextual clues for named entity
disambiguation.

Conclusions and Future Works
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Abstract

We introduce a novel mechanism for
incorporating articulatory dynamics into
speech recognition with the theory of task
dynamics. This system reranks sentence-
level hypotheses by the likelihoods of
their hypothetical articulatory realizations
which are derived from relationships
learned with aligned acoustic/articulatory
data. Experiments compare this with two
baseline systems, namely an acoustic hid-
den Markov model and a dynamic Bayes
network augmented with discretized rep-
resentations of the vocal tract. Our sys-
tem based on task dynamics reduces word-
error rates significantly by 10.2% relative
to the best baseline models.

1 Introduction

Although modern automatic speech recognition
(ASR) takes several cues from the biological per-
ception of speech, it rarely models its biological
production. The result is that speech is treated
as a surface acoustic phenomenon with lexical or
phonetic hidden dynamics but without any phys-
ical constraints in between. This omission leads
to some untenable assumptions. For example,
speech is often treated out of convenience as a se-
quence of discrete, non-overlapping packets, such
as phonemes, despite the fact that some major dif-
ficulties in ASR, such as co-articulation, are by
definition the result of concurrent physiological
phenomena (Hardcastle and Hewlett, 1999).
Many acoustic ambiguities can be resolved
with knowledge of the vocal tract’s configuration
(O’Shaughnessy, 2000). For example, the three
nasal sonorants, /m/, /n/, and /ng/, are acousti-
cally similar (i.e., they have large concentrations
of energy at the same frequencies) but uniquely
and reliably involve bilabial closure, tongue-tip
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elevation, and tongue-dorsum elevation, respec-
tively. Having access to the articulatory goals of
the speaker would, in theory, make the identifica-
tion of linguistic intent almost trivial. Although
we don’t typically have access to the vocal tract
during speech recognition, its configuration can
be estimated reasonably well from acoustics alone
within adequate models or measurements of the
vocal tract (Richmond et al., 2003; Toda et al.,
2008). Evidence that such inversion takes place
naturally in humans during speech perception sug-
gests that the discriminability of speech sounds de-
pends powerfully on their production (Liberman
and Mattingly, 1985; D’ Ausilio et al., 2009).

This paper describes the use of explicit models
of physical speech production within recognition
systems. Initially, we augment traditional models
of ASR with probabilistic relationships between
acoustics and articulation learned from appropri-
ate data. This leads to the incorporation of a high-
level, goal-oriented, and control-based theory of
speech production within a novel ASR system.

2 Background and related work

The use of theoretical (phonological) features of
the vocal tract has provided some improvement
over traditional acoustic ASR systems in phoneme
recognition with neural networks (Kirchhoff,
1999; Roweis, 1999), but there has been very
little work in ASR informed by direct measure-
ments of the vocal tract. Recently, Markov et
al. (2006) have augmented hidden Markov models
with Bayes networks trained to describe articula-
tory constraints from a small amount of Japanese
vocal tract data, resulting in a small phoneme-
error reduction. This work has since been ex-
panded upon to inform ASR systems sensitive to
physiological speech disorders (Rudzicz, 2009).
Common among previous efforts is an interpre-
tation of speech as a sequence of short, instanta-
neous observations devoid of long-term dynamics.
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2.1 Articulatory phonology

Articulatory phonology bridges the divide be-
tween the physical manifestation of speech and its
underlying lexical intentions. Within this disci-
pline, the theory of fask dynamics is a combined
model of physical articulator motion and the plan-
ning of abstract vocal tract configurations (Saltz-
man, 1986). This theory introduces the notion that
all observed patterns of speech are the result of
overlapping gestures, which are abstracted goal-
oriented reconfigurations of the vocal tract, such
as bilabial closure or velar opening (Saltzman and
Munhall, 1989). Each gesture occurs within one
of the following tract variables (TVs): velar open-
ing (VEL), lip aperture (LA) and protrusion (LP),
tongue tip constriction location (TTCL) and de-
gree (TTCD) !, tongue body constriction location
(TBCL) and degree (TBCD), lower tooth height
(LTH), and glottal vibration (GLO). For example,
the syllable pub consists of an onset (/p/), a nu-
cleus (/ah/), and a coda (/b/). Four gestural goals
are associated with the onset, namely the shutting
of GLO and of VEL, and the closure and release of
LA. Similarly, the nucleus of the syllable consists
of three goals, namely the relocation of TBCD and
TBCL, and the opening of GLO. The presence and
extent of these gestural goals are represented by
filled rectangles in figure 1. Inter-gestural timings
between these goals are specified relative to one
another according to human data as described by
Nam and Saltzman (2003).

closed

TBCD 4
—_Jr ‘ open
open

Nl el 1
closed
open

GLO VN 4
closed

T T
300 400
Time (ms)

T T
100 200

Figure 1: Canonical example pub from Saltzman
and Munbhall (1989).

The presence of these discrete goals influences
the vocal tract dynamically and continuously
as modelled by the following non-homogeneous
second-order linear differential equation:

M7'+BZ +K(z—7")=0. (1)

! Constriction locations generally refer to the front-back
dimension of the vocal tract and constriction degrees gener-
ally refer to the top-down dimension.
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Here, z is a continuous vector representing the in-
stantaneous positions of the nine tract variables,
Z* is the target (equilibrium) positions of those
variables, and vectors 7’ and z” represent the first
and second derivatives of z with respect to time
(i.e., velocity and acceleration), respectively. The
matrices M, B, and K are syllable-specific coef-
ficients describing the inertia, damping, and stiff-
ness, respectively, of the virtual gestures. Gener-
ally, this theory assumes that the tract variables are
mutually independent, and that the system is criti-
cally damped (i.e., the tract variables do not oscil-
late around their equilibrium positions) (Nam and
Saltzman, 2003). The continuous state, z, of equa-
tion (1) is exemplified by black curves in figure 1.

2.2 Articulatory data

Tract variables provide the dimensions of an ab-
stract gestural space independent of the physical
characteristics of the speaker. In order to com-
plete our articulatory model, however, we require
physical data from which to infer these high-level
articulatory goals.

Electromagnetic articulography (EMA) is a
method to measure the motion of the vocal tract
during speech. In EMA, the speaker is placed
within a low-amplitude electromagnetic field pro-
duced within a cube of a known geometry. Tiny
sensors within this field induce small electric cur-
rents whose energy allows the inference of artic-
ulator positions and velocities to within 1 mm of
error (Yunusova et al., 2009). We derive data for
the following study from two EMA sources:

e The University of Edinburgh’s MOCHA
database, which provides phonetically-
balanced sentences repeated from TIMIT
(Zue et al., 1989) uttered by a male and a
female speaker (Wrench, 1999), and

The University of Toronto’s TORGO
database, from which we select sentences
repeated from TIMIT from two females
and three males (Rudzicz et al., 2008).
(Cerebrally palsied speech, which is the
focus of this database, is not included here).

For the following study we use the eight 2D po-
sitions common to both databases, namely the up-
per lip (UL), lower lip (LL), upper incisor (UI),
lower incisor (LI), tongue tip (TT), tongue blade
(TB), and tongue dorsum (TD). Since these po-
sitions are recorded in 3D in TORGO, we project



these onto the midsagittal plane. (Additionally, the
MOCHA database provides velum (V) data on this
plane, and TORGO provides the left and right lip
corners (LL and RL) but these are excluded from
study except where noted).

All articulatory data is aligned with its associ-
ated acoustic data, which is transformed to Mel-
frequency cepstral coefficients (MFCCs). Since
the 2D EMA system in MOCHA and the 3D EMA
system in TORGO differ in their recording rates,
the length of each MFCC frame in each database
must differ in order to properly align acoustics
with articulation in time. Therefore, each MFCC
frame covers 16 ms in the TORGO database, and
32 ms in MOCHA. Phoneme boundaries are de-
termined automatically in the MOCHA database
by forced alignment, and by a speech-language
pathologist in the TORGO database.

We approximate the tract variable space from
the physical space of the articulators, in general,
through principal component analysis (PCA) on
the latter, and subsequent sigmoid normalization
on [0, 1]. For example, the LTH tract variable is in-
ferred by calculating the first principal component
of the two-dimensional lower incisor (LI) motion
in the midsagittal plane, and by normalizing the
resulting univariate data through a scaled sigmoid.
The VEL variable is inferred similarly from velum
(V) EMA data. Tongue tip constriction location
and degree (TTCL and TTCD, respectively) are
inferred from the 1% and 2"¢ principal components
of tongue tip (TT) EMA data, with TBCL and
TBCD inferred similarly from tongue body (TB)
data. Finally, the glottis (GLO) is inferred by voic-
ing detection on acoustic energy below 150 Hz
(O’Shaughnessy, 2000), lip aperture (LA) is the
normalized Euclidean distance between the lips,
and lip protrusion (LP) is the normalized 2" prin-
cipal component of the midpoint between the lips.
All PCA is performed without segmentation of the
data. The result is a low-dimensional set of contin-
uous curves describing goal-relevant articulatory
variables. Figure 2, for example, shows the degree
of the lip aperture (LA) over time for all instances
of the /b/ phoneme in the MOCHA database. The
relevant articulatory goal of lip closure is evident.

3 Baseline systems

We now turn to the task of speech recognition.
Traditional Bayesian learning is restricted to uni-
versal or immutable relationships, and is agnos-
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Figure 2: Lip aperture (LA) over time during all
MOCHA instances of /b/.

tic towards dynamic systems or time-varying rela-
tionships. Dynamic Bayes networks (DBNs) are
directed acyclic graphs that generalize the power-
ful stochastic mechanisms of Bayesian represen-
tation to temporal sequences. We are free to ex-
plicitly provide topological (i.e., dependency) re-
lationships between relevant variables in our mod-
els, which can include measurements of tract data.

We examine two baseline systems.  The
first is the standard acoustic hidden Markov
model (HMM) augmented with a bigram language
model, as shown in figure 3(a). Here, W, — W4
represents word transition probabilities, learned
by maximum likelihood estimation, and Ph; —
Ph, 1 represents phoneme transition probabilities
whose order is explicitly specified by the relation-
ship W, — Ph,. Likewise, each phoneme Ph con-
ditions the sub-phoneme state, Q;, whose transi-
tion probabilities Q; — O, describe the dynam-
ics within phonemes. The variable M, refers to
hidden Gaussian indices so that the likelihoods
of acoustic observations, O, are represented by a
mixture of 4, 8, 16, or 32 Gaussians for each state
and each phoneme. See Murphy (2002) for a fur-
ther description of this representation.

The second baseline model is the articulatory
dynamic Bayes network (DBN-A). This augments
the standard acoustic HMM by replacing hidden
indices, M;, with discrete observations of the vo-
cal tract, K;, as shown in figure 3(b). The pattern
of acoustics within each phoneme is dependent on
a relatively restricted set of possible articulatory
configurations (Roweis, 1999). To find these dis-
crete positions, we obtain k vectors that best de-



scribe the articulatory data according to k-means
clustering with the sum-of-squares error function.
During training, the DBN variable K; is set ex-
plicitly to the index of the mean vector nearest to
the current frame of EMA data at time ¢. In this
way, the relationship K; — O; allows us to learn
how discretized articulatory configurations affect
acoustics. The training of DBNs involves a spe-
cialized version of expectation-maximization, as
described in the literature (Murphy, 2002; Ghahra-
mani, 1998). During inference, variables W;, Ph;,
and K; become hidden and we marginalize over
their possible values when computing their likeli-
hoods. Bigrams are computed by maximum like-
lihood on lexical annotations in the training data.

(a) HMM

(b) DBN-A

Figure 3: Baseline systems: (a) acoustic hidden
Markov model and (b) articulatory dynamic Bayes
network. Node W, represents the current word, Ph,
is the current phoneme, Q; is that phoneme’s dy-
namic state, O; is the acoustic observation, M, is
the Gaussian mixture component, and K; is the dis-
cretized articulatory configuration. Filled nodes
represent observed variables during training, al-
though only O; is observed during recognition.
Square nodes are discrete variables while circular
nodes are continuous variables.

4 Switching Kalman filter

Our first experimental system attempts speech
recognition given only articulatory data. The true
state of the tract variables at time ¢ — 1 constitutes
a 9-dimensional vector, X;_;, of continuous val-
ues. Under the task dynamics model of section
2.1, the motions of these tract variables obey crit-
ically damped second-order oscillatory relation-
ships. We start with the simplifying assumption of
linear dynamics here with allowances for random
Gaussian process noise, v;, since articulatory be-
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haviour is non-deterministic. Moreover, we know
that EMA recordings are subject to some error
(usually less than 1 mm (Yunusova et al., 2009)),
so the actual observation at time ¢, y,, will not in
general be the true position of the articulators. As-
suming that the relationship between y; and x; is
also linear, and that the measurement noise, w;,
is also Gaussian, then the dynamical articulatory
system can be described by

X, = DX 1+ v )

yr = CX; +w;.

Egs. 2 form the basis of the Kalman filter
which allows us to use EMA measurements di-
rectly, rather than quantized abstractions thereof
as in the DBN-A model. Obviously, since artic-
ulatory dynamics vary significantly for different
goals, we replicate eq. (2) for each phoneme and
connect these continuous Kalman filters together
with discrete conditioning variables for phoneme
and word, resulting in the switching Kalman fil-
ter (SKF) model. Here, parameters D, and v, are
implicit in the relationship X; — X;4, and param-
eters C; and w, are implicit in X, — y,. In this
model, observation y; is the instantaneous mea-
surements derived from EMA, and x; is their true
hidden states. These parameters are trained using
expectation-maximization, as described in the lit-
erature (Murphy, 1998; Deng et al., 2005).

5 Recognition with task dynamics

Our goal is to integrate task dynamics within an
ASR system for continuous sentences called TD-
ASR. Our approach is to re-rank an N-best list of
sentence hypotheses according to a weighted like-
lihood of their articulatory realizations. For ex-
ample, if a word sequence W; : w;1 wiz ... Wipn
has likelihoods Ly (W;) and La(W;) according to
purely acoustic and articulatory interpretations of
an utterance, respectively, then its overall score
would be

LW) = aLx (W) + (1 —a)La(Wi)  (3)

given a weighting parameter o set manually, as in
section 6.2. Acoustic likelihoods Ly (W;) are ob-
tained from Viterbi paths through relevant HMMs
in the standard fashion.

5.1 The TADA component

In order to obtain articulatory likelihoods, L (W;),
for each word sequence, we first generate artic-
ulatory realizations of those sequences according



to task dynamics. To this end, we use compo-
nents from the open-source TADA system (Nam
and Goldstein, 2006), which is a complete imple-
mentation of task dynamics. From this toolbox,
we use the following components:

e A syllabic dictionary supplemented with
the International Speech Lexicon Dictionary
(Hasegawa-Johnson and Fleck, 2007). This
breaks word sequences W; into syllable se-
quences S; consisting of onsets, nuclei, and
coda and covers all of MOCHA and TORGO.

A syllable-to-gesture lookup table. Given
a syllabic sequence, S;, this table provides
the gestural goals necessary to produce those
syllables. For example, given the syllable
pub in figure 1, this table provides the tar-
gets for the GLO, VEL, TBCL, and TBCD
tract variables, and the parameters for the
second-order differential equation, eq. 1,
that achieves those goals. These parameters
have been empirically tuned by the authors
of TADA according to a generic, speaker-
independent representation of the vocal tract
(Saltzman and Munhall, 1989).

A component that produces the continuous
tract variable paths that produce an utter-
ance. This component takes into account var-
ious physiological aspects of human speech
production, including intergestural and in-
terarticulator co-ordination and timing (Nam
and Saltzman, 2003; Goldstein and Fowler,
2003), and the neutral (“schwa”) forces of the
vocal tract (Saltzman and Munhall, 1989).
This component takes a sequence of gestu-
ral goals predicted by the segment-to-gesture
lookup table, and produces appropriate paths
for each tract variable.

The result of the TADA component is a set of
N 9-dimensional articulatory paths, TV;, neces-
sary to produce the associated word sequences, W;
for i = 1..N. Since task dynamics is a prescrip-
tive model and fully deterministic, TV; sequences
are the canonical or default articulatory realiza-
tions of the associated sentences. These canonical
realizations are independent of our training data,
so we transform them in order to more closely re-
semble the observed articulatory behaviour in our
EMA data. Towards this end, we train a switch-
ing Kalman filter identical to that in section 4, ex-
cept the hidden state variable x; is replaced by the

64

observed instantaneous canonical TVs predicted
by TADA. In this way we are explicitly learning
a relationship between TADA’s task dynamics and
human data. Since the lengths of these sequences
are generally unequal, we align the articulatory be-
haviour predicted by TADA with training data from
MOCHA and TORGO using standard dynamic
time warping (Sakoe and Chiba, 1978). During
run-time, the articulatory sequence y, most likely
to have been produced by the human data given the
canonical sequence TV; is inferred by the Viterbi
algorithm through the SKF model with all other
variables hidden. The result is a set of articulatory
sequences, TV}, for i = 1..N, that represent the
predictions of task dynamics that better resemble
our data.

5.2 Acoustic-articulatory inversion

In order to estimate the articulatory likelihood
of an utterance, we need to evaluate each trans-
formed articulatory sequence, TV, within proba-
bility distributions ranging over all tract variables.
These distributions can be inferred using acoustic-
articulatory inversion. There are a number of ap-
proaches to this task, including vector quantiza-
tion, and expectation-maximization with Gaussian
mixtures (Hogden and Valdez, 2001; Toda et al.,
2008). These approaches accurately inferred the
xy position of articulators to within 0.41 mm and
2.73 mm. Here, we modify the approach taken
by Richmond et al. (2003), who estimate proba-
bility functions over the 2D midsagittal positions
of 7 articulators, given acoustics, with a mixture-
density network (MDN). An MDN is essentially a
typical discriminative multi-layer neural network
whose output consists of the parameters to Gaus-
sian mixtures. Here, each Gaussian mixture de-
scribes a probability function over TV positions
given the acoustic frame at time ¢. For exam-
ple, figure 4 shows an intensity map of the likely
values for tongue-tip constriction degree (TTCD)
for each frame of acoustics, superimposed with
the ‘true’ trajectory of that TV. Our networks are
trained with acoustic and EMA-derived data as de-
scribed in section 2.2.

5.3 Recognition by reranking

During recognition of a test utterance, a standard
acoustic HMM produces word sequence hypothe-
ses, W;, and associated likelihoods, L(W;), for i =
1..N. The expected canonical motion of the tract
variables, TV; is then produced by task dynamics
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Figure 4: Example probability density of tongue
tip constriction degree over time, inferred from
acoustics. The true trajectory is superimposed as a
black curve.

for each of these word sequences and transformed
by an SKF to better match speaker data, giving
TV;. The likelihoods of these paths are then eval-
uated within probability distributions produced by
an MDN. The mechanism for producing the artic-
ulatory likelihood is shown in figure 5. The overall
likelihood, L(W;) = oLy (W;) + (1 — at)LA(W;), is
then used to produce a final hypothesis list for the
given acoustic input.

6 Experiments

Experimental data is obtained from two sources,
as described in section 2.2. We procure 1200
sentences from Toronto’s TORGO database, and
896 from Edinburgh’s MOCHA. In total, there are
460 total unique sentence forms, 1092 total unique
word forms, and 11065 total words uttered. Ex-
cept where noted, all experiments randomly split
the data into 90% training and 10% testing sets for
5-cross validation. MOCHA and TORGO data are
never combined in a single training set due to dif-
fering EMA recording rates. In all cases, models
are database-dependent (i.e., all TORGO data is
conflated, as is all of MOCHA).

For each of our baseline systems, we calcu-
late the phoneme-error-rate (PER) and word-error-
rate (WER) after training. The phoneme-error-
rate is calculated according to the proportion of
frames of speech incorrectly assigned to the proper
phoneme. The word-error-rate is calculated as
the sum of insertion, deletion, and substitution er-
rors in the highest-ranked hypothesis divided by
the total number of words in the correct orthogra-
phy. The traditional HMM is compared by vary-
ing the number of Gaussians used in the modelling
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System  Parameters | PER (%) WER (%)
M| =4 29.3 14.5
M| =38 27.0 13.9

HMM M| =16 26.1 10.2
|M| =32 25.6 9.7
|K| =4 26.1 13.0
|K| =28 25.2 11.3

DBN-A |K| =16 24.9 9.8
|K| =32 24.8 9.4

Table 1: Phoneme- and Word-Error-Rate (PER
and WER) for different parameterizations of the
baseline systems.

No. of Gaussians
1 2 3 4
LTH | -0.28 -0.18 —-0.15 -0.11
LA -0.36 —-0.32 —-0.30 -0.29
LP —046 —0.44 —-043 —-0.43
GLO | —148 —-1.30 —-129 -—1.25
TTCD | —1.79 —-1.60 —1.51 —1.47
TTCL | —1.81 —-1.62 —1.53 —-1.49
TBCD | —0.88 —-0.79 —-0.75 -0.72
TDCL | —0.22 —-0.20 -0.18 —-0.17

Table 2: Average log likelihood of true tract vari-
able positions in test data, under distributions pro-
duced by mixture density networks with varying
numbers of Gaussians.

of acoustic observations. Similarly, the DBN-A
model is compared by varying the number of dis-
crete quantizations of articulatory configurations,
as described in section 3. Results are obtained by
direct decoding. The average results across both
databases, between which there are no significant
differences, are shown in table 1. In all cases
the DBN-A model outperforms the HMM, which
highlights the benefit of explicitly conditioning
acoustic observations on articulatory causes.

6.1 Efficacy of TD-ASR components

In order to evaluate the whole system, we start by
evaluating its parts. First, we test how accurately
the mixture-density network (MDN) estimates the
position of the articulators given only information
from the acoustics available during recognition.
Table 2 shows the average log likelihood over each
tract variable across both databases. These re-
sults are consistent with the state-of-the-art (Toda
et al., 2008). In the following experiments, we use
MDN:ss that produce 4 Gaussians.
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W; produced by standard acoustic techniques.

Manner Canonical Transformed
approximant 0.19 0.16
fricative 0.37 0.29
nasal* 0.24 0.18
retroflex 0.23 0.19
plosive 0.10 0.08
vowel 0.27 0.25

Table 3: Average difference between predicted
tract variables and observed data, on [0, 1] scale.
(*) Nasals are evaluated only with MOCHA data,
since TORGO data lacks velum measurements.

We evaluate how closely transformations to the
canonical tract variables predicted by TADA match
the data. Namely, we input the known orthography
for each test utterance into TADA, obtain the pre-
dicted canonical tract variables TV, and transform
these according to our trained SKF. The resulting
predicted and transformed sequences are aligned
with our measurements derived from EMA with
dynamic time warping. Finally, we measure the
average difference between the observed data and
the predicted (canonical and transformed) tract
variables. Table 3 shows these differences accord-
ing to the phonological manner of articulation. In
all cases the transformed tract variable motion is
more accurate, and significantly so at the 95% con-
fidence level for nasal and retroflex phonemes, and
at 99% for fricatives. The practical utility of the
transformation component is evaluated in its effect
on recognition rates, as described below.

6.2 Recognition with TD-ASR

With the performance of the components of TD-
ASR better understood, we combine these and
study the resulting composite TD-ASR system.
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Figure 6: Word-error-rate according to varying o,
for both TORGO and MOCHA data.

Figure 6 shows the WER as a function of o with
TD-ASR and N = 4 hypotheses per utterance. The
effect of a is clearly non-monotonic, with articula-
tory information clearly proving useful. Although
systems whose rankings are weighted solely by the
articulatory component perform better than the ex-
clusively acoustic systems, the lists available to the
former are procured from standard acoustic ASR.
Interestingly, the gap between systems trained to
the two databases increases as o approaches 1.0.
Although this gap is not significant, it may be the
result of increased inter-speaker articulatory varia-
tion in the TORGO database, which includes more
than twice as many speakers as MOCHA.

Figure 7 shows the WER obtained with TD-
ASR given varying-length N-best lists and o =
0.7. TD-ASR accuracy at N = 4 is significantly
better than both TD-ASR at N = 2 and the base-
line approaches of table 1 at the 95% confidence
level. However, for N > 4 there is a noticeable
and systematic worsening of performance.
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ing lengths of N-best hypotheses used, for both
TORGO and MOCHA data.

The optimal parameterization of the TD-ASR
model results in an average word-error-rate of
8.43%, which represents a 10.3% relative error re-
duction over the best parameterization of our base-
line models. The SKF model of section 4 differs
from the HMM and DBN-A baseline models only
in its use of continuous (rather than discrete) hid-
den dynamics and in its articulatory observations.
However, its performance is far more variable, and
less conclusive. On the MOCHA database the
SKF model had an average of 9.54% WER with
a standard deviation of 0.73 over 5 trials, and an
average of 9.04% WER with a standard deviation
of 0.64 over 5 trials on the TORGO database. De-
spite the presupposed utility of direct articulatory
observations, the SKF system does not perform
significantly better than the best DBN-A model.

Finally, the experiments of tables 6 and 7 are
repeated with the canonical tract variables passed
untransformed to the probability maps generated
by the MDNs. Predictably, resulting articulatory
likelihoods Ly are less representative and increas-
ing their contribution o to the hypothesis rerank-
ing does not improve TD-ASR performance sig-
nificantly, and in some instances worsens it. Al-
though TADA is a useful prescriptive model of
generic articulation, its use must be tempered with
knowledge of inter-speaker variability.

7 Discussion and conclusions

The articulatory medium of speech rarely informs
modern speech recognition. We have demon-
strated that the use of direct articulatory knowl-
edge can substantially reduce phoneme and word
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errors in speech recognition, especially if that
knowledge is motivated by high-level abstrac-
tions of vocal tract behaviour. Task dynamic the-
ory provides a coherent and biologically plausible
model of speech production with consequences for
phonology (Browman and Goldstein, 1986), neu-
rolinguistics (Guenther and Perkell, 2004), and the
evolution of speech and language (Goldstein et al.,
2006). We have shown that it is also useful within
speech recognition.

We have overcome a conceptual impediment in
integrating task dynamics and ASR, which is the
former’s deterministic nature. This integration is
accomplished by stochastically transforming pre-
dicted articulatory dynamics and by calculating
the likelihoods of these dynamics according to
speaker data. However, there are several new av-
enues for exploration. For example, task dynamics
lends itself to more general applications of con-
trol theory, including automated self-correction,
rhythm, co-ordination, and segmentation (Fried-
land, 2005). Other high-level questions also re-
main, such as whether discrete gestures are the
correct biological and practical paradigm, whether
a purely continuous representation would be more
appropriate, and whether this approach general-
izes to other languages.

In general, our experiments have revealed very
little difference between the use of MOCHA and
TORGO EMA data. An ad hoc analysis of some
of the errors produced by the TD-ASR system
found no particular difference between how sys-
tems trained to each of these databases recognized
nasal phonemes, although only those trained with
MOCHA considered velum motion. Other errors
common to both sources of data include phoneme
insertion errors, normally vowels, which appear to
co-occur with some spurious motion of the tongue
between segments, especially for longer N-best
lists. Despite the relative slow motion of the ar-
ticulators relative to acoustics, there remains some
intermittent noise.

As more articulatory data becomes available
and as theories of speech production become more
refined, we expect that their combined value to
speech recognition will become indispensable.
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Abstract

We present a data-driven approach to learn
user-adaptive referring expression gener-
ation (REG) policies for spoken dialogue
systems. Referring expressions can be dif-
ficult to understand in technical domains
where users may not know the techni-
cal ‘jargon’ names of the domain entities.
In such cases, dialogue systems must be
able to model the user’s (lexical) domain
knowledge and use appropriate referring
expressions. We present a reinforcement
learning (RL) framework in which the sys-
tem learns REG policies which can adapt
to unknown users online. Furthermore,
unlike supervised learning methods which
require a large corpus of expert adaptive
behaviour to train on, we show that effec-
tive adaptive policies can be learned from
a small dialogue corpus of non-adaptive
human-machine interaction, by using a RL
framework and a statistical user simula-
tion. We show that in comparison to
adaptive hand-coded baseline policies, the
learned policy performs significantly bet-
ter, with an 18.6% average increase in
adaptation accuracy. The best learned pol-
icy also takes less dialogue time (average
1.07 min less) than the best hand-coded
policy. This is because the learned poli-
cies can adapt online to changing evidence
about the user’s domain expertise.

1 Introduction

We present a reinforcement learning (Sutton and
Barto, 1998) framework to learn user-adaptive re-
ferring expression generation policies from data-
driven user simulations. A user-adaptive REG pol-
icy allows the system to choose appropriate ex-
pressions to refer to domain entities in a dialogue
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Jargon: Please plug one end of the broadband
cable into the broadband filter.

Descriptive: Please plug one end of the thin
white cable with grey ends into the
small white box.

Table 1: Referring expression examples for 2 enti-
ties (from the corpus)

setting. For instance, in a technical support con-
versation, the system could choose to use more
technical terms with an expert user, or to use more
descriptive and general expressions with novice
users, and a mix of the two with intermediate users
of various sorts (see examples in Table 1).

In natural human-human conversations, dia-
logue partners learn about each other and adapt
their language to suit their domain expertise (Is-
sacs and Clark, 1987). This kind of adaptation
is called Alignment through Audience
Design (Clark and Murphy, 1982; Bell, 1984).
We assume that users are mostly unknown to
the system and therefore that a spoken dialogue
system (SDS) must be capable of observing the
user’s dialogue behaviour, modelling his/her do-
main knowledge, and adapting accordingly, just
like human interlocutors. Rule-based and super-
vised learning approaches to user adaptation in
SDS have been proposed earlier (Cawsey, 1993;
Akiba and Tanaka, 1994). However, such methods
require expensive resources such as domain ex-
perts to hand-code the rules, or a corpus of expert-
layperson interactions to train on. In contrast, we
present a corpus-driven framework using which
a user-adaptive REG policy can be learned using
RL from a small corpus of non-adaptive human-
machine interaction.

We show that these learned policies perform
better than simple hand-coded adaptive policies
in terms of accuracy of adaptation and dialogue

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 69-78,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



time. We also compared the performance of poli-
cies learned using a hand-coded rule-based simu-
lation and a data-driven statistical simulation and
show that data-driven simulations produce better
policies than rule-based ones.

In section 2, we present some of the related
work. Section 3 presents the dialogue data that
we used to train the user simulation. Section 4 and
section 5 describe the dialogue system framework
and the user simulation models. In section 6, we
present the training and in section 7, we present
the evaluation for different REG policies.

2 Related work

There are several ways in which natural language
generation (NLG) systems adapt to users. Some
of them adapt to a user’s goals, preferences, en-
vironment and so on. Our focus in this study
is restricted to the user’s lexical domain exper-
tise. Several NLG systems adapt to the user’s do-
main expertise at different levels of generation -
text planning (Paris, 1987), complexity of instruc-
tions (Dale, 1989), referring expressions (Reiter,
1991), and so on. Some dialogue systems, such
as COMET, have also incorporated NLG modules
that present appropriate levels of instruction to the
user (McKeown et al., 1993). However, in all the
above systems, the user’s knowledge is assumed to
be accurately represented in an initial user model
using which the system adapts its language. In
contrast to all these systems, our adaptive REG
policy knows nothing about the user when the con-
versation starts.

Rule-based and supervised learning approaches
have been proposed to learn and adapt during the
conversation dynamically. Such systems learned
from the user at the start and later adapted to the
domain knowledge of the users. However, they ei-
ther require expensive expert knowledge resources
to hand-code the inference rules (Cawsey, 1993) or
large corpus of expert-layperson interaction from
which adaptive strategies can be learned and mod-
elled, using methods such as Bayesian networks
(Akiba and Tanaka, 1994). In contrast, we present
an approach that learns in the absence of these ex-
pensive resources. It is also not clear how super-
vised and rule-based approaches choose between
when to seek more information and when to adapt.
In this study, we show that using reinforcement
learning this decision is learned automatically.

Reinforcement Learning (RL) has been suc-
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cessfully used for learning dialogue management
policies since (Levin et al., 1997). The learned
policies allow the dialogue manager to optimally
choose appropriate dialogue acts such as instruc-
tions, confirmation requests, and so on, under
uncertain noise or other environment conditions.
There have been recent efforts to learn information
presentation and recommendation strategies using
reinforcement learning (Rieser and Lemon, 2009;
Hernandez et al., 2003; Rieser and Lemon, 2010),
and joint optimisation of Dialogue Management
and NLG using hierarchical RL has been pro-
posed by (Lemon, 2010). In contrast, we present a
framework to learn to choose appropriate referring
expressions based on a user’s domain knowledge.
Earlier, we reported a proof-of-concept work us-
ing a hand-coded rule-based user simulation (Ja-
narthanam and Lemon, 2009c¢).

3 The Wizard-of-Oz Corpus

We use a corpus of technical support dialogues
collected from real human users using a Wizard-
of-Oz method (Janarthanam and Lemon, 2009b).
The corpus consists of 17 dialogues from users
who were instructed to physically set up a home
broadband connection using objects like a wire-
less modem, cables, filters, etc. They listened to
the instructions from the system and carried them
out using the domain objects laid in front of them.
The human ‘wizard’ played the role of only an in-
terpreter who would understand what the user said
and annotate it as a dialogue act. The set-up ex-
amined the effect of using three types of referring
expressions (jargon, descriptive, and tutorial), on
the users.

Out of the 17 dialogues, 6 used a jargon strat-
egy, 6 used a descriptive strategy, and 5 used a
tutorial strategy!. The task had reference to 13
domain entities, mentioned repeatedly in the di-
alogue. In total, there are 203 jargon, 202 descrip-
tive and 167 tutorial referring expressions. Inter-
estingly, users who weren’t acquainted with the
domain objects requested clarification on some of
the referring expressions used. The dialogue ex-
changes between the user and system were logged
in the form of dialogue acts and the system’s
choices of referring expressions. Each user’s
knowledge of domain entities was recorded both
before and after the task and each user’s interac-

!"The tutorial strategy uses both jargon and descriptive ex-
pressions together.



tions with the environment were recorded. We use
the dialogue data, pre-task knowledge tests, and
the environment interaction data to train a user
simulation model. Pre and post-task test scores
were used to model the learning behaviour of the
users during the task (see section 5).

The corpus also recorded the time taken to com-
plete each dialogue task. We used these data to
build a regression model to calculate total dialogue
time for dialogue simulations. The strategies were
never mixed (with some jargon, some descriptive
and some tutorial expressions) within a single con-
versation. Therefore, please note that the strate-
gies used for data collection were not adaptive and
the human ‘wizard’ has no role in choosing which
referring expression to present to the user. Due to
this fact, no user score regarding adaptation was
collected. We therefore measure adaptation objec-
tively as explained in section 6.1.

4 The Dialogue System

In this section, we describe the different modules
of the dialogue system. The interaction between
the different modules is shown in figure 1 (in
learning mode). The dialogue system presents the
user with instructions to setup a broadband con-
nection at home. In the Wizard of Oz setup, the
system and the user interact using speech. How-
ever, in our machine learning setup, they interact at
the abstract level of dialogue actions and referring
expressions. Our objective is to learn to choose
the appropriate referring expressions to refer to the
domain entities in the instructions.

Dialogue User
Manager
" - Ast RECg,
Dialogue script , ;
Observe/
) _ Manipulate EAUI
Dialogue Ayt i

NLG
module

State

User Model

Dialogue system

User simulation

Figure 1: System User Interaction (learning)

4.1 Dialogue Manager

The dialogue manager identifies the next instruc-
tion (dialogue act) to give to the user based on the
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dialogue management policy 74,,. Since, in this
study, we focus only on learning the REG policy,
the dialogue management is coded in the form of
a finite state machine. In this dialogue task, the
system provides two kinds of instructions - ob-
servation and manipulation. For observation in-
structions, users observe the environment and re-
port back to the system, and for the manipulation
instructions (such as plugging in a cable in to a
socket), they manipulate the domain entities in the
environment. When the user carries out an instruc-
tion, the system state is updated and the next in-
struction is given. Sometimes, users do not under-
stand the referring expressions used by the system
and then ask for clarification. In such cases, the
system provides clarification on the referring ex-
pression (provide_clar), which is information to
enable the user to associate the expression with
the intended referent. The system action A, (¢
denoting turn, s denoting system) is therefore to
either give the user the next instruction or a clarifi-
cation. When the user responds in any other way,
the instruction is simply repeated. The dialogue
manager is also responsible for updating and man-
aging the system state S, ; (see section 4.2). The
system interacts with the user by passing both the
system action Ag; and the referring expressions
REC,; (see section 4.3).

4.2 The dialogue state

The dialogue state S, is a set of variables that
represent the current state of the conversation. In
our study, in addition to maintaining an overall di-
alogue state, the system maintains a user model
UM, which records the initial domain knowl-
edge of the user. It is a dynamic model that starts
with a state where the system does not have any
idea about the user. As the conversation pro-
gresses, the dialogue manager records the evi-
dence presented to it by the user in terms of his
dialogue behaviour, such as asking for clarifica-
tion and interpreting jargon. Since the model is
updated according to the user’s behaviour, it may
be inaccurate if the user’s behaviour is itself uncer-
tain. So, when the user’s behaviour changes (for
instance, from novice to expert), this is reflected
in the user model during the conversation. Hence,
unlike previous studies mentioned in section 2, the
user model used in this system is not always an ac-
curate model of the user’s knowledge and reflects
a level of uncertainty about the user.



Each jargon referring expression x is repre-
sented by a three valued variable in the dialogue
state: user_knows_x. The three values that each
variable takes are yes, no, not_sure. The vari-
ables are updated using a simple user model up-
date algorithm. Initially each variable is set to
not_sure. If the user responds to an instruction
containing the referring expression x with a clari-
fication request, then user_knows_x is set to no.
Similarly, if the user responds with appropriate in-
formation to the system’s instruction, the dialogue
manager sets user_knows_x is setto yes.

The dialogue manager updates the variables
concerning the referring expressions used in the
current system utterance appropriately after the
user’s response each turn. The user may have the
capacity to learn jargon. However, only the user’s
initial knowledge is recorded. This is based on the
assumption that an estimate of the user’s knowl-
edge helps to predict the user’s knowledge of the
rest of the referring expressions. Another issue
concerning the state space is its size. Since, there
are 13 entities and we only model the jargon ex-
pressions, the state space size is 3'3.

4.3 REG module

The REG module is a part of the NLG module
whose task is to identify the list of domain enti-
ties to be referred to and to choose the appropriate
referring expression for each of the domain enti-
ties for each given dialogue act. In this study, we
focus only on the production of appropriate refer-
ring expressions to refer to domain entities men-
tioned in the dialogue act. It chooses between the
two types of referring expressions - jargon and de-
scriptive. For example, the domain entity broad-
band filter can be referred to using the jargon ex-
pression “broadband filter” or using the descrip-
tive expression “small white box2. We call this
the act of choosing the REG action. The tutorial
strategy was not investigated here since the corpus
analysis showed tutorial utterances to be very time
consuming. In addition, they do not contribute to
the adaptive behaviour of the system.

The REG module operates in two modes - learn-
ing and evaluation. In the learning mode, the REG
module is the learning agent. The REG mod-
ule learns to associate dialogue states with opti-
mal REG actions. This is represented by a REG

2We will use italicised forms to represent the domain enti-

ties (e.g. broadband filter) and double quotes to represent the
referring expressions (e.g. “broadband filter”).
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policy 7yeq : UMs; — REC,;, which maps
the states of the dialogue (user model) to optimal
REG actions. The referring expression choices
REC,; is a set of pairs identifying the refer-
ent 12 and the type of expression 7' used in the
current system utterance. For instance, the pair
(broadband filter, desc) represents the descriptive
expression “small white box”.

RECs; = {(R1,Th),.... (Rn,Ty)}

In the evaluation mode, a trained REG policy in-
teracts with unknown users. It consults the learned
policy 7.4 to choose the referring expressions
based on the current user model.

5 User Simulations

In this section, we present user simulation models
that simulate the dialogue behaviour of a real hu-
man user. These external simulation models are
different from internal user models used by the
dialogue system. In particular, our model is the
first to be sensitive to a system’s choices of refer-
ring expressions. The simulation has a statistical
distribution of in-built knowledge profiles that de-
termines the dialogue behaviour of the user being
simulated. If the user does not know a referring
expression, then he is more likely to request clar-
ification. If the user is able to interpret the refer-
ring expressions and identify the references then
he is more likely to follow the system’s instruc-
tion. This behaviour is simulated by the action se-
lection models described below.

Several user simulation models have been pro-
posed for use in reinforcement learning of dia-
logue policies (Georgila et al., 2005; Schatzmann
et al., 2006; Schatzmann et al., 2007; Ai and Lit-
man, 2007). However, they are suited only for
learning dialogue management policies, and not
natural language generation policies. Earlier, we
presented a two-tier simulation trained on data
precisely for REG policy learning (Janarthanam
and Lemon, 2009a). However, it is not suited for
training on small corpus like the one we have at
our disposal. In contrast to the earlier model, we
now condition the clarification requests on the ref-
erent class rather than the referent itself to handle
data sparsity problem.

The user simulation (US) receives the system
action A,; and its referring expression choices
REC,; at each turn. The US responds with a
user action A, ; (u denoting user). This can ei-
ther be a clarification request (cr) or an instruction



response (zr). We used two kinds of action selec-
tion models: corpus-driven statistical model and
hand-coded rule-based model.

5.1 Corpus-driven action selection model

In the corpus-driven model, the US produces a
clarification request cr based on the class of the
referent C(R;), type of the referring expression
T;, and the current domain knowledge of the user
for the referring expression DK, ;(R;,T;). Do-
main entities whose jargon expressions raised clar-
ification requests in the corpus were listed and
those that had more than the mean number of clar-
ification requests were classified as difficult
and others as easy entities (for example, “power
adaptor” is easy - all users understood this
expression, “broadband filter” is difficult).
Clarification requests are produced using the fol-
lowing model.

P(Au’t = CT’(Rz', T‘z)|C(Rl)7 j—lia DKu,t(Ria jﬂl))
where (R;,T;) € RECs,

One should note that the actual literal expres-
sion is not used in the transaction. Only the entity
that it is referring to (R;) and its type (7;) are used.
However, the above model simulates the process
of interpreting and resolving the expression and
identifying the domain entity of interest in the in-
struction. The user identification of the entity is
signified when there is no clarification request pro-
duced (i.e. A, = none). When no clarification
request is produced, the environment action E£'A,, ¢
is generated using the following model.

P(EAu,t|As,t) if Au,t! = CT(Ria TZ)

Finally, the user action is an instruction re-
sponse which is determined by the system action
As ¢ Instruction responses can be different in dif-
ferent conditions. For an observe and report in-
struction, the user issues a provide_in fo action
and for a manipulation instruction, the user re-
sponds with an acknowledgement action and so
on.

P(Au,t = Z'T‘EAu,t, As,t)

All the above models were trained on our cor-
pus data using maximum likelihood estimation and
smoothed using a variant of Witten-Bell discount-
ing. According to the data, clarification requests
are much more likely when jargon expressions
are used to refer to the referents that belong to
the difficult class and which the user doesn’t
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livebox = 1

wall_phone _socket = 1
broadband_cable = 0
Ib_power_light = 1
Ib_broadband light = 0
Ib_adsl_socket = 0
pc_ethernet_socket = 1

power_adaptor = 1
broadband filter = 0
ethernet_cable = 1
Ib_power_socket = 1
Ib_ethernet_light = 0
Ib_ethernet_socket = 0

Table 2: Domain knowledge: an Intermediate

User

know about. When the system uses expressions
that the user knows, the user generally responds
to the instruction given by the system. These user
simulation models have been evaluated and found
to produce behaviour that is very similar to the
original corpus data, using the Kullback-Leibler
divergence metric (Cuayahuitl, 2009).

5.2 Rule-based action selection model

We also built a rule-based simulation using the
above models but where some of the parameters
were set manually instead of estimated from the
data. The purpose of this simulation is to in-
vestigate how learning with a data-driven statisti-
cal simulation compares to learning with a simple
hand-coded rule-based simulation. In this simula-
tion, the user always asks for a clarification when
he does not know a jargon expression (regardless
of the class of the referent) and never does this
when he knows it. This enforces a stricter, more
consistent behaviour for the different knowledge
patterns, which we hypothesise should be easier to
learn to adapt to, but may lead to less robust REG
policies.

5.3 User Domain knowledge

The user domain knowledge is initially set to one
of several models at the start of every conver-
sation. The models range from novices to ex-
perts which were identified from the corpus using
k-means clustering. The initial knowledge base
(DK initia) for an intermediate user is shown in
table 2. A novice user knows only “power adap-
tor”, and an expert knows all the jargon expres-
sions. We assume that users can interpret the de-
scriptive expressions and resolve their references.
Therefore, they are not explicitly represented. We
only code the user’s knowledge of jargon expres-
sions. This is represented by a boolean variable
for each domain entity.



Corpus data shows that users can learn jargon
expressions during the conversation. The user’s
domain knowledge DK, is modelled to be dy-
namic and is updated during the conversation.
Based on our data, we found that when presented
with clarification on a jargon expression, users al-
ways learned the jargon.

if Ay = provide_clar(R;,T;)
DKy 41(R;, T;) «— 1

Users also learn when jargon expressions are re-
peatedly presented to them. Learning by repetition
follows the pattern of a learning curve - the greater
the number of repetitions #(R;, T;), the higher the
likelihood of learning. This is modelled stochas-
tically based on repetition using the parameter
#(R;,T;) as follows (where (R;,T;) € RECy ) .

P(DKu,H_l(Ri, Tz) — 1’#(]3%; T;))

The final state of the user’s domain knowl-
edge (DK, fina) may therefore be different from
the initial state (DK, jnitiqr) due to the learn-
ing effect produced by the system’s use of jar-
gon expressions. In most studies done previously,
the user’s domain knowledge is considered to be
static. However in real conversation, we found that
the users nearly always learned jargon expressions
from the system’s utterances and clarifications.

6 Training

The REG module was trained (operated in learn-
ing mode) using the above simulations to learn
REG policies that select referring expressions
based on the user expertise in the domain. As
shown in figure 1, the learning agent (REG mod-
ule) is given a reward at the end of every dialogue.
During the training session, the learning agent ex-
plores different ways to maximize the reward. In
this section, we discuss how to code the learning
agent’s goals as reward. We then discuss how the
reward function is used to train the learning agent.

6.1 Reward function

A reward function generates a numeric reward for
the learning agent’s actions. It gives high rewards
to the agent when the actions are favourable and
low rewards when they are not. In short, the re-
ward function is a representation of the goal of the
agent. It translates the agent’s actions into a scalar
value that can be maximized by choosing the right
action sequences.
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We designed a reward function for the goal of
adapting to each user’s domain knowledge. We
present the Adaptation Accuracy score AA that
calculates how accurately the agent chose the ex-
pressions for each referent r, with respect to the
user’s knowledge. Appropriateness of an expres-
sion is based on the user’s knowledge of the ex-
pression. So, when the user knows the jargon ex-
pression for r, the appropriate expression to use is
jargon, and if s/he doesn’t know the jargon, an de-
scriptive expression is appropriate. Although the
user’s domain knowledge is dynamically chang-
ing due to learning, we base appropriateness on
the initial state, because our objective is to adapt to
the initial state of the user DK, jn;tiq1. However,
in reality, designers might want their system to ac-
count for user’s changing knowledge as well. We
calculate accuracy per referent RA, as the ratio
of number of appropriate expressions to the total
number of instances of the referent in the dialogue.
We then calculate the overall mean accuracy over
all referents as shown below.

__ #(appropriate_expressions(r))
RA, = #(instances(r))
1

#(r)

AdaptationAccuracyAA = Y RA,

Note that this reward is computed at the end of
the dialogue (it is a ‘final’ reward), and is then
back-propagated along the action sequence that
led to that final state. Thus the reward can be com-
puted for each system REG action, without the
system having access to the user’s initial domain
knowledge while it is learning a policy.

Since the agent starts the conversation with
no knowledge about the user, it may try to use
more exploratory moves to learn about the user,
although they may be inappropriate. However,
by measuring accuracy to the initial user state,
the agent is encouraged to restrict its exploratory
moves and start predicting the user’s domain
knowledge as soon as possible. The system should
therefore ideally explore less and adapt more to
increase accuracy. The above reward function re-
turns 1 when the agent is completely accurate in
adapting to the user’s domain knowledge and it
returns O if the agent’s REC choices were com-
pletely inappropriate. Usually during learning, the
reward value lies between these two extremes and
the agent tries to maximize it to 1.



6.2 Learning

The REG module was trained in learning mode us-
ing the above reward function using the SHAR-
SHA reinforcement learning algorithm (with lin-
ear function approximation) (Shapiro and Langley,
2002). This is a hierarchical variant of SARSA,
which is an on-policy learning algorithm that up-
dates the current behaviour policy (see (Sutton
and Barto, 1998)). The training produced approx.
5000 dialogues. Two types of simulations were
used as described above: Data-driven and Hand-
coded. Both user simulations were calibrated to
produce three types of users: Novice, Int2 (in-
termediate) and Expert, randomly but with equal
probability. Novice users knew just one jargon
expression, Int2 knew seven, and Expert users
knew all thirteen jargon expressions. There was
an underlying pattern in these knowledge profiles.
For example, Intermediate users were those who
knew the commonplace domain entities but not
those specific to broadband connection. For in-
stance, they knew “ethernet cable” and “pc ether-
net socket” but not “broadband filter” and “broad-
band cable”.

Initially, the REG policy chooses randomly be-
tween the referring expression types for each do-
main entity in the system utterance, irrespective
of the user model state. Once the referring expres-
sions are chosen, the system presents the user sim-
ulation with both the dialogue act and referring ex-
pression choices. The choice of referring expres-
sion affects the user’s dialogue behaviour which in
turn makes the dialogue manager update the user
model. For instance, choosing a jargon expres-
sion could evoke a clarification request from the
user, which in turn prompts the dialogue manager
to update the user model with the new information
that the user is ignorant of the particular expres-
sion. It should be noted that using a jargon expres-
sion is an information seeking move which enables
the REG module to estimate the user’s knowledge
level. The same process is repeated for every dia-
logue instruction. At the end of the dialogue, the
system is rewarded based on its choices of refer-
ring expressions. If the system chooses jargon ex-
pressions for novice users or descriptive expres-
sions for expert users, penalties are incurred and if
the system chooses REs appropriately, the reward
is high. On the one hand, those actions that fetch
more reward are reinforced, and on the other hand,
the agent tries out new state-action combinations
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Reward = Adaptation Accuracy (AA)

to explore the possibility of greater rewards. Over
time, it stops exploring new state-action combina-
tions and exploits those actions that contribute to
higher reward. The REG module learns to choose
the appropriate referring expressions based on the
user model in order to maximize the overall adap-
tation accuracy.

Figure 2 shows how the agent learns using the
data-driven (Learned DS) and hand-coded simu-
lations (L.earned HS) during training. It can be
seen in the figure 2 that towards the end the curve
plateaus signifying that learning has converged.
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Figure 2: Learning curves - Training

7 Evaluation

In this section, we present the evaluation metrics
used, the baseline policies that were hand-coded
for comparison, and the results of evaluation.

7.1 Metrics

In addition to the adaptation accuracy mentioned
in section 6.1, we also measure other parame-
ters from the conversation in order to show how
learned adaptive policies compare with other poli-
cies on other dimensions. We calculate the time
taken (17"7me) for the user to complete the dialogue
task. This is calculated using a regression model
from the corpus based on number of words, turns,
and mean user response time. We also measure
the (normalised) learning gain (LG) produced by
using unknown jargon expressions. This is calcu-
lated using the pre and post scores from the user
domain knowledge (D K,) as follows.

Post—Pre

Learning Gain LG = ~3>5 -



7.2 Baseline REG policies

In order to compare the performance of the learned
policy with hand-coded REG policies, three sim-
ple rule-based policies were built. These were
built in the absence of expert domain knowledge
and a expert-layperson corpus.

e Jargon: Uses jargon for all referents by de-
fault. Provides clarifications when requested.

e Descriptive: Uses descriptive expressions for
all referents by default.

e Switching: This policy starts with jargon
expressions and continues using them until
the user requests for clarification. It then
switches to descriptive expressions and con-
tinues to use them until the user complains.
In short, it switches between the two strate-
gies based on the user’s responses.

All the policies exploit the user model in sub-
sequent references after the user’s knowledge of
the expression has been set to either yes or no.
Therefore, although these policies are simple, they
do adapt to a certain extent, and are reasonable
baselines for comparison in the absence of expert
knowledge for building more sophisticated base-
lines.

7.3 Results

The policies were run under a testing condition
(where there is no policy learning or exploration)
using a data-driven simulation calibrated to simu-
late 5 different user types. In addition to the three
users - Novice, Expert and Int2, from the train-
ing simulations, two other intermediate users (Intl
and Int3) were added to examine how well each
policy handles unseen user types. The REG mod-
ule was operated in evaluation mode to produce
around 200 dialogues per policy distributed over
the 5 user groups.

Overall performance of the different policies in
terms of Adaptation Accuracy (AA), Time and
Learning Gain (LG) are given in Table 3. Fig-
ure 3 shows how each policy performs in terms of
accuracy on the 5 types of users.

We found that the Learned DS policy (i.e.
learned with the data-driven user simulation) is
the most accurate (Mean = 79.70, SD = 10.46)
in terms of adaptation to each user’s initial state
of domain knowledge. Also, it is the only pol-
icy that has more or less the same accuracy scores

Adaptation Accuracy (AA)
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Figure 3: Evaluation - Adaptation Accuracy

Policies AA TimeT | LG
Descriptive | 46.15 | 7.44 0
Jargon 7454 | 9.15° | 0.97"
Switching 62.47 | 7.48 0.30
Learned HS | 69.67 | 7.52 0.33
Learned DS | 79.70°| 8.08° | 0.63"
* Significantly different from all oth-
ers (p < 0.05).

Table 3: Evaluation on 5 user types

over all different user types (see figure 3). It
should also be noted that the it generalised well
over user types (Intl and Int3) which were un-
seen in training. Learned DS policy outperforms
all other policies: Learned HS (Mean = 69.67, SD
= 14.18), Switching (Mean = 62.47, SD = 14.18),
Jargon (Mean = 74.54, SD = 17.9) and Descrip-
tive (Mean = 46.15, SD = 33.29). The differences
between the accuracy (AA) of the Learned DS pol-
icy and all other policies were statistically signif-
icant with p < 0.05 (using a two-tailed paired t-
test). Although Learned HS policy is similar to
the Learned DS policy, as shown in the learning
curves in figure 2, it does not perform as well
when confronted with users types that it did not
encounter during training. The Switching policy,
on the other hand, quickly switches its strategy
(sometimes erroneously) based on the user’s clar-
ification requests but does not adapt appropriately
to evidence presented later during the conversa-
tion. Sometimes, this policy switches erroneously
because of the uncertain user behaviours. In con-
trast, learned policies continuously adapt to new
evidence. The Jargon policy performs better than



the Learned HS and Switching policies. This be-
cause the system can learn more about the user
by using more jargon expressions and then use
that knowledge for adaptation for known referents.
However, it is not possible for this policy to pre-
dict the user’s knowledge of unseen referents. The
Learned DS policy performs better than the Jargon
policy, because it is able to accurately predict the
user’s knowledge of referents unseen in the dia-
logue so far.

The learned policies are a little more time-
consuming than the Switching and Descriptive
policies but compared to the Jargon policy,
Learned DS takes 1.07 minutes less time. This is
because learned policies use a few jargon expres-
sions (giving rise to clarification requests) to learn
about the user. On the other hand, the Jargon pol-
icy produces more user learning gain because of
the use of more jargon expressions. Learned poli-
cies compensate on time and learning gain in order
to predict and adapt well to the users’ knowledge
patterns. This is because the training was opti-
mized for accuracy of adaptation and not for learn-
ing gain or time taken. The results show that using
our RL framework, REG policies can be learned
using data-driven simulations, and that such a pol-
icy can predict and adapt to a user’s knowledge
pattern more accurately than policies trained us-
ing hand-coded rule-based simulations and hand-
coded baseline policies.

7.4 Discussion

The learned policies explore the user’s expertise
and predict their knowledge patterns, in order to
better choose expressions for referents unseen in
the dialogue so far. The system learns to iden-
tify the patterns of knowledge in the users with
a little exploration (information seeking moves).
So, when it is provided with a piece of evidence
(e.g. the user knows “broadband filter”), it is able
to accurately estimate unknown facts (e.g. the user
might know “broadband cable”). Sometimes, its
choices are wrong due to incorrect estimation of
the user’s expertise (due to stochastic behaviour
of the users). In such cases, the incorrect adapta-
tion move can be considered to be an information
seeking move. This helps further adaptation us-
ing the new evidence. By continuously using this
“seek-predict-adapt” approach, the system adapts
dynamically to different users. Therefore, with
a little information seeking and better prediction,
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the learned policies are able to better adapt to users
with different domain expertise.

In addition to adaptation, learned policies learn
to identify when to seek information from the user
to populate the user model (which is initially set
to not_sure). It should be noted that the sys-
tem cannot adapt unless it has some information
about the user and therefore needs to decisively
seek information by using jargon expressions. If
it seeks information all the time, it is not adapting
to the user. The learned policies therefore learn to
trade-off between information seeking moves and
adaptive moves in order to maximize the overall
adaptation accuracy score.

8 Conclusion

In this study, we have shown that user-adaptive
REG policies can be learned from a small cor-
pus of non-adaptive dialogues between a dialogue
system and users with different domain knowl-
edge levels. We have shown that such adaptive
REG policies learned using a RL framework adapt
to unknown users better than simple hand-coded
policies built without much input from domain ex-
perts or from a corpus of expert-layperson adap-
tive dialogues. The learned, adaptive REG poli-
cies learn to trade off between adaptive moves and
information seeking moves automatically to max-
imize the overall adaptation accuracy. Learned
policies start the conversation with information
seeking moves, learn a little about the user, and
start adapting dynamically as the conversation
progresses. We have also shown that a data-driven
statistical user simulation produces better policies
than a simple hand-coded rule-based simulation,
and that the learned policies generalise well to un-
seen users.

In future work, we will evaluate the learned
policies with real users to examine how well
they adapt, and examine how real users evalu-
ate them (subjectively) in comparison to baselines.
Whether the learned policies perform better or as
well as a hand-coded policy painstakingly crafted
by a domain expert (or learned using supervised
methods from an expert-layperson corpus) is an
interesting question that needs further exploration.
Also, it would also be interesting to make the
learned policy account for the user’s learning be-
haviour and adapt accordingly.
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Abstract

In this paper, we formulate extractive
summarization as a risk minimization
problem and propose a unified probabilis-
tic framework that naturally combines su-
pervised and unsupervised summarization
models to inherit their individual merits as
well as to overcome their inherent limita-
tions. In addition, the introduction of vari-
ous loss functions also provides the sum-
marization framework with a flexible but
systematic way to render the redundancy
and coherence relationships among sen-
tences and between sentences and the
whole document, respectively. Experi-
ments on speech summarization show that
the methods deduced from our framework
are very competitive with existing summa-
rization approaches.

1

Automated summarization systems which enable
user to quickly digest the important information
conveyed by either a single or a cluster of docu-
ments are indispensible for managing the rapidly
growing amount of textual information and mul-
timedia content (Mani and Maybury, 1999). On
the other hand, due to the maturity of text sum-
marization, the research paradigm has been ex-
tended to speech summarization over the years
(Furui et al., 2004; McKeown et al., 2005).
Speech summarization is expected to distill im-
portant information and remove redundant and
incorrect information caused by recognition er-
rors from spoken documents, enabling user to
efficiently review spoken documents and under-
stand the associated topics quickly. It would also
be useful for improving the efficiency of a num-
ber of potential applications like retrieval and
mining of large volumes of spoken documents.

A summary can be either abstractive or extrac-
tive. In abstractive summarization, a fluent and

Introduction

79

berlin}@csie.ntnu.edu.tw

concise abstract that reflects the key concepts of
a document is generated, whereas in extractive
summarization, the summary is usually formed
by selecting salient sentences from the original
document (Mani and Maybury, 1999). The for-
mer requires highly sophisticated natural lan-
guage processing techniques, including semantic
representation and inference, as well as natural
language generation, while this would make ab-
stractive approaches difficult to replicate or ex-
tend from constrained domains to more general
domains. In addition to being extractive or ab-
stractive, a summary may also be generated by
considering several other aspects like being ge-
neric or query-oriented summarization, single-
document or multi-document summarization, and
so forth. The readers may refer to (Mani and
Maybury, 1999) for a comprehensive overview
of automatic text summarization. In this paper,
we focus exclusively on generic, single-
document extractive summarization which forms
the building block for many other summarization
tasks.

Aside from traditional ad-hoc extractive sum-
marization methods (Mani and Maybury, 1999),
machine-learning approaches with either super-
vised or unsupervised learning strategies have
gained much attention and been applied with
empirical success to many summarization tasks
(Kupiec et al., 1999; Lin et al., 2009). For super-
vised learning strategies, the summarization task
is usually cast as a two-class (summary and non-
summary) sentence-classification problem: A
sentence with a set of indicative features is input
to the classifier (or summarizer) and a decision is
then returned from it on the basis of these fea-
tures. In general, they usually require a training
set, comprised of several documents and their
corresponding handcrafted summaries (or labeled
data), to train the classifiers. However, manual
labeling is expensive in terms of time and per-
sonnel. The other potential problem is the so-
called “bag-of-sentences” assumption implicitly
made by most of these summarizers. That is, sen-
tences are classified independently of each other,
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without leveraging the dependence relationships
among the sentences or the global structure of
the document (Shen et al., 2007).

Another line of thought attempts to conduct
document summarization using unsupervised
machine-learning approaches, getting around the
need for manually labeled training data. Most
previous studies conducted along this line have
their roots in the concept of sentence centrality
(Gong and Liu, 2001; Erkan and Radev, 2004;
Radev et al., 2004; Mihalcea and Tarau, 2005).
Put simply, sentences more similar to others are
deemed more salient to the main theme of the
document; such sentences thus will be selected
as part of the summary. Even though the perfor-
mance of unsupervised summarizers is usually
worse than that of supervised summarizers, their
domain-independent and easy-to-implement
properties still make them attractive.

Building on these observations, we expect that
researches conducted along the above-mentioned
two directions could complement each other, and
it might be possible to inherit their individual
merits to overcome their inherent limitations. In
this paper, we present a probabilistic summariza-
tion framework stemming from Bayes decision
theory (Berger, 1985) for speech summarization.
This framework can not only naturally integrate
the above-mentioned two modeling paradigms
but also provide a flexible yet systematic way to
render the redundancy and coherence relation-
ships among sentences and between sentences
and the whole document, respectively. Moreover,
we also illustrate how the proposed framework
can unify several existing summarization models.

The remainder of this paper is structured as
follows. We start by reviewing related work on
extractive summarization. In Section 3 we for-
mulate the extractive summarization task as a
risk minimization problem, followed by a de-
tailed elucidation of the proposed methods in
Section 4. Then, the experimental setup and a
series of experiments and associated discussions
are presented in Sections 5 and 6, respectively.
Finally, Section 7 concludes our presentation and
discusses avenues for future work.

2

Speech summarization can be conducted using
either supervised or unsupervised methods (Furui
et al., 2004, McKeown et al., 2005, Lin et al.,
2008). In the following, we briefly review a few
celebrated methods that have been applied to
extractive speech summarization tasks with good
success.

Background
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2.1  Supervised summarizers

Extractive speech summarization can be treated
as a two-class (positive/negative) classification
problem. A spoken sentence S; is characterized
by set of T indicative features X; = {x,, -, x;},
and they may include lexical features (Koumpis
and Renals, 2000), structural features (Maskey
and Hirschberg, 2003), acoustic features (Inoue
et al., 2004), discourse features (Zhang et al.,
2007) and relevance features (Lin et al., 2009).
Then, the corresponding feature vector X; of S;
is taken as the input to the classifier. If the output
(classification) score belongs to the positive class,
S, will be selected as part of the summary; oth-
erwise, it will be excluded (Kupiec et al., 1999).
Specifically, the problem can be formulated as
follows: Construct a sentence ranking model that
assigns a classification score (or a posterior
probability) of being in the summary class to
each sentence of a spoken document to be sum-
marized; important sentences are subsequently
ranked and selected according to these scores. To
this end, several popular machine-learning me-
thods could be utilized, like Bayesian classifier
(BC) (Kupiec et al., 1999), Gaussian mixture
model (GMM) (Fattah and Ren, 2009) , hidden
Markov model (HMM) (Conroy and O'leary,
2001), support vector machine (SVM) (Kolcz et
al., 2001), maximum entropy (ME) (Ferrier,
2001), conditional random field (CRF) (Galley,
2006; Shen et al., 2007), to name a few.

Although such supervised summarizers are ef-
fective, most of them (except CRF) usually im-
plicitly assume that sentences are independent of
each other (the so-called “bag-of-sentences” as-
sumption) and classify each sentence individual-
ly without leveraging the relationship among the
sentences (Shen et al., 2007). Another major
shortcoming of these summarizers is that a set of
handcrafted document-reference summary ex-
emplars are required for training the summarizers;
however, such summarizers tend to limit their
generalization capability and might not be readi-
ly applicable for new tasks or domains.

2.2 Unsupervised summarizers

The related work conducted along this direction
usually relies on some heuristic rules or statistic-
al evidences between each sentence and the doc-
ument, avoiding the need of manually labeled
training data. For example, the vector space
model (VSM) approach represents each sentence
of a document and the document itself in vector
space (Gong and Liu, 2001), and computes the
relevance score between each sentence and the
document (e.g., the cosine measure of the simi-



larity between two vectors). Then, the sentences
with the highest relevance scores are included in
the summary. A natural extension is to represent
each document or each sentence vector in a latent
semantic space (Gong and Liu, 2001), instead of
simply using the literal term information as that
done by VSM.

On the other hand, the graph-based methods,
such as TextRank (Mihalcea and Tarau, 2005)
and LexRank (Erkan and Radev, 2004), concep-
tualize the document to be summarized as a net-
work of sentences, where each node represents a
sentence and the associated weight of each link
represents the lexical or topical similarity rela-
tionship between a pair of nodes. Document
summarization thus relies on the global structural
information conveyed by such conceptualized
network, rather than merely considering the local
features of each node (sentence).

However, due to the lack of document-
summary reference pairs, the performance of the
unsupervised summarizers is usually worse than
that of the supervised summarizers. Moreover,
most of the unsupervised summarizers are con-
structed solely on the basis of the lexical infor-
mation without considering other sources of in-
formation cues like discourse features, acoustic
features, and so forth.

3 A risk minimization framework for
extractive summarization

Extractive summarization can be viewed as a
decision making process in which the summariz-
er attempts to select a representative subset of
sentences or paragraphs from the original docu-
ments. Among the several analytical methods
that can be employed for the decision process,
the Bayes decision theory, which quantifies the
tradeoff between various decisions and the po-
tential cost that accompanies each decision, is
perhaps the most suited one that can be used to
guide the summarizer in choosing a course of
action in the face of some uncertainties underly-
ing the decision process (Berger, 1985). Stated
formally, a decision problem may consist of four
basic elements: 1) an observation O from a ran-
dom variable 0, 2) a set of possible decisions
(or actions) a € A, 3) the state of nature €@,
and 4) a loss function L(a;,0) which specifies the
cost associated with a chosen decision a, given
that @ is the true state of nature. The expected
risk (or conditional risk) associated with taking
decision a; is given by

R(a;|0)=[,L(a;,0)p(6]0)d6, (1)
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where p(0|0) is the posterior probability of the
state of nature being 6 given the observation O.
Bayes decision theory states that the optimum
decision can be made by contemplating each ac-
tion g;, and then choosing the action for which
the expected risk is minimum:

a*=argmin R(a; | O).

a;

2

The notion of minimizing the Bayes risk has
gained much attention and been applied with
success to many natural language processing
(NLP) tasks, such as automatic speech recogni-
tion (Goel and Byrne, 2000), statistical machine
translation (Kumar and Byme, 2004) and statis-
tical information retrieval (Zhai and Lafferty,
2006). Following the same spirit, we formulate
the extractive summarization task as a Bayes risk
minimization problem. Without loss of generality,
let us denote 7 IT as one of possible selection
strategies (or state of nature) which comprises a
set of indicators used to address the importance
of each sentence S, in a document D to be
summarized. A feasible selection strategy can be
fairly arbitrary according to the underlying prin-
ciple. For example, it could be a set of binary
indicators denoting whether a sentence should be
selected as part of summary or not. On the con-
trary, it may also be a ranked list used to address
the significance of each individual sentence.
Moreover, we refer to the & -th action g, as
choosing the k -th selection strategy 7, , and the
observation O as the document D to be summa-
rized. As a result, the expected risk of a certain
selection strategy r, is given by

R(zy | D)= L(z .7 )p(x | DYz 3)

Consequently, the ultimate goal of extractive
summarization could be stated as the search of
the best selection strategy from the space of all
possible selection strategies that minimizes the
expected risk defined as follows:

7* =argmin R(z; | D)
Tk

= argmin jﬁL(;rk 7 )pl(z | DYz

s

“

Although we have described a general formu-
lation for the extractive summarization problem
on the grounds of the Bayes decision theory, we
consider hereafter a special case of it where the
selection strategy is represented by a binary deci-
sion vector, of which each element corresponds
to a specific sentence S; in the document D and
designates whether it should be selected as part
of the summary or not, as the first such attempt.
More concretely, we assume that the summary



sentences of a given document can be iteratively
chosen (i.e., one at each iteration) from the doc-
ument until the aggregated summary reaches a
predefined target summarization ratio. It turns
out that the binary vector for each possible action
will have just one element equal to 1 and all oth-
ers equal to zero (or the so-called “one-of-n”
coding). For ease of notation, we denote the bi-
nary vector by S; when the i-th element has a
value of 1. Therefore, the risk minimization
framework can be reduced to

s = argmin R(Si | 5)

S;eD
=argmin ZL(S,»,SJ- )P(Sj |lN)), )
S;eD Sjef)

where D denotes the remaining sentences that
have not been selected into the summary yet (i.e.,
the “residual” document); Pﬁ(S ;D) is the post-
erior probability of a sentence S, given D . Ac-
cording, to the Bayes’ rule, we can further ex-
press P(S i D5> as (Chen et al., 2009)

P(5|S')P(S./)

where P(5 | Sl) is the sentence generative prob-
ability, i.e., the likelihood of D being generated
by S;; P(S j) is the prior prob?bslity of §; being

Pls, | D)= (6)

D
probability of D, which can be approximated by

> PDIs, P(s,) )
SeD

important; and the evidence P(D) is the marginal

P(D)=

By substituting (6) and (7) into (5), we obtain
the following final selection strategy for extrac-

tive summarization:
\ P(5|Sj)P(Sj)

"> P(bIs, P(s,)

S,, €D

S" =argmin z L(S,»,Sj
Si65 S]-EB

®)

A remarkable feature of this framework lies in
that a sentence to be considered as part of the
summary is actually evaluated by three different
fundamental factors: (1) P(S j) is the sentence
prior probability that addresses the importance of
sentence S; itself; (2) P(D\Sjj is the sentence
generative probability that captures the degree of
relevance of S to the residual document D ; and
3) L(S[,S j) is the loss function that characteriz-
es the relationship between sentence S; and any
other sentence S.. As we will soon see, such a
framework can be regarded as a generalization of
several existing summarization methods. A de-
tailed account on the construction of these three
component models in the framework will be giv-
en in the following section.
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4

There are many ways to construct the above
mentioned three component modgls, i.e., the sen-
tence generative model P\D|S j , the sentence
prior model P(S -), and the loss function L(Si,S /-).
In what follows, we will shed light on one possi-
ble attempt that can accomplish this goal elegant-

ly.
4.1

Proposed Methods

Sentence generative model

In order to estimate the sentence generative
probability, we explore the language modeling
(LM) approach, which has been introduced to a
wide spectrum of IR tasks and demonstrated with
good empirical success, to predict the sentence
generative probability. In the LM approach, each
sentence in a document can be simply regarded
as a probabilistic generative model consisting of
a unigram distribution (the so-called “bag-of-
words” assumption) for generating the document
(Chen et al., 2009):

~ w,D
P(D|Sj): HEP(W|S]~)£( ’ ), )
where c(w,f)) is the number of times that index
term (or word) w occurs in D, reflecting that w
will contribute more in the calculation of
P\D|S; | if it occurs more frequently in D . Note
that the sentence model P(WILS ;) is simply esti-
mated on the basis of the trequency of index
term w occurring in the sentence §; with the
maximum likelihood (ML) criterion. In a sense,
(9) belongs to a kind of literal term matching
strategy (Chen, 2009) and may suffer the prob-
lem of unreliable model estimation owing partic-
ularly to only a few sampled index terms present
in the sentence (Zhai, 2008). To mitigate this
potential defect, a unigram probability estimated
from a general collection, which models the gen-
eral distribution of words in the target language,
is often used to smooth the sentence model. In-
terested readers may refer to (Zhai, 2008; Chen
et al., 2009) for a thorough discussion on various
ways to construct the sentence generative model.

4.2  Sentence prior model

J) can be re-
garded as the likelihood of a sentence being im-
portant without seeing the whole document. It
could be assumed uniformly distributed over sen-
tences or estimated from a wide variety of factors,
such as the lexical information, the structural
information or the inherent prosodic properties of
a spoken sentence.

A straightforward way is to assume that the
sentence prior probability P(S j) is in proportion
to the posterior probability of a sentence S; be-

The sentence prior probability P(S -



ing included in the summary class when observ-
ing a set of indicative features X, of §; derived
from such factors or other sentence 1mportance
measures (Kupiec et al., 1999). These features
can be integrated in a systematic way into the
proposed framework by taking the advantage of
the learning capability of the supervised ma-
chine-learning methods. Specifically, the prior
probability P% ) can be approximated by:

plx; 1S)P(S)
) A o )

where P(x;|s) and P(x,|S) are the likelihoods
that a sentence S; with features X, are generat-
ed by the summary class S and the non-
summary class S, respectively; the prior proba-
bility P(S) and P(S) are set to be equal in this
research. To estimate P(X j\S) and P(X j\§),
several popular supervised classifiers (or summa-
rizers), like BC or SVM, can be leveraged for
this purpose.

4.3

The loss function introduced in the proposed
summarization framework is to measure the rela-
tionship between any pair of sentences. Intuitive-
ly, when a given sentence is more dissimilar
from most of the other sentences, it may incur
higher loss as it is taken as the representative
sentence (or summary sentence) to represent the
main theme embedded in the other ones. Conse-
quently, the loss function can be built on the no-
tion of the similarity measure. In this research,
we adopt the cosine measure (Gong and Liu,
2001) to fulfill this goal. We first represent each
sentence S, in vector form where each dimension
specifies the weighted statistic z;; , e.g., the
product of the term frequency (TF) and inverse
document frequency (IDF) scores, associated
with an index term w, in sentence S;. Then, the
cosine similarity between any given two sen-
tences (S;,$ ]-) is

(10)

Loss function

T
Sim(s;.5, )= 2210 E1 (10)
\/Zt lztt \/Zt 1Zt1
The loss function is thus defined by
LIS;.S;)=1-Simls;,s ) (11)

Once the sentence generative model P(5|S j)
the sentence prior model P( ) and the loss func-
tion L(S S, ) have been properly estimated, the
summary sentences can be selected iteratively by
(8) according to a predefined target summariza-
tion ratio. However, as can be seen from (8), a
new summary sentence is selected without con-
sidering the redundant information that is also
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contained in the already selected summary sen-
tences. To alleviate this problem, the concept of
maximum marginal relevance (MMR) (Carbonell
and Goldstein, 1998), which performs sentence
selection iteratively by striking the balance be-
tween topic relevance and coverage, can be in-
corporated into the loss function:

. Sim(S..S
L(Si,Sj)zl—ﬂ lm(z 1)

—(1-p)- max Sim(S,,S")[
S'eSumm
where Summ represents the set of sentences that
have already been included into the summary
and the novelty factor g is used to trade off be-
tween relevance and redundancy.

4.4

(12)

Relation to other summarization models

In this subsection, we briefly illustrate the rela-
tionship between our proposed summarization
framework and a few existing summarization
approaches. We start by considering a special
case where a 0-1 loss function is used in (8),
namely, the loss function will take value 0 if the
two sentences are identical, and 1 otherwise.
Then, (8) can be alternatively represented by

P(E\S_/)P(Sj)
PD1S, JP(s,)

* .
§ =argmin 3}
S;eD §;eD.S %5,
’ meD

PB |5, )P(s,)

z PDIs )P( n)
S eD
which actually provides a natural integration of
the supervised and unsupervised summarizers
(Lin et al., 2009), as mentioned previously.

If we further assume the prior probability
P(S ) is uniformly distributed, the important (or
summary) sentence selection problem has now
been reduced to the ptoble of measuring the

(13)

= arg max
S;eD

document-likelihood P\D|S), or the relevance
between the document and the sentence. Alone a
similar vein, the important sentences of a docu-
ment can be selected (or ranked) solely based on
the prior probability P(S j) with the assumption
of an equal document-likelihood P?D |S j).

5
5.1

Experimental setup
Data

The summarization dataset used in this research
is a widely used broadcast news corpus collected
by the Academia Sinica and the Public Televi-
sion Service Foundation of Taiwan between No-
vember 2001 and April 2003 (Wang et al., 2005).
Each story contains the speech of one studio
anchor, as well as several field reporters and in-
terviewees. A subset of 205 broadcast news doc-



Kappa  ROGUE-1 ROUGE-2 ROUGE-L
0.400 0.600 0.532 0.527
Table 1: The agreement among the subjects for impor-
tant sentence ranking for the evaluation set.

1.Duration of the current sentence
Structural o
featur 2.Position of the current sentence
catures 3.Length of the current sentence
1.Number of named entities
Lexical 2 Number of stop words
Features | 3.Bigram language model scores
4.Normalized bigram scores
1.The 1st formant
. 2.The 2nd formant
Acoustic .
Features 3.The pitch value
4.The peak normalized cross-
correlation of pitch
Relevance 1.VSM score
Feature

Table 2: Basic sentence features used by BC.

uments compiled between November 2001 and
August 2002 was reserved for the summarization
experiments.

Three subjects were asked to create summaries
of the 205 spoken documents for the summariza-
tion experiments as references (the gold standard)
for evaluation. The summaries were generated by
ranking the sentences in the reference transcript
of a spoken document by importance without
assigning a score to each sentence. The average
Chinese character error rate (CER) obtained for
the 205 spoken documents was about 35%.

Since broadcast news stories often follow a
relatively regular structure as compared to other
speech materials like conversations, the position-
al information would play an important (domi-
nant) role in extractive summarization of broad-
cast news stories; we, hence, chose 20 docu-
ments for which the generation of reference
summaries is less correlated with the positional
information (or the position of sentences) as the
held-out test set to evaluate the general perfor-
mance of the proposed summarization frame-
work, and 100 documents as the development set.

5.2 Performance evaluation

For the assessment of summarization perfor-
mance, we adopted the widely used ROUGE
measure (Lin, 2004) because of its higher corre-
lation with human judgments. It evaluates the
quality of the summarization by counting the
number of overlapping units, such as N-grams,
longest common subsequences or skip-bigram,
between the automatic summary and a set of ref-
erence summaries. Three variants of the ROGUE

84

measure were used to quantify the utility of the
proposed method. They are, respectively, the
ROUGE-1 (unigram) measure, the ROUGE-2
(bigram) measure and the ROUGE-L (longest
common subsequence) measure (Lin, 2004).

The summarization ratio, defined as the ratio of
the number of words in the automatic (or manual)
summary to that in the reference transcript of a
spoken document, was set to 10% in this re-
search. Since increasing the summary length
tends to increase the chance of getting higher
scores in the recall rate of the various ROUGE
measures and might not always select the right
number of informative words in the automatic
summary as compared to the reference summary,
all the experimental results reported hereafter are
obtained by calculating the F-scores of these
ROUGE measures, respectively (Lin, 2004). Ta-
ble 1 shows the levels of agreement (the Kappa
statistic and ROUGE measures) between the
three subjects for important sentence ranking.
They seem to reflect the fact that people may not
always agree with each other in selecting the im-
portant sentences for representing a given docu-
ment.

5.3 Features for supervised summarizers

We take BC as the representative supervised
summarizer to study in this paper. The input to
BC consists of a set of 28 indicative features
used to characterize a spoken sentence, including
the structural features, the lexical features, the
acoustic features and the relevance feature. For
each kind of acoustic features, the minimum,
maximum, mean, difference value and mean dif-
ference value of a spoken sentence are extracted.
The difference value is defined as the difference
between the minimum and maximum values of
the spoken sentence, while the mean difference
value is defined as the mean difference between
a sentence and its previous sentence. Finally, the
relevance feature (VSM score) is use to measure
the degree of relevance for a sentence to the
whole document (Gong and Liu, 2001). These
features are outlined in Table 2, where each of
them was further normalized to zero mean and
unit variance.

6
6.1

Experimental results and discussions
Baseline experiments

In the first set of experiments, we evaluate the
baseline performance of the LM and BC summa-
rizers (cf. Sections 4.1 and 4.2), respectively.
The corresponding results are detailed in Table 3,



Text Document (TD)

Spoken Document (SD)

ROGUE-1 ROUGE-2 ROUGE-L ROGUE-1 ROUGE-2 ROUGE-L

BC 0.445 0.346 0.404 0.369 0.241 0.321
(0.390 - 0.504) (0.201 - 0.415) (0.348 - 0.468) (0.316 - 0.426) (0.183 - 0.302) (0.268 - 0.378)

LM 0.387 0.264 0.334 0.319 0.164 0.253
(0.302 - 0.474) (0.168 - 0.366) (0.251 - 0.415) (0.274 - 0.367) (0.115-0.224) (0.215 - 0.301)

Table 3: The results achieved by the BC and LM summarizers, respectively.
Text Document (TD) Spoken Document (SD)

Prior Loss ROGUE-1 ROUGE-2 ROUGE-L ROGUE-1 ROUGE-2 ROUGE-L

0-1 0.501 0.401 0.459 0.417 0.281 0.356

BC SIM 0.524 0.425 0.473 0.475 0.351 0.420

MMR 0.529 0.426 0.479 0.475 0.351 0.420

) SIM 0.405 0.281 0.348 0.365 0.209 0.305

Uniform
MMR 0.417 0.282 0.359 0.391 0.236 0.338

Table 4: The results achieved by several methods derived from the proposed summarization framework.

where the values in the parentheses are the asso-
ciated 95% confidence intervals. It is also worth
mentioning that TD denotes the summarization
results obtained based on manual transcripts of
the spoken documents while SD denotes the re-
sults using the speech recognition transcripts
which may contain speech recognition errors and
sentence boundary detection errors. In this re-
search, sentence boundaries were determined by
speech pauses. For the TD case, the acoustic fea-
tures were obtained by aligning the manual tran-
scripts to their spoken documents counterpart by
performing word-level forced alignment.

Furthermore, the ROGUE measures, in es-
sence, are evaluated by counting the number of
overlapping units between the automatic sum-
mary and the reference summary; the corres-
ponding evaluation results, therefore, would be
severely affected by speech recognition errors
when applying the various ROUGE measures to
quantify the performance of speech summariza-
tion. In order to get rid of the cofounding effect
of this factor, it is assumed that the selected
summary sentences can also be presented in
speech form (besides text form) such that users
can directly listen to the audio segments of the
summary sentences to bypass the problem caused
by speech recognition errors. Consequently, we
can align the ASR transcripts of the summary
sentences to their respective audio segments to
obtain the correct (manual) transcripts for the
summarization performance evaluation (i.e., for
the SD case).

Observing Table 3 we notice two particulari-
ties. First, there are significant performance gaps
between summarization using the manual tran-
scripts and the erroneous speech recognition
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transcripts. The relative performance degrada-
tions are about 15%, 34% and 23%, respectively,
for ROUGE-1, ROUGE2 and ROUGE-L meas-
ures. One possible explanation is that the errone-
ous speech recognition transcripts of spoken sen-
tences would probably carry wrong information
and thus deviate somewhat from representing the
true theme of the spoken document. Second, the
supervised summarizer (i.e., BC) outperforms the
unsupervised summarizer (i.e., LM). The better
performance of BC can be further explained by
two reasons. One is that BC is trained with the
handcrafted document-summary sentence labels
in the development set while LM is instead con-
ducted in a purely unsupervised manner. Another
is that BC utilizes a rich set of features to charac-
terize a given spoken sentence while LM is con-
structed solely on the basis of the lexical (uni-
gram) information.

6.2 Experiments on the proposed methods

We then turn our attention to investigate the utili-
ty of several methods deduced from our pro-
posed summarization framework. We first con-
sider the case when a 0-1 loss function is used (cf.
(13)), which just show a simple combination of
BC and LM. As can be seen from the first row of
Table 4, such a combination can give about 4%
to 5% absolute improvements as compared to the
results of BC illustrated in Table 3. It in some
sense confirms the feasibility of combining the
supervised and unsupervised summarizers.
Moreover, we consider the use of the loss func-
tions defined in (11) (denoted by SIM) and (12)
(denoted by MMR), and the corresponding re-
sults are shown in the second and the third rows
of Table 4, respectively. It can be found that



MMR delivers higher summarization perfor-
mance than SIM (especially for the SD case),
which in turn verifies the merit of incorporating
the MMR concept into the proposed framework
for extractive summarization. If we further com-
pare the results achieved by MMR with those of
BC and LM as shown in Table 3, we can find
significant improvements both for the TD and
SD cases. By and large, for the TD case, the pro-
posed summarization method offers relative per-
formance improvements of about 19%, 23% and
19%, respectively, in the ROUGE-1, ROUGE-2
and ROUGE-L measures as compared to the BC
baseline; while the relative improvements are
29%, 46% and 31%, respectively, in the same
measurements for the SD case. On the other hand,
the performance gap between the TD and SD
cases are reduced to a good extent by using the
proposed summarization framework.

In the next set of experiments, we simply as-
sume the sentence prior probability P(S ;) de-
fined in (8) is uniformly distributed, namely, we
do not use any supervised information cue but
use the lexical information only. The importance
of a given sentence is thus considered from two
angles: 1) the relationship between a sentence
and the whole document, and 2) the relationship
between the sentence and the other individual
sentences. The corresponding results are illu-
strated in the lower part of Table 4 (denoted by
Uniform). We can see that the additional consid-
eration of the sentence-sentence relationship ap-
pears to be beneficial as compared to that only
considering the document-sentence relevance
information (cf. the second row of Table 3). It
also gives competitive results as compared to the
performance of BC (cf. the first row of Table 3)
for the SD case.

6.3 Comparison with conventional summa-

rization methods

In the final set of experiments, we compare our
proposed summarization methods with a few
existing summarization methods that have been
widely used in various summarization tasks, in-
cluding LEAD, VSM, LexRank and CRF; the
corresponding results are shown in Table 5. It
should be noted that the LEAD-based method
simply extracts the first few sentences in a doc-
ument as the summary. To our surprise, CRF
does not provide superior results as compared to
the other summarization methods. One possible
explanation is that the structural evidence of the
spoken documents in the test set is not strong
enough for CRF to show its advantage of model-
ing the local structural information among sen-
tences. On the other hand, LexRank gives a very
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ROGUE-1 ROUGE-2 ROUGE-L

TD 0.320 0.197 0.283
LEAD

SD 0312 0.168 0.251

TD 0.345 0.220 0.287
VSM

SD 0.337 0.189 0.277

TD 0.435 0314 0.377

LexRank

SD 0.348 0.204 0.294

TD 0.431 0.315 0.383
CRF

SD 0.358 0.220 0.291

Table 5: The results achieved by four conventional
summarization methods.

promising performance in spite that it only uti-
lizes lexical information in an unsupervised
manner. This somewhat reflects the importance
of capturing the global relationship for the sen-
tences in the spoken document to be summarized.
As compared to the results shown in the “BC”
part of Table 4, we can see that our proposed
methods significantly outperform all the conven-
tional summarization methods compared in this
paper, especially for the SD case.

7

We have proposed a risk minimization frame-
work for extractive speech summarization, which
enjoys several advantages. We have also pre-
sented a simple yet effective implementation that
selects the summary sentences in an iterative
manner. Experimental results demonstrate that
the methods deduced from such a framework can
yield substantial improvements over several
popular summarization methods compared in this
paper. We list below some possible future exten-
sions: 1) integrating different selection strategies,
e.g., the listwise strategy that defines the loss
function on all the sentences associated with a
document to be summarized, into this framework,
2) exploring different modeling approaches for
this framework, 3) investigating discriminative
training criteria for training the component mod-
els in this framework, and 4) extending and ap-
plying the proposed framework to multi-
document summarization tasks.

Conclusions and future work
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Abstract

We present a grand challenge to build a
corpus that will include all of the world’s
languages, in a consistent structure that
permits large-scale cross-linguistic pro-
cessing, enabling the study of universal
linguistics. The focal data types, bilin-
gual texts and lexicons, relate each lan-
guage to one of a set of reference lan-
guages. We propose that the ability to train
systems to translate into and out of a given
language be the yardstick for determin-
ing when we have successfully captured a
language. We call on the computational
linguistics community to begin work on
this Universal Corpus, pursuing the many
strands of activity described here, as their
contribution to the global effort to docu-
ment the world’s linguistic heritage before
more languages fall silent.

1 Introduction

The grand aim of linguistics is the construction of
a universal theory of human language. To a com-
putational linguist, it seems obvious that the first
step is to collect significant amounts of primary
data for a large variety of languages. Ideally, we
would like a complete digitization of every human
language: a Universal Corpus.

If we are ever to construct such a corpus, it must
be now. With the current rate of language loss, we
have only a small window of opportunity before
the data is gone forever. Linguistics may be unique
among the sciences in the crisis it faces. The next
generation will forgive us for the most egregious
shortcomings in theory construction and technol-
ogy development, but they will not forgive us if we
fail to preserve vanishing primary language data in
a form that enables future research.

The scope of the task is enormous. At present,
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we have non-negligible quantities of machine-
readable data for only about 20-30 of the world’s
6,900 languages (Maxwell and Hughes, 2006).
Linguistics as a field is awake to the crisis. There
has been a tremendous upsurge of interest in doc-
umentary linguistics, the field concerned with the
the “creation, annotation, preservation, and dis-
semination of transparent records of a language”
(Woodbury, 2010). However, documentary lin-
guistics alone is not equal to the task. For example,
no million-word machine-readable corpus exists
for any endangered language, even though such a
quantity would be necessary for wide-ranging in-
vestigation of the language once no speakers are
available. The chances of constructing large-scale
resources will be greatly improved if computa-
tional linguists contribute their expertise.

This collaboration between linguists and com-
putational linguists will extend beyond the con-
struction of the Universal Corpus to its exploita-
tion for both theoretical and technological ends.
We envisage a new paradigm of universal linguis-
tics, in which grammars of individual languages
are built from the ground up, combining expert
manual effort with the power tools of probabilis-
tic language models and grammatical inference.
A universal grammar captures redundancies which
exist across languages, constituting a “universal
linguistic prior,” and enabling us to identify the
distinctive properties of specific languages and
families. The linguistic prior and regularities due
to common descent enable a new economy of scale
for technology development: cross-linguistic tri-
angulation can improve performance while reduc-
ing per-language data requirements.

Our aim in the present paper is to move beyond
generalities to a concrete plan of attack, and to
challenge the field to a communal effort to cre-
ate a Universal Corpus of the world’s languages,
in consistent machine-readable format, permitting
large-scale cross-linguistic processing.
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2 Human Language Project

2.1 Aims and scope

Although language endangerment provides ur-
gency, the corpus is not intended primarily as
a Noah’s Ark for languages. The aims go be-
yond the current crisis: we wish to support cross-
linguistic research and technology development at
the largest scale. There are existing collections
that contain multiple languages, but it is rare to
have consistent formats and annotation across lan-
guages, and few such datasets contain more than a
dozen or so languages.

If we think of a multi-lingual corpus as con-
sisting of an array of items, with columns repre-
senting languages and rows representing resource
types, the usual focus is on “vertical” processing.
Our particular concern, by contrast, is “horizontal”
processing that cuts indiscriminately across lan-
guages. Hence we require an unusual degree of
consistency across languages.

The kind of processing we wish to enable is
much like the large-scale systematic research that
motivated the Human Genome Project.

One of the greatest impacts of having
the sequence may well be in enabling
an entirely new approach to biological
research. In the past, researchers stud-
ied one or a few genes at a time. With
whole-genome sequences ... they can
approach questions systematically and
on a grand scale. They can study ...
how tens of thousands of genes and pro-
teins work together in interconnected
networks to orchestrate the chemistry of
life. (Human Genome Project, 2007)

We wish to make it possible to investigate human
language equally systematically and on an equally
grand scale: a Human Linguome Project, as it
were, though we have chosen the “Human Lan-
guage Project” as a more inviting title for the un-
dertaking. The product is a Universal Corpus,' in
two senses of universal: in the sense of including
(ultimately) all the world’s languages, and in the
sense of enabling software and processing meth-
ods that are language-universal.

However, we do not aim for a collection that
is universal in the sense of encompassing all lan-
guage documentation efforts. Our goal is the con-
struction of a specific resource, albeit a very large

"http://universalcorpus.org/
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resource. We contrast the proposed effort with
general efforts to develop open resources, stan-
dards, and best practices. We do not aim to be all-
inclusive. The project does require large-scale col-
laboration, and a task definition that is simple and
compelling enough to achieve buy-in from a large
number of data providers. But we do not need and
do not attempt to create consensus across the en-
tire community. (Although one can hope that what
proves successful for a project of this scale will
provide a good foundation for future standards.)

Moreover, we do not aim to collect data
merely in the vague hope that it will prove use-
ful. Although we strive for maximum general-
ity, we also propose a specific driving “use case,”
namely, machine translation (MT), (Hutchins and
Somers, 1992; Koehn, 2010). The corpus pro-
vides a testing ground for the development of MT
system-construction methods that are dramatically
“leaner” in their resource requirements, and which
take advantage of cross-linguistic bootstrapping.
The large engineering question is how one can
turn the size of the task—constructing MT systems
for all the world’s languages simultaneously—to
one’s advantage, and thereby consume dramati-
cally less data per language.

The choice of MT as the use case is also driven
by scientific considerations. To explain, we re-
quire a bit of preamble.

We aim for a digitization of each human lan-
guage. What exactly does it mean to digitize an
entire language? It is natural to think in terms
of replicating the body of resources available for
well-documented languages, and the pre-eminent
resource for any language is a treebank. Producing
a treebank involves a staggering amount of man-
ual effort. It is also notoriously difficult to obtain
agreement about how parse trees should be defined
in one language, much less in many languages si-
multaneously. The idea of producing treebanks for
6,900 languages is quixotic, to put it mildly. But
is a treebank actually necessary?

Let us suppose that the purpose of a parse
tree is to mediate interpretation. A treebank, ar-
guably, represents a theoretical hypothesis about
how interpretations could be constructed; the pri-
mary data is actually the interpretations them-
selves. This suggests that we annotate sentences
with representations of meanings instead of syn-
tactic structures. Now that seems to take us out of
the frying pan into the fire. If obtaining consen-



sus on parse trees is difficult, obtaining consensus
on meaning representations is impossible. How-
ever, if the language under consideration is any-
thing other than English, then a translation into
English (or some other reference language) is for
most purposes a perfectly adequate meaning rep-
resentation. That is, we view machine translation
as an approximation to language understanding.

Here is another way to put it. One measure of
adequacy of a language digitization is the abil-
ity of a human—already fluent in a reference
language—to acquire fluency in the digitized lan-
guage using only archived material. Now it would
be even better if we could use a language digiti-
zation to construct an artificial speaker of the lan-
guage. Importantly, we do not need to solve the Al
problem: the speaker need not decide what to say,
only how to translate from meanings to sentences
of the language, and from sentences back to mean-
ings. Taking sentences in a reference language as
the meaning representation, we arrive back at ma-
chine translation as the measure of success. In
short, we have successfully captured a language if
we can translate into and out of the language.

The key resource that should be built for each
language, then, is a collection of primary texts
with translations into a reference language. “Pri-
mary text” includes both written documents and
transcriptions of recordings. Large volumes of pri-
mary texts will be useful even without translation
for such tasks as language modeling and unsuper-
vised learning of morphology. Thus, we antici-
pate that the corpus will have the usual “pyrami-
dal” structure, starting from a base layer of unan-
notated text, some portion of which is translated
into a reference language at the document level to
make the next layer. Note that, for maximally au-
thentic primary texts, we assume the direction of
translation will normally be from primary text to
reference language, not the other way around.

Another layer of the corpus consists of sentence
and word alignments, required for training and
evaluating machine translation systems, and for
extracting bilingual lexicons. Curating such anno-
tations is a more specialized task than translation,
and so we expect it will only be done for a subset
of the translated texts.

In the last and smallest layer, morphology is an-
notated. This supports the development of mor-
phological analyzers, to preprocess primary texts
to identify morpheme boundaries and recognize
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allomorphs, reducing the amount of data required
for training an MT system. This most-refined
target annotation corresponds to the interlinear
glossed texts that are the de facto standard of anno-
tation in the documentary linguistics community.

We postulate that interlinear glossed text is suf-
ficiently fine-grained to serve our purposes. It
invites efforts to enrich it by automatic means:
for example, there has been work on parsing the
English translations and using the word-by-word
glosses to transfer the parse tree to the object lan-
guage, effectively creating a treebank automati-
cally (Xia and Lewis, 2007). At the same time, we
believe that interlinear glossed text is sufficiently
simple and well-understood to allow rapid con-
struction of resources, and to make cross-linguistic
consistency a realistic goal.

Each of these layers—primary text, translations,
alignments, and morphological glosses—seems to
be an unavoidable piece of the overall solution.
The fact that these layers will exist in diminishing
quantity is also unavoidable. However, there is an
important consequence: the primary texts will be
permanently subject to new translation initiatives,
which themselves will be subject to new align-
ment and glossing initiatives, in which each step
is an instance of semisupervised learning (Abney,
2007). As time passes, our ability to enhance the
quantity and quality of the annotations will only
increase, thanks to effective combinations of auto-
matic, professional, and crowd-sourced effort.

2.2 Principles

The basic principles upon which the envisioned
corpus is based are the following:

Universality. Covering as many languages as
possible is the first priority. Progress will be
gauged against concrete goals for numbers of lan-
guages, data per language, and coverage of lan-
guage families (Whalen and Simons, 2009).

Machine readability and consistency. “Cover-
ing” languages means enabling machine process-
ing seamlessly across languages. This will sup-
port new types of linguistic inquiry and the devel-
opment and testing of inference methods (for mor-
phology, parsers, machine translation) across large
numbers of typologically diverse languages.

Community effort. We cannot expect a single
organization to assemble a resource on this scale.
It will be necessary to get community buy-in, and



many motivated volunteers. The repository will
not be the sole possession of any one institution.

Availability. The content of the corpus will be
available under one or more permissive licenses,
such as the Creative Commons Attribution Li-
cense (CC-BY), placing as few limits as possible
on community members’ ability to obtain and en-
hance the corpus, and redistribute derivative data.

Utility. The corpus aims to be maximally use-
ful, and minimally parochial. Annotation will be
as lightweight as possible; richer annotations will
will emerge bottom-up as they prove their utility
at the large scale.

Centrality of primary data. Primary texts and
recordings are paramount. Secondary resources
such as grammars and lexicons are important, but
no substitute for primary data. It is desirable that
secondary resources be integrated with—if not de-
rived from—primary data in the corpus.

2.3 What to include

What should be included in the corpus? To some
extent, data collection will be opportunistic, but
it is appropriate to have a well-defined target in
mind. We consider the following essential.

Metadata. One means of resource identification
is to survey existing documentation for the lan-
guage, including bibliographic references and lo-
cations of web resources. Provenance and proper
citation of sources should be included for all data.

For written text. (1) Primary documents in
original printed form, e.g. scanned page images or
PDF. (2) Transcription. Not only optical charac-
ter recognition output, but also the output of tools
that extract text from PDF, will generally require
manual editing.

For spoken text. (1) Audio recordings. Both
elicited and spontaneous speech should be in-
cluded. It is highly desirous to have some con-
nected speech for every language. (2) Slow speech
“audio transcriptions.” Carefully respeaking a
spoken text can be much more efficient than writ-
ten transcription, and may one day yield to speech
recognition methods. (3) Written transcriptions.
We do not impose any requirements on the form
of transcription, though orthographic transcription
is generally much faster to produce than phonetic
transcription, and may even be more useful as
words are represented by normalized forms.
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For both written and spoken text. (1) Trans-
lations of primary documents into a refer-
ence language (possibly including commentary).
(2) Sentence-level segmentation and transla-
tion. (3) Word-level segmentation and glossing.
(4) Morpheme-level segmentation and glossing.

All documents will be included in primary
form, but the percentage of documents with man-
ual annotation, or manually corrected annotation,
decreases at increasingly fine-grained levels of an-
notation. Where manual fine-grained annotation is
unavailable, automatic methods for creating it (at a
lower quality) are desirable. Defining such meth-
ods for a large range of resource-poor languages is
an interesting computational challenge.

Secondary resources. Although it is possible to
base descriptive analyses exclusively on a text cor-
pus (Himmelmann, 2006, p. 22), the following
secondary resources should be secured if they are
available: (1) A lexicon with glosses in a reference
language. Ideally, everything should be attested in
the texts, but as a practical matter, there will be
words for which we have only a lexical entry and
no instances of use. (2) Paradigms and phonol-
ogy, for the construction of a morphological ana-
lyzer. Ideally, they should be inducible from the
texts, but published grammatical information may
go beyond what is attested in the text.

2.4 Inadequacy of existing efforts

Our key desideratum is support for automatic pro-
cessing across a large range of languages. No data
collection effort currently exists or is proposed, to
our knowledge, that addresses this desideratum.
Traditional language archives such as the Audio
Archive of Linguistic Fieldwork (UC Berkeley),
Documentation of Endangered Languages (Max
Planck Institute, Nijmegen), the Endangered Lan-
guages Archive (SOAS, University of London),
and the Pacific And Regional Archive for Digi-
tal Sources in Endangered Cultures (Australia) of-
fer broad coverage of languages, but the majority
of their offerings are restricted in availability and
do not support machine processing. Conversely,
large-scale data collection efforts by the Linguis-
tic Data Consortium and the European Language
Resources Association cover less than one percent
of the world’s languages, with no evident plans for
major expansion of coverage. Other efforts con-
cern the definition and aggregation of language
resource metadata, including OLAC, IMDI, and



CLARIN (Simons and Bird, 2003; Broeder and
Wittenburg, 2006; Véradi et al., 2008), but this is
not the same as collecting and disseminating data.

Initiatives to develop standard formats for lin-
guistic annotations are orthogonal to our goals.
The success of the project will depend on con-
tributed data from many sources, in many differ-
ent formats. Converting all data formats to an
official standard, such as the RDF-based models
being developed by ISO Technical Committee 37
Sub-committee 4 Working Group 2, is simply im-
practical. These formats have onerous syntactic
and semantic requirements that demand substan-
tial further processing together with expert judg-
ment, and threaten to crush the large-scale collab-
orative data collection effort we envisage, before
it even gets off the ground. Instead, we opt for a
very lightweight format, sketched in the next sec-
tion, to minimize the effort of conversion and en-
able an immediate start. This does not limit the
options of community members who desire richer
formats, since they are free to invest the effort in
enriching the existing data. Such enrichment ef-
forts may gain broad support if they deliver a tan-
gible benefit for cross-language processing.

3 A Simple Storage Model

Here we sketch a simple approach to storage of
texts (including transcribed speech), bitexts, inter-
linear glossed text, and lexicons. We have been
deliberately schematic since the goal is just to give
grounds for confidence that there exists a general,
scalable solution.

For readability, our illustrations will include
space-separated sequences of tokens. However,
behind the scenes these could be represented as
a sequence of pairs of start and end offsets into a
primary text or speech signal, or as a sequence of
integers that reference an array of strings. Thus,
when we write (1a), bear in mind it may be imple-
mented as (1b) or (1c¢).

(1) a. Thisis a point of order .
b. (0,4), (5,7), (8,9), (10,15), (16,18), ...
c. 9347,3053,0038, 3342, 3468, ...

In what follows, we focus on the minimal re-
quirements for storing and disseminating aligned
text, not the requirements for efficient in-memory
data structures. Moreover, we are agnostic about
whether the normalized, tokenized format is stored
entire or computed on demand.
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We take an aligned text to be composed of a
series of aligned sentences, each consisting of a
small set of attributes and values, e.g.:

ID: europarl/swedish/ep-00-01-17/18
LANGS: swd eng

SENT: det gdller en ordningsfraga
TRANS: this is a point of order
ALIGN: 1-1 2-2 3-3 4-4 4-5 4-6
PROVENANCE: pharaoh-vl.2,

REV: 8947 2010-05-02 10:35:06 leobfldl2
RIGHTS: Copyright (C) 2010 Uni...; CC-BY

The value of ID identifies the document and sen-
tence, and any collection to which the document
belongs. Individual components of the identi-
fier can be referenced or retrieved. The LANGS
attribute identifies the source and reference lan-
guage using ISO 639 codes.” The SENT attribute
contains space-delimited tokens comprising a sen-
tence. Optional attributes TRANS and ALIGN
hold the translation and alignment, if these are
available; they are omitted in monolingual text.
A provenance attribute records any automatic or
manual processes which apply to the record, and
a revision attribute contains the version number,
timestamp, and username associated with the most
recent modification of the record, and a rights at-
tribute contains copyright and license information.

When morphological annotation is available, it
is represented by two additional attributes, LEX
and AFF. Here is a monolingual example:

ID: example/001

LANGS: eng

SENT: the dogs are barking
LEX: the dog be bark

AFF: - PL PL ING

Note that combining all attributes of these
two examples—that is, combining word-by-word
translation with morphological analysis—yields
interlinear glossed text.

A bilingual lexicon is an indispensable re-
source, whether provided as such, induced from
a collection of aligned text, or created by merg-
ing contributed and induced lexicons. A bilin-
gual lexicon can be viewed as an inventory of
cross-language correspondences between words
or groups of words. These correspondences are
just aligned text fragments, albeit much smaller
than a sentence. Thus, we take a bilingual lexicon
to be a kind of text in which each record contains
a single lexeme and its translation, represented us-
ing the LEX and TRANS attributes we have already
introduced, e.g.:

ttp://www.sil.org/is0639-3/



ID: swedishlex/v3.2/0419
LANGS: swd eng

LEX: ordningsfraga
TRANS: point of order

In sum, the Universal Corpus is represented as
a massive store of records, each representing a
single sentence or lexical entry, using a limited
set of attributes. The store is indexed for effi-
cient access, and supports access to slices identi-
fied by language, content, provenance, rights, and
so forth. Many component collections would be
“unioned” into this single, large Corpus, with only
the record identifiers capturing the distinction be-
tween the various data sources.

Special cases of aligned text and wordlists,
spanning more than 1,000 languages, are Bible
translations and Swadesh wordlists (Resnik et al.,
1999; Swadesh, 1955). Here there are obvious
use-cases for accessing a particular verse or word
across all languages. However, it is not neces-
sary to model n-way language alignments. In-
stead, such sources are implicitly aligned by virtue
of their structure. Extracting all translations of
a verse, or all cognates of a Swadesh wordlist
item, is an index operation that returns monolin-
gual records, e.g.:

ID: swadesh/47 ID: swadesh/47
LANGS: fra LANGS: eng
LEX: chien LEX: dog

4 Building the Corpus

Data collection on this scale is a daunting
prospect, yet it is important to avoid the paraly-
sis of over-planning. We can start immediately by
leveraging existing infrastructure, and the volun-
tary effort of interested members of the language
resources community. One possibility is to found
a “Language Commons,” an open access reposi-
tory of language resources hosted in the Internet
Archive, with a lightweight method for commu-
nity members to contribute data sets.

A fully processed and indexed version of se-
lected data can be made accessible via a web ser-
vices interface to a major cloud storage facility,
such as Amazon Web Services. A common query
interface could be supported via APIs in multi-
ple NLP toolkits such as NLTK and GATE (Bird
et al.,, 2009; Cunningham et al., 2002), and also
in generic frameworks such as UIMA and SOAP,
leaving developers to work within their preferred
environment.
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4.1 Motivation for data providers

We hope that potential contributors of data will
be motivated to participate primarily by agree-
ment with the goals of the project. Even some-
one who has specialized in a particular language
or language family maintains an interest, we ex-
pect, in the universal question—the exploration of
Language writ large.

Data providers will find benefit in the availabil-
ity of volunteers for crowd-sourcing, and tools for
(semi-)automated quality control, refinement, and
presentation of data. For example, a data holder
should be able to contribute recordings and get
help in transcribing them, through a combination
of volunteer labor and automatic processing.

Documentary linguists and computational lin-
guists have much to gain from collaboration. In re-
turn for the data that documentary linguistics can
provide, computational linguistics has the poten-
tial to revolutionize the tools and practice of lan-
guage documentation.

We also seek collaboration with communities of
language speakers. The corpus provides an econ-
omy of scale for the development of literacy mate-
rials and tools for interactive language instruction,
in support of language preservation and revitaliza-
tion. For small languages, literacy in the mother
tongue is often defended on the grounds that it pro-
vides the best route to literacy in the national lan-
guage (Wagner, 1993, ch. 8). An essential ingredi-
ent of any local literacy program is to have a sub-
stantial quantity of available texts that represent
familiar topics including cultural heritage, folk-
lore, personal narratives, and current events. Tran-
sition to literacy in a language of wider commu-
nication is aided when transitional materials are
available (Waters, 1998, pp. 61ff). Mutual bene-
fits will also flow from the development of tools
for low-cost publication and broadcast in the lan-
guage, with copies of the published or broadcast
material licensed to and archived in the corpus.

4.2 Roles

The enterprise requires collaboration of many in-
dividuals and groups, in a variety of roles.

Editors. A critical group are people with suffi-
cient engagement to serve as editors for particular
language families, who have access to data or are
able to negotiate redistribution rights, and oversee
the workflow of transcription, translation, and an-
notation.



CL Research. All manual annotation steps need
to be automated. Each step presents a challeng-
ing semi-supervised learning and cross-linguistic
bootstrapping problem. In addition, the overall
measure of success—induction of machine trans-
lation systems from limited resources—pushes the
state of the art (Kumar et al., 2007). Numerous
other CL problems arise: active learning to im-
prove the quality of alignments and bilingual lex-
icons; automatic language identification for low-
density languages; and morphology learning.

Tool builders. We need tools for annotation, for-
mat conversion, spidering and language identifica-
tion, search, archiving, and presentation. Innova-
tive crowd-sourcing solutions are of particular in-
terest, e.g. web-based functionality for transcrib-
ing audio and video of oral literature, or setting up
a translation service based on aligned texts for a
low-density language, and collecting the improved
translations suggested by users.

Volunteer annotators. An important reason for
keeping the data model as lightweight as possible
is to enable contributions from volunteers with lit-
tle or no linguistic training. Two models are the
volunteers who scan documents and correct OCR
output in Project Gutenberg, or the undergraduate
volunteers who have constructed Greek and Latin
treebanks within Project Perseus (Crane, 2010).
Bilingual lexicons that have been extracted from
aligned text collections might be corrected using
crowd-sourcing, leading to improved translation
models and improved alignments. We also see the
Universal Corpus as an excellent opportunity for
undergraduates to participate in research, and for
native speakers to participate in the preservation of
their language.

Documentary linguists. The collection proto-
col known as Basic Oral Language Documentation
(BOLD) enables documentary linguists to collect
2-3 orders of magnitude more oral discourse than
before (Bird, 2010). Linguists can equip local
speakers to collect written texts, then to carefully
“respeak’ and orally translate the texts into a refer-
ence language. With suitable tools, incorporating
active learning, local speakers could further curate
bilingual texts and lexicons. An early need is pi-
lot studies to determine costings for different cat-
egories of language.
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Data agencies. The LDC and ELRA have a cen-
tral role to play, given their track record in obtain-
ing, curating, and publishing data with licenses
that facilitate language technology development.
We need to identify key resources where negoti-
ation with the original data provider, and where
payment of all preparation costs plus compensa-
tion for lost revenue, leads to new material for the
Corpus. This is a new publication model and a
new business model, but it can co-exist with the
existing models.

Language archives. Language archives have a
special role to play as holders of unique materi-
als. They could contribute existing data in its na-
tive format, for other participants to process. They
could give bilingual texts a distinct status within
their collections, to facilitate discovery.

Funding agencies. To be successful, the Human
Language Project would require substantial funds,
possibly drawing on a constellation of public and
private agencies in many countries. However, in
the spirit of starting small, and starting now, agen-
cies could require that sponsored projects which
collect texts and build lexicons contribute them to
the Language Commons. After all, the most effec-
tive time to do translation, alignment, and lexicon
work is often at the point when primary data is
first collected, and this extra work promises direct
benefits to the individual project.

4.3 Early tasks

Seed corpus. The central challenge, we believe,
is getting critical mass. Data attracts data, and if
one can establish a sufficient seed, the effort will
snowball. We can make some concrete proposals
as to how to collect a seed. Language resources
on the web are one source—the Cribadén project
has identified resources for 400 languages, for ex-
ample (Scannell, 2008); the New Testament of the
Bible exists in about 1200 languages and contains
of the order of 100k words. We hope that exist-
ing efforts that are already well-disposed toward
electronic distribution will participate. We partic-
ularly mention the Language and Culture Archive
of the Summer Institute of Linguistics, and the
Rosetta Project. The latter is already distributed
through the Internet Archive and contains material
for 2500 languages.

Resource discovery. Existing language re-
sources need to be documented, a large un-



dertaking that depends on widely distributed
knowledge. Existing published corpora from the
LDC, ELRA and dozens of other sources—a total
of 85,000 items—are already documented in the
combined catalog of the Open Language Archives
Community,? so there is no need to recreate this
information. Other resources can be logged by
community members using a public access wiki,
with a metadata template to ensure key fields are
elicited such as resource owner, license, ISO 639
language code(s), and data type. This information
can itself be curated and stored in the form of an
OLAC archive, to permit search over the union of
the existing and newly documented items. Work
along these lines has already been initiated by
LDC and ELRA (Cieri et al., 2010).

Resource classification. Editors with knowl-
edge of particular language families will catego-
rize documented resources relative to the needs of
the project, using controlled vocabularies. This
involves examining a resource, determining the
granularity and provenance of the segmentation
and alignment, checking its ISO 639 classifi-
cations, assigning it to a logarithmic size cate-
gory, documenting its format and layout, collect-
ing sample files, and assigning a priority score.

Acquisition. Where necessary, permission will
be sought to lodge the resource in the repository.
Funding may be required to buy the rights to the
resource from its owner, as compensation for lost
revenue from future data sales. Funding may be
required to translate the source into a reference
language. The repository’s ingestion process is
followed, and the resource metadata is updated.

Text collection. Languages for which the avail-
able resources are inadequate are identified, and
the needs are prioritized, based on linguistic and
geographical diversity. Sponsorship is sought
for collecting bilingual texts in high priority lan-
guages. Workflows are developed for languages
based on a variety of factors, such as availability
of educated people with native-level proficiency
in their mother tongue and good knowledge of
a reference language, internet access in the lan-
guage area, availability of expatriate speakers in a
first-world context, and so forth. A classification
scheme is required to help predict which work-
flows will be most successful in a given situation.

*http://www.language—archives.org/
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Audio protocol. The challenge posed by lan-
guages with no written literature should not be
underestimated. A promising collection method
is Basic Oral Language Documentation, which
calls for inexpensive voice recorders and net-
books, project-specific software for transcription
and sentence-aligned translation, network band-
width for upload to the repository, and suitable
training and support throughout the process.

Corpus readers. Software developers will in-
spect the file formats and identify high priority for-
mats based on information about resource priori-
ties and sizes. They will code a corpus reader, an
open source reference implementation for convert-
ing between corpus formats and the storage model
presented in section 3.

4.4 Further challenges

There are many additional difficulties that could
be listed, though we expect they can be addressed
over time, once a sufficient seed corpus is estab-
lished. Two particular issues deserve further com-
ment, however.

Licenses. Intellectual property issues surround-
ing linguistic corpora present a complex and
evolving landscape (DiPersio, 2010). For users, it
would be ideal for all materials to be available un-
der a single license that permits derivative works,
commercial use, and redistribution, such as the
Creative Commons Attribution License (CC-BY).
There would be no confusion about permissible
uses of subsets and aggregates of the collected cor-
pora, and it would be easy to view the Universal
Corpus as a single corpus. But to attract as many
data contributors as possible, we cannot make such
a license a condition of contribution.

Instead, we propose to distinguish between:
(1) a digital Archive of contributed corpora that
are stored in their original format and made avail-
able under a range of licenses, offering preserva-
tion and dissemination services to the language
resources community at large (i.e. the Language
Commons); and (2) the Universal Corpus, which
is embodied as programmatic access to an evolv-
ing subset of materials from the archive under
one of a small set of permissive licenses, licenses
whose unions and intersections are understood
(e.g. CC-BY and its non-commercial counterpart
CC-BY-NC). Apart from being a useful service in
its own right, the Archive would provide a staging



ground for the Universal Corpus. Archived cor-
pora having restrictive licenses could be evaluated
for their potential as contributions to the Corpus,
making it possible to prioritize the work of nego-
tiating more liberal licenses.

There are reasons to distinguish Archive and
Corpus even beyond the license issues. The Cor-
pus, but not the Archive, is limited to the formats
that support automatic cross-linguistic processing.
Conversely, since the primary interface to the Cor-
pus is programmatic, it may include materials that
are hosted in many different archives; it only needs
to know how to access and deliver them to the user.
Incidentally, we consider it an implementation is-
sue whether the Corpus is provided as a web ser-
vice, a download service with user-side software,
user-side software with data delivered on physical
media, or a cloud application with user programs
executed server-side.

Expenses of conversion and editing. We do not
trivialize the work involved in converting docu-
ments to the formats of section 3, and in manu-
ally correcting the results of noisy automatic pro-
cesses such as optical character recognition. In-
deed, the amount of work involved is one moti-
vation for the lengths to which we have gone to
keep the data format simple. For example, we have
deliberately avoided specifying any particular to-
kenization scheme. Variation will arise as a con-
sequence, but we believe that it will be no worse
than the variability in input that current machine
translation training methods routinely deal with,
and will not greatly injure the utility of the Corpus.
The utter simplicity of the formats also widens the
pool of potential volunteers for doing the manual
work that is required. By avoiding linguistically
delicate annotation, we can take advantage of mo-
tivated but untrained volunteers such as students
and members of speaker communities.

5 Conclusion

Nearly twenty years ago, the linguistics commu-
nity received a wake-up call, when Hale et al.
(1992) predicted that 90% of the world’s linguis-
tic diversity would be lost or moribund by the year
2100, and warned that linguistics might “go down
in history as the only science that presided oblivi-
ously over the disappearance of 90 per cent of the
very field to which it is dedicated.” Today, lan-
guage documentation is a high priority in main-
stream linguistics. However, the field of computa-
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tional linguistics is yet to participate substantially.

The first half century of research in compu-
tational linguistics—from circa 1960 up to the
present—has touched on less than 1% of the
world’s languages. For a field which is justly
proud of its empirical methods, it is time to apply
those methods to the remaining 99% of languages.
We will never have the luxury of richly annotated
data for these languages, so we are forced to ask
ourselves: can we do more with less?

We believe the answer is “yes,” and so we chal-
lenge the computational linguistics community to
adopt a scalable computational approach to the
problem. We need leaner methods for building
machine translation systems; new algorithms for
cross-linguistic bootstrapping via multiple paths;
more effective techniques for leveraging human
effort in labeling data; scalable ways to get bilin-
gual text for unwritten languages; and large scale
social engineering to make it all happen quickly.

To believe we can build this Universal Corpus is
certainly audacious, but not to even try is arguably
irresponsible. The initial step parallels earlier ef-
forts to create large machine-readable text collec-
tions which began in the 1960s and reverberated
through each subsequent decade. Collecting bilin-
gual texts is an orthodox activity, and many alter-
native conceptions of a Human Language Project
would likely include this as an early task.

The undertaking ranks with the largest data-
collection efforts in science today. It is not achiev-
able without considerable computational sophis-
tication and the full engagement of the field of
computational linguistics. Yet we require no fun-
damentally new technologies. We can build on
our strengths in corpus-based methods, linguis-
tic models, human- and machine-supplied annota-
tions, and learning algorithms. By rising to this,
the greatest language challenge of our time, we
enable multi-lingual technology development at a
new scale, and simultaneously lay the foundations
for a new science of empirical universal linguis-
tics.

Acknowledgments

We are grateful to Ed Bice, Doug Oard, Gary
Simons, participants of the Language Commons
working group meeting in Boston, students in
the “Digitizing Languages” seminar (University of
Michigan), and anonymous reviewers, for feed-
back on an earlier version of this paper.



References

Steven Abney. 2007. Semisupervised Learning for
Computational Linguistics. Chapman & Hall/CRC.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media. http://nltk.org/book.

Steven Bird. 2010. A scalable method for preserving
oral literature from small languages. In Proceedings
of the 12th International Conference on Asia-Pacific
Digital Libraries, pages 5—14.

Daan Broeder and Peter Wittenburg. 2006. The IMDI
metadata framework, its current application and fu-
ture direction. International Journal of Metadata,
Semantics and Ontologies, 1:119-132.

Christopher Cieri, Khalid Choukri, Nicoletta Calzo-
lari, D. Terence Langendoen, Johannes Leveling,
Martha Palmer, Nancy Ide, and James Pustejovsky.
2010. A road map for interoperable language re-
source metadata. In Proceedings of the 7th Interna-
tional Conference on Language Resources and Eval-
uation (LREC).

Gregory R. Crane. 2010. Perseus Digital Library:
Research in 2008/09. http://www.perseus.
tufts.edu/hopper/research/current.
Accessed Feb. 2010.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. GATE: an
architecture for development of robust HLT appli-
cations. In Proceedings of 40th Annual Meeting
of the Association for Computational Linguistics,
pages 168-175. Association for Computational
Linguistics.

Denise DiPersio. 2010. Implications of a permis-
sions culture on the development and distribution
of language resources. In FLaReNet Forum 2010.
Fostering Language Resources Network. http:
//www.flarenet.eu/.

Hale, M. Krauss, L. Watahomigie, A. Yamamoto, and
C. Craig. 1992. Endangered languages. Language,
68(1):1-42.

Nikolaus P. Himmelmann. 2006. Language documen-
tation: What is it and what is it good for? In
Jost Gippert, Nikolaus Himmelmann, and Ulrike
Mosel, editors, Essentials of Language Documenta-
tion, pages 1-30. Mouton de Gruyter.

Human Genome Project. 2007. The science
behind the Human Genome Project. http:
//www.ornl.gov/sci/techresources/
Human_Genome/project/info.shtml.
Accessed Dec. 2007.

'W. John Hutchins and Harold L. Somers. 1992. An In-
troduction to Machine Translation. Academic Press.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

97

Shankar Kumar, Franz J. Och, and Wolfgang
Macherey. 2007. Improving word alignment with
bridge languages. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 42-50,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Mike Maxwell and Baden Hughes. 2006. Frontiers
in linguistic annotation for lower-density languages.
In Proceedings of the Workshop on Frontiers in Lin-
guistically Annotated Corpora 2006, pages 29-37,
Sydney, Australia, July. Association for Computa-
tional Linguistics.

Philip Resnik, Mari Broman Olsen, and Mona Diab.
1999. The Bible as a parallel corpus: Annotating
the ‘book of 2000 tongues’. Computers and the Hu-
manities, 33:129-153.

Kevin Scannell. 2008. The Criibad4n Project: Corpus
building for under-resourced languages. In Cahiers
du Cental 5: Proceedings of the 3rd Web as Corpus
Workshop.

Gary Simons and Steven Bird. 2003. The Open Lan-
guage Archives Community: An infrastructure for
distributed archiving of language resources. Liter-
ary and Linguistic Computing, 18:117-128.

Morris Swadesh. 1955. Towards greater accuracy
in lexicostatistic dating. International Journal of
American Linguistics, 21:121-137.

Tamas Varadi, Steven Krauwer, Peter Wittenburg,
Martin Wynne, and Kimmo Koskenniemi. 2008.
CLARIN: common language resources and technol-
ogy infrastructure. In Proceedings of the Sixth Inter-
national Language Resources and Evaluation Con-
ference. European Language Resources Association.

Daniel A. Wagner. 1993. Literacy, Culture, and Devel-
opment: Becoming Literate in Morocco. Cambridge
University Press.

Glenys Waters. 1998. Local Literacies: Theory and
Practice. Summer Institute of Linguistics, Dallas.

Douglas H. Whalen and Gary Simons. 2009. En-
dangered language families. In Proceedings of the
Ist International Conference on Language Docu-
mentation and Conservation. University of Hawaii.
http://hdl.handle.net/10125/5017.

Anthony C. Woodbury. 2010. Language documenta-
tion. In Peter K. Austin and Julia Sallabank, edi-
tors, The Cambridge Handbook of Endangered Lan-
guages. Cambridge University Press.

Fei Xia and William D. Lewis. 2007. Multilingual
structural projection across interlinearized text. In
Proceedings of the Meeting of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL). Association for Computational
Linguistics.



Bilingual Lexicon Generation Using Non-Aligned Signatures

Daphna Shezaf
Institute of Computer Science
Hebrew University of Jerusalem
daphna.shezaf @mail.huji.ac.il

Abstract

Bilingual lexicons are fundamental re-
sources. Modern automated lexicon gen-
eration methods usually require parallel
corpora, which are not available for most
language pairs. Lexicons can be gener-
ated using non-parallel corpora or a pivot
language, but such lexicons are noisy.
We present an algorithm for generating
a high quality lexicon from a noisy one,
which only requires an independent cor-
pus for each language. Our algorithm in-
troduces non-aligned signatures (NAS), a
cross-lingual word context similarity score
that avoids the over-constrained and inef-
ficient nature of alignment-based methods.
We use NAS to eliminate incorrect transla-
tions from the generated lexicon. We eval-
uate our method by improving the quality
of noisy Spanish-Hebrew lexicons gener-
ated from two pivot English lexicons. Our
algorithm substantially outperforms other
lexicon generation methods.

1 Introduction

Bilingual lexicons are useful for both end users
and computerized language processing tasks.
They provide, for each source language word or
phrase, a set of translations in the target language,
and thus they are a basic component of dictio-
naries, which also include syntactic information,
sense division, usage examples, semantic fields,
usage guidelines, etc.

Traditionally, when bilingual lexicons are not
compiled manually, they are extracted from par-
allel corpora. However, for most language pairs
parallel bilingual corpora either do not exist or are
at best small and unrepresentative of the general
language.

Bilingual lexicons can be generated using non-
parallel corpora or pivot language lexicons (see
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Section 2). However, such lexicons are noisy. In
this paper we present a method for generating a
high quality lexicon given such a noisy one. Our
evaluation focuses on the pivot language case.

Pivot language approaches deal with the
scarcity of bilingual data for most language pairs
by relying on the availability of bilingual data for
each of the languages in question with a third,
pivot, language. In practice, this third language
is often English.

A naive method for pivot-based lexicon genera-
tion goes as follows. For each source headword',
take its translations to the pivot language using the
source-to-pivot lexicon, then for each such transla-
tion take its translations to the target language us-
ing the pivot-to-target lexicon. This method yields
highly noisy (‘divergent’) lexicons, because lexi-
cons are generally intransitive. This intransitivity
stems from polysemy in the pivot language that
does not exist in the source language. For ex-
ample, take French-English-Spanish. The English
word spring is the translation of the French word
printemps, but only in the season of year sense.
Further translating spring into Spanish yields both
the correct translation primavera and an incorrect
one, resorte (the elastic object).

To cope with the issue of divergence due to lex-
ical intransitivity, we present an algorithm for as-
sessing the correctness of candidate translations.
The algorithm is quite simple to understand and
to implement and is computationally efficient. In
spite of its simplicity, we are not aware of previous
work applying it to our problem.

The algorithm utilizes two monolingual cor-
pora, comparable in their domain but otherwise
unrelated, in the source and target languages. It
does not need a pivot language corpus. The al-
gorithm comprises two stages: signature genera-

'"In this paper we focus on single word head entries.
Multi-word expressions form a major topic in NLP and their
handling is deferred to future work.

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 98—107,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



tion and signature ranking. The signature of word
w is the set of words that co-occur with w most
strongly. While co-occurrence scores are used
to compute signatures, signatures, unlike context
vectors, do not contain the score values. For
each given source headword we compute its sig-
nature and the signatures of all of its candidate
translations. We present the non-aligned signa-
tures (NAS) similarity score for signature and use
it to rank these translations. NAS is based on the
number of headword signature words that may be
translated using the input noisy lexicon into words
in the signature of a candidate translation.

We evaluate our algorithm by generating a
bilingual lexicon for Hebrew and Spanish using
pivot Hebrew-English and English-Spanish lexi-
cons compiled by a professional publishing house.
We show that the algorithm outperforms exist-
ing algorithms for handling divergence induced by
lexical intransitivity.

2 Previous Work

2.1 Parallel Corpora

Parallel corpora are often used to infer word-
oriented machine-readable bilingual lexicons. The
texts are aligned to each other, at chunk- and/or
word-level. Alignment is generally evaluated by
consistency (source words should be translated to
a small number of target words over the entire cor-
pus) and minimal shifting (in each occurrence, the
source should be aligned to a translation nearby).
For a review of such methods see (Lopez, 2008).
The limited availability of parallel corpora of suffi-
cient size for most language pairs restricts the use-
fulness of these methods.

2.2 Pivot Language Without Corpora
2.2.1 Inverse Consultation

Tanaka and Umemura (1994) generated a bilin-
gual lexicon using a pivot language. They ap-
proached lexical intransitivity divergence using
Inverse Consultation (IC). IC examines the inter-
section of two pivot language sets: the set of pivot
translations of a source-language word w, and the
set of pivot translations of each target-language
word that is a candidate for being a translation
to w. IC generally requires that the intersection
set contains at least two words, which are syn-
onyms. For example, the intersection of the En-
glish translations of French printemps and Spanish
resorte contains only a single word, spring. The
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intersection for a correct translation pair printemps
and primavera may include two synonym words,
spring and springtime. Variations of this method
were proposed by (Kaji and Aizono, 1996; Bond
et al., 2001; Paik et al., 2004; Ahn and Frampton,
2006).

One weakness of IC is that it relies on pivot lan-
guage synonyms to identify correct translations.
In the above example, if the relatively rare spring-
time had not existed or was missing from the input
lexicons, IC would not have been able to discern
that primavera is a correct translation. This may
result in low recall.

2.2.2 Multiple Pivot Languages

Mausam et al. (2009) used many input bilingual
lexicons to create bilingual lexicons for new lan-
guage pairs. They represent the multiple input
lexicons in a single undirected graph, with words
from all the lexicons as nodes. The input lexi-
cons translation pairs define the edges in the graph.
New translation pairs are inferred based on cycles
in the graph, that is, the existence of multiple paths
between two words in different languages.

In a sense, this is a generalization of the pivot
language idea, where multiple pivots are used. In
the example above, if both English and German
are used as pivots, printemps and primavera would
be accepted as correct because they are linked by
both English spring and German Fruehling, while
printemps and resorte are not linked by any Ger-
man pivot. This multiple-pivot idea is similar to
Inverse Consultation in that multiple pivots are re-
quired, but using multiple pivot languages frees it
from the dependency on rich input lexicons that
contain a variety of synonyms. This is replaced,
however, with the problem of coming up with mul-
tiple suitable input lexicons.

223

Dictionaries published by a single publishing
house tend to partition the semantic fields of head-
words in the same way. Thus the first translation
of some English headword in the English-Spanish
and in the English-Hebrew dictionaries would cor-
respond to the same sense of the headword, and
would therefore constitute translations of each
other. The applicability of this method is lim-
ited by the availability of machine-readable dic-
tionaries produced by the same publishing house.
Not surprisingly, this method has been proposed
by lexicographers working in such companies (Sk-

Micro-Structure of Dictionary Entries



oumalova, 2001).

2.3 Cross-lingual Co-occurrences in Lexicon
Construction

Rapp (1999) and Fung (1998) discussed seman-
tic similarity estimation using cross-lingual con-
text vector alignment. Both works rely on a
pre-existing large (16-20K entries), correct, one-
to-one lexicon between the source and target
languages, which is used to align context vec-
tors between languages. The context vector
data was extracted from comparable (monolingual
but domain-related) corpora. Koehn and Knight
(2002) were able to do without the initial large lex-
icon by limiting themselves to related languages
that share a writing system, and using identically-
spelled words as context words. Garera et al.
(2009) and Pekar et al. (2006) suggested different
methods for improving the context vectors data in
each language before aligning them. Garera et al.
(2009) replaced the traditional window-based co-
occurrence counting with dependency-tree based
counting, while Pekar et al. (2006) predicted miss-
ing co-occurrence values based on similar words
in the same language. In the latter work, the one-
to-one lexicon assumption was not made: when
a context word had multiple equivalents, it was
mapped into all of them, with the original prob-
ability equally distributed between them.

Pivot Language. Using cross-lingual co-
occurrences to improve a lexicon generated using
a pivot language was suggested by Tanaka and
Iwasaki (1996). Schafer and Yarowsky (2002)
created lexicons between English and a target
local language (e.g. Gujarati) using a related
language (e.g. Hindi) as pivot. An English pivot
lexicon was used in conjunction with pivot-target
cognates. Cross-lingual co-occurrences were used
to remove errors, together with other cues such as
edit distance and Inverse Document Frequencies
(IDF) scores. It appears that this work assumed a
single alignment was possible from English to the
target language.

Kaji et al. (2008) used a pivot English lexicon
to generate initial Japanese-Chinese and Chinese-
Japanese lexicons, then used co-occurrences in-
formation, aligned using the initial lexicon, to
identify correct translations. Unlike other works,
which require alignments of pairs (i.e., two co-
occurring words in one language translatable into
two co-occurring words in the other), this method
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relies on alignments of 3-word cliques in each
language, every pair of which frequently co-
occurring. This is a relatively rare occurrence,
which may explain the low recall rates of their re-
sults.

3 Algorithm

Our algorithm transforms a noisy lexicon into a
high quality one. As explained above, in this paper
we focus on noisy lexicons generated using pivot
language lexicons. Other methods for obtaining
an initial noisy lexicon could be used as well; their
evaluation is deferred to future work.

In the setting evaluated in this paper, we first
generate an initial noisy lexicon iLex possibly
containing many translation candidates for each
source headword. iLex is computed from two
pivot-language lexicons, and is the only place in
which the algorithm utilizes the pivot language.
Afterwards, for each source headword, we com-
pute its signature and the signatures of each of its
translation candidates. Signature computation uti-
lizes a monolingual corpus to discover the words
that are most strongly related to the word. We now
rank the candidates according to the non-aligned
signatures (NAS) similarity score, which assesses
the similarity between each candidate’s signature
and that of the headword. For each headword,
we select the ¢ translations with the highest NAS
scores as correct translations.

3.1 Input Resources

The resources required by our algorithm as evalu-
ated in this paper are: (a) two bilingual lexicons,
one from the source to the pivot language and the
other from the pivot to the target language. In
principle, these two pivot lexicons can be noisy,
although in our evaluation we use manually com-
piled lexicons; (b) two monolingual corpora, one
for each of the source and target languages. We
have tested the method with corpora of compa-
rable domains, but not covering the same well-
defined subjects (the corpora contain news from
different countries and over non-identical time pe-
riods).

3.2 Initial Lexicon Construction

We create an initial lexicon from the source to the
target language using the pivot language: we look
up each source language word s in the source-
pivot lexicon, and obtain the set P; of its pivot



translations. We then look up each of the mem-
bers of P; in the pivot-target lexicon, and obtain
a set T of candidate target translations. iLex is
therefore a mapping from the set of source head-
words to the set of candidate target translations.
Note that it is possible that not all target lexicon
words appear as translation candidates. To create
a target to source lexicon, we repeat the process
with the directions reversed.

3.3 Signatures

The signature of a word w in a language is the
set of N words most strongly related to w. There
are various possible ways to formalize this notion.
We use a common and simple one, the words hav-
ing the highest tendency to co-occur with w in a
corpus. We count co-occurrences using a sliding
fixed-length window of size k. We compute, for
each pair of words, their Pointwise Mutual Infor-
mation (PMI), that is:

Pr(wy,w2)

PMI('Z,Ul,'U)Q) = logm

where Pr(wi, ws) is the co-occurrence count, and
Pr(w;) is the total number of appearance of w;
in the corpus (Church and Hanks, 1990). We de-
fine the signature G(w) ; of w to be the set of N
words with the highest PMI with w.

Note that a word’s signature includes words in
the same language. Therefore, two signatures of
words in different languages cannot be directly
compared; we compare them using a lexicon L as
explained below.

Signature is a function of w parameterized by
N and k. We discuss the selection of these param-
eters in section 4.1.5.

3.4 Non-aligned Signatures (NAS) Similarity
Scoring

The core strength of our method lies in the way
in which we evaluate similarity between words in
the source and target languages. For a lexicon L,
a source word s and a target word 7, N ASL(s,t)
is defined as the number of words in the signature
G(s)n of s that may be translated, using L, to
words in the signature G(t) v , of ¢, normalized by
dividing it by N. Formally,

NASL(S, t) =
I{weG(s)lL%u)ﬁG(t#@}\

Where L(z) is the set of candidate translations
of x under the lexicon L. Since we use a single
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Language  Sites Tokens

Hebrew haartz.co.il, ynet.co.il, 510M
nrg.co.il

Spanish elpais.com, 560M

elmundo.com, abc.es

Table 1: Hebrew corpus data.

lexicon, iLex, throughout this work, we usually
omit the L subscript when referring to NAS.

4 Lexicon Generation Experiments

We tested our algorithm by generating bilingual
lexicons for Hebrew and Spanish, using English
as a pivot language. We chose a language pair for
which basically no parallel corpora exist?, and that
do not share ancestry or writing system in a way
that can provide cues for alignment.

We conducted the test twice: once creating
a Hebrew-Spanish lexicon, and once creating a
Spanish-Hebrew one.

4.1 Experimental Setup
4.1.1 Corpora

The Hebrew and Spanish corpora were extracted
from Israeli and Spanish newspaper websites re-
spectively (see table 1 for details). Crawling a
small number of sites allowed us to use special-
tailored software to extract the textual data from
the web pages, thus improving the quality of the
extracted texts. Our two corpora are comparable
in their domains, news and news commentary.

No kind of preprocessing was used for the Span-
ish corpus. For Hebrew, closed-class words that
are attached to the succeeding word (e.g., ‘the’,
‘and’, ‘in’) were segmented using a simple un-
supervised method (Dinur et al., 2009). This
method compares the corpus frequencies of the
non-prefixed form x and the prefixed form wx. If x
is frequent enough, it is assumed to be the correct
form, and all the occurrences of wx are segmented
into two tokens, w x. This method was chosen for
being simple and effective. However, the segmen-
tation it produces is not perfect. It is context insen-
sitive, segmenting all appearances of a token in the
same way, while many wx forms are actually am-
biguous. Even unambiguous token segmentations
may fail when the non-segmented form is very fre-
quent in the domain.

20ld testament corpora are for biblical Hebrew, which is
very different from modern Hebrew.



Lexicon  #headwords BF
Eng-Spa 55057 24
Spa-Eng 44349 29
Eng-Heb 48857 2.5
Heb-Eng 33439 3.7
Spa-Heb 34077 12.6
Heb-Spa 27591 14.8

Table 2: Number of words in lexicons, and branch-
ing factors (BF).

Hebrew orthography presents additional diffi-
culties: there are relatively many homographs, and
spelling is not quite standardized. These consid-
erations lead us to believe that our choice of lan-
guage pair is more challenging than, for example,
a pair of European languages.

4.1.2 Lexicons

The source of the Hebrew-English lexicon was the
Babylon on-line dictionary?3. For Spanish-English,
we used the union of Babylon with the Oxford
English-Spanish lexicon. Since the corpus was
segmented to words using spaces, lexicon entries
containing spaces were discarded.

Lexicon directionality was ignored. All trans-
lation pairs extracted for Hebrew-Spanish via En-
glish, were also reversed and added to the Spanish-
Hebrew lexicon, and vice-versa. Therefore, every
L1-L2 lexicon we mention is identical to the cor-
responding L2-L1 lexicon in the set of translation
pairs it contains. Our lexicon is thus the ‘noisi-
est’ that can be generated using a pivot language
and two source-pivot-target lexicons, but it also
provides the most complete candidate set possible.
Ignoring directionality is also in accordance with
the reversibility principle of the lexicographic lit-
erature (Tomaszczyk, 1998).

Table 2 details the sizes and branching factors
(BF) (the average number of translations for head-
word) of the input lexicons, as well as those of the
generated initial noisy lexicon.

4.1.3 Baseline

The performance of our method was compared to
three baselines: Inverse Consultation (IC), average
cosine distance, and average city block distance.
The first is a completely different algorithm, and
the last two are a version of our algorithm in which

3www.babylon.com.

102

the NAS score is replaced by other scores.

IC (see section 2.2.1) is a corpus-less method.
It ranks ¢, %9, ..., the candidate translations of a
source word s, by the size of the intersections of
the sets of pivot translations of ¢; and s. Note that
IC ranking is a partial order, as the intersection
size may be the same for many candidate transla-
tions. IC is a baseline for our algorithm as a whole.

Cosine and city block distances are widely
used methods for calculating distances of vectors
within the same vector space. They are defined
here as*

> ViU
VUi U

Cosine(v,u) =1 —

CityBlock(v,u) = — Z [V —

In the case of context vectors, the vector in-
dices, or keys, are words, and their values are co-
occurrence based scores. We used the words in
our signatures as context vector keys, and PMI
scores as values. In this way, the two scores are
‘plugged’ into our method and serve as baselines
for our NAS similarity score.

Since the context vectors are in different lan-
guages, we had to translate, or align, the baseline
context vectors for the source and target words.
Our initial lexicon is a many-to-many relation, so
multiple alignments were possible; in fact, the
number of possible alignments tends to be very
large®. We therefore generated M random possible
alignments, and used the average distance metric
across these alignments.

4.1.4 Test Sets and Gold Standard

Following other works (e.g. (Rapp, 1999)), and to
simplify the experimental setup, we focused in our
experiments on nouns.

A p-q frequency range in a corpus is the set of
tokens in the places between p and ¢ in the list of
corpus tokens, sorted by frequency from high to
low. Two types of test sets were used. The first
(R1) includes all the singular, correctly segmented
(in Hebrew) nouns among the 500 words in the
1001-1500 frequency range. The 1000 highest-
frequency tokens were discarded, as a large num-
ber of these are utilized as auxiliary syntactic

*We modified the standard cosine and city block metrics
so that for all measures higher values would be better.
SThis is another advantage of our NAS score.



R1 R2 R1 R2
Precision Recall Precision Recall Precision Recall Precision Recall
NAS 82.1% 100% 56 % 100% NAS 87.6% 100% 80% 100%
Cosine 60.7% 100% 28% 100% Cosine 68% 100% 44% 100%
City block 56.3% 100% 32% 100% City block 69.8% 100% 36% 100%
IC 55.2% 85.7% 52% 88% IC 76.4% 100% 48% 92%
Table 3: Hebrew-Spanish lexicon generation:  Table 4: Spanish-Hebrew Lexicon Generation:

highest-ranking translation.

words. This yielded a test set of 112 Hebrew
nouns and 169 Spanish nouns. The second (R2),
contains 25 words for each of the two languages,
obtained by randomly selecting 5 singular cor-
rectly segmented nouns from each of the 5 fre-
quency ranges 1-1000 to 4001-5000.

For each of the test words, the correct transla-
tions were extracted from a modern professional
concise printed Hebrew-Spanish-Hebrew dictio-
nary (Prolog, 2003). This dictionary almost al-
ways provides a single Spanish translation for He-
brew headwords. Spanish headwords had 1.98 He-
brew translations on the average. In both cases
this is a small number of correct translation com-
paring to what we might expect with other evalu-
ation methods; therefore this evaluation amounts
to a relatively high standard of correctness. Our
score comparison experiments (section 5) extend
the evaluation beyond this gold standard.

4.1.5 Parameters

The following parameter values were used. The
window size for co-occurrence counting, k, was 4.
This value was chosen in a small pre-test. Signa-
ture size N was 200 (see Section 6.1). The number
of alignments M for the baseline scores was 100.
The number of translations selected for each head-
word, ¢, was set to 1 for ease of testing, but see
further notes under results.

4.2 Results

Tables 3 and 4 summarize the results of the
Hebrew-Spanish and Spanish-Hebrew lexicon
generation respectively, for both the R1 and R2
test sets.

In the three co-occurrence based methods, NAS
similarity, cosine distance and and city block dis-
tance, the highest ranking translation was selected.
Recall is always 100% as a translation from the
candidate set is always selected, and all of this set
is valid. Precision is computed as the number of
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highest-ranking translation.

test words whose selected translation was one of
the translations in the gold standard.

IC translations ranking is a partial order, as usu-
ally many translations are scored equally. When
all translations have the same score, IC is effec-
tively undecided. We calculate recall as the per-
centage of cases in which there was more than one
score rank. A result was counted as precise if any
of the highest-ranking translations was in the gold-
standard, even if other translations were equally
ranked, creating a bias in favor of IC.

In both of the Hebrew-Spanish and the Spanish-
Hebrew cases, our method significantly outper-
formed all baselines in generating a precise lexi-
con on the highest-ranking translations.

All methods performed better in R/ than in
R2, which included also lower-frequency words,
and this was more noticeable with the corpus-
based methods (Hebrew-Spanish) than with IC.
This suggests, not surprisingly, that the perfor-
mance of corpus-based methods is related to the
amount of information in the corpus.

That the results for the Spanish-Hebrew lexi-
con are higher may arise from the difference in the
gold standard. As mentioned, Hebrew words only
had one “correct” Spanish translation, while Span-
ish had 1.98 correct translations on the average.
If we had used a more comprehensive resource to
test against, the precision of the method would be
higher than shown here.

In translation pairs generation, the results be-
yond the top-ranking pair are also of importance.
Tables 5 and 6 present the accuracy of the first
three translation suggestions, for the three co-
occurrence based scores, calculated for the R1 test
set. IC results are not included, as they are incom-
parable to those of the other methods: IC tends to
score many candidate translations identically, and
in practice, the three highest-scoring sets of trans-
lation candidates contained on average 77% of all



Ist 2nd 3rd total
NAS 82.1% 6.3% 1.8%  90.2%
Cosine 60.7% 98% 27%  732%
City block 563% 45% 10.7% 71.4%

Table 5: Hebrew-Spanish lexicon generation: ac-
curacy of 3 best translations for the R1 condition.
The table shows how many of the 2nd and 3rd
translations are correct. Note that NAS is always
a better solution, even though its numbers for 2nd
and 3rd are smaller, because its accumulative per-
centage, shown in the last column, is higher.

Ist 2nd 3rd total
NAS 87.6% 71.5% 16%  163.9%
Cosine 68% 663% 10.1% 144.4%
City block 69.8% 64.5% 7.7% 142%

Table 6: Spanish-Hebrew lexicon generation: ac-
curacy of 3 best translations for the R1 condition.
The total exceeds 100% because Spanish words
had more than one correct translation. See also
the caption of Table 5.

the candidates, thus necessarily yielding mostly
incorrect translations. Recall was omitted from the
tables as it is always 100%.

For all methods, many of the correct translations
that do not rank first, rank as second or third. For
both languages, NAS ranks highest for total ac-
curacy of the three translations, with considerable
advantage.

5 Score Comparison Experiments

Lexicon generation, as defined in our experiment,
is a relatively high standard for cross-linguistic se-
mantic distance evaluation. This is especially cor-

Heb-Spa Spa-Heb
SCE1  SCE2 SCEl1  SCE2
NAS 938% 762% 941% 83.7%
Cosine 74.1% 571% 70.7%  63.2%
City block 74.1% 683% 78,1% 752%

Table 7: Precision of score comparison experi-
ments. The percentage of cases in which each
of the scoring methods was able to successfully
distinguish the correct (SCE1) or possible correct
(SCE2) translation from the random translation.
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rect since our gold standard gives only a small set
of translations. The set of possible translations in
iLex tends to include, besides the “correct” transla-
tion of the gold standard, other translations that are
suitable in certain contexts or are semantically re-
lated. For example, for one Hebrew word, kvuza,
the gold standard translation was grupo (group),
while our method chose equipo (team), which was
at least as plausible given the amount of sports
news in the corpus.

Thus to better compare the capability of NAS to
distinguish correct and incorrect translations with
that of other scores, we performed two more ex-
periments. In the first score comparison experi-
ment (SCE1), we used the two R1 test sets, He-
brew and Spanish, from the lexicon generation test
(section 4.1.4). For each word in the test set, we
used our method to select between one of two
translations: a correct translation, from the gold
standard, and a random translation, chosen ran-
domly among all the nouns similar in frequency
to the correct translation.

The second score comparison experiment
(SCE2) was designed to test the score with a more
extensive test set. For each of the two languages,
we randomly selected 1000 nouns, and used our
method to select between a possibly correct trans-
lation, chosen randomly among the translations
suggested in iLex, and a random translation, cho-
sen randomly among nouns similar in frequency
to the possibly correct translation. This test, while
using a more extensive test set, is less accurate
because it is not guaranteed that any of the input
translations is correct.

In both SCE1 and SCE2, cosine and city block
distance were used as baselines. Inverse Consul-
tation is irrelevant here because it can only score
translation pairs that appear in iLex.

Table 7 presents the results of the two score
comparison experiments, each of them for each of
the translation directions. Recall is by definition
100% and is omitted.

Again, NAS performs better than the baselines
in all cases. With all scores, precision values in
SCEI are higher than in the lexicon generation
experiment. This is consistent with the expecta-
tion that selection between a correct and a ran-
dom, probably incorrect, translation is easier than
selecting among the translations in iLex. The pre-
cision in SCE2 is lower than that in SCE1. This
may be a result of both translations in SCE2 being
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Figure 1: NAS values (not algorithm precision) for
various N sizes. NAS is not sensitive to the value
of N (see text).

in some cases incorrect. Yet this may also reflect a
weakness of all three scores with lower-frequency
words, which are represented in the 1000-word
samples but not in the ones used in SCE].

6 NAS Score Properties

6.1 Signature Size

NAS values are in the range [0, 1]. The values de-
pend on N, the size of the signature used. With an
extremely small N, NAS values would usually be
0, and would tend to be noisy, due to accidental
inclusion of high-frequency or highly ambiguous
words in the signature. As N approaches the size
of the lexicon used for alignment, NAS values ap-
proach 1 for all word pairs.

This suggests that choosing a suitable value of
N is critical for effectively using NAS. Yet an em-
pirical test has shown that NAS may be useful for
a wide range of N values: we computed NAS val-
ues for the correct and random translations used
in the Hebrew-Spanish SCE1 experiment (section
5), using N values between 50 and 2000.

Figure 1 shows the average score values (note
that these are not precision values) for the correct
and random translations across that N range. The
scores for the correct translations are consistently
higher than those of the random translations, even
while there is a discernible decline in the differ-
ence between them. In fact, the precision of the se-
lection between the correct and random translation
is persistent throughout the range. This suggests
that while extreme N values should be avoided, the
selection of NV is not a major issue.
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6.2 Dependency on Alignment Lexicon

N ASy, values depend on L, the lexicon in use.
Clearly again, in the extremes, an almost empty
lexicon or a lexicon containing every possible pair
of words (a Cartesian product), this score would
not be useful. In the first case, it would yield O
for every pair, and in the second, 1. However as
our experiments show, it performed well with real-
world examples of a noisy lexicon, with branching
factors of 12.6 and 14.8 (see table 2).

6.3 Lemmatization

Lemmatization is the process of extracting the
lemmas of words in the corpus. Our experiments
show that good results can be achieved without
lemmatization, at least for nouns in the pair of lan-
guages tested (aside from the simple prefix seg-
mentation we used for Hebrew, see section 4.1.1).
For other language pairs lemmatization may be
needed. In general, correct lemmatization should
improve results, since the signatures would con-
sist of more meaningful information. If automatic
lemmatization introduces noise, it may reduce the
results’ quality.

6.4 Alternative Models for Relatedness

Cosine and city block, as well as other related dis-
tance metrics, rely on context vectors. The context
vector of a word w collects words and maps them
to some score of their “relatedness” to w; in this
case, we used PMI. NAS, in contrast, relies on the
signature, the set of N words most related to w.
That is, it requires a Boolean relatedness indica-
tion, rather than a numeric relatedness score. We
used PMI to generate this Boolean indication, and
naturally, other similar measures could be used as
well. More significantly, it may be possible to use
it with corpus-less sources of “relatedness”, such
as WordNet or search result snippets.

7 Conclusion

We presented a method to create a high quality
bilingual lexicon given a noisy one. We focused
on the case in which the noisy lexicon is created
using two pivot language lexicons. Our algorithm
uses two unrelated monolingual corpora. At the
heart of our method is the non-aligned signatures
(NAS) context similarity score, used for remov-
ing incorrect translations using cross-lingual co-
occurrences.



Words in one language tend to have multiple
translations in another. The common method for
context similarity scoring utilizes some algebraic
distance between context vectors, and requires a
single alignment of context vectors in one lan-
guage into the other. Finding a single correct
alignment is unrealistic even when a perfectly cor-
rect lexicon is available. For example, alignment
forces us to choose one correct translation for each
context word, while in practice a few possible
terms may be used interchangeably in the other
language. In our task, moreover, the lexicon used
for alignment was automatically generated from
pivot language lexicons and was expected to con-
tain errors.

NAS does not depend on finding a single correct
alignment. While it measures how well the sets of
words that tend to co-occur with these two words
align to each other, its strength may lie in bypass-
ing the question of which word in one language
should be aligned to a certain context word in the
other language. Therefore, unlike other scoring
methods, it is not effected by incorrect alignments.

We have shown that NAS outperforms the more
traditional distance metrics, which we adapted to
the many-to-many scenario by amortizing across
multiple alignments. Our results confirm that
alignment is problematic in using co-occurrence
methods across languages, at least in our settings.
NAS constitutes a way to avoid this problem.

While the purpose of this work was to discern
correct translations from incorrect one, it is worth
noting that our method actually ranks translation
correctness. This is a stronger property, which
may render it useful in a wider range of scenarios.

In fact, NAS can be viewed as a general mea-
sure for word similarity between languages. It
would be interesting to further investigate this ob-
servation with other sources of lexicons (e.g., ob-
tained from parallel or comparable corpora) and
for other tasks, such as cross-lingual word sense
disambiguation and information retrieval.
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Abstract

As described in this paper, we propose
a new automatic evaluation method for
machine translation using noun-phrase
chunking. Our method correctly deter-
mines the matching words between two
sentences using corresponding mnoun
phrases. Moreover, our method deter-
mines the similarity between two sen-
tences in terms of the noun-phrase or-
der of appearance. Evaluation experi-
ments were conducted to calculate the
correlation among human judgments,
along with the scores produced us-
ing automatic evaluation methods for
MT outputs obtained from the 12 ma-
chine translation systems in NTCIR-
7.  Experimental results show that
our method obtained the highest cor-
relations among the methods in both
sentence-level adequacy and fluency.

1 Introduction

High-quality automatic evaluation has be-
come increasingly important as various ma-
chine translation systems have developed. The
scores of some automatic evaluation meth-
ods can obtain high correlation with human
judgment in document-level automatic evalua-
tion(Coughlin, 2007). However, sentence-level
automatic evaluation is insufficient. A great
gap exists between language processing of au-
tomatic evaluation and the processing by hu-
mans. Therefore, in recent years, various au-
tomatic evaluation methods particularly ad-
dressing sentence-level automatic evaluations
have been proposed. Methods based on word
strings (e.g., BLEU(Papineni et al., 2002),
NIST(NIST, 2002), METEOR(Banerjee and
Lavie., 2005), ROUGE-L(Lin and Och, 2004),
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and IMPACT(Echizen-ya and Araki, 2007))
calculate matching scores using only common
words between MT outputs and references
from bilingual humans. However, these meth-
ods cannot determine the correct word corre-
spondences sufficiently because they fail to fo-
cus solely on phrase correspondences. More-
over, various methods using syntactic analyt-
ical tools(Pozar and Charniak, 2006; Mutton
et al., 2007; Mehay and Brew, 2007) are pro-
posed to address the sentence structure. Nev-
ertheless, those methods depend strongly on
the quality of the syntactic analytical tools.

As described herein, for use with MT sys-
tems, we propose a new automatic evaluation
method using noun-phrase chunking to obtain
higher sentence-level correlations. Using noun
phrases produced by chunking, our method
yields the correct word correspondences and
determines the similarity between two sen-
tences in terms of the noun phrase order of ap-
pearance. Evaluation experiments using MT
outputs obtained by 12 machine translation
systems in NTCIR-7(Fujii et al., 2008) demon-
strate that the scores obtained using our sys-
tem yield the highest correlation with the hu-
man judgments among the automatic evalua-
tion methods in both sentence-level adequacy
and fluency. Moreover, the differences be-
tween correlation coefficients obtained using
our method and other methods are statisti-
cally significant at the 5% or lower signifi-
cance level for adequacy. Results confirmed
that our method using noun-phrase chunking
is effective for automatic evaluation for ma-
chine translation.

2 Automatic Evaluation Method
using Noun-Phrase Chunking

The system based on our method has four pro-
cesses. First, the system determines the corre-

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 108-117,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



spondences of noun phrases between MT out-
puts and references using chunking. Secondly,
the system calculates word-level scores based
on the correct matched words using the deter-
mined correspondences of noun phrases. Next,
the system calculates phrase-level scores based
on the noun-phrase order of appearance. The
system calculates the final scores combining
word-level scores and phrase-level scores.

2.1 Correspondence of Noun Phrases

by Chunking

The system obtains the noun phrases from
each sentence by chunking. It then determines
corresponding noun phrases between MT out-
puts and references calculating the similarity
for two noun phrases by the PER score(Su et
al., 1992). In that case, PER scores of two
kinds are calculated. One is the ratio of the
number of match words between an MT out-
put and reference for the number of all words
of the MT output. The other is the ratio of the
number of match words between the MT out-
put and reference for the number of all words
of the reference. The similarity is obtained as
an F-measure between two PER scores. The
high score represents that the similarity be-
tween two noun phrases is high. Figure 1
presents an example of the determination of
the corresponding noun phrases.

(1) Use of noun phrase chunking
MT output :
in genera , [y, the amount ] of [, the crowning fall ]
islargelike [, theend] .

Reference :
generally , thecloser [, it] isto [, theend part],
the larger [, the amount ] of [, crowning drop ] is.

(2) Determination of corresponding noun phrases
MT output :
in genera , [, the amount ] of [, the crowning fall ]
islargelike [y, the énd] . 4

A S 10.3714
Reference: 1.0000, 0.7429" =~~~ _ i
1

generdly , thecloseQ[NPit] isto [Nptheléﬁa part],
the larger [, the amount ] of [, crowning drop] is.

Figure 1: Example of determination of corre-
sponding noun phrases.

In Fig. 1, “the amount”, “the crowning fall”
and “the end” are obtained as noun phrases
in MT output by chunking, and “it”, “the end

109

part”, “the amount” and “crowning drop” are
obtained in the reference by chunking. Next,
the system determines the corresponding noun
phrases from these noun phrases between the
MT output and reference. The score between
“the end” and “the end part” is the highest
among the scores between “the end” in the
MT output and “it”, “the end part”, “the
amount”, and “crowning drop” in the refer-
ence. Moreover, the score between “the end
part” and “the end” is the highest among the
scores between “the end part” in reference
and “the amount”, “the crowning fall”, “the
end” in the MT output. Consequently, “the
end” and “the end part” are selected as noun
phrases with the highest mutual scores: “the
end” and “the end part” are determined as one
corresponding noun phrase. In Fig. 1, “the
amount” in the MT output and “the amount”
in reference, and “the crowning fall” in the
MT output and “crowning drop” in the ref-
erence also are determined as the respective
corresponding noun phrases. The noun phrase
for which the score between it and other noun
phrases is 0.0 (e.g., “it” in reference) has no
corresponding noun phrase. The use of the
noun phrases is effective because the frequency
of the noun phrases is higher than those of
other phrases. The verb phrases are not used
for this study, but they can also be generated
by chunking. It is difficult to determine the
corresponding verb phrases correctly because
the words in each verb phrase are often fewer
than the noun phrases.

2.2 Word-level Score

The system calculates the word-level scores
between MT output and reference using the
corresponding noun phrases. First, the sys-
tem determines the common words based on
Longest Common Subsequence (LCS). The
system selects only one LCS route when sev-
eral LCS routes exist. In such cases, the sys-
tem calculates the Route Score (RS) using the
following Egs. (1) and (2):

(

RS= >

ceLCS

Z weight(w)

wece

8
) (1)



words in corresponding

2
. B noun phrase
weight(w) = . words in non-
corresponding noun phrase
(2)
In Eq. (1), B is a parameter for length

weighting of common parts; it is greater than
1.0. Figure 2 portrays an example of deter-
mination of the common parts. In the first
process of Fig. 2, LCS is 7. In this example,
several LCS routes exist. The system selects
the LCS route which has “,”, “the amount
of”, “crowning”, “is”, and “.” as the com-
mon parts. The common part is the part
for which the common words appear contin-
uously. In contrast, IMPACT selects a differ-
ent LCS route that includes ¢, the”, “amount
of”, “crowning”, “is”, and “.” as the com-
mon parts. In IMPACT, using no analytical
knowledge, the LCS route is determined using
the information of the number of words in the
common parts and the position of the com-
mon parts. The RS for LCS route selected
using our method is 32 (= 120 + (2 + 2 +
1)20 4 220 4+ 120 4 129) when 3 is 2.0. The
RS for LCS route selected by IMPACT is 19
(: (1 + 1)2.0 + (2 + 1)2.0 + 22.0 + 12.0 + 12.0)'
In the LCS route selected by IMPACT, the
weight of “the” in the common part “, the”
is 1 because “the” in the reference is not in-
cluded in the corresponding noun phrase. In
the LCS route selected using our method, the
weight of “the” in “the amount of” is 2 because
“the” in MT output and “the” in the reference
are included in the corresponding noun phrase
“NP1”. Therefore, the system based on our
method can select the correct LCS route.
Moreover, the word-level score is calculated
using the common parts in the selected LCS
route as the following Eqs. (3), (4), and (5).

1
Hi (04 Y cercs length(c) ) ’
Rwd = mﬁ
(3)
1
> (041 > ceLCs length(c)ﬁ) ’
Pwd - nﬁ
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(2) First process for determination of common parts :
LCS=7

Our method

MT output :

ingenerd , [, the amount ] of [, the rownlngfall]
|slargellké[NP3the;end] c.

___________

) 120 220
generally ® ’the cIoé;er [NP it] isto [Npstheiandpart] the
larger [, the amount 1of [\ps crowhing drop Tis%

IMPACT
MT output :
|n general J_[Nplthe amount ] of [szthe rownmgfall]

.....................................

Reference (1+l)2°(2+1)2° 320
generaly , the closer [NP it]istg [NF>3 theendpartl the
larger [y, the anount | of [ne2 or owning drop Tis.

120

120

(2) Second process for determination of common parts :
LCS=3

Our method

MT output :

ingeneral , [, theamount ] of [, the crowning fall ]
islargelike[yps theend] .

Reference:
generally , the closer [ it] isto[yp; theend part] , the
larger [p, theamount ] of [, crowning drop ] is.

Figure 2: Example of common-part determi-
nation.

Ryd +v?Pya

Equation (3) represents recall and Eq. (4)
represents precision. Therein, m signifies the
word number of the reference in Eq. (3), and
n stands for the word number of the MT out-
put in Eq. (4). Here, RN denotes the repe-
tition number of the determination process of
the LCS route, and 7, which has initial value 0,
is the counter for RN. In Egs. (3) and (4), «
is a parameter for the repetition process of the
determination of LCS route, and is less than
1.0. Therefore, R,q and P,q becomes small
as the appearance order of the common parts
between MT output and reference is different.
Moreover, length(c) represents the number of
words in each common part; § is a param-
eter related to the length weight of common
parts, as in Eq. (1). In this case, the weight
of each common word in the common part is
1. The system calculates score,,q as the word-
level score in Eq. (5). In Eq. (5), v is deter-
mined as P,q/Ryq.- The scoreyq is between
0.0 and 1.0.

SCOT €y =



In the first process of Fig. 2,
'Y eroglength(c)® is 13.0 (=050 x
(12.0 + 32.0 + 12.0 + 12.0 + 12.0)) when o and
G are 0.5 and 2.0, respectively. In this case,
the counter ¢ is 0. Moreover, in the second
process of Fig. 2, ! Y .c;cg length(c)? is 2.5
(=0.5" x (120 +229)) using two common parts
“the” and “the end”, except the common
parts determined using the first process.
In Fig. 2, RN is 1 because the system
finishes calculating oY .c;cglength(c)?
when counter i became 1: this means that
all common parts were processed until
the second process. As a result, Ryq is
0.1969 (=4/(13.0+2.5)/2020 = +/0.0388),
and P,q is 0.2625 (=4/(13.0 +2.5)/1520 =

v/0.0689). Consequently, score,g is 0.2164
(_(1+1.33322)><0.1969><0.2625)
~ 7 0.1969+1.33322x0.2625 _/°

).

becomes 1.3332 (:8%823 The system can
determine the matching words correctly using
the corresponding noun phrases between the

MT output and the reference.

In this case, v

The system calculates scoreg-muir; Using
Ruyd-muiti and  Pyg-muiri Which are, respec-
tively, maximum R,y and P,4 when multiple
references are used as the following Egs. (6),
(7) and (8). In Eq. (8), v is determined as
Pwd—multi/Rwd—multi- The scorewd-muiti is be-
tween 0.0 and 1.0.

Royd-muiti =
RN [ 5
Yot Y length(c)?
=0 ceLCS ;
max;_; 3 J
m'’;
j
(6)
Pyd-multi =
RN [ 5
Y ot Y length(c)?
=0 ceLCS ;
max;_; 3 J
"
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(1 + 72Rwd—multi)Pwd—multi
Ryd-muiti + 72Pwd—multi

SCOT €wd-multi =

2.3 Phrase-level Score

The system calculates the phrase-level score
using the noun phrases obtained by chunking.
First, the system extracts only noun phrases
from sentences. Then it generalizes each noun
phrase as each word. Figure 3 presents exam-
ples of generalization by noun phrases.

(2) Corresponding noun phrases
MT output :
ingeneral , [y, the amount ] of [, the crowning fall |
islargelike [ps theend] .
Reference :
generally , the closer [ it] isto [yp, theend part ],
the larger [, the amount ] of [, crowning drop] is.

(2) Generalization by noun phrases
MT output :
NP1 NP2 NP3

Reference:
NP NP3 NP1 NP2

Figure 3: Example of generalization by noun
phrases.

Figure 3 presents three corresponding noun
phrases between the MT output and the refer-
ence. The noun phrase “it”, which has no cor-
responding noun phrase, is expressed as “NP”
in the reference. Consequently, the MT output
is generalized as “NP1 NP2 NP3”; the refer-
ence is generalized as “NP NP3 NP1 NP2”.
Subsequently, the system obtains the phrase-
level score between the generalized MT output
and reference as the following Eqs. (9), (10),
and (11).

R — ﬁ:]\of (Qi chppGLCS length(cnpp)ﬁ)
np — 3
(mcnp X \/mno—cnp)
(9)
P _ Zﬁ:]\of (Qi chppGLCS length(cnpp)ﬁ)
np —

(new % )
(10)

=

=



Table 1: Machine translation system types.

System No. 1 | System No. 2 | System No. 3 | System No. 4 System No. 5 System No. 6
Type SMT SMT RBMT SMT SMT SMT

System No. 7 | System No. 8 | System No. 9 | System No. 10 | System No. 11 | System No. 12
Type SMT SMT EBMT SMT SMT RBMT

3 Experiments
scoren, = (1+ WQ)Rinnp (11)
np Rup +72Pryp 3.1 Experimental Procedure

In Eqs. (9) and (10), cnpp denotes the We calculated the correlation between the

common noun phrase parts; menp, and nep
respectively signify the quantities of common
noun phrases in the reference and MT output.
Moreover, myo-cnp and Npo-cnp are the quanti-
ties of noun phrases except the common noun
phrases in the reference and MT output. The
values of Myo-cnp and Npe-cnp are processed
as 1 when no non-corresponding noun phrases
exist. The square root used for mpo-cnp and
Nno-cnp 15 to decrease the weight of the non-
corresponding noun phrases. In Eq. (11), v is

determined as P,,/R,,. In Fig. 3, Ry, and
P, are 0.7071 (= %) when « is
0.5 and g is 2.0. Therefore, score,, is 0.7071.

The system obtains scorepp-muii calculat-
ing the average of score,, when multiple ref-

erences are used as the following Eq. (12).

> j—o (scoreny)

U

SCOT Cnp-multi = (12)

2.4 Final Score

The system calculates the final score by com-
bining the word-level score and the phrase-
level score as shown in the following Eq. (13).

5COT€yq + 0 X ScoTeny
1+90

score = (13)

Therein, § represents a parameter for the
weight of scorey,: it is between 0.0 and 1.0.
The ratio of score,q to scorey, is 1:1 when ¢ is
1.0. Moreover, scoreyd-muiti and scorenp-multi
are used for Eq. (13) in multiple references.
In Figs. 2 and 3, the final score between
the MT output and the reference is 0.4185
(:0‘216412#) when 0 is 0.7. The system
can realize high-quality automatic evaluation
using both word-level information and phrase-
level information.
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scores obtained using our method and scores
produced by human judgment. The system
based on our method obtained the evaluation
scores for 1,200 English output sentences re-
lated to the patent sentences. These English
output sentences are sentences that 12 ma-
chine translation systems in NTCIR-7 trans-
lated from 100 Japanese sentences. Moreover,
the number of references to each English sen-
tence in 100 English sentences is four. These
references were obtained from four bilingual
humans. Table 1 presents types of the 12 ma-
chine translation systems.

Moreover, three human judges evaluated
1,200 English output sentences from the per-
spective of adequacy and fluency on a scale of
1-5. We used the median value in the evalua-
tion results of three human judges as the final
scores of 1-5. We calculated Pearson’s correla-
tion efficient and Spearman’s rank correlation
efficient between the scores obtained using our
method and the scores by human judgments in
terms of sentence-level adequacy and fluency.

Additionally, we calculated the correlations
between the scores using seven other methods
and the scores by human judgments to com-
pare our method with other automatic evalua-
tion methods. The other seven methods were
IMPACT, ROUGE-L, BLEU!, NIST, NMG-
WN(Ehara, 2007; Echizen-ya et al., 2009),
METEOR?, and WER(Leusch et al., 2003).
Using our method, 0.1 was used as the value of
the parameter « in Egs. (3)-(10) and 1.1 was
used as the value of the parameter 3 in Egs.
(1)—(10). Moreover, 0.3 was used as the value
of the parameter ¢ in Eq. (13). These val-

'BLEU was improved to perform sentence-level
evaluation: the maximum N value between MT output
and reference is used(Echizen-ya et al., 2009).

2The matching modules of METEOR are the exact
and stemmed matching module, and a WordNet-based
synonym-matching module.



Table 2: Pearson’s correlation coefficient for sentence-level adequacy.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
Our method 0.7862 | 0.4989 | 0.5970 | 0.5713 | 0.6581 | 0.6779 | 0.7682
IMPACT 0.7639 | 0.4487 | 0.5980 | 0.5371 | 0.6371 | 0.6255 | 0.7249
ROUGE-L 0.7597 | 0.4264 | 0.6111 | 0.5229 | 0.6183 | 0.5927 | 0.7079
BLEU 0.6473 | 0.2463 | 0.4230 | 0.4336 | 0.3727 | 0.4124 | 0.5340
NIST 0.5135 | 0.2756 | 0.4142 | 0.3086 | 0.2553 | 0.2300 | 0.3628
NMG-WN 0.7010 | 0.3432 | 0.6067 | 0.4719 | 0.5441 | 0.5885 | 0.5906
METEOR 0.4509 | 0.0892 | 0.3907 | 0.2781 | 0.3120 | 0.2744 | 0.3937
WER 0.7464 | 0.4114 | 0.5519 | 0.5185 | 0.5461 | 0.5970 | 0.6902
Our method II 0.7870 | 0.5066 | 0.5967 | 0.5191 | 0.6529 | 0.6635 | 0.7698
BLEU with our method | 0.7244 | 0.3935 | 0.5148 | 0.5231 | 0.4882 | 0.5554 | 0.6459
No. 8 No. 9 | No. 10 | No. 11 | No. 12 Avg. All
Our method 0.7664 | 0.7208 | 0.6355 | 0.7781 | 0.5707 | 0.6691 | 0.6846
IMPACT 0.7007 | 0.7125 | 0.5981 | 0.7621 | 0.5345 | 0.6369 | 0.6574
ROUGE-L 0.6834 | 0.7042 | 0.5691 | 0.7480 | 0.5293 | 0.6228 | 0.6529
BLEU 0.5188 | 0.5884 | 0.3697 | 0.5459 | 0.4357 | 0.4607 | 0.4722
NIST 0.4218 | 0.4092 | 0.1721 | 0.3521 | 0.4769 | 0.3493 | 0.3326
NMG-WN 0.6658 | 0.6068 | 0.6116 | 0.6770 | 0.5740 | 0.5818 | 0.5669
METEOR 0.3881 | 0.4947 | 0.3127 | 0.2987 | 0.4162 | 0.3416 | 0.2958
WER 0.6656 | 0.6570 | 0.5740 | 0.7491 | 0.5301 | 0.6031 | 0.5205
Our method II 0.7676 | 0.7217 | 0.6343 | 0.7917 | 0.5474 | 0.6632 | 0.6774
BLEU with our method | 0.6395 | 0.6696 | 0.5139 | 0.6611 | 0.5079 | 0.5698 | 0.5790

ues of the parameter are determined using En-
glish sentences from Reuters articles(Utiyama
and Isahara, 2003). Moreover, we obtained
the noun phrases using a shallow parser(Sha
and Pereira, 2003) as the chunking tool. We
revised some erroneous results that were ob-
tained using the chunking tool.

3.2 Experimental Results

As described in this paper, we performed com-
parison experiments using our method and
seven other methods. Tables 2 and 3 respec-
tively show Pearson’s correlation coefficient for
sentence-level adequacy and fluency. Tables 4
and 5 respectively show Spearman’s rank cor-
relation coefficient for sentence-level adequacy
and fluency. In Tables 2-5, bold typeface
signifies the maximum correlation coefficients
among eight automatic evaluation methods.
Underlining in our method signifies that the
differences between correlation coefficients ob-
tained using our method and IMPACT are
statistically significant at the 5% significance
level. Moreover, “Avg.” signifies the aver-
age of the correlation coefficients obtained by
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12 machine translation systems in respective
automatic evaluation methods, and “All” are
the correlation coefficients using the scores of
1,200 output sentences obtained using the 12
machine translation systems.

3.3 Discussion

In Tables 2-5, the “Avg.” score of our method
is shown to be higher than those of other meth-
ods. Especially in terms of the sentence-level
adequacy shown in Tables 2 and 4, “Avg.”
of our method is about 0.03 higher than that
of IMPACT. Moreover, in system No. 8 and
“All” of Tables 2 and 4, the differences be-
tween correlation coefficients obtained using
our method and IMPACT are statistically sig-
nificant at the 5% significance level.
Moreover, we investigated the correlation of
machine translation systems of every type. Ta-
ble 6 shows “All” of Pearson’s correlation co-
efficient and Spearman’s rank correlation coef-
ficient in SMT (i.e., system Nos. 1-2, system
Nos. 4-8 and system Nos. 10-11) and RBMT
(i.e., system Nos. 3 and 12). The scores of
900 output sentences obtained by 9 machine



Table 3: Pearson’s correlation coefficient for sentence-level fluency.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
Our method 0.5853 | 0.3782 | 0.5689 | 0.4673 | 0.5739 | 0.5344 | 0.7193
IMPACT 0.5581 | 0.3407 | 0.5821 | 0.4586 | 0.5768 | 0.4852 | 0.6896
ROUGE-L 0.5551 | 0.3056 | 0.5925 | 0.4391 | 0.5666 | 0.4475 | 0.6756
BLEU 0.4793 | 0.0963 | 0.4488 | 0.3033 | 0.4690 | 0.3602 | 0.5272
NIST 0.4139 | 0.0257 | 0.4987 | 0.1682 | 0.3923 | 0.2236 | 0.3749
NMG-WN 0.5782 | 0.3090 | 0.5434 | 0.4680 | 0.5070 | 0.5234 | 0.5363
METEOR 0.4050 | 0.1405 | 0.4420 | 0.1825 | 0.4259 | 0.2336 | 0.4873
WER 0.5143 | 0.3031 | 0.5220 | 0.4262 | 0.4936 | 0.4405 | 0.6351
Our method II 0.5831 | 0.3689 | 0.5753 | 0.3991 | 0.5610 | 0.5445 | 0.7186
BLEU with our method | 0.5425 | 0.2304 | 0.5115 | 0.3770 | 0.5358 | 0.4741 | 0.6142
No. 8 No. 9 | No. 10 | No. 11 | No. 12 Avg. All
Our method 0.5796 | 0.6424 | 0.3241 | 0.5920 | 0.4321 | 0.5331 | 0.5574
IMPACT 0.5612 | 0.6320 | 0.3492 | 0.6034 | 0.4166 | 0.5211 | 0.5469
ROUGE-L 0.5414 | 0.6347 | 0.3231 | 0.5889 | 0.4127 | 0.5069 | 0.5387
BLEU 0.5040 | 0.5521 | 0.2134 | 0.4783 | 0.4078 | 0.4033 | 0.4278
NIST 0.3682 | 0.3811 | 0.1682 | 0.3116 | 0.4484 | 0.3146 | 0.3142
NMG-WN 0.5526 | 0.5799 | 0.4509 | 0.6308 | 0.4124 | 0.5007 | 0.5074
METEOR 0.2511 | 0.4153 | 0.1376 | 0.3351 | 0.2902 | 0.3122 | 0.2933
WER 0.5492 | 0.6421 | 0.3962 | 0.6228 | 0.4063 | 0.4960 | 0.4478
Our method II 0.5774 | 0.6486 | 0.3428 | 0.5975 | 0.4197 | 0.5280 | 0.5519
BLEU with our method | 0.5660 | 0.6247 | 0.2536 | 0.5495 | 0.4550 | 0.4770 | 0.5014

translation systems in SMT and the scores of
200 output sentences obtained by 2 machine
translation systems in RBMT are used respec-
tively. However, EBMT is not included in Ta-
ble 6 because EBMT is only system No. 9.
In Table 6, our method obtained the highest
correlation among the eight methods, except
in terms of the adequacy of RBMT in Pear-
son’s correlation coefficient. The differences
between correlation coefficients obtained us-
ing our method and IMPACT are statistically
significant at the 5% significance level for ad-
equacy of SMT.

To confirm the effectiveness of noun-phrase
chunking, we performed the experiment using
a system combining BLEU with our method.
In this case, BLEU scores were used as score,,g
in Eq. (13). This experimental result is shown
as “BLEU with our method” in Tables 2-5. In
the results of “BLEU with our method” in Ta-
bles 2-5, underlining signifies that the differ-
ences between correlation coefficients obtained
using BLEU with our method and BLEU alone
are statistically significant at the 5% signif-
icance level. The coefficients of correlation
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for BLEU with our method are higher than
those of BLEU in any machine translation sys-
tem, “Avg.” and “All” in Tables 2-5. More-
over, for sentence-level adequacy, BLEU with
our method is significantly better than BLEU
in almost all machine translation systems and
“All” in Tables 2 and 4. These results indicate
that our method using noun-phrase chunking
is effective for some methods and that it is
statistically significant in each machine trans-
lation system, not only “All”, which has large
sentences.

Subsequently, we investigated the precision
of the determination process of the corre-
sponding noun phrases described in section
2.1: in the results of system No. 1, we cal-
culated the precision as the ratio of the num-
ber of the correct corresponding noun phrases
for the number of all noun-phrase correspon-
dences obtained using the system based on our
method. Results show that the precision was
93.4%, demonstrating that our method can de-
termine the corresponding noun phrases cor-
rectly.

Moreover, we investigated the relation be-



Table 4: Spearman’s rank correlation coefficient for sentence-level adequacy.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
Our method 0.7456 | 0.5049 | 0.5837 | 0.5146 | 0.6514 | 0.6557 | 0.6746
IMPACT 0.7336 | 0.4881 | 0.5992 | 0.4741 | 0.6382 | 0.5841 | 0.6409
ROUGE-L 0.7304 | 0.4822 | 0.6092 | 0.4572 | 0.6135 | 0.5365 | 0.6368
BLEU 0.5525 | 0.2206 | 0.4327 | 0.3449 | 0.3230 | 0.2805 | 0.4375
NIST 0.5032 | 0.2438 | 0.4218 | 0.2489 | 0.2342 | 0.1534 | 0.3529
NMG-WN 0.7541 | 0.3829 | 0.5579 | 0.4472 | 0.5560 | 0.5828 | 0.6263
METEOR 0.4409 | 0.1509 | 0.4018 | 0.2580 | 0.3085 | 0.1991 | 0.4115
WER 0.6566 | 0.4147 | 0.5478 | 0.4272 | 0.5524 | 0.4884 | 0.5539
Our method II 0.7478 | 0.4972 | 0.5817 | 0.4892 | 0.6437 | 0.6428 | 0.6707
BLEU with our method | 0.6644 | 0.3926 | 0.5065 | 0.4522 | 0.4639 | 0.4715 | 0.5460
No. 8 No. 9 | No. 10 | No. 11 | No. 12 Avg. All
Our method 0.7298 | 0.7258 | 0.5961 | 0.7633 | 0.6078 | 0.6461 | 0.6763
IMPACT 0.6703 | 0.7067 | 0.5617 | 0.7411 | 0.5583 | 0.6164 | 0.6515
ROUGE-L 0.6603 | 0.6983 | 0.5340 | 0.7280 | 0.5281 | 0.6012 | 0.6435
BLEU 0.4571 | 0.5827 | 0.3220 | 0.4987 | 0.4302 | 0.4069 | 0.4227
NIST 0.4255 | 0.4424 | 0.1313 | 0.2950 | 0.4785 | 0.3276 | 0.3062
NMG-WN 0.6863 | 0.6524 | 0.6412 | 0.7015 | 0.5728 | 0.5968 | 0.5836
METEOR 0.4242 | 0.4776 | 0.3335 | 0.2861 | 0.4455 | 0.3448 | 0.2887
WER 0.6234 | 0.6480 | 0.5463 | 0.7131 | 0.5684 | 0.5617 | 0.4797
Our method II 0.7287 | 0.7255 | 0.5936 | 0.7761 | 0.5798 | 0.6397 | 0.6699
BLEU with our method | 0.5850 | 0.6757 | 0.4596 | 0.6272 | 0.5452 | 0.5325 | 0.5474

tween the correlation obtained by our method
and the quality of chunking. In “Our method”
shown in Tables 2-5, noun phrases for which
some erroneous results obtained using the
chunking tool were revised. “Our method II”
of Tables 2-5 used noun phrases that were
given as results obtained using the chunk-
ing tool. Underlining in “Our method II” of
Tables 2-5 signifies that the differences be-
tween correlation coefficients obtained using
our method IT and IMPACT are statistically
significant at the 5% significance level. Fun-
damentally, in both “Avg.” and “All” of Ta-
bles 2-5, the correlation coefficients of our
method IT without the revised noun phrases
are lower than those of our method using the
revised noun phrases. However, the difference
between our method and our method II in
“Avg.” and “All” of Tables 2-5 is not large.
The performance of the chunking tool has no
great influence on the results of our method
because score,q in Egs. (3), (4), and (5) do
not depend strongly on the performance of
the chunking tool. For example, in sentences
shown in Fig. 2, all common parts are the
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same as the common parts of Fig. 2 when “the
crowning fall” in the MT output and “crown-
ing drop” in the reference are not determined
as the noun phrases. Other common parts are
determined correctly because the weight of the
common part “the amount of” is higher than
those of other common parts by Egs. (1) and
(2). Consequently, the determination of the
common parts except “the amount of” is not
difficult.

In other language sentences, we already per-
formed the experiments using Japanese sen-
tences from Reuters articles(Oyamada et al.,
2010). Results show that the correlation co-
efficients of IMPACT with our method, for
which IMPACT scores were used as score,,q in
Eq. (13), were highest among some methods.
Therefore, our method might not be language-
dependent. Nevertheless, experiments using
various language data are necessary to eluci-
date this point.

4 Conclusion

As described herein, we proposed a new auto-
matic evaluation method for machine transla-



Table 5: Spearman’s rank correlation coefficient for sentence-level fluency.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
Our method 0.5697 | 0.3299 | 0.5446 | 0.4199 | 0.5733 | 0.5060 | 0.6459
IMPACT 0.5481 | 0.3285 | 0.5572 | 0.3976 | 0.5960 | 0.4317 | 0.6334
ROUGE-L 0.5470 | 0.3041 | 0.5646 | 0.3661 | 0.5638 | 0.3879 | 0.6255
BLEU 0.4157 | 0.0559 | 0.4286 | 0.2018 | 0.4475 | 0.2569 | 0.4909
NIST 0.4209 | 0.0185 | 0.4559 | 0.1093 | 0.3186 | 0.1898 | 0.3634
NMG-WN 0.5569 | 0.3461 | 0.5381 | 0.4300 | 0.5052 | 0.5264 | 0.5328
METEOR 0.4608 | 0.1429 | 0.4438 | 0.1783 | 0.4073 | 0.1596 | 0.4821
WER 0.4469 | 0.2395 | 0.5087 | 0.3292 | 0.4995 | 0.3482 | 0.5637
Our method II 0.5659 | 0.3216 | 0.5484 | 0.3773 | 0.5638 | 0.5211 | 0.6343
BLEU with our method | 0.5188 | 0.1534 | 0.4793 | 0.3005 | 0.5255 | 0.3942 | 0.5676
No. 8 No. 9 | No. 10 | No. 11 | No. 12 Avg. All
Our method 0.5646 | 0.6617 | 0.3319 | 0.6256 | 0.4485 | 0.5185 | 0.5556
IMPACT 0.5471 | 0.6454 | 0.3222 | 0.6319 | 0.4358 | 0.5062 | 0.5489
ROUGE-L 0.5246 | 0.6428 | 0.2949 | 0.6159 | 0.3928 | 0.4858 | 0.5359
BLEU 0.4882 | 0.5419 | 0.1407 | 0.4740 | 0.4176 | 0.3633 | 0.3971
NIST 0.4150 | 0.4193 | 0.0889 | 0.3006 | 0.4752 | 0.2980 | 0.2994
NMG-WN 0.5684 | 0.5850 | 0.4451 | 0.6502 | 0.4387 | 0.5102 | 0.5156
METEOR 0.2911 | 0.4267 | 0.1735 | 0.3264 | 0.3512 | 0.3158 | 0.2886
WER 0.5320 | 0.6505 | 0.3828 | 0.6501 | 0.4003 | 0.4626 | 0.4193
Our method II 0.5609 | 0.6687 | 0.3629 | 0.6223 | 0.4384 | 0.5155 | 0.5531
BLEU with our method | 0.5470 | 0.6213 | 0.2184 | 0.5808 | 0.4870 | 0.4495 | 0.4825

Table 6: Correlation coefficient for SMT and RBMT.

Pearson’s correlation coefficient Spearman’s rank correlation coefficient
Adequacy Fluency Adequacy Fluency

SMT | RBMT | SMT | RBMT | SMT | RBMT | SMT RBMT

Our method | 0.7054 | 0.5840 | 0.5477 | 0.5016 | 0.6710 | 0.5961 | 0.5254 | 0.5003
IMPACT 0.6721 | 0.5650 | 0.5364 | 0.4960 | 0.6397 | 0.5811 | 0.5162 0.4951
ROUGE-L | 0.6560 | 0.5691 | 0.5179 | 0.4988 | 0.6225 | 0.5701 | 0.4942 0.4783
NMG-WN | 0.5958 | 0.5850 | 0.5201 | 0.4732 | 0.6129 | 0.5755 | 0.5238 0.4959

tion. Our method calculates the scores for MT  Acknowledgements

outputs using noun-phrase chunking. Conse-
quently, the system obtains scores using the
correctly matched words and phrase-level in-
formation based on the corresponding noun
phrases. Experimental results demonstrate
that our method yields the highest correlation
among eight methods in terms of sentence-
level adequacy and fluency.

Future studies will improve our method,
enabling it to achieve high correlation in
sentence-level fluency. Future studies will also
include experiments using data of various lan-
guages.
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Abstract

Information-extraction (IE) systems seek
to distill semantic relations from natural-
language text, but most systems use super-
vised learning of relation-specific examples
and are thus limited by the availability of
training data. Open IE systems such as
TextRunner, on the other hand, aim to handle
the unbounded number of relations found
on the Web. But how well can these open
systems perform?

This paper presents WOE, an open IE system
which improves dramatically on TextRunner’s
precision and recall. The key to WOE’s per-
formance is a novel form of self-supervised
learning for open extractors — using heuris-
tic matches between Wikipedia infobox at-
tribute values and corresponding sentences to
construct training data. Like TextRunner,
WOE’s extractor eschews lexicalized features
and handles an unbounded set of semantic
relations. WOE can operate in two modes:
when restricted to POS tag features, it runs
as quickly as TextRunner, but when set to use
dependency-parse features its precision and
recall rise even higher.

1 Introduction

The problem of information-extraction (IE), gen-
erating relational data from natural-language text,
has received increasing attention in recent years.
A large, high-quality repository of extracted tu-
ples can potentially benefit a wide range of NLP
tasks such as question answering, ontology learn-
ing, and summarization. The vast majority of
IE work uses supervised learning of relation-
specific examples. For example, the WebKB
project (Craven et al., 1998) used labeled exam-
ples of the courses-taught—by relation to in-
duce rules for identifying additional instances of
the relation. While these methods can achieve
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high precision and recall, they are limited by the
availability of training data and are unlikely to
scale to the thousands of relations found in text
on the Web.

An alternative paradigm, Open IE, pioneered
by the TextRunner system (Banko et al., 2007)
and the “preemptive IE” in (Shinyama and Sekine,
2006), aims to handle an unbounded number of
relations and run quickly enough to process Web-
scale corpora. Domain independence is achieved
by extracting the relation name as well as its
two arguments. Most open IE systems use self-
supervised learning, in which automatic heuristics
generate labeled data for training the extractor. For
example, TextRunner uses a small set of hand-
written rules to heuristically label training exam-
ples from sentences in the Penn Treebank.

This paper presents WOE (Wikipedia-based
Open Extractor), the first system that au-
tonomously transfers knowledge from random ed-
itors’ effort of collaboratively editing Wikipedia to
train an open information extractor. Specifically,
WOE generates relation-specific training examples
by matching Infobox' attribute values to corre-
sponding sentences (as done in Kylin (Wu and
Weld, 2007) and Luchs (Hoffmann et al., 2010)),
but WOE abstracts these examples to relation-
independent training data to learn an unlexical-
ized extractor, akin to that of TextRunner. WOE
can operate in two modes: when restricted to
shallow features like part-of-speech (POS) tags, it
runs as quickly as Textrunner, but when set to use
dependency-parse features its precision and recall
rise even higher. We present a thorough experi-
mental evaluation, making the following contribu-
tions:

e We present WOE, a new approach to open IE
that uses Wikipedia for self-supervised learn-

"An infobox is a set of tuples summarizing the key at-
tributes of the subject in a Wikipedia article. For example,
the infobox in the article on “Sweden” contains attributes like
Capital, Population and GDP.
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ing of unlexicalized extractors. Compared
with TextRunner (the state of the art) on three
corpora, WOE yields between 72% and 91%
improved F-measure — generalizing well be-
yond Wikipedia.

Using the same learning algorithm and fea-
tures as TextRunner, we compare four dif-
ferent ways to generate positive and negative
training data with TextRunner’s method, con-
cluding that our Wikipedia heuristic is respon-
sible for the bulk of WOE’s improved accuracy.

The biggest win arises from using parser fea-
tures. Previous work (Jiang and Zhai, 2007)
concluded that parser-based features are un-
necessary for information extraction, but that
work assumed the presence of lexical features.
We show that abstract dependency paths are
a highly informative feature when performing
unlexicalized extraction.

2 Problem Definition

An open information extractor is a function
from a document, d, to a set of triples,
{(argy,rel,argsy)}, where the args are noun
phrases and rel is a textual fragment indicat-
ing an implicit, semantic relation between the two
noun phrases. The extractor should produce one
triple for every relation stated explicitly in the text,
but is not required to infer implicit facts. In this
paper, we assume that all relational instances are
stated within a single sentence. Note the dif-
ference between open IE and the traditional ap-
proaches (e.g., as in WebKB), where the task is
to decide whether some pre-defined relation holds
between (two) arguments in the sentence.

We wish to learn an open extractor without di-
rect supervision, i.e. without annotated training
examples or hand-crafted patterns. Our input is
Wikipedia, a collaboratively-constructed encyclo-
pedia®. As output, WOE produces an unlexicalized
and relation-independent open extractor. Our ob-
jective is an extractor which generalizes beyond
Wikipedia, handling other corpora such as the gen-
eral Web.

3 Wikipedia-based Open IE

The key idea underlying WOE is the automatic
construction of training examples by heuristically
matching Wikipedia infobox values and corre-
sponding text; these examples are used to generate

2We also use DBpedia (Auer and Lehmann, 2007) as a
collection of conveniently parsed Wikipedia infoboxes
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Figure 1: Architecture of WOE.

an unlexicalized, relation-independent (open) ex-
tractor. As shown in Figure 1, WOE has three main
components: preprocessor, matcher, and learner.

3.1 Preprocessor

The preprocessor converts the raw Wikipedia text
into a sequence of sentences, attaches NLP anno-
tations, and builds synonym sets for key entities.
The resulting data is fed to the matcher, described
in Section 3.2, which generates the training set.

Sentence Splitting: The preprocessor first renders
each Wikipedia article into HTML, then splits the
article into sentences using OpenNLP.

NLP Annotation: As we discuss fully in Sec-
tion 4 (Experiments), we consider several varia-
tions of our system; one version, WOEP#¢_ uses
parser-based features, while another, WOEP?®, uses
shallow features like POS tags, which may be
more quickly computed. Depending on which
version is being trained, the preprocessor uses
OpenNLP to supply POS tags and NP-chunk an-
notations — or uses the Stanford Parser to create a
dependency parse. When parsing, we force the hy-
perlinked anchor texts to be a single token by con-
necting the words with an underscore; this trans-
formation improves parsing performance in many
cases.

Compiling Synonyms: As a final step, the pre-
processor builds sets of synonyms to help the
matcher find sentences that correspond to infobox
relations. This is useful because Wikipedia edi-
tors frequently use multiple names for an entity;
for example, in the article titled “University of
Washington” the token “UW” is widely used to
refer the university. Additionally, attribute values
are often described differently within the infobox
than they are in surrounding text. Without knowl-
edge of these synonyms, it is impossible to con-
struct good matches. Following (Wu and Weld,
2007; Nakayama and Nishio, 2008), the prepro-
cessor uses Wikipedia redirection pages and back-



ward links to automatically construct synonym
sets. Redirection pages are a natural choice, be-
cause they explicitly encode synonyms; for ex-
ample, “USA” is redirected to the article on the
“United States.” Backward links for a Wiki-
pedia entity such as the “Massachusetts Institute of
Technology” are hyperlinks pointing to this entity
from other articles; the anchor text of such links
(e.g., “MIT”) forms another source of synonyms.

3.2 Matcher

The matcher constructs training data for the
learner component by heuristically matching
attribute-value pairs from Wikipedia articles con-
taining infoboxes with corresponding sentences in
the article. Given the article on “Stanford Univer-
sity,” for example, the matcher should associate
(established, 1891) with the sentence “The
university was founded in 1891 by ...” Given a
Wikipedia page with an infobox, the matcher iter-
ates through all its attributes looking for a unique
sentence that contains references to both the sub-
ject of the article and the attribute value; these
noun phrases will be annotated arg; and args
in the training set. The matcher considers a sen-
tence to contain the attribute value if the value or
its synonym is present. Matching the article sub-
ject, however, is more involved.

Matching Primary Entities: In order to match
shorthand terms like “MIT” with more complete
names, the matcher uses an ordered set of heuris-
tics like those of (Wu and Weld, 2007; Nguyen et
al., 2007):

o Full match: strings matching the full name of

the entity are selected.

Synonym set match: strings appearing in the
entity’s synonym set are selected.

Partial match: strings matching a prefix or suf-
fix of the entity’s name are selected. If the
full name contains punctuation, only a prefix
is allowed. For example, “Ambherst” matches
“Ambherst, Mass,” but “Mass” does not.

Patterns of “the <type>": The matcher first
identifies the type of the entity (e.g., “city” for
“Ithaca”), then instantiates the pattern to create
the string “the city.” Since the first sentence of
most Wikipedia articles is stylized (e.g. “The
city of Ithaca sits ...”), a few patterns suffice
to extract most entity types.

The most frequent pronoun: The matcher as-
sumes that the article’s most frequent pronoun
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denotes the primary entity, e.g., “he” for the
page on “Albert Einstein.” This heuristic is
dropped when “it” is most common, because
the word is used in too many other ways.

When there are multiple matches to the primary
entity in a sentence, the matcher picks the one
which is closest to the matched infobox attribute
value in the parser dependency graph.

Matching Sentences: The matcher seeks a unique
sentence to match the attribute value. To produce
the best training set, the matcher performs three
filterings. First, it skips the attribute completely
when multiple sentences mention the value or its
synonym. Second, it rejects the sentence if the
subject and/or attribute value are not heads of the
noun phrases containing them. Third, it discards
the sentence if the subject and the attribute value
do not appear in the same clause (or in parent/child
clauses) in the parse tree.

Since Wikipedia’s Wikimarkup language is se-
mantically ambiguous, parsing infoboxes is sur-
prisingly complex. Fortunately, DBpedia (Auer
and Lehmann, 2007) provides a cleaned set of in-
foboxes from 1,027,744 articles. The matcher uses
this data for attribute values, generating a training
dataset with a total of 301,962 labeled sentences.

3.3 Learning Extractors

We learn two kinds of extractors, one (WOEP%S¢)
using features from dependency-parse trees and
the other (WOEP?%) limited to shallow features like
POS tags. WOEP¥*¢ uses a pattern learner to
classify whether the shortest dependency path be-
tween two noun phrases indicates a semantic rela-
tion. In contrast, WOEP?S (like TextRunner) trains
a conditional random field (CRF) to output certain
text between noun phrases when the text denotes
such a relation. Neither extractor uses individual
words or lexical information for features.

3.3.1 Extraction with Parser Features

Despite some evidence that parser-based features
have limited utility in IE (Jiang and Zhai, 2007),
we hoped dependency paths would improve preci-
sion on long sentences.

Shortest Dependency Path as Relation: Unless
otherwise noted, WOE uses the Stanford Parser
to create dependencies in the “collapsedDepen-
dency” format. Dependencies involving preposi-
tions, conjuncts as well as information about the
referent of relative clauses are collapsed to get
direct dependencies between content words. As



noted in (de Marneffe and Manning, 2008), this
collapsed format often yields simplified patterns
which are useful for relation extraction. Consider
the sentence:

Dan was not born in Berkeley.

The Stanford Parser dependencies are:

nsubjpass(born-4, Dan-1)

auxpass(born-4, was-2)

neg(born-4, not-3)

prep_in(born-4, Berkeley-6)
where each atomic formula represents a binary de-
pendence from dependent token to the governor
token.

These dependencies form a directed graph,
(V, E)), where each token is a vertex in V, and £
is the set of dependencies. For any pair of tokens,
such as “Dan” and “Berkeley”, we use the shortest
connecting path to represent the possible relation
between them:

Dan nsubjpass born prep.in Berkeley

We call such a path a corePath. While we will
see that corePaths are useful for indicating when
a relation exists between tokens, they don’t neces-
sarily capture the semantics of that relation. For
example, the path shown above doesn’t indicate
the existence of negation! In order to capture the
meaning of the relation, the learner augments the
corePath into a tree by adding all adverbial and
adjectival modifiers as well as dependencies like
“neg” and “auxpass”. We call the result an ex-
pandPath as shown below:

Dan nsubjpass born prep_in

0s°

Berkeley

/7@9,

was guxP not

WOE traverses the expandPath with respect to the
token orders in the original sentence when out-
putting the final expression of rel.

Building a Database of Patterns: For each of the
301,962 sentences selected and annotated by the
matcher, the learner generates a corePath between
the tokens denoting the subject and the infobox at-
tribute value. Since we are interested in eventu-
ally extracting “subject, relation, object” triples,
the learner rejects corePaths that don’t start with
subject-like dependencies, such as nsubj, nsubj-
pass, partmod and rcmod. This leads to a collec-
tion of 259,046 corePaths.

To combat data sparsity and improve learn-
ing performance, the learner further generalizes
the corePaths in this set to create a smaller set
of generalized-corePaths. The idea is to elimi-
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nate distinctions which are irrelevant for recog-
nizing (domain-independent) relations. Lexical
words in corePaths are replaced with their POS
tags. Further, all Noun POS tags and “PRP”
are abstracted to “N”, all Verb POS tags to “V”,
all Adverb POS tags to “RB” and all Adjective
POS tags to “J”. The preposition dependencies
such as “prep_in” are generalized to “prep”. Take
the corePath “Dan nsubjpass born prep_in
Berkeley” for example, its generalized-corePath
is “N nsubjpass V “prep N’. We call such
a generalized-corePath an extraction pattern. In
total, WOE builds a database (named DB,j) of
15,333 distinct patterns and each pattern p is asso-
ciated with a frequency — the number of matching
sentences containing p. Specifically, 185 patterns
have f,, > 100 and 1929 patterns have f, > 5.

Learning a Pattern Classifier: Given the large
number of patterns in DB, we assume few valid
open extraction patterns are left behind. The
learner builds a simple pattern classifier, named
WOEPY¢ which checks whether the generalized-
corePath from a test triple is present in DB,,, and
computes the normalized logarithmic frequency as
the probability?:

_ maz(log(fp) — log( fmin),0)
w(p) n log(fmax) - log(fmm)

where fq: (50,259 in this paper) is the maximal
frequency of pattern in DB,, and f,;, (set 1 in
this work) is the controlling threshold that deter-
mines the minimal frequency of a valid pattern.

Take the previous sentence “Dan was not born
in Berkeley” for example. WOEP¢ first identi-
fies Dan as arg; and Berkeley as args based
on NP-chunking. It then computes the corePath
“Dan nsubjpass born prepin Berkeley”
and abstracts to p=“N nsubjpass V “prep
N”. 1t then queries DB, to retrieve the fre-
quency f, = 29112 and assigns a probabil-
ity of 0.95. Finally, WOEP¥"¢ traverses the
triple’s expandPath to output the final expression
(Dan,wasNotBornIn, Berkeley). As shown
in the experiments on three corpora, WOEP#S¢
achieves an F-measure which is between 72% to
91% greater than TextRunner’s.

3.3.2 Extraction with Shallow Features

WOEP?%¢ has a dramatic performance improve-
ment over TextRunner. However, the improve-
ment comes at the cost of speed — TextRunner

>How to learn a more sophisticated weighting function is
left as a future topic.
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Figure 2: WOEP?performs better than TextRunner, especially on precision. WOEP#S¢dramatically im-

proves performance, especially on recall.

runs about 30X faster by only using shallow fea-
tures. Since high speed can be crucial when pro-
cessing Web-scale corpora, we additionally learn a
CRF extractor WOEP? based on shallow features
like POS-tags. In both cases, however, we gen-
erate training data from Wikipedia by matching
sentences with infoboxes, while TextRunner used
a small set of hand-written rules to label training
examples from the Penn Treebank.

We use the same matching sentence set behind
DB, to generate positive examples for WOEP?".
Specifically, for each matching sentence, we label
the subject and infobox attribute value as arg;
and args to serve as the ends of a linear CRF
chain. Tokens involved in the expandPath are la-
beled as rel. Negative examples are generated
from random noun-phrase pairs in other sentences
when their generalized-CorePaths are not in D B,,.

WOEP? uses the same learning algorithm and
selection of features as TextRunner: a two-order
CREF chain model is trained with the Mallet pack-
age (McCallum, 2002). WOEP?%’s features include
POS-tags, regular expressions (e.g., for detecting
capitalization, punctuation, efc..), and conjunc-
tions of features occurring in adjacent positions
within six words to the left and to the right of the
current word.

As shown in the experiments, WOEP?® achieves
an improved F-measure over TextRunner between
18% to 34% on three corpora, and this is mainly
due to the increase on precision.

4 Experiments

We used three corpora for experiments: WSJ from
Penn Treebank, Wikipedia, and the general Web.
For each dataset, we randomly selected 300 sen-
tences. Each sentence was examined by two peo-
ple to label all reasonable triples. These candidate
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triples are mixed with pseudo-negative ones and
submitted to Amazon Mechanical Turk for veri-
fication. Each triple was examined by 5 Turk-
ers. We mark a triple’s final label as positive when
more than 3 Turkers marked them as positive.

4.1 Overall Performance Analysis

In this section, we compare the overall perfor-
mance of WOEP¥S¢  woOEP? and TextRunner
(shared by the Turing Center at the University of
Washington). In particular, we are going to answer
the following questions: 1) How do these systems
perform against each other? 2) How does perfor-
mance vary w.r.t. sentence length? 3) How does
extraction speed vary w.r.t. sentence length?

Overall Performance Comparison

The detailed P/R curves are shown in Figure 2.
To have a close look, for each corpus, we ran-
domly divided the 300 sentences into 5 groups and
compared the best F-measures of three systems in
Figure 3. We can see that:

e WOEP? is better than TextRunner, especially
on precision. This is due to better training
data from Wikipedia via self-supervision. Sec-
tion 4.2 discusses this in more detail.

WOEP#S¢ achieves the best performance, es-
pecially on recall. This is because the parser
features help to handle complicated and long-
distance relations in difficult sentences. In par-
ticular, WOEP%>¢ outputs 1.42 triples per sen-
tence on average, while WOEP?® outputs 1.05
and TextRunner outputs 0.75.

Note that we measure TextRunner’s precision
& recall differently than (Banko et al., 2007)
did. Specifically, we compute the precision & re-
call based on all extractions, while Banko et al.
counted only concrete triples where arg; is a
proper noun, args, is a proper noun or date, and
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Figure 3: WOEP? achieves an F-measure, which is
between 18% and 34% better than TextRunner’s.
WOEP¥*¢achieves an improvement between 72%
and 91% over TextRunner. The error bar indicates
one standard deviation.

the frequency of rel is over a threshold. Our ex-
periments show that focussing on concrete triples
generally improves precision at the expense of re-
call.* Of course, one can apply a concreteness fil-
ter to any open extractor in order to trade recall for
precision.

The extraction errors by WOEP#*¢ can be cat-
egorized into four classes. We illustrate them
with the WSJ corpus. In total, WOEP¥*¢ got
85 wrong extractions on WSJ, and they are
caused by: 1) Incorrect arg; and/or args
from NP-Chunking (18.6%); 2) A erroneous de-
pendency parse from Stanford Parser (11.9%);
3) Inaccurate meaning (27.1%) — for exam-
ple, (she,isNominated By, President Bush) is
wrongly extracted from the sentence “If she is
nominated by President Bush ..”%; 4) A pattern
inapplicable for the test sentence (42.4%).

Note WOEP#5¢ is worse than WOEP?® in the low
recall region. This is mainly due to parsing er-
rors (especially on long-distance dependencies),
which misleads WOEP#S¢ to extract false high-
confidence triples. WOEP?® won’t suffer from such
parsing errors. Therefore it has better precision on
high-confidence extractions.

We noticed that TextRunner has a dip point
in the low recall region. There are two typical
errors responsible for this. A sample error of
the first type is (Sources, sold, theCompany)
extracted from the sentence “Sources said

“For example, consider the Wikipedia corpus. From
our 300 test sentences, TextRunner extracted 257 triples (at
72.0% precision) but only extracted 16 concrete triples (with
87.5% precision).

SThese kind of errors might be excluded by monitor-
ing whether sentences contain words such as ‘if,” ‘suspect,
‘doubt,’ efc.. We leave this as a topic for the future.
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Figure 4: WOEP#S¢’s F-measure decreases more

slowly with sentence length than wOEP?* and Tex-
tRunner, due to its better handling of difficult sen-
tences using parser features.

he sold the company”, where “Sources” is
wrongly treated as the subject of the object
clause. A sample error of the second type is
(thisY ear, willStarIn,theMovie)  extracted
from the sentence “Coming up this year, Long
will star in the new movie.”, where “this year” is
wrongly treated as part of a compound subject.
Taking the WSJ corpus for example, at the dip
point with recall=0.002 and precision=0.059,
these two types of errors account for 70% of all
errors.

Extraction Performance vs. Sentence Length
We tested how extractors’ performance varies
with sentence length; the results are shown in Fig-
ure 4. TextRunner and WOEP?® have good perfor-
mance on short sentences, but their performance
deteriorates quickly as sentences get longer. This
is because long sentences tend to have compli-
cated and long-distance relations which are diffi-
cult for shallow features to capture. In contrast,
WOEP#$¢’s performance decreases more slowly
w.r.t. sentence length. This is mainly because
parser features are more useful for handling diffi-
cult sentences and they help WOEP#S¢ to maintain
a good recall with only moderate loss of precision.

Extraction Speed vs. Sentence Length

We also tested the extraction speed of different
extractors. We used Java for implementing the
extractors, and tested on a Linux platform with
a 2.4GHz CPU and 4G memory. On average, it
takes WOEP#5¢ (.679 seconds to process a sen-
tence. For TextRunner and WOEP?S, it only takes
0.022 seconds — 30X times faster. The detailed
extraction speed vs. sentence length is in Figure 5,
showing that TextRunner and WOEP?*’s extraction
time grows approximately linearly with sentence
length, while WOEP¥¢’s extraction time grows
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Figure 5: Textrnner and WOEP?*’s running time
seems to grow linearly with sentence length, while
WOEP5¢’s time grows quadratically.

quadratically (R? = 0.935) due to its reliance on
parsing.

4.2 Self-supervision with Wikipedia Results
in Better Training Data

In this section, we consider how the process of
matching Wikipedia infobox values to correspond-
ing sentences results in better training data than
the hand-written rules used by TextRunner.

To compare with TextRunner, we tested four
different ways to generate training examples from
Wikipedia for learning a CRF extractor. Specif-
ically, positive and/or negative examples are se-
lected by TextRunner’s hand-written rules (« for
short), by WOE’s heuristic of matching sentences
with infoboxes (w for short), or randomly (r for
short). We use CRF,_p, to denote a particu-
lar approach, where “+” means positive samples,
“-” means negative samples, and h; € {mr,w,r}.
In particular, “+w” results in 221,205 positive ex-
amples based on the matching sentence set®. All
extractors are trained using about the same num-
ber of positive and negative examples. In contrast,
TextRunner was trained with 91,687 positive ex-
amples and 96,795 negative examples generated
from the WSJ dataset in Penn Treebank.

The CRF extractors are trained using the same
learning algorithm and feature selection as Tex-
tRunner. The detailed P/R curves are in Fig-
ure 6, showing that using WOE heuristics to la-
bel positive examples gives the biggest perfor-
mance boost. CRF,s_4 (trained using TextRun-
ner’s heuristics) is slightly worse than TextRunner.
Most likely, this is because TextRunner’s heuris-
tics rely on parse trees to label training examples,

This number is smaller than the total number of
corePaths (259,046) because we require arg, to appear be-
fore arg, in a sentence — as specified by TextRunner.
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and the Stanford parse on Wikipedia is less accu-
rate than the gold parse on WSJ.

4.3 Design Desiderata of wopP#*s¢

There are two interesting design choices in
WOEP¥¢: 1) whether to require arg; to appear
before arg, (denoted as 1<2) in the sentence;
2) whether to allow corePaths to contain prepo-
sitional phrase (PP) attachments (denoted as PPa).
We tested how they affect the extraction perfor-
mance; the results are shown in Figure 7.

We can see that filtering PP attachments (PPa)
gives a large precision boost with a noticeable loss
in recall; enforcing a lexical ordering of relation
arguments (1<2) yields a smaller improvement in
precision with small loss in recall. Take the WSJ
corpus for example: setting 1<2 and PPa achieves
a precision of 0.792 (with recall of 0.558). By
changing 1<2 to 1~2, the precision decreases to
0.773 (with recall of 0.595). By changing PPa to
PpPa and keeping 1<2, the precision decreases to
0.642 (with recall of 0.687) — in particular, if we
use gold parse, the precision decreases to 0.672
(with recall of 0.685). We set 1<2 and PPa as de-
fault in WOEP?"¢ ag a logical consequence of our
preference for high precision over high recall.

4.3.1 Different parsing options

We also tested how different parsing might ef-
fect WOEP45¢’s performance. We used three pars-
ing options on the WSJ dataset: Stanford parsing,
CJ50 parsing (Charniak and Johnson, 2005), and
the gold parses from the Penn Treebank. The Stan-
ford Parser is used to derive dependencies from
CJ50 and gold parse trees. Figure 8 shows the
detailed P/R curves. We can see that although
today’s statistical parsers make errors, they have
negligible effect on the accuracy of WOE.

5 Related Work

Open or Traditional Information Extraction:
Most existing work on IE is relation-specific.
Occurrence-statistical models (Agichtein and Gra-
vano, 2000; M. Ciaramita, 2005), graphical mod-
els (Peng and McCallum, 2004; Poon and Domin-
gos, 2008), and kernel-based methods (Bunescu
and R.Mooney, 2005) have been studied. Snow
et al. (Snow et al., 2005) utilize WordNet to
learn dependency path patterns for extracting the
hypernym relation from text. Some seed-based
frameworks are proposed for open-domain extrac-
tion (Pasca, 2008; Davidov et al., 2007; Davi-
dov and Rappoport, 2008). These works focus
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make errors, they have negligible effect on the
accuracy of WOE compared to operation on gold
standard, human-annotated data.

on identifying general relations such as class at-
tributes, while open IE aims to extract relation
instances from given sentences. Another seed-
based system StatSnowball (Zhu et al., 2009)
can perform both relation-specific and open IE
by iteratively generating weighted extraction pat-
terns. Different from WOE, StatSnowball only em-
ploys shallow features and uses L1-normalization
to weight patterns. Shinyama and Sekine pro-
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posed the “preemptive IE” framework to avoid
relation-specificity (Shinyama and Sekine, 2006).
They first group documents based on pairwise
vector-space clustering, then apply an additional
clustering to group entities based on documents
clusters. The two clustering steps make it dif-
ficult to meet the scalability requirement neces-
sary to process the Web. Mintz et al. (Mintz et
al., 2009) uses Freebase to provide distant su-
pervision for relation extraction. They applied
a similar heuristic by matching Freebase tuples
with unstructured sentences (Wikipedia articles in
their experiments) to create features for learning
relation extractors. Matching Freebase with ar-
bitrary sentences instead of matching Wikipedia
infobox with corresponding Wikipedia articles
will potentially increase the size of matched sen-
tences at a cost of accuracy. Also, their learned
extractors are relation-specific. Alan Akbik et
al. (Akbik and Brof, 2009) annotated 10,000 sen-
tences parsed with LinkGrammar and selected 46
general linkpaths as patterns for relation extrac-
tion. In contrast, WOE learns 15,333 general pat-
terns based on an automatically annotated set of



301,962 Wikipedia sentences. The KNext sys-
tem (Durme and Schubert, 2008) performs open
knowledge extraction via significant heuristics. Its
output is knowledge represented as logical state-
ments instead of information represented as seg-
mented text fragments.

Information Extraction with Wikipedia: The
YAGO system (Suchanek et al., 2007) extends
WordNet using facts extracted from Wikipedia
categories. It only targets a limited number of pre-
defined relations. Nakayama et al. (Nakayama and
Nishio, 2008) parse selected Wikipedia sentences
and perform extraction over the phrase structure
trees based on several handcrafted patterns. Wu
and Weld proposed the KYLIN system (Wu and
Weld, 2007; Wu et al., 2008) which has the same
spirit of matching Wikipedia sentences with in-
foboxes to learn CRF extractors. However, it
only works for relations defined in Wikipedia in-
foboxes.

Shallow or Deep Parsing: Shallow features, like
POS tags, enable fast extraction over large-scale
corpora (Davidov et al., 2007; Banko et al., 2007).
Deep features are derived from parse trees with
the hope of training better extractors (Zhang et
al., 2006; Zhao and Grishman, 2005; Bunescu
and Mooney, 2005; Wang, 2008). Jiang and
Zhai (Jiang and Zhai, 2007) did a systematic ex-
ploration of the feature space for relation extrac-
tion on the ACE corpus. Their results showed lim-
ited advantage of parser features over shallow fea-
tures for IE. However, our results imply that ab-
stracted dependency path features are highly in-
formative for open IE. There might be several rea-
sons for the different observations. First, Jiang and
Zhai’s results are tested for traditional IE where lo-
cal lexicalized tokens might contain sufficient in-
formation to trigger a correct classification. The
situation is different when features are completely
unlexicalized in open IE. Second, as they noted,
many relations defined in the ACE corpus are
short-range relations which are easier for shallow
features to capture. In practical corpora like the
general Web, many sentences contain complicated
long-distance relations. As we have shown ex-
perimentally, parser features are more powerful in
handling such cases.

6 Conclusion

This paper introduces WOE, a new approach to
open IE that uses self-supervised learning over un-
lexicalized features, based on a heuristic match
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between Wikipedia infoboxes and corresponding
text. WOE can run in two modes: a CRF extrac-
tor (WOEP?®) trained with shallow features like
POS tags; a pattern classfier (WOEP¥"*¢) learned
from dependency path patterns. Comparing with
TextRunner, WOEP?® runs at the same speed, but
achieves an F-measure which is between 18% and
34% greater on three corpora; WOEP#¢ achieves
an F-measure which is between 72% and 91%
higher than that of TextRunner, but runs about
30X times slower due to the time required for
parsing.

Our experiments uncovered two sources of
WOE’s strong performance: 1) the Wikipedia
heuristic is responsible for the bulk of WOE’s im-
proved accuracy, but 2) dependency-parse features
are highly informative when performing unlexi-
calized extraction. We note that this second con-
clusion disagrees with the findings in (Jiang and
Zhai, 2007).

In the future, we plan to run WOE over the bil-
lion document CMU ClueWeb09 corpus to com-
pile a giant knowledge base for distribution to the
NLP community. There are several ways to further
improve WOE’s performance. Other data sources,
such as Freebase, could be used to create an ad-
ditional training dataset via self-supervision. For
example, Mintz et al. consider all sentences con-
taining both the subject and object of a Freebase
record as matching sentences (Mintz et al., 2009);
while they use this data to learn relation-specific
extractors, one could also learn an open extrac-
tor. We are also interested in merging lexical-
ized and open extraction methods; the use of some
domain-specific lexical features might help to im-
prove WOE’s practical performance, but the best
way to do this is unclear. Finally, we wish to com-
bine WOEP4¥¢ with WOEP?® (e.g., with voting) to
produce a system which maximizes precision at
low recall.

Acknowledgements

We thank Oren Etzioni and Michele Banko from
Turing Center at the University of Washington for
providing the code of their software and useful dis-
cussions. We also thank Alan Ritter, Mausam,
Peng Dai, Raphael Hoffmann, Xiao Ling, Ste-
fan Schoenmackers, Andrey Kolobov and Daniel
Suskin for valuable comments. This material is
based upon work supported by the WRF / TJ Cable
Professorship, a gift from Google and by the Air
Force Research Laboratory (AFRL) under prime
contract no. FA8750-09-C-0181. Any opinions,



findings, and conclusion or recommendations ex-
pressed in this material are those of the author(s)
and do not necessarily reflect the view of the Air
Force Research Laboratory (AFRL).

References

E. Agichtein and L. Gravano. 2000. Snowball: Ex-
tracting relations from large plain-text collections.
In ICDL.

Alan Akbik and Jiigen Brofl. 2009. Wanderlust: Ex-
tracting semantic relations from natural language
text using dependency grammar patterns. In WWW
Workshop.

Soren Auer and Jens Lehmann. 2007. What have inns-
bruck and leipzig in common? extracting semantics
from wiki content. In ESWC.

M. Banko, M. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. 2007. Open information extraction
from the Web. In Procs. of IJCAL

Razvan C. Bunescu and Raymond J. Mooney. 2005.

Subsequence kernels for relation extraction. In
NIPS.
R. Bunescu and R.Mooney. 2005. A shortest

path dependency kernel for relation extraction. In
HLT/EMNLP.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In ACL.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. 1998. Learn-
ing to extract symbolic knowledge from the world
wide web. In AAAL

Dmitry Davidov and Ari Rappoport. 2008. Unsuper-
vised discovery of generic relationships using pat-
tern clusters and its evaluation by automatically gen-
erated sat analogy questions. In ACL.

Dmitry Davidov, Ari Rappoport, and Moshe Koppel.
2007. Fully unsupervised discovery of concept-
specific relationships by web mining. In ACL.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. Stanford typed dependencies manual.
http://nlp.stanford.edu/downloads/lex-parser.shtml.

Benjamin Van Durme and Lenhart K. Schubert. 2008.
Open knowledge extraction using compositional
language processing. In STEP.

R. Hoffmann, C. Zhang, and D. Weld. 2010. Learning
5000 relational extractors. In ACL.

Jing Jiang and ChengXiang Zhai. 2007. A systematic
exploration of the feature space for relation extrac-
tion. In HLT/NAACL.

127

A. Gangemi M. Ciaramita. 2005. Unsupervised learn-
ing of semantic relations between concepts of a
molecular biology ontology. In IJCAI

Andrew Kachites McCallum. 2002. Mallet:
A machine learning for language toolkit. In
http://mallet.cs.umass.edu.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In ACL-IJCNLP.

T. H. Kotaro Nakayama and S. Nishio. 2008. Wiki-
pedia link structure and text mining for semantic re-
lation extraction. In CEUR Workshop.

Dat P.T Nguyen, Yutaka Matsuo, and Mitsuru Ishizuka.
2007. Exploiting syntactic and semantic informa-
tion for relation extraction from wikipedia. In
1JCAIO7-TextLinkWS.

Marius Pasca. 2008. Turning web text and search
queries into factual knowledge: Hierarchical class
attribute extraction. In AAAL

Fuchun Peng and Andrew McCallum. 2004. Accurate
Information Extraction from Research Papers using
Conditional Random Fields. In HLT-NAACL.

Hoifung Poon and Pedro Domingos. 2008. Joint Infer-
ence in Information Extraction. In AAAI

Y. Shinyama and S. Sekine. 2006. Preemptive infor-
mation extraction using unristricted relation discov-
ery. In HLT-NAACL.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. In NIPS.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowl-
edge - unifying WordNet and Wikipedia. In WWW.

Mengqgiu Wang. 2008. A re-examination of depen-
dency path kernels for relation extraction. In 1JC-
NLP.

Fei Wu and Daniel Weld. 2007. Autonomouslly Se-
mantifying Wikipedia. In CIKM.

Fei Wu, Raphael Hoffmann, and Danel S. Weld. 2008.
Information extraction from Wikipedia: Moving
down the long tail. In KDD.

Min Zhang, Jie Zhang, Jian Su, and Guodong Zhou.
2006. A composite kernel to extract relations be-
tween entities with both flat and structured features.
In ACL.

Shubin Zhao and Ralph Grishman. 2005. Extracting
relations with integrated information using kernel
methods. In ACL.

Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and
Ji-Rong Wen. 2009. Statsnowball: a statistical ap-
proach to extracting entity relationships. In WWW.



SystemT: An Algebraic Approach to Declarative Information Extraction

Laura Chiticariu
Sriram Raghavan

Rajasekar Krishnamurthy
Frederick R. Reiss

Yunyao Li
Shivakumar Vaithyanathan

IBM Research — Almaden
San Jose, CA, USA
{chiti, sekar,yunyaoli,rsriram, frreiss,vaithyan}@us.ibm.com

Abstract

As information extraction (IE) becomes
more central to enterprise applications,
rule-based IE engines have become in-
creasingly important. In this paper, we
describe SystemT, a rule-based IE sys-
tem whose basic design removes the ex-
pressivity and performance limitations of
current systems based on cascading gram-
mars. SystemT uses a declarative rule
language, AQL, and an optimizer that
generates high-performance algebraic ex-
ecution plans for AQL rules. We com-
pare SystemT’s approach against cascad-
ing grammars, both theoretically and with
a thorough experimental evaluation. Our
results show that SystemT can deliver re-
sult quality comparable to the state-of-the-
art and an order of magnitude higher an-
notation throughput.

1 Introduction

In recent years, enterprises have seen the emer-
gence of important text analytics applications like
compliance and data redaction. This increase,
combined with the inclusion of text into traditional
applications like Business Intelligence, has dra-
matically increased the use of information extrac-
tion (IE) within the enterprise. While the tradi-
tional requirement of extraction quality remains
critical, enterprise applications also demand ef-
ficiency, transparency, customizability and main-
tainability. In recent years, these systemic require-
ments have led to renewed interest in rule-based
IE systems (Doan et al., 2008; SAP, 2010; IBM,
2010; SAS, 2010).

Until recently, rule-based IE systems (Cunning-
ham et al., 2000; Boguraev, 2003; Drozdzynski
et al., 2004) were predominantly based on the
cascading grammar formalism exemplified by the
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Common Pattern Specification Language (CPSL)
specification (Appelt and Onyshkevych, 1998). In
CPSL, the input text is viewed as a sequence of an-
notations, and extraction rules are written as pat-
tern/action rules over the lexical features of these
annotations. In a single phase of the grammar, a
set of rules are evaluated in a left-to-right fash-
ion over the input annotations. Multiple grammar
phases are cascaded together, with the evaluation
proceeding in a bottom-up fashion.

As demonstrated by prior work (Grishman and
Sundheim, 1996), grammar-based IE systems can
be effective in many scenarios. However, these
systems suffer from two severe drawbacks. First,
the expressivity of CPSL falls short when used
for complex IE tasks over increasingly pervasive
informal text (emails, blogs, discussion forums
etc.). To address this limitation, grammar-based
IE systems resort to significant amounts of user-
defined code in the rules, combined with pre-
and post-processing stages beyond the scope of
CPSL (Cunningham et al., 2010). Second, the
rigid evaluation order imposed in these systems
has significant performance implications.

Three decades ago, the database community
faced similar expressivity and efficiency chal-
lenges in accessing structured information. The
community addressed these problems by introduc-
ing a relational algebra formalism and an associ-
ated declarative query language SQL. The ground-
breaking work on System R (Chamberlin et al.,
1981) demonstrated how the expressivity of SQL
can be efficiently realized in practice by means of
a query optimizer that translates an SQL query into
an optimized query execution plan.

Borrowing ideas from the database community,
we have developed SystemT, a declarative IE sys-
tem based on an algebraic framework, to address
both expressivity and performance issues. In Sys-
temT, extraction rules are expressed in a declar-
ative language called AQL. At compilation time,
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Gazetteers containing first names and last names|

Phase Types Ruleld Rule Patterns Priority
P, Input PR, ({Lookup.majorTyp ‘Fil{_s’lé’éz)) :fn > :fn.First 50
Lookui
Tokenp PR, ({Lookup.majorType = LastGaz}) : In - n.Last 50
(F)i—l:;;Lm PR, | ({Token.orth = upperlnitial} | 10
Last {Token.orth = mixedCaps }) :cw > :cw.Caps
Caps
P2 Input PR, ({First} {Last} ) :full ->:full.Person 50
E'a':: PR, |(Caps} {Last}):full >:full.Person 20
Caps P,R; ({Last} {Token.orth = comma} {Caps | First}) : reverse 10
Token - :reverse.Person
Output | PR, | ({First}): fn - :fn.Person 10
Person
PR; |({Last}):In - :In.Person 10
Syntax: Rule part Action part

———
P,R; ({Last} {Token.orth = comma} {Caps | First}) : reverse > :reverse.Person

Creaté Person
annotation

Bind match
to variables

Last followed by Token whose orth-attfibute has value
comma followed by Caps or First

Figure 1: Cascading grammar for identifying Person names

SystemT translates AQL statements into an al-
gebraic expression called an operator graph that
implements the semantics of the statements. The
SystemT optimizer then picks a fast execution
plan from many logically equivalent plans. Sys-
temT is currently deployed in a multitude of real-
world applications and commercial products'.

We formally demonstrate the superiority of
AQL and SystemT in terms of both expressivity
and efficiency (Section 4). Specifically, we show
that 1) the expressivity of AQL is a strict superset
of CPSL grammars not using external functions
and 2) the search space explored by the SystemT
optimizer includes operator graphs correspond-
ing to efficient finite state transducer implemen-
tations. Finally, we present an extensive experi-
mental evaluation that validates that high-quality
annotators can be developed with SystemT, and
that their runtime performance is an order of mag-
nitude better when compared to annotators devel-
oped with a state-of-the-art grammar-based IE sys-
tem (Section 5).

2 Grammar-based Systems and CPSL

A cascading grammar consists of a sequence of
phases, each of which consists of one or more
rules. Each phase applies its rules from left to
right over an input sequence of annotations and
generates an output sequence of annotations that
the next phase consumes. Most cascading gram-
mar systems today adhere to the CPSL standard.
Fig. 1 shows a sample CPSL grammar that iden-
tifies person names from text in two phases. The
first phase, P, operates over the results of the tok-

'A trial version is available at
http://www.alphaworks.ibm.com/tech/systemt

129

Document d, [ ... Tomorrow, we will meet Mark Scott, Howard Smith and ... ]

Legend
(a) Last(P,R,)  Last(P,R,)
\ Rule skipped
CPSL Lo s due to priority
Phase P, ‘ -.. Mark Scott Howard Smith ... ‘ semantics
\_H X \_V_l e
First(P,R,) First(P,R;) Fl\rs_‘(ﬁ/d Last(P,R,)
CPSL Person (P,R,)  Person (PRs) Rule fired
Phase P, A Al AN il
‘ Mark Scott Howard Smith ... ‘
i 3 persons
Person(P,R,) Person(P,R,) Person(P,R,) identified
(b) ‘ Mark Scott Howard Smith ... ‘
JAPE T )
PhaseP,|  FSUPR) FirstPR)  First(PiR)  Last(P,R,)
(Brill) Caps(PiRy) Last(P,R,) Last(P,R,) Caps(P,Ry)
Caps(P;Rs) Caps(P;R;)
discarded
JAPE Person (P,R;)  Person (PR, PoRg) matohes omitted
P S S F— for clarity
:‘;has;‘l)’z ‘ Mark Scott Howard Smith ... 2
Person(P,R,) Person(P,R,) T identified

Figure 2: Sample output of CPSL and JAPE

enizer and gazetteer (input types Token and Lookup,
respectively) to identify words that may be part of
a person name. The second phase, P, identifies
complete names using the results of phase P;.
Applying the above grammar to document d;
(Fig. 2), one would expect that to match “Mark
Scott” and “Howard Smith” as Person. However,
as shown in Fig. 2(a), the grammar actually finds
three Person annotations, instead of two. CPSL has
several limitations that lead to such discrepancies:
L1. Lossy sequencing. In a CPSL grammar,
each phase operates on a sequence of annotations
from left to right. If the input annotations to a
phase may overlap with each other, the CPSL en-
gine must drop some of them to create a non-
overlapping sequence. For instance, in phase P;
(Fig. 2(a)), “Scott” has both a Lookup and a To-
ken annotation. The system has made an arbitrary
choice to retain the Lookup annotation and discard
the Token annotation. Consequently, no Caps anno-
tations are output by phase P;.
L2. Rigid matching priority. CPSL specifies
that, for each input annotation, only one rule can
actually match. When multiple rules match at the
same start position, the following tie-breaker con-
ditions are applied (in order): (a) the rule match-
ing the most annotations in the input stream; (b)
the rule with highest priority; and (c) the rule de-
clared earlier in the grammar. This rigid match-
ing priority can lead to mistakes. For instance,
as illustrated in Fig. 2(a), phase P only identi-
fies “Scott” as a First. Matching priority causes
the grammar to skip the corresponding match for
“Scott” as a Last. Consequently, phase P fails to
identify “Mark Scott” as one single Person.
L3. Limited expressivity in rule patterns. It is
not possible to express rules that compare annota-
tions overlapping with each other. E.g., “Identify
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Figure 3: Regular Expression Extraction Operator

words that are both capitalized and present in the
FirstGaz gazetteer” or “Identify Person annotations
that occur within an EmailAddress’.

Extensions to CPSL

In order to address the above limitations, several
extensions to CPSL have been proposed in JAPE,
AFst and XTDL (Cunningham et al., 2000; Bogu-
raev, 2003; Drozdzynski et al., 2004). The exten-
sions are summarized as below, where each solu-
tion S; corresponds to limitation L;.

e S1. Grammar rules are allowed to operate on
graphs of input annotations in JAPE and AFst.

e S2. JAPE introduces more matching regimes
besides the CPSL’s matching priority and thus
allows more flexibility when multiple rules
match at the same starting position.

e S3. The rule part of a pattern has been ex-
panded to allow more expressivity in JAPE,
AFst and XTDL.

Fig. 2(b) illustrates how the above extensions
help in identifying the correct matches ‘Mark Scott’
and ‘Howard Smith’ in JAPE. Phase P; uses a match-
ing regime (denoted by Brill) that allows multiple
rules to match at the same starting position, and
phase P» uses CPSL’s matching priority, Appelt.

3 SystemT

SystemT is a declarative IE system based on an
algebraic framework. In SystemT, developers
write rules in a language called AQL. The system
then generates a graph of operators that imple-
ment the semantics of the AQL rules. This decou-
pling allows for greater rule expressivity, because
the rule language is not constrained by the need to
compile to a finite state transducer. Likewise, the
decoupled approach leads to greater flexibility in
choosing an efficient execution strategy, because
many possible operator graphs may exist for the
same AQL annotator.

In the rest of the section, we describe the parts
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of SystemT, starting with the algebraic formalism
behind SystemT’s operators.

3.1 Algebraic Foundation of SystemT

SystemT executes IE rules using graphs of op-
erators. The formal definition of these operators
takes the form of an algebra that is similar to the
relational algebra, but with extensions for text pro-
cessing.

The algebra operates over a simple relational
data model with three data types: span, tuple, and
relation. In this data model, a span is a region of
text within a document identified by its “begin”
and “end” positions; a tuple is a fixed-size list of
spans. A relation is a multiset of tuples, where ev-
ery tuple in the relation must be of the same size.
Each operator in our algebra implements a single
basic atomic IE operation, producing and consum-
ing sets of tuples.

Fig. 3 illustrates the regular expression ex-
traction operator in the algebra, which per-
forms character-level regular expression match-
ing. Overall, the algebra contains 12 different op-
erators, a full description of which can be found
in (Reiss et al., 2008). The following four oper-
ators are necessary to understand the examples in
this paper:

e The Extract operator (£) performs character-
level operations such as regular expression and
dictionary matching over text, creating a tuple
for each match.

The Select operator (o) takes as input a set of
tuples and a predicate to apply to the tuples. It
outputs all tuples that satisfy the predicate.

e The Join operator (<) takes as input two sets
of tuples and a predicate to apply to pairs of
tuples from the input sets. It outputs all pairs

of input tuples that satisfy the predicate.

The consolidate operator (£2) takes as input a
set of tuples and the index of a particular col-
umn in those tuples. It removes selected over-
lapping spans from the indicated column, ac-
cording to the specified policy.

32 AQL

Extraction rules in SystemT are written in AQL,
a declarative relational language similar in syn-
tax to the database language SQL. We chose SQL
as a basis for our language due to its expres-
sivity and its familiarity. The expressivity of
SQL, which consists of first-order logic predicates



create view Caps as
extract regex /[A-Z](\w|-)+/ on D.text as name from Document D;

create view Last as
extract dictionary LastGaz on D.text as name from Document D;

create view CapslLast as

select CombineSpans(C.name, L.name) as name
from Caps C, Last L

where  FollowsTok(C.name, L.name, @, 0);

create view PersonAll as
(select R.name from FirstLast R) union all ...
.. union all (select R.name from CapslLast R);

create view Person as select * from PersonAll R
consolidate on R.name using 'ContainedWithin®;

output view Person;

Figure 4: Person annotator as AQL query

over sets of tuples, is well-documented and well-
understood (Codd, 1990). As SQL is the pri-
mary interface to most relational database sys-
tems, the language’s syntax and semantics are
common knowledge among enterprise application
programmers. Similar to SQL terminology, we
call a collection of AQL rules an AQL query.

Fig. 4 shows portions of an AQL query. As
can be seen, the basic building block of AQL is
a view: A logical description of a set of tuples in
terms of either the document text (denoted by a
special view called bocument) or the contents of
other views. Every SystemT annotator consists
of at least one view. The output view statement in-
dicates that the tuples in a view are part of the final
results of the annotator.

Fig. 4 also illustrates three of the basic con-
structs that can be used to define a view.

e The statement specifies basic
character-level extraction primitives to be
applied directly to a tuple.

extract

e The select statement is similar to the SQL
select statement but it contains an additional
consolidate on clause, along with an exten-
sive collection of text-specific predicates.

e The union all statement merges the outputs
of one or more select Or extract statements.

To keep rules compact, AQL also provides a
shorthand sequence pattern notation similar to the
syntax of CPSL. For example, the CapsLast
view in Figure 4 could have been written as:
create view CapsLast as

extract pattern <C.name> <L.name>
from Caps C, Last L;

Internally, SystemT translates each of these ex-
tract pattern statements into one or more select
and extract statements.
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Figure 5: The compilation process in SystemT

Plan B:

G Find matches of Last, then
remove matches that are not
preceded by a match of Caps.

dict

Original AQL Statement:

create view CapsLast as select
CombineSpans(C.name,L.name) as name

from Caps C, Last L
where FollowsTok(C.name, L.name, 0, 0);

Plan A:

Find matches of Caps and Last,
then identify pairs with 0 tokens
between them.

€

regex

Plan C:

Find matches of Caps, then
remove matches that are not
Jfollowed by a match of Last.

(¢}

f

regex

/ N\
Eict
Figure 6: Execution strategies for the CapsLast rule
in Fig. 4

SystemT has built-in multilingual support in-
cluding tokenization, part of speech and gazetteer
matching for over 20 languages using Language-
Ware (IBM, 2010). Rule developers can utilize
the multilingual support via AQL without hav-
ing to configure or manage any additional re-
sources. In addition, AQL allows user-defined
functions to be used in a restricted context in or-
der to support operations such as validation (e.g.
for extracted credit card numbers), or normaliza-
tion (e.g., compute abbreviations of multi-token
organization candidates that are useful in gener-
ating additional candidates). More details on AQL
can be found in the AQL manual (SystemT, 2010).

3.3 Optimizer and Operator Graph

Grammar-based IE engines place rigid restrictions
on the order in which rules can be executed. Due
to the semantics of the CPSL standard, systems
that implement the standard must use a finite state
transducer that evaluates each level of the cascade
with one or more left to right passes over the entire
token stream.

In contrast, SystemT places no explicit con-
straints on the order of rule evaluation, nor does
it require that intermediate results of an annota-
tor collapse to a fixed-size sequence. As shown in
Fig. 5, the SystemT engine does not execute AQL
directly; instead, the SystemT optimizer compiles
AQL into a graph of operators. By tying a collec-
tion of operators together by their inputs and out-
puts, the system can implement a wide variety of
different execution strategies. Different execution
strategies are associated with different evaluation
costs. The optimizer chooses the execution strat-
egy with the lowest estimated evaluation cost.



Fig. 6 presents three possible execution strate-
gies for the CapsLast rule in Fig. 4. If the opti-
mizer estimates that the evaluation cost of Last is
much lower than that of Caps, then it can deter-
mine that Plan C has the lowest evaluation cost
among the three, because Plan C only evaluates
Caps in the “left” neighborhood for each instance
of Last. More details of our algorithms for enumer-
ating plans can be found in (Reiss et al., 2008).

The optimizer in SystemT chooses the best ex-
ecution plan from a large number of different al-
gebra graphs available to it. Many of these graphs
implement strategies that a transducer could not
express: such as evaluating rules from right to left,
sharing work across different rules, or selectively
skipping rule evaluations. Within this large search
space, there generally exists an execution strategy
that implements the rule semantics far more effi-
ciently than the fastest transducer could. We refer
the reader to (Reiss et al., 2008) for a detailed de-
scription of the types of plan the optimizer consid-
ers, as well as an experimental analysis of the per-
formance benefits of different parts of this search
space.

Several parallel efforts have been made recently
to improve the efficiency of IE tasks by optimiz-
ing low-level feature extraction (Ramakrishnan et
al., 2006; Ramakrishnan et al., 2008; Chandel et
al., 2000) or by reordering operations at a macro-
scopic level (Ipeirotis et al., 2006; Shen et al.,
2007; Jain et al., 2009). However, to the best of
our knowledge, SystemT is the only IE system
in which the optimizer generates a full end-to-end
plan, beginning with low-level extraction primi-
tives and ending with the final output tuples.

3.4 Deployment Scenarios

SystemT is designed to be usable in various de-
ployment scenarios. It can be used as a stand-
alone system with its own development and run-
time environment. Furthermore, SystemT ex-
poses a generic Java API that enables the integra-
tion of its runtime environment with other applica-
tions. For example, a specific instantiation of this
API allows SystemT annotators to be seamlessly
embedded in applications using the UIMA analyt-
ics framework (UIMA, 2010).

4 Grammar vs. Algebra

Having described both the traditional cascading
grammar approach and the declarative approach
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Document d,
[ ... Talking with Skilling, Cindy Olson, Vince Kaminski, Mike McConnell and Mark F Revert ...

Cascading Grammar AQL
Rule P.R glr;"ol:g’vﬁlzsy -~ Delete matches to Rule PR, that overlap with
2% K mir\l K. Mike -- matches to Rules P,R, and PR, Q
amins’ihiike) create view LastCommaFirstToDelete as !
select LCF.name as name
from Firstlast FL, LastCommaFirst LCF
where Overlaps(LCF.name, FL.name);
Cindy Olson
Rules P,R, Vince Kaminski create view LastCommaFirstValid as
and Psz Mike McConnell (select R.name as name from LastCommaFirst R)
minus
(select R.name as name
from LastCommaFirstToDelete R);
Skilling
Skilling, Cindy Cindy Olson
Olson, Vince Vince Kaminski
Kaminski, Mike Mike McConnell
Outputof P, | Outputof Q, | .

Figure 7: Supporting Complex Rule Interactions

used in SystemT, we now compare the two in
terms of expressivity and performance.

4.1 Expressivity

In Section 2, we described three expressivity lim-
itations of CPSL grammars: Lossy sequencing,
rigid matching priority, and limited expressivity in
rule patterns. As we noted, cascading grammar
systems extend the CPSL specification in various
ways to provide workarounds for these limitations.
In SystemT, the basic design of the AQL lan-
guage eliminates these three problems without the
need for any special workaround. The key design
difference is that AQL views operate over sets of
tuples, not sequences of tokens. The input or out-
put tuples of a view can contain spans that overlap
in arbitrary ways, so the lossy sequencing prob-
lem never occurs. The annotator will retain these
overlapping spans across any number of views un-
til a view definition explicitly removes the over-
lap. Likewise, the tuples that a given view pro-
duces are in no way constrained by the outputs of
other, unrelated views, so the rigid matching prior-
ity problem never occurs. Finally, the select state-
ment in AQL allows arbitrary predicates over the
cross-product of its input tuple sets, eliminating
the limited expressivity in rule patterns problem.
Beyond eliminating the major limitations of
CPSL grammars, AQL provides a number of other
information extraction operations that even ex-
tended CPSL cannot express without custom code.
Complex rule interactions. Consider an exam-
ple document from the Enron corpus (Minkov et
al., 2005), shown in Fig. 7, which contains a list
of person names. Because the first person in the
list (‘Skilling’) is referred to by only a last name,
rule PR3 in Fig. 1 incorrectly identifies ‘Skilling,
Cindy’ as a person. Consequently, the output of
phase P» of the cascading grammar contains sev-
eral mistakes as shown in the figure. This problem



Informal Band Review ConcertMention GenericReviewSnippet

went to the Swmool concert at the Roxy. It was prem‘//f 7... The lead singer/guitarist
was really good, and even though there was another gujtefist (an Asian guyf, he ended up
playing most of the guitar parts, which was really impressive. The biggest gdrprise though is

that | actually liked the opening bands. ...| especially liked the first barid

MusicReviewSnippet

Example Rule
Start with
ConcertMention

I—
)

Consecutive review snippets are within 25 tokens

——
e

At least 4 occurrences of MusicReviewSnippet or GenericReviewSnippet
At least 3 of them should be MusicReviewSnippets
Review ends with one of these.

Complete review is
within 200 tokens

Figure 8: Extracting informal band reviews from web logs

occurs because CPSL only evaluates rules over
the input sequence in a strict left-to-right fashion.
On the other hand, the AQL query )1 shown in
the figure applies the following condition: “Al-
ways discard matches to Rule P R3 if they overlap
with matches to rules P, Rq or PoRo” (even if the
match to Rule PR3 starts earlier). Applying this
rule ensures that the person names in the list are
identified correctly. Obtaining the same effect in
grammar-based systems would require the use of
custom code (as recommended by (Cunningham
et al., 2010)).
Counting and Aggregation. Complex extraction
tasks sometimes require operations such as count-
ing and aggregation that go beyond the expressiv-
ity of regular languages, and thus can be expressed
in CPSL only using external functions. One such
task is that of identifying informal concert reviews
embedded within blog entries. Fig. 8 describes, by
example, how these reviews consist of reference
to a live concert followed by several review snip-
pets, some specific to musical performances and
others that are more general review expressions.
An example rule to identify informal reviews is
also shown in the figure. Notice how implement-
ing this rule requires counting the number of Mu-
sicReviewSnippet and GenericReviewSnippet annotations
within a region of text and aggregating this occur-
rence count across the two review types. While
this rule can be written in AQL, it can only be ap-
proximated in CPSL grammars.
Character-Level Regular Expression CPSL
cannot specify character-level regular expressions
that span multiple tokens. In contrast, the extract
regex statement in AQL fully supports these ex-
pressions.

We have described above several cases where
AQL can express concepts that can only be ex-
pressed through external functions in a cascad-

ing grammar. These examples naturally raise the
question of whether similar cases exist where a
cascading grammar can express patterns that can-
not be expressed in AQL.

It turns out that we can make a strong statement
that such examples do not exist. In the absence
of an escape to arbitrary procedural code, AQL is
strictly more expressive than a CPSL grammar. To
state this relationship formally, we first introduce
the following definitions.

We refer to a grammar conforming to the CPSL

specification as a CPSL grammar. When a CPSL
grammar contains no external functions, we refer
to it as a Code-free CPSL grammar. Finally, we
refer to a grammar that conforms to one of the
CPSL, JAPE, AFst and XTDL specifications as an
expanded CPSL grammar.
Ambiguous Grammar Specification An ex-
panded CPSL grammar may be under-specified in
some cases. For example, a single rule contain-
ing the disjunction operator (|) may match a given
region of text in multiple ways. Consider the eval-
uation of Rule P, R3 over the text fragment “Scott,
Howard” from document d; (Fig. 1). If “Howard”
is identified both as Caps and Firsz, then there are
two evaluations for Rule P» R3 over this text frag-
ment. Since the system has to arbitrarily choose
one evaluation, the results of the grammar can be
non-deterministic (as pointed out in (Cunning-
ham et al., 2010)). We refer to a grammar G as
an ambiguous grammar specification for a docu-
ment collection D if the system makes an arbitrary
choice while evaluating GG over D.

Definition 1 (UnambigEquiv) A query Q is Un-
ambigEquiv to a cascading grammar G if and only
if for every document collection D, where G is not
an ambiguous grammar specification for D, the
results of the grammar invocation and the query
evaluation are identical.

We now formally compare the expressivity of
AQL and expanded CPSL grammars. The detailed
proof is omitted due to space limitations.

Theorem 1 The class of extraction tasks express-
ible as AQL queries is a strict superset of that ex-
pressible through expanded code-free CPSL gram-
mars. Specifically,

(a) Every expanded code-free CPSL grammar can
be expressed as an UnambigEquiv AQL query.

(b) AQL supports information extraction opera-
tions that cannot be expressed in expanded code-
free CPSL grammars.
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Proof Outline: (a) A single CPSL grammar can
be expressed in AQL as follows. First, each rule
r in the grammar is translated into a set of AQL
statements. If r does not contain the disjunct (|)
operator, then it is translated into a single AQL
select statement. Otherwise, a set of AQL state-
ments are generated, one for each disjunct opera-
tor in rule r, and the results merged using union
all statements. Then, a union all statement is used
to combine the results of individual rules in the
grammar phase. Finally, the AQL statements for
multiple phases are combined in the same order as
the cascading grammar specification.

The main extensions to CPSL supported by ex-
panded CPSL grammars (listed in Sec. 2) are han-
dled as follows. AQL queries operate on graphs
on annotations just like expanded CPSL gram-
mars. In addition, AQL supports different match-
ing regimes through consolidation operators, span
predicates through selection predicates and co-
references through join operators.

(b) Example operations supported in AQL that
cannot be expressed in expanded code-free CPSL
grammars include (i) character-level regular ex-
pressions spanning multiple tokens, (ii) count-
ing the number of annotations occurring within a
given bounded window and (iii) deleting annota-
tions if they overlap with other annotations start-
ing later in the document. O

4.2 Performance

For the annotators we test in our experiments
(See Section 5), the SystemT optimizer is able to
choose algebraic plans that are faster than a com-
parable transducer-based implementation. The
question arises as to whether there are other an-
notators for which the traditional transducer ap-
proach is superior. That is, for a given annota-
tor, might there exist a finite state transducer that
is combinatorially faster than any possible algebra
graph? It turns out that this scenario is not possi-
ble, as the theorem below shows.

Definition 2 (Token-Based FST) A token-based
finite state transducer (FST) is a nondeterministic
finite state machine in which state transitions are
triggered by predicates on tokens. A token-based
FST is acyclic if its state graph does not contain
any cycles and has exactly one “accept” state.

Definition 3 (Thompson’s Algorithm)
Thompson’s algorithm is a common strategy
for evaluating a token-based FST (based on
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(Thompson, 1968)). This algorithm processes the
input tokens from left to right, keeping track of the
set of states that are currently active.

Theorem 2 For any acyclic token-based finite
state transducer T, there exists an UnambigEquiv
operator graph G, such that evaluating G has the
same computational complexity as evaluating T'
with Thompson’s algorithm starting from each to-
ken position in the input document.

Proof Outline: The proof constructs GG by struc-
tural induction over the transducer 7. The base
case converts transitions out of the start state into
Extract operators. The inductive case adds a Se-
lect operator to GG for each of the remaining state
transitions, with each selection predicate being the
same as the predicate that drives the corresponding
state transition. For each state transition predicate
that 7" would evaluate when processing a given
document, GG performs a constant amount of work
on a single tuple. O

5 Experimental Evaluation

In this section we present an extensive comparison
study between SystemT and implementations of
expanded CPSL grammar in terms of quality, run-
time performance and resource requirements.
Tasks We chose two tasks for our evaluation:

e NER : named-entity recognition for Person,
Organization, Location, Address, PhoneNumber,
EmailAddress, URL and DateTime.

e BandReview :
blogs (Fig. 8).
We chose NER primarily because named-entity
recognition is a well-studied problem and standard
datasets are available for evaluation. For this task
we use GATE and ANNIE for comparison®. We
chose BandReview to conduct performance evalu-
ation for a more complex extraction task.
Datasets. For quality evaluation, we use:

e EnronMeetings (Minkov et al., 2005): collec-
tion of emails with meeting information from
the Enron corpus* with Person labeled data;

e ACE (NIST, 2005): collection of newswire re-
ports and broadcast news/conversations with
Person, Organization, Location labeled data’.

identify informal reviews in

3To the best of our knowledge, ANNIE (Cunningham et
al., 2002) is the only publicly available NER library imple-
mented in a grammar-based system (JAPE in GATE).

*http://www.cs.cmu.edu/ enron/

>Only entities of type NAM have been considered.



Table 1: Datasets for performance evaluation.

Dataset Description of the Content Number of | Document size |
documents | range [ average |
Enrong, Emails randomly sampled from the Enron corpus of average size zKB (0.5 < =z < 100)* 1000 zKB +/ — 10% KB
WebCrawl Small to medium size web pages representing company news, with HTML tags removed 1931 68b - 388.6KB 8.8KB
Finance Medium size financial regulatory filings 100 240KB - 0.9MB 401KB
Financerp, Large size financial regulatory filings 30 IMB - 3.4MB 1.54MB
. a) Throughput on Enrony
Table 2: Quality of Person on test datasets. 700
- |
Precision (%) Recall (%) Flmeasure (%) | @, | o meee-ctT
(Exact/Partial) (Exact/Partial) (Exact/Partial) ——ANNIE
[ EnronMeetings | ° ?'\"\"\:EIE'OP“m'Zed
.
ANNIE 57.05/76.84 48.59/65.46 52.48/70.69
T-NE 88.41/92.99 82.39/86.65 85.29/89.71
Minkov 81.1/NA 74.9/NA 77.9/NA °
ACE 0 20 40 60 80 100
ANNIE | 39.41/78.15 | 30.39/60.27 [ 34.32/68.06 Average document size (KB)
TNE | 93.90/95.82 | 90.90/92.76 | 92.38/94.27 b) Memory Utilization on Enron,,

Table 1 lists the datasets used for performance
evaluation. The size of Financeyis purposely
small because GATE takes a significant amount of
time processing large documents (see Sec. 5.2).
Set Up. The experiments were run on a server
with two 2.4 GHz 4-core Intel Xeon CPUs and
64GB of memory. We use GATE 5.1 (build 3431)
and two configurations for ANNIE: 1) the default
configuration, and 2) an optimized configuration
where the Ontotext Japec Transducer® replaces the
default NE transducer for optimized performance.
We refer to these configurations as ANNIE and
ANNIE-Optimized, respectively.

5.1 Quality Evaluation

The goal of our quality evaluation is two-fold:
to validate that annotators can be built in Sys-
temT with quality comparable to those built in
a grammar-based system; and to ensure a fair
performance comparison between SystemT and
GATE by verifying that the annotators used in the
study are comparable.

Table 2 shows results of our comparison study
for Person annotators. We report the classical
(exact) precision, recall, and F'1 measures that
credit only exact matches, and corresponding par-
tial measures that credit partial matches in a fash-
ion similar to (NIST, 2005). As can be seen, T-
NE produced results of significantly higher quality
than ANNIE on both datasets, for the same Person
extraction task. In fact, on EnronMeetings, the F'1
measure of T-NE is 7.4% higher than the best pub-
lished result (Minkov et al., 2005). Similar results

®http://www.ontotext.com/gate/japec.html
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Figure 9: Throughput (a) and memory consump-
tion (b) comparisons on Enron, datasets.

can be observed for Organization and Location on
ACE (exact numbers omitted in interest of space).

Clearly, considering the large gap between
ANNIE’s F'1 and partial F'1 measures on both
datasets, ANNIE’s quality can be improved via
dataset-specific tuning as demonstrated in (May-
nard et al., 2003). However, dataset-specific tun-
ing for ANNIE is beyond the scope of this paper.
Based on the experimental results above and our
previous formal comparison in Sec. 4, we believe
it is reasonable to conclude that annotators can be
built in SystemT of quality at least comparable to
those built in a grammar-based system.

5.2 Performance Evaluation

We now focus our attention on the throughput and
memory behavior of SystemT, and draw a com-
parison with GATE. For this purpose, we have con-
figured both ANNIE and T-NE to identify only the
same eight types of entities listed for NER task.
Throughput. Fig. 9(a) plots the throughput of
the two systems on multiple Enron, datasets with
average document sizes of between 0.5KB and
100KB. For this experiment, both systems ran
with a maximum Java heap size of 1GB.



Table 3: Throughput and mean heap size.

ANNIE ANNIE-Optimized T-NE
IDataset  [ThroughpuiMemoryThroughpul Memory [ThroughpufMemor|
(KB/s) | (MB) | (KB/s) '\ (MB) (KB/s) | (MB)
WebCrawl|  23.9 212.6 42.8 201.8 498.9 77.2
\Financens| 18.82 | 715.1 26.3 601.8 703.5 | 143.7
Financer, 19.2 2586.2 21.1 2683.5 954.5 189.6

As shown in Fig. 9(a), even though the through-
put of ANNIE-Optimized (using the optimized trans-
ducer) increases two-fold compared to ANNIE un-
der default configuration, T-NE is between 8 and
24 times faster compared to ANNIE-Optimized. For
both systems, throughput varied with document
size. For T-NE, the relatively low throughput on
very small document sizes (less than 1KB) is due
to fixed overhead in setting up operators to pro-
cess a document. As document size increases, the
overhead becomes less noticeable.

We have observed similar trends on the rest
of the test collections. Table 3 shows that T-
NE is at least an order of magnitude faster than
ANNIE-Optimized across all datasets. In partic-
ular, on Finance; T-NE’s throughput remains
high, whereas the performance of both ANNIE and
ANNIE-Optimized degraded significantly.

To ascertain whether the difference in perfor-

mance in the two systems is due to low-level com-
ponents such as dictionary evaluation, we per-
formed detailed profiling of the systems. The pro-
filing revealed that 8.2%, 16.2% and respectively
14.2% of the execution time was spent on aver-
age on low-level components in the case of ANNIE,
ANNIE-Optimized and T-NE, respectively, thus lead-
ing us to conclude that the observed differences
are due to SystemT’s efficient use of resources at
a macroscopic level.
Memory utilization. In theory, grammar based
systems can stream tuples through each stage
for minimal memory consumption, whereas Sys-
temT operator graphs may need to materialize in-
termediate results for the full document at certain
points to evaluate the constraints in the original
AQL. The goal of this study is to evaluate whether
this potential problem does occur in practice.

In this experiment we ran both systems with a
maximum heap size of 2GB, and used the Java
garbage collector’s built-in telemetry to measure
the total quantity of live objects in the heap over
time while annotating the different test corpora.
Fig. 9(b) plots the minimum, maximum, and mean
heap sizes with the Enron, datasets. On small doc-
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uments of size up to 15KB, memory consumption
is dominated by the fixed size of the data struc-
tures used (e.g., dictionaries, FST/operator graph),
and is comparable for both systems. As docu-
ments get larger, memory consumption increases
for both systems. However, the increase is much
smaller for T-NE compared to that for both AN-
NIE and ANNIE-Optimized. A similar trend can be
observed on the other datasets as shown in Ta-
ble 3. In particular, for Financer,, both ANNIE and
ANNIE-Optimized required 8GB of Java heap size to
achieve reasonable throughput’, in contrast to T-
NE which utilized at most 300MB out of the 2GB
of maximum Java heap size allocation.

SystemT requires much less memory than

GATE in general due to its runtime, which monitors
data dependencies between operators and clears
out low-level results when they are no longer
needed. Although a streaming CPSL implemen-
tation is theoretically possible, in practice mecha-
nisms that allow an escape to custom code make it
difficult to decide when an intermediate result will
no longer be used, hence GATE keeps most inter-
mediate data in memory until it is done analyzing
the current document.
The BandReview Task. We conclude by briefly dis-
cussing our experience with the BandReview task
from Fig. 8. We built two versions of this anno-
tator, one in AQL, and the other using expanded
CPSL grammar. The grammar implementation
processed a 4.5GB collection of 1.05 million blogs
in 5.6 hours and output 280 reviews. In contrast,
the SystemT version (85 AQL statements) ex-
tracted 323 reviews in only 10 minutes!

6 Conclusion

In this paper, we described SystemT, a declar-
ative IE system based on an algebraic frame-
work. We presented both formal and empirical
arguments for the benefits of our approach to IE.
Our extensive experimental results show that high-
quality annotators can be built using SystemT,
with an order of magnitude throughput improve-
ment compared to state-of-the-art grammar-based
systems. Going forward, SystemT opens up sev-
eral new areas of research, including implement-
ing better optimization strategies and augmenting
the algebra with additional operators to support
advanced features such as coreference resolution.

"GATE ran out of memory when using less than 5GB of
Java heap size, and thrashed when run with 5GB to 7GB
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Abstract

We present a method for extracting so-
cial networks from literature, namely,
nineteenth-century British novels and se-
rials. We derive the networks from di-
alogue interactions, and thus our method
depends on the ability to determine when
two characters are in conversation. Our
approach involves character name chunk-
ing, quoted speech attribution and conver-
sation detection given the set of quotes.
We extract features from the social net-
works and examine their correlation with
one another, as well as with metadata such
as the novel’s setting. Our results provide
evidence that the majority of novels in this
time period do not fit two characterizations
provided by literacy scholars. Instead, our
results suggest an alternative explanation
for differences in social networks.

1 Introduction

Literary studies about the nineteenth-century
British novel are often concerned with the nature
of the community that surrounds the protagonist.
Some theorists have suggested a relationship be-
tween the size of a community and the amount of
dialogue that occurs, positing that “face to face
time” diminishes as the number of characters in
the novel grows. Others suggest that as the social
setting becomes more urbanized, the quality of di-
alogue also changes, with more interactions occur-
ring in rural communities than urban communities.
Such claims have typically been made, however,
on the basis of a few novels that are studied in
depth. In this paper, we aim to determine whether
an automated study of a much larger sample of
nineteenth century novels supports these claims.
The research presented here is concerned with
the extraction of social networks from literature.
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We present a method to automatically construct
a network based on dialogue interactions between
characters in a novel. Our approach includes com-
ponents for finding instances of quoted speech,
attributing each quote to a character, and iden-
tifying when certain characters are in conversa-
tion. We then construct a network where char-
acters are vertices and edges signify an amount
of bilateral conversation between those charac-
ters, with edge weights corresponding to the fre-
quency and length of their exchanges. In contrast
to previous approaches to social network construc-
tion, ours relies on a novel combination of pattern-
based detection, statistical methods, and adapta-
tion of standard natural language tools for the liter-
ary genre. We carried out this work on a corpus of
60 nineteenth-century novels and serials, includ-
ing 31 authors such as Dickens, Austen and Conan
Doyle.

In order to evaluate the literary claims in ques-
tion, we compute various characteristics of the
dialogue-based social network and stratify these
results by categories such as the novel’s setting.
For example, the density of the network provides
evidence about the cohesion of a large or small
community, and cliques may indicate a social frag-
mentation. Our results surprisingly provide evi-
dence that the majority of novels in this time pe-
riod do not fit the suggestions provided by liter-
ary scholars, and we suggest an alternative expla-
nation for our observations of differences across
novels.

In the following sections, we survey related
work on social networks as well as computational
studies of literature. We then present the literary
hypotheses in more detail. We describe the meth-
ods we use to extract dialogue and construct con-
versational networks, along with our approach to
analyzing their characteristics. After we present
the statistical results, we analyze their significance
from a literary perspective.
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Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics



2 Related Work

Computer-assisted literary analysis has typically
occurred at the word level. This level of granular-
ity lends itself to studies of authorial style based
on patterns of word use (Burrows, 2004), and re-
searchers have successfully “outed” the writers of
anonymous texts by comparing their style to that
of a corpus of known authors (Mostellar and Wal-
lace, 1984). Determining instances of “text reuse,”
a type of paraphrasing, is also a form of analysis
at the lexical level, and it has recently been used to
validate theories about the lineage of ancient texts
(Lee, 2007).

Analysis of literature using more semantically-
oriented techniques has been rare, most likely be-
cause of the difficulty in automatically determin-
ing meaningful interpretations. Some exceptions
include recent work on learning common event se-
quences in news stories (Chambers and Jurafsky,
2008), an approach based on statistical methods,
and the development of an event calculus for char-
acterizing stories written by children (Halpin et al.,
2004), a knowledge-based strategy. On the other
hand, literary theorists, linguists and others have
long developed symbolic but non-computational
models for novels. For example, Moretti (2005)
has graphically mapped out texts according to ge-
ography, social connections and other variables.

While researchers have not attempted the auto-
matic construction of social networks represent-
ing connections between characters in a corpus
of novels, the ACE program has involved entity
and relation extraction in unstructured text (Dod-
dington et al., 2004). Other recent work in so-
cial network construction has explored the use of
structured data such as email headers (McCallum
et al., 2007) and U.S. Senate bill cosponsorship
(Cho and Fowler, 2010). In an analysis of discus-
sion forums, Gruzd and Haythornthwaite (2008)
explored the use of message text as well as posting
data to infer who is talking to whom. In this pa-
per, we also explore how to build a network based
on conversational interaction, but we analyze the
reported dialogue found in novels to determine the
links. The kinds of language that is used to signal
such information is quite different in the two me-
dia. In discussion forums, people tend to use ad-
dresses such as “Hi Tom,” while in novels, a sys-
tem must determine both the speaker of a quota-
tion and then the intended recipient of the dialogue
act. This is a significantly different problem.
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3 Hypotheses

It is commonly held that the novel is a literary
form which tries to produce an accurate represen-
tation of the social world. Within literary stud-
ies, the recurring problem is how that represen-
tation is achieved. Theories about the relation
between novelistic form (the workings of plot,
characters, and dialogue, to take the most basic
categories) and changes to real-world social mi-
lieux abound. Many of these theories center on
nineteenth-century European fiction; innovations
in novelistic form during this period, as well as the
rapid social changes brought about by revolution,
industrialization, and transport development, have
traditionally been linked. These theories, however,
have used only a select few representative novels
as proof. By using statistical methods of analy-
sis, it is possible to move beyond this small corpus
of proof texts. We believe these methods are es-
sential to testing the validity of some core theories
about social interaction and their representation in
literary genres like the novel.

Major versions of the theories about the social
worlds of nineteenth-century fiction tend to cen-
ter on characters, in two specific ways: how many
characters novels tend to have, and how those
characters interact with one another. These two
“formal” facts about novels are usually explained
with reference to a novel’s setting. From the influ-
ential work of the Russian critic Mikhail Bakhtin
to the present, a consensus emerged that as nov-
els are increasingly set in urban areas, the num-
ber of characters and the quality of their interac-
tion change to suit the setting. Bakhtin’s term for
this causal relationship was chronotope: the “in-
trinsic interconnectedness of temporal and spatial
relationships that are artistically expressed in liter-
ature,” in which “space becomes charged and re-
sponsive to movements of time, plot, and history”
(Bakhtin, 1981, 84). In Bakhtin’s analysis, dif-
ferent spaces have different social and emotional
potentialities, which in turn affect the most basic
aspects of a novel’s aesthetic technique.

After Bakhtin’s invention of the chronotope,
much literary criticism and theory devoted itself
to filling in, or describing, the qualities of spe-
cific chronotopes, particularly those of the village
or rural environment and the city or urban en-
vironment. Following a suggestion of Bakhtin’s
that the population of village or rural fictions is
modeled on the world of the family, made up of



Author/Title/Year Persp.| Setting|| Author/Title/Year Persp.| Setting
Ainsworth, Jack Sheppard (1839) 3rd urban Gaskell, North and South (1854) 3rd urban
Austen, Emma (1815) 3rd rural Gissing, In the Year of Jubilee (1894) 3rd urban
Austen, Mansfield Park (1814) 3rd rural Gissing, New Grub Street (1891) 3rd urban
Austen, Persuasion (1817) 3rd rural Hardy, Jude the Obscure (1894) 3rd mixed
Austen, Pride and Prejudice (1813) 3rd rural Hardy, The Return of the Native (1878) 3rd rural
Braddon, Lady Audley’s Secret (1862) 3rd mixed || Hardy, Tess of the d’Ubervilles (1891) 3rd rural
Braddon, Aurora Floyd (1863) 3rd rural Hughes, Tom Brown’s School Days (1857) | 3rd rural
Bronté, Anne, The Tenant of Wildfell Hall | 1st rural James, The Portrait of a Lady (1881) 3rd urban
(1848)
Bronté, Charlotte, Jane Eyre (1847) 1st rural James, The Ambassadors (1903) 3rd urban
Bronté, Charlotte, Villette (1853) Ist mixed || James, The Wings of the Dove (1902) 3rd urban
Bronté, Emily, Wuthering Heights (1847) 1st rural Kingsley, Alton Locke (1860) 1st mixed
Bulwer-Lytton, Paul Clifford (1830) 3rd urban Martineau, Deerbrook (1839) 3rd rural
Collins, The Moonstone (1868) 1st urban || Meredith, The Egoist (1879) 3rd rural
Collins, The Woman in White (1859) 1st urban Meredith, The Ordeal of Richard Feverel | 3rd rural
(1859)
Conan Doyle, The Sign of the Four (1890) | 1st urban || Mitford, Our Village (1824) Ist rural
Conan Doyle, A Study in Scarlet (1887) 1st urban || Reade, Hard Cash (1863) 3rd urban
Dickens, Bleak House (1852) mixed| urban || Scott, The Bride of Lammermoor (1819) 3rd rural
Dickens, David Copperfield (1849) 1st mixed || Scott, The Heart of Mid-Lothian (1818) 3rd rural
Dickens, Little Dorrit (1855) 3rd urban Scott, Waverley (1814) 3rd rural
Dickens, Oliver Twist (1837) 3rd urban || Stevenson, The Strange Case of Dr. Jekyll | 1st urban
and Mr. Hyde (1886)
Dickens, The Pickwick Papers (1836) 3rd mixed || Stoker, Dracula (1897) 1st urban
Disraeli, Sybil, or the Two Nations (1845) | 3rd mixed || Thackeray, History of Henry Esmond | 1st urban
(1852)
Edgeworth, Belinda (1801) 3rd rural Thackeray, History of Pendennis (1848) Ist urban
Edgeworth, Castle Rackrent (1800) 3rd rural Thackeray, Vanity Fair (1847) 3rd urban
Eliot, Adam Bede (1859) 3rd rural Trollope, Barchester Towers (1857) 3rd rural
Eliot, Daniel Deronda (1876) 3rd urban || Trollope, Doctor Thorne (1858) 3rd rural
Eliot, Middlemarch (1871) 3rd rural Trollope, Phineas Finn (1867) 3rd urban
Eliot, The Mill on the Floss (1860) 3rd rural Trollope, The Way We Live Now (1874) 3rd urban
Galt, Annals of the Parish (1821) Ist rural Wilde, The Picture of Dorian Gray (1890) | 3rd urban
Gaskell, Mary Barton (1848) 3rd urban || Wood, East Lynne (1860) 3rd mixed

Table 1: Properties of the nineteenth-century British novels and serials included in our study.

an intimately related set of characters, many crit-
ics analyzed the formal expression of this world
as constituted by a small set of characters who
express themselves conversationally. Raymond
Williams used the term “knowable communities”
to describe this world, in which face-to-face rela-
tions of a restricted set of characters are the pri-
mary mode of social interaction (Williams, 1975,
166).

By contrast, the urban world, in this traditional
account, is both larger and more complex. To
describe the social-psychological impact of the
city, Franco Moretti argues, protagonists of urban
novels “change overnight from ‘sons’ into ‘young
men’: their affective ties are no longer vertical
ones (between successive generations), but hor-
izontal, within the same generation. They are
drawn towards those unknown yet congenial faces
seen in gardens, or at the theater; future friends,
or rivals, or both” (Moretti, 1999, 65). The re-
sult is two-fold: more characters, indeed a mass
of characters, and more interactions, although less
actual conversation; as literary critic Terry Eagle-

ton argues, the city is where “most of our en-
counters consist of seeing rather than speaking,
glimpsing each other as objects rather than con-
versing as fellow subjects” (Eagleton, 2005, 145).
Moretti argues in similar terms. For him, the
difference in number of characters is “not just a
matter of quantity... it’s a qualitative, morpho-
logical one” (Moretti, 1999, 68). As the number
of characters increases, Moretti argues (following
Bakhtin in his logic), social interactions of differ-
ent kinds and durations multiply, displacing the
family-centered and conversational logic of vil-
lage or rural fictions. “The narrative system be-
comes complicated, unstable: the city turns into a
gigantic roulette table, where helpers and antago-
nists mix in unpredictable combinations” (Moretti,
1999, 68). This argument about how novelistic
setting produces different forms of social interac-
tion is precisely what our method seeks to evalu-
ate.

Our corpus of 60 novels was selected for its rep-
resentativeness, particularly in the following cate-
gories: authorial (novels from the major canoni-
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cal authors of the period), historical (novels from
each decade), generic (from the major sub-genres
of nineteenth-century fiction), sociological (set in
rural, urban, and mixed locales), and technical
(narrated in first-person and third-person form).
The novels, as well as important metadata we as-
signed to them (the perspective and setting), are
shown in Table 1. We define urban to mean set
in a metropolitan zone, characterized by multi-
ple forms of labor (not just agricultural). Here,
social relations are largely financial or commer-
cial in character. We conversely define rural to
describe texts that are set in a country or vil-
lage zone, where agriculture is the primary activ-
ity, and where land-owning, non-productive, rent-
collecting gentry are socially predominant. Social
relations here are still modeled on feudalism (rela-
tions of peasant-lord loyalty and family tie) rather
than the commercial cash nexus. We also explored
other properties of the texts, such as literary genre,
but focus on the results found with setting and per-
spective. We obtained electronic encodings of the
texts from Project Gutenberg. All told, these texts
total more than 10 million words.

We assembled this representative corpus in or-
der to test two hypotheses, which are derived from
the aforementioned theories:

1. That there is an inverse correlation between
the amount of dialogue in a novel and the
number of characters in that novel. One ba-
sic, shared assumption of these theorists is
that as the network of characters expands—
as, in Moretti’s words, a quantitative change
becomes qualitative— the importance, and in
fact amount, of dialogue decreases. With
a method for extracting conversation from a
large corpus of texts, it is possible to test this
hypothesis against a wide range of data.

That a significant difference in the
nineteenth-century novel’s representation of
social interaction is geographical: novels set
in urban environments depict a complex but
loose social network, in which numerous
characters share little conversational interac-
tion, while novels set in rural environments
inhabit more tightly bound social networks,
with fewer characters sharing much more
conversational interaction. This hypothesis
is based on the contrast between Williams’s
rural “knowable communities” and the
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sprawling, populous, less conversational
urban fictions or Moretti’s and Eagleton’s
analyses. If true, it would suggest that the
inverse relationship of hypothesis #1 (more
characters means less conversation) can be
correlated to, and perhaps even caused by,
the geography of a novel’s setting. The
claims about novelistic geography and social
interaction have usually been based on
comparisons of a selected few novelists (Jane
Austen and Charles Dickens preeminently).
Do they remain valid when tested against a
larger corpus?

4 Extracting Conversational Networks
from Literature

In order to test these hypotheses, we developed
a novel approach to extracting social networks
from literary texts themselves, building on exist-
ing analysis tools. We defined “social network”
as “conversational network” for purposes of eval-
uating these literary theories. In a conversational
network, vertices represent characters (assumed to
be named entities) and edges indicate at least one
instance of dialogue interaction between two char-
acters over the course of the novel. The weight of
each edge is proportional to the amount of inter-
action. We define a conversation as a continuous
span of narrative time featuring a set of characters
in which the following conditions are met:

1. The characters are in the same place at the

same time;
The characters take turns speaking; and

The characters are mutually aware of each
other and each character’s speech is mutually
intended for the other to hear.

In the following subsections, we discuss the
methods we devised for the three problems in text
processing invoked by this approach: identifying
the characters present in a literary text, assigning
a “speaker” (if any) to each instance of quoted
speech from among those characters, and con-
structing a social network by detecting conversa-
tions from the set of dialogue acts.

4.1 Character Identification

The first challenge was to identify the candi-
date speakers by “chunking” names (such as Mr.
Holmes) from the text. We processed each novel



with the Stanford NER tagger (Finkel et al., 2005)
and extracted noun phrases that were categorized
as persons or organizations. We then clustered the
noun phrases into coreferents for the same entity
(person or organization). The clustering process is
as follows:

1. For each named entity, we generate varia-
tions on the name that we would expect to
see in a coreferent. Each variation omits cer-
tain parts of multi-word names, respecting ti-
tles and first/last name distinctions, similar to
work by Davis et al. (2003). For example,
Mr. Sherlock Holmes may refer to the same
character as Mr. Holmes, Sherlock Holmes,
Sherlock and Holmes.

For each named entity, we compile a list of
other named entities that may be coreferents,
either because they are identical or because
one is an expected variation on the other.

. We then match each named entity to the most
recent of its possible coreferents. In aggre-
gate, this creates a cluster of mentions for
each character.

We also pre-processed the texts to normalize
formatting, detect headings and chapter breaks, re-
move metadata, and identify likely instances of
quoted speech (that is, mark up spans of text that
fall between quotation marks, assumed to be a su-
perset of the quoted speech present in the text).

4.2 Quoted Speech Attribution

In order to programmatically assign a speaker to
each instance of quoted speech, we applied a high-
precision subset of a general approach we describe
elsewhere (Elson and McKeown, 2010). The first
step of this approach was to compile a separate
training and testing corpus of literary texts from
British, American and Russian authors of the nine-
teenth and twentieth centuries. The training cor-
pus consisted of about 111,000 words including
3,176 instances of quoted speech. To obtain gold-
standard annotations, we conducted an online sur-
vey via Amazon’s Mechanical Turk program. For
each quote, we asked three annotators to indepen-
dently choose a speaker from the list of contex-
tual candidates— or, choose “spoken by an unlisted
character” if the answer was not available, or “not
spoken by any character” for non-dialogue cases
such as sneer quotes.
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We divided this corpus into training and testing
sets, and used the training set to develop a catego-
rizer that assigned one of five syntactic categories
to each quote. For example, if a quote is followed
by a verb that indicates verbal expression (such as
“said”), and then a character mention, a category
called Character trigram is assigned to the quote.
The fifth category is a catch-all for quotes that do
not fall into the other four. In many cases, the an-
swer can be reliably determined based solely on
its syntactic category. For instance, in the Char-
acter trigram category, the mentioned character is
the quote’s speaker in 99% of both the training and
testing sets.

In all, we were able to determine the speaker
of 57% of the testing set with 96% accuracy just
on the basis of syntactic categorization. This is
the technique we used to construct our conversa-
tional networks. In another study, we applied ma-
chine learning tools to the data (one model for
each syntactic category) and achieved an overall
accuracy of 83% over the entire test set (Elson
and McKeown, 2010). The other 43% of quotes
are left here as “unknown” speakers; however, in
the present study, we are interested in conversa-
tions rather than individual quotes. Each conversa-
tion is likely to consist of multiple quotes by each
speaker, increasing the chances of detecting the in-
teraction. Moreover, this design decision empha-
sizes the precision of the social networks over their
recall. This tilts “in favor” of hypothesis #1 (that
there are fewer social interactions in larger com-
munities); however, we shall see that despite the
emphasis of precision over recall, we identify a
sufficient mass of interactions in the texts to con-
stitute evidence against this hypothesis.

4.3 Constructing social networks

We then applied the results from our character
identification and quoted speech attribution meth-
ods toward the construction of conversational net-
works from literature. We derived one network
from each text in our corpus.

We first assigned vertices to character enti-
ties that are mentioned repeatedly throughout the
novel. Coreferents for the same name (such as
Mr. Darcy and Darcy) were grouped into the same
vertex. We found that a network that included in-
cidental or single-mention named entities became
too noisy to function effectively, so we filtered out
the entities that are mentioned fewer than three



times in the novel or are responsible for less than
1% of the named entity mentions in the novel.

We assigned undirected edges between vertices
that represent adjacency in quoted speech frag-
ments. Specifically, we set the weight of each
undirected edge between two character vertices to
the total length, in words, of all quotes that either
character speaks from among all pairs of adjacent
quotes in which they both speak— implying face to
face conversation. We empirically determined that
the most accurate definition of “adjacency” is one
where the two characters’ quotes fall within 300
words of one another with no attributed quotes in
between. When such an adjacency is found, the
length of the quote is added to the edge weight,
under the hypothesis that the significance of the re-
lationship between two individuals is proportional
to the length of the dialogue that they exchange.
Finally, we normalized each edge’s weight by the
length of the novel.

An example network, automatically constructed
in this manner from Jane Austen’s Mansfield Park,
is shown in Figure 1. The width of each vertex is
drawn to be proportional to the character’s share
of all the named entity mentions in the book (so
that protagonists, who are mentioned frequently,
appear in larger ovals). The width of each edge is
drawn to be proportional to its weight (total con-
versation length).

We also experimented with two alternate meth-
ods for identifying edges, for purposes of a base-
line:

1. The “correlation” method divides the text
into 10-paragraph segments and counts the
number of mentions of each character in
each segment (excluding mentions inside
quoted speech). It then computes the Pear-
son product-moment correlation coefficient
for the distributions of mentions for each pair
of characters. These coefficients are used for
the edge weights. Characters that tend to ap-
pear together in the same areas of the novel
are taken to be more socially connected, and
have a higher edge weight.

The “spoken mention” method counts occur-
rences when one character refers to another
in his or her quoted speech. These counts,
normalized by the length of the text, are used
as edge weights. The intuition is that charac-
ters who refer to one another are likely to be
in conversation.
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‘
Miss Crawford <>,

Figure 1: Automatically extracted conversation
network for Jane Austen’s Mansfield Park.

4.4 Evaluation

To check the accuracy of our method for extracting
conversational networks, we conducted an evalua-
tion involving four of the novels (The Sign of the
Four, Emma, David Copperfield and The Portrait
of a Lady). We did not use these texts when devel-
oping our method for identifying conversations.
For each book, we randomly selected 4-5 chap-
ters from among those with significant amounts
of quoted speech, so that all excerpts from each
novel amounted to at least 10,000 words. We then
asked three annotators to identity all the conversa-
tions that occur in all 44,000 words. We requested
that the annotators include both direct and indi-
rect (unquoted) speech, and define “conversation”
as in the beginning of Section 4, but exclude “re-
told” conversations (those that occur within other
dialogue).

We processed the annotation results by breaking
down each multi-way conversation into all of its
unique two-character interactions (for example, a
conversation between four people indicates six bi-
lateral interactions). To calculate inter-annotator
agreement, we first compiled a list of all possi-
ble interactions between all characters in each text.
In this model, each annotator contributed a set of
“yes” or “no” decisions, one for every character
pair. We then applied the kappa measurement for
agreement in a binary classification problem (Co-



Method Precision ‘ Recall ‘ F

Speech adjacency | .95 51 .67
Correlation 21 .65 31
Spoken-mention 45 .49 47

Table 2: Precision, recall, and F-measure of three
methods for detecting bilateral conversations in
literary texts.

hen, 1960). In 95% of character pairs, annota-
tors were unanimous, which is a high agreement
of k = .82.

The precision and recall of our method for de-
tecting conversations is shown in Table 2. Preci-
sion was .95; this indicates that we can be con-
fident in the specificity of the conversational net-
works that we automatically construct. Recall was
.51, indicating a sensitivity of slightly more than
half. There were several reasons that we did not
detect the missing links, including indirect speech,
quotes attributed to anaphoras or coreferents, and
“diffuse” conversations in which the characters do
not speak in turn with one another.

To calculate precision and recall for the two
baseline social networks, we set a threshold ¢ to
derive a binary prediction from the continuous
edge weights. The precision and recall values
shown for the baselines in Table 2 represent the
highest performance we achieved by varying ¢ be-
tween 0 and 1 (maximizing F-measure over t).
Both baselines performed significantly worse in
precision and F-measure than our quoted speech
adjacency method for detecting conversations.

S Data Analysis

5.1 Feature extraction

We extracted features from the conversational net-
works that emphasize the complexity of the social
interactions found in each novel:

1. The number of characters and the number of
speaking characters

The variance of the distribution of quoted
speech (specifically, the proportion of quotes
spoken by the n most frequent speakers, for
1<n<5H)

The number of quotes, and proportion of
words in the novel that are quoted speech

The number of 3-cliques and 4-cliques in the
social network
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5. The average degree of the graph, defined as

ZUEV ’EU‘ — 2‘E|
14 14

ey

where |E,| is the number of edges incident
on a vertex v, and |V| is the number of ver-
tices. In other words, this determines the
average number of characters connected to
each character in the conversational network
(“with how many people on average does a
character converse?”).

A variation on graph density that normalizes
the average degree feature by the number of
characters:

Seev 1B _ 2B
VIV~ WIVI- 1

2

By dividing again by |V| — 1, we use this
as a metric for the overall connectedness of
the graph: “with what percent of the entire
network (besides herself) does each charac-
ter converse, on average?” The weight of the
edge, as long as it is greater than 0, does not
affect either the network’s average degree or
graph density.

5.2 Results

We derived results from the data in two ways.
First, we examined the strengths of the correla-
tions between the features that we extracted (for
example, between number of character vertices
and the average degree of each vertex). We used
Pearson’s product-moment correlation coefficient
in these calculations. Second, we compared the
extracted features to the metadata we previously
assigned to each text (e.g., urban vs. rural).
Hypothesis #1, which we described in Section
3, claims that there is an inverse correlation be-
tween the amount of dialogue in a nineteenth-
century novel and the number of characters in that
novel. We did not find this to be the case. Rather,
we found a weak but positive correlation (r=.16)
between the number of quotes in a novel and
the number of characters (normalizing the quote
count for text length). There was a stronger pos-
itive correlation (r=.50) between the number of
unique speakers (those characters who speak at
least once) and the normalized number of quotes,
suggesting that larger networks have more conver-
sations than smaller ones. But because the first



correlation is weak, we investigated whether fur-
ther analysis could identify other evidence that
confirms or contradicts the hypothesis.

Another way to interpret hypothesis #1 is that
social networks with more characters tend to break
apart and be less connected. However, we found
the opposite to be true. The correlation between
the number of characters in each graph and the av-
erage degree (number of conversation partners) for
each character was a positive, moderately strong
r=.42. This is not a given; a network can easily, for
example, break into minimally connected or mutu-
ally exclusive subnetworks when more characters
are involved. Instead, we found that networks tend
to stay close-knit regardless of their size: even the
density of the graph (the percentage of the com-
munity that each character talks to) grows with
the total population size at r=.30. Moreover, as
the population of speakers grows, the density is
likely to increase at r=.49. A higher number of
characters (speaking or non-speaking) is also cor-
related with a higher rate of 3-cliques per charac-
ter (r=.38), as well as with a more balanced dis-
tribution of dialogue (the share of dialogue spo-
ken by the top three speakers decreases at r=—.61).
This evidence suggests that in nineteenth-century
British literature, it is the small communities,
rather than the large ones, that tend to be discon-
nected.

Hypothesis #2, meanwhile, posited that a
novel’s setting (urban or rural) would have an ef-
fect on the structure of its social network. After
defining “social network™ as a conversational net-
work, we did not find this to be the case. Sur-
prisingly, the numbers of characters and speakers
found in the urban novel were not significantly
greater than those found in the rural novel. More-
over, each of the features we extracted, such as
the rate of cliques, average degree, density, and
rate of characters’ mentions of other characters,
did not change in a statistically significant man-
ner between the two genres. For example, Figure
2 shows the mean over all texts of each network’s
average degree, with confidence intervals, sepa-
rated by setting into urban and rural. The increase
in degree seen in urban texts is not significant.

Rather, the only type of metadata variable that
did impact the average degree with any signifi-
cance was the text’s perspective. Figure 2 also sep-
arates texts into first- and third-person tellings and
shows the means and confidence intervals for the
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Figure 2: The average degree for each character
as a function of the novel’s setting and its perspec-
tive.

---.10?30

Figure 3: Conversational networks for first-person
novels like Collins’s The Woman in White are less
connected due to the structure imposed by the per-
spective.

average degree measure. Stories told in the third
person had much more connected networks than
stories told in the first person: not only did the av-
erage degree increase with statistical significance
(by the homoscedastic t-test to p < .005), so too
did the graph density (p < .05) and the rate of
3-cliques per character (p < .05).

We believe the reason for this can be intuited
with a visual inspection of a first-person graph.
Figure 3 shows the conversational network ex-
tracted for Collins’s The Woman in White, which is
told in the first person. Not surprisingly, the most
oft-repeated named entity in the text is /, referring
to the narrator. More surprising is the lack of con-
versation connections between the auxiliary char-
acters. The story’s structure revolves around the
narrator and each character is understood in terms
of his or her relationship to the narrator. Private
conversations between auxiliary characters would
not include the narrator, and thus do not appear in a



first-hand account. An “omniscient” third person
narrator, by contrast, can eavesdrop on any pair
of characters conversing. This highlights the im-
portance of detecting reported and indirect speech
in future work, as a first-person narrator may hear
about other connections without witnessing them.

6 Literary Interpretation of Results

Our data, therefore, markedly do not confirm hy-
pothesis #1. They also suggest, in relation to hy-
pothesis #2 (also not confirmed by the data), a
strong reason why.

One of the basic assumptions behind hypoth-
esis #2— that urban novels contain more charac-
ters, mirroring the masses of nineteenth-century
cities— is not borne out by our data. Our results do,
however, strongly correlate a point of view (third-
person narration) with more frequently connected
characters, implying tighter and more talkative so-
cial networks.

We would propose that this suggests that the
form of a given novel- the standpoint of the nar-
rative voice, whether the voice is “omniscient” or
not— is far more determinative of the kind of so-
cial network described in the novel than where it
is set or even the number of characters involved.
Whereas standard accounts of nineteenth-century
fiction, following Bakhtin’s notion of the “chrono-
tope,” emphasize the content of the novel as de-
terminative (where it is set, whether the novel fits
within a genre of “village” or “urban” fiction),
we have found that content to be surprisingly ir-
relevant to the shape of social networks within.
Bakhtin’s influential theory, and its detailed re-
workings by Williams, Moretti, and others, sug-
gests that as the novel becomes more urban, more
centered in (and interested in) populous urban set-
tings, the novel’s form changes to accommodate
the looser, more populated, less conversational
networks of city life. Our data suggests the op-
posite: that the “urban novel” is not as strongly
distinctive a form as has been asserted, and that in
fact it can look much like the village fictions of the
century, as long as the same method of narration is
used.

This conclusion leads to some further consider-
ations. We are suggesting that the important ele-
ment of social networks in nineteenth-century fic-
tion is not where the networks are set, but from
what standpoint they are imagined or narrated.
Narrative voice, that is, trumps setting.
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7 Conclusion

In this paper, we presented a method for char-
acterizing a text of literary fiction by extracting
the network of social conversations that occur be-
tween its characters. This allowed us to take a
systematic and wide look at a large corpus of
texts, an approach which complements the nar-
rower and deeper analysis performed by literary
scholars and can provide evidence for or against
some of their claims. In particular, we described
a high-precision method for detecting face-to-face
conversations between two named characters in a
novel, and showed that as the number of charac-
ters in a novel grows, so too do the cohesion, in-
terconnectedness and balance of their social net-
work. In addition, we showed that the form of the
novel (first- or third-person) is a stronger predictor
of these features than the setting (urban or rural).
Our results thus far suggest further review of our
methods, our corpus and our results for more in-
sights into the social networks found in this and
other genres of fiction.
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Abstract

The pipeline of most Phrase-Based Statistical
Machine Translation (PB-SMT) systems starts
from automatically word aligned parallel cor-
pus. But word appears to be too fine-grained
in some cases such as non-compositional
phrasal equivalences, where no clear word
alignments exist. Using words as inputs to PB-
SMT pipeline has inborn deficiency. This pa-
per proposes pseudo-word as a new start point
for PB-SMT pipeline. Pseudo-word is a kind
of basic multi-word expression that character-
izes minimal sequence of consecutive words in
sense of translation. By casting pseudo-word
searching problem into a parsing framework,
we search for pseudo-words in a monolingual
way and a bilingual synchronous way. Ex-
periments show that pseudo-word significantly
outperforms word for PB-SMT model in both
travel translation domain and news translation
domain.

1 Introduction

The pipeline of most Phrase-Based Statistical
Machine Translation (PB-SMT) systems starts
from automatically word aligned parallel corpus
generated from word-based models (Brown et al.,
1993), proceeds with step of induction of phrase
table (Koehn et al., 2003) or synchronous gram-
mar (Chiang, 2007) and with model weights tun-
ing step. Words are taken as inputs to PB-SMT at
the very beginning of the pipeline. But there is a
deficiency in such manner that word is too fine-
grained in some cases such as non-compositional
phrasal equivalences, where clear word align-
ments do not exist. For example in Chinese-to-
English translation, “48” and “would like to”
constitute a /-to-n phrasal equivalence, “% /b
£ and “how much is it” constitute a m-to-n
phrasal equivalence. No clear word alignments

are there in such phrasal equivalences. Moreover,
should basic translational unit be word or coarse-
grained multi-word is an open problem for opti-
mizing SMT models.

Some researchers have explored coarse-
grained translational unit for machine translation.
Marcu and Wong (2002) attempted to directly
learn phrasal alignments instead of word align-
ments. But computational complexity is prohibi-
tively high for the exponentially large number of
decompositions of a sentence pair into phrase
pairs. Cherry and Lin (2007) and Zhang et al.
(2008) used synchronous ITG (Wu, 1997) and
constraints to find non-compositional phrasal
equivalences, but they suffered from intractable
estimation problem. Blunsom et al. (2008; 2009)
induced phrasal synchronous grammar, which
aimed at finding hierarchical phrasal equiva-
lences.

Another direction of questioning word as basic
translational unit is to directly question word
segmentation on languages where word bounda-
ries are not orthographically marked. In Chinese-
to-English translation task where Chinese word
boundaries are not marked, Xu et al. (2004) used
word aligner to build a Chinese dictionary to re-
segment Chinese sentence. Xu et al. (2008) used
a Bayesian semi-supervised method that com-
bines Chinese word segmentation model and
Chinese-to-English translation model to derive a
Chinese segmentation suitable for machine trans-
lation. There are also researches focusing on the
impact of various segmentation tools on machine
translation (Ma et al. 2007; Chang et al. 2008;
Zhang et al. 2008). Since there are many /-to-n
phrasal equivalences in Chinese-to-English trans-
lation (Ma and Way. 2009), only focusing on
Chinese word as basic translational unit is not
adequate to model /-to-n translations. Ma and
Way (2009) tackle this problem by using word
aligner to bootstrap bilingual segmentation suit-
able for machine translation. Lambert and
Banchs (2005) detect bilingual multi-word ex-
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pressions by monotonically segmenting a given
Spanish-English sentence pair into bilingual
units, where word aligner is also used.

IBM model 3, 4, 5 (Brown et al., 1993) and
Deng and Byrne (2005) are another kind of re-
lated works that allow /-to-n alignments, but
they rarely questioned if such alignments exist in
word units level, that is, they rarely questioned
word as basic translational unit. Moreover, m-to-
n alignments were not modeled.

This paper focuses on determining the basic
translational units on both language sides without
using word aligner before feeding them into PB-
SMT pipeline. We call such basic translational
unit as pseudo-word to differentiate with word.
Pseudo-word is a kind of multi-word expression
(includes both unary word and multi-word).
Pseudo-word searching problem is the same to
decomposition of a given sentence into pseudo-
words. We assume that such decomposition is in
the Gibbs distribution. We use a measurement,
which characterizes pseudo-word as minimal
sequence of consecutive words in sense of trans-
lation, as potential function in Gibbs distribution.
Note that the number of decomposition of one
sentence into pseudo-words grows exponentially
with sentence length. By fitting decomposition
problem into parsing framework, we can find
optimal pseudo-word sequence in polynomial
time. Then we feed pseudo-words into PB-SMT
pipeline, and find that pseudo-words as basic
translational units improve translation perform-
ance over words as basic translational units. Fur-
ther experiments of removing the power of
higher order language model and longer max
phrase length, which are inherent in pseudo-
words, show that pseudo-words still improve
translational performance significantly over
unary words.

This paper is structured as follows: In section
2, we define the task of searching for pseudo-
words and its solution. We present experimental
results and analyses of using pseudo-words in
PB-SMT model in section 3. The conclusion is
presented at section 4.

2  Searching for Pseudo-words

Pseudo-word searching problem is equal to de-
composition of a given sentence into pseudo-
words. We assume that the distribution of such
decomposition is in the form of Gibbs distribu-
tion as below:

P(Y| X) =Ziexp<;Sig”> (1)

where X denotes the sentence, Y denotes a de-
composition of X. Sig function acts as potential
function on each multi-word y;, and Zy acts as
partition function. Note that the number of y; is
not fixed given X because X can be decomposed
into various number of multi-words.

Given X, Zy is fixed, so searching for optimal
decomposition is as below:

Y = ARGMAX P(Y | X) = ARGMAXY_Sig,, (2)
Y k

where Y% denotes K multi-word units from de-
composition of X. A multi-word sequence with
maximal sum of Sig function values is the search
target — pseudo-word sequence. From (2) we
can see that Sig function is vital for pseudo-word
searching. In this paper Sig function calculates
sequence significance which is proposed to char-
acterize pseudo-word as minimal sequence of
consecutive words in sense of translation. The
detail of sequence significance is described in the
following section.

2.1  Sequence Significance

Two kinds of definitions of sequence signifi-
cance are proposed. One is monolingual se-
quence significance. X and Y are monolingual
sentence and monolingual multi-words respec-
tively in this monolingual scenario. The other is
bilingual sequence significance. X and Y are sen-
tence pair and multi-word pairs respectively in
this bilingual scenario.

2.1.1 Monolingual Sequence Significance

Given a sentence w;, ..., w, where w; denotes
unary word, monolingual sequence significance
is defined as:

Freq .
&ngzf—ﬁi— 3)

req,
where Fregq; ; (i<j) represents frequency of word
sequence w; ..., w; in the corpus, Sig; ; repre-
sents monolingual sequence significance of a
word sequence w;, ..., w;. We also denote word
sequence w;, ..., w; as spanli, j], whole sentence
as span[1, n]. Each span is also a multi-word ex-
pression.

Monolingual sequence significance of span|i, j]
is proportional to span[i, j]’s frequency, while is
inversely proportion to frequency of expanded
span (spanli-1, j+1]). Such definition character-
izes minimal sequence of consecutive words
which we are looking for. Our target is to find
pseudo-word sequence which has maximal sum
of spans’ significances:
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pwl = ARGMAX Y Sig .. @)

span |
where pw denotes pseudo-word, K is equal to or
less than sentence’s length. span is the kth span
of K spans span;”. Equation (4) is the rewrite of
equation (2) in monolingual scenario. Searching
for pseudo-words pw,* is the same to finding
optimal segmentation of a sentence into K seg-
ments span;” (K is a variable too). Details of
searching algorithm are described in section
2.2.1.

We firstly search for monolingual pseudo-
words on source and target side individually.
Then we apply word alignment techniques to
build pseudo-word alignments. We argue that
word alignment techniques will work fine if non-
existent word alignments in such as non-
compositional phrasal equivalences have been
filtered by pseudo-words.

2.1.2 Bilingual Sequence Significance

Bilingual sequence significance is proposed to
characterize pseudo-word pairs. Co-occurrence
of sequences on both language sides is used to
define bilingual sequence significance. Given a
bilingual sequence pair: span-pairlis, j, i, Jji]
(source side span[i,, j;| and target side span[i, j.]),
bilingual sequence significance is defined as be-
low:

freq, ; .., (5)

=Ljg i =1, +1

S18i o Freq,
where Freq denotes the frequency of a span-pair.
Bilingual sequence significance is an extension
of monolingual sequence significance. Its value
is proportional to frequency of span-pairlis, js, i,
Jji, while is inversely proportional to frequency
of expanded span-pair(is-1, js+1, i-1, j+1].
Pseudo-word pairs of one sentence pair are such
pairs that maximize the sum of span-pairs’ bilin-
gual sequence significances:
K
prlK = ARGM(AXZICZI Sl‘gspan—pairk (6)
Span— pain

pwp represents pseudo-word pair. Equation (6) is
the rewrite of equation (2) in bilingual scenario.
Searching for pseudo-word pairs pwp,” is equal
to bilingual segmentation of a sentence pair into
optimal span-pairX. Details of searching algo-
rithm are presented in section 2.2.2.

2.2 Algorithms of Searching for Pseudo-
words

Pseudo-word searching problem is equal to de-
composition of a sentence into pseudo-words.
But the number of possible decompositions of

the sentence grows exponentially with the sen-
tence length in both monolingual scenario and
bilingual scenario. By casting such decomposi-
tion problem into parsing framework, we can
find pseudo-word sequence in polynomial time.
According to the two scenarios, searching for
pseudo-words can be performed in a monolin-
gual way and a synchronous way. Details of the
two kinds of searching algorithms are described
in the following two sections.

2.2.1 Algorithm of Searching for Monolin-

gual Pseudo-words (SMP)

Searching for monolingual pseudo-words is
based on the computation of monolingual se-
quence significance. Figure 1 presents the search
algorithm. It is performed in a way similar to
CKY (Cocke-Kasami-Younger) parser.

Initialization: W, ; = Sig; ;

Wi, =0, (i):
1: ford=2..ndo
2: foralli js.t. j-i=d-1do
3: fork=i..j—1do
4. V=Wt Wisr;
5: if v> W, then
6: Wyi=v;
7: u = Sig; ;
8: if u> W, ; then
9: W,;=u;

Figure 1. Algorithm of searching for monolingual
pseudo-words (SMP).

In this algorithm, W; ; records maximal sum of
monolingual sequence significances of sub spans
of span(i, j]. During initialization, W; ; is initial-
ized as Sig;; (note that this sequence is word w;
only). For all spans that have more than one
word (i#)), W, ; is initialized as zero.

In the main algorithm, d represents span’s
length, ranging from 2 to n, i represents start po-
sition of a span, j represents end position of a
span, k represents decomposition position of
spanli,j]. For spanli, j], W; ; is updated if higher
sum of monolingual sequence significances is
found.

The algorithm is performed in a bottom-up
way. Small span’s computation is first. After
maximal sum of significances is found in small
spans, big span’s computation, which uses small
spans’ maximal sum, is continued. Maximal sum
of significances for whole sentence (W;,, n is
sentence’s length) is guaranteed in this way, and
optimal decomposition is obtained correspond-

ingly.
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The method of fitting the decomposition prob-
lem into CKY parsing framework is located at
steps 7-9. After steps 3-6, all possible decompo-
sitions of span(i, j] are explored and W, ; of op-
timal decomposition of span[i, j] is recorded.
Then monolingual sequence significance Sig;; of
spanli, j] is computed at step 7, and it is com-
pared to W, ; at step 8. Update of I¥; ; is taken at
step 9 if Sig;; is bigger than W, ;, which indicates
that span[i, j] is non-decomposable. Thus
whether span[i, j] should be non-decomposable
or not is decided through steps 7-9.

2.2.2 Algorithm of Synchronous Searching
for Pseudo-words (SSP)

Synchronous searching for pseudo-words utilizes
bilingual sequence significance. Figure 2 pre-
sents the search algorithm. It is similar to ITG
(Wu, 1997), except that it has no production
rules and non-terminal nodes of a synchronous
grammar. What it cares about is the span-pairs
that maximize the sum of bilingual sequence sig-
nificances.

Initialization: if i; = j; or i, = j, then

Wi = Si&i >
else

Wi i =0

1: ford,=2..n,d, =2 ..ndo

2 for all i, j, i, J; s.t. j-i;=d-1 and j-i=d-1 do

3: forks=i5..j,— 1, k=i ..j,—1do

4

s

Sl 5Ky

v=max{W, k4,

Wi\,k\.kﬁl,jl + Wk‘+1,j\,[/,k/ }

5: ifv> Wi“js,i[,j, then
6: VV,/ RAYE -V

7: u= Sig i sy

. if > VVis,jx,i,,jt then

9: w "

odosiiod,
Figure 2. Algorithm of Synchronous Searching for
Pseudo-words(SSP).

In the algorithm, W, records maximal

s> Js sl
sum of bilingual sequence significances of sub
span-pairs of span-pair(is, j,, i, j]. For I-to-m
span-pairs, Ws are initialized as bilingual se-
quence significances of such span-pairs. For
other span-pairs, Ws are initialized as zero.

In the main algorithm, dy/d, denotes the length
of a span on source/target side, ranging from 2 to
ny/n, (source/target sentence’s length). i/i, is the
start position of a span-pair on source/target side,

Jij; is the end position of a span-pair on
source/target side, k/k, is the decomposition po-
sition of a span-pairli,, j, i, j;] on source/target
side.

Update steps in Figure 2 are similar to that of
Figure 1, except that the update is about span-
pairs, not monolingual spans. Reversed and non-
reversed alignments inside a span-pair are com-
pared at step 4. For span-pairli, j, i, jl,

i..j..i,,j, 1s updated at step 6 if higher sum of
bilingual sequence significances is found.

Fitting the bilingually searching for pseudo-
words into ITG framework is located at steps 7-9.
Steps 3-6 have explored all possible decomposi-
tions of span-pairlis, j, i, j] and have recorded
maximal i of these decompositions. Then

bilingual sequence significance of span-pairlis, j,
i, ji] i1s computed at step 7. It is compared to
w. at step 8. Update is taken at step 9 if

iy JssiesJs
bilingual sequence significance of span-pair(is, j
iy Ju] 1s bigger than i which indicates that

span-pairli, j, i, Jj:] 1s mnon-decomposable.
Whether the span-pair|is, J,, i, j;] should be non-
decomposable or not is decided through steps 7-
9.

In addition to the initialization step, all span-
pairs’ bilingual sequence significances are com-
puted. Maximal sum of bilingual sequence sig-
nificances for one sentence pair is guaranteed
through this bottom-up way, and the optimal de-
composition of the sentence pair is obtained cor-
respondingly.

® Algorithm of Excluded Synchronous
Searching for Pseudo-words (ESSP)

The algorithm of SSP in Figure 2 explores all
span-pairs, but it neglects NULL alignments,
where words and “empty” word are aligned. In
fact, SSP requires that all parts of a sentence pair
should be aligned. This requirement is too strong
because NULL alignments are very common in
many language pairs. In SSP, words that should
be aligned to “empty” word are programmed to
be aligned to real words.

Unlike most word alignment methods (Och
and Ney, 2003) that add “empty” word to ac-
count for NULL alignment entries, we propose a
method to naturally exclude such NULL align-
ments. We call this method as Excluded Syn-
chronous Searching for Pseudo-words (ESSP).

The main difference between ESSP and SSP is
in steps 3-6 in Figure 3. We illustrate Figure 3’s
span-pair configuration in Figure 4.
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Initialization: if i; = j; or i, = j, then
Wi = Si€i >
else
W i, = 0,

1: ford,=2..n,d,=2..ndo
2: for all i, j, i, j; s.t. j-is=ds-1 and j~i=d-1 do

3: for k=i t1 v Js koo=k-1 ]3']
k=i +1 v kp=k,-1 ...jt—] do
4: V= maX{ Wi.\ k=i k=1 + Wk,\'2+]’j,\'>k12+l>j/ ’
Wi.wkxl*lJ"ngJ‘/ + Wk@”d‘.w"nku" }
5: if v> Wi.\"js’it’jt then
6: LN
7: U= Sig g
8: if u> VV;S’js’it’jt thel’]
9: W =u,

LssJsslis]r

Figure 3. Algorithm of Excluded Synchronous
Searching for Pseudo-words (ESSP).

The solid boxes in Figure 4 represent excluded
parts of span-pairliy, j, i, j] in ESSP. Note that,
in SSP, there is no excluded part, that is, k;;=k;>
and kﬂ:ktg.

We can see that in Figure 4, each monolingual
span is configured into three parts, for example:
spanlis, ks-1], spanlks;, k] and spanlk+1, j)
on source language side. k;; and k;, are two new
variables gliding between i; and j;, span[k;;, k]
is source side excluded part of span-pair(is, j,, i,
Jj:- Bilingual sequence significance is computed
only on pairs of blank boxes, solid boxes are ex-
cluded in this computation to represent NULL
alignment cases.

l.s ksl ksZ ] s

E E
[

it kt[ kt2 ]

a) non-reversed

t

is ks] ks2 / K
%

. [ .

I ke ki It

b) reversed

Figure 4. [llustration of excluded configuration.

Note that, in Figure 4, solid box on either lan-

guage side can be void (i.e., length is zero) if

there is no NULL alignment on its side. If all

solid boxes are shrunk into void, algorithm of
ESSP is the same to SSP.

Generally, span length of NULL alignment is
not very long, so we can set a length threshold
for NULL alignments, eg. k,»-k,;/<<EL, where EL
denotes Excluded Length threshold. Computa-
tional complexity of the ESSP remains the same
to SSP’s complexity O(n,’.n,’), except multiply a
constant EL’.

There is one kind of NULL alignments that
ESSP can not consider. Since we limit excluded
parts in the middle of a span-pair, the algorithm
will end without considering boundary parts of a
sentence pair as NULL alignments.

3 Experiments and Results

In our experiments, pseudo-words are fed into
PB-SMT pipeline. The pipeline uses GIZA++
model 4 (Brown et al., 1993; Och and Ney, 2003)
for pseudo-word alignment, uses Moses (Koehn
et al.,, 2007) as phrase-based decoder, uses the
SRI Language Modeling Toolkit to train lan-
guage model with modified Kneser-Ney smooth-
ing (Kneser and Ney 1995; Chen and Goodman
1998). Note that MERT (Och, 2003) is still on
original words of target language. In our experi-
ments, pseudo-word length is limited to no more
than six unary words on both sides of the lan-
guage pair.

We conduct experiments on Chinese-to-
English machine translation. Two data sets are
adopted, one is small corpus of IWSLT-2008
BTEC task of spoken language translation in
travel domain (Paul, 2008), the other is large
corpus in news domain, which consists Hong
Kong News (LDC2004T08), Sinorama Magazine
(LDC2005T10), FBIS (LDC2003E14), Xinhua
(LDC2002E18), Chinese News Translation
(LDC2005T06), Chinese Treebank
(LDC2003E07), Multiple Translation Chinese
(LDC2004T07). Table 1 lists statistics of the
corpus used in these experiments.

small large
Ch— En Ch— En
Sent. 23k 1,239k
word | 190k 213k | 31.7m  35.5m
ASL | 83 9.2 25.6 28.6

Table 1. Statistics of corpora, “Ch” denotes Chinese,
“En” denotes English, “Sent.” row is the number of
sentence pairs, “word” row is the number of words,

“ASL” denotes average sentence length.
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For small corpus, we use CSTARO3 as devel-

opment set, use IWSLTO8 official test set for test.

A 5-gram language model is trained on English
side of parallel corpus. For large corpus, we use
NISTO02 as development set, use NISTO3 as test
set. Xinhua portion of the English Gigaword3
corpus is used together with English side of large
corpus to train a 4-gram language model.

Experimental results are evaluated by case-
insensitive BLEU-4 (Papineni et al., 2001).
Closest reference sentence length is used for
brevity penalty. Additionally, NIST score (Dod-
dington, 2002) and METEOR (Banerjee and La-
vie, 2005) are also used to check the consistency
of experimental results. Statistical significance in
BLEU score differences was tested by paired
bootstrap re-sampling (Koehn, 2004).

3.1 Baseline Performance

Our baseline system feeds word into PB-SMT
pipeline. We use GIZA++ model 4 for word
alignment, use Moses for phrase-based decoding.
The setting of language model order for each
corpus is not changed. Baseline performances on
test sets of small corpus and large corpus are re-
ported in table 2.

small Large

BLEU 0.4029 0.3146
NIST 7.0419 8.8462
METEOR 0.5785 0.5335

Table 2. Baseline performances on test sets of small
corpus and large corpus.

3.2 Pseudo-word Unpacking

Because pseudo-word is a kind of multi-word
expression, it has inborn advantage of higher
language model order and longer max phrase
length over unary word. To see if such inborn
advantage is the main contribution to the per-
formance or not, we unpack pseudo-word into
words after GIZA++ aligning. Aligned pseudo-
words are unpacked into mxn word alignments.
PB-SMT pipeline is executed thereafter. The ad-
vantage of longer max phrase length is removed
during phrase extraction, and the advantage of
higher order of language model is also removed
during decoding since we use language model
trained on unary words. Performances of pseudo-
word unpacking are reported in section 3.3.1 and
3.4.1. Ma and Way (2009) used the unpacking
after phrase extraction, then re-estimated phrase
translation probability and lexical reordering
model. The advantage of longer max phrase
length is still used in their method.

3.3 Pseudo-word Performances on Small
Corpus

Table 3 presents performances of SMP, SSP,
ESSP on small data set. pw. pw,., denotes that
pseudo-words are on both language side of train-
ing data, and they are input strings during devel-
opment and testing, and translations are also
pseudo-words, which will be converted to words
as final output. wgpw./pwaw., denotes that
pseudo-words are adopted only on Eng-
lish/Chinese side of the data set.

We can see from table 3 that, ESSP attains the
best performance, while SSP attains the worst
performance. This shows that excluding NULL
alignments in synchronous searching for pseudo-
words is effective. SSP puts overly strong align-
ment constraints on parallel corpus, which im-
pacts performance dramatically. ESSP is superior
to SMP indicating that bilingually motivated
searching for pseudo-words is more effective.
Both SMP and ESSP outperform baseline consis-
tently in BLEU, NIST and METEOR.

There is a common phenomenon among SMP,
SSP and ESSP. w.pw,, always performs better
than the other two cases. It seems that Chinese
word prefers to have English pseudo-word
equivalence which has more than or equal to one
word. pw.pw., in ESSP performs similar to the
baseline, which reflects that our direct pseudo-
word pairs do not work very well with GIZA++
alignments. Such disagreement is weakened by
using pseudo-words on only one language side
(WeppWen OF pwewe,), while the advantage of
pseudo-words is still leveraged in the alignments.

Best ESSP (wgpw.,) is significantly better
than baseline (p<0.01) in BLEU score, best SMP
(Wenpwe,) 1s significantly better than baseline
(p<0.05) in BLEU score. This indicates that
pseudo-words, through either monolingual
searching or synchronous searching, are more
effective than words as to being basic transla-
tional units.

Figure 5 illustrates examples of pseudo-words
of one Chinese-to-English sentence pair. Gold
standard word alignments are shown at the bot-
tom of figure 5. We can see that “front desk” is
recognized as one pseudo-word in ESSP. Be-
cause SMP performs monolingually, it can not
consider “HJ &5 and “front desk” simultaneously.
SMP only detects frequent monolingual multi-
words as pseudo-words. SSP has a strong con-
straint that all parts of a sentence pair should be
aligned, so source sentence and target sentence
have same length after merging words into
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SMP SSp ESSP baseline

PWerPWen  WepPWen  PWerWen | PWerPWen  WepPWen PWenWen | PWenPWen - WenPWen  PWeiWen
BLEU 0.3996  0.4155 04024 | 0.3184 0.3661 0.3552 | 0.3998 0.4229 0.4147 | 0.4029
NIST 7.4711 7.6452 7.6186 | 6.4099 69284 6.8012 | 7.1665 7.4373  7.4235 | 7.0419
METEOR | 0.5900 0.6008 0.6000 0.5255 0.5569 0.5454 0.5739 0.5963 0.5891 0.5785

Table 3. Performance of using pseudo-words on small data.

pseudo-words. We can see that too many pseudo-
words are detected by SSP.

it o e~ d e

! ESSP
The guy at the front desk is pretty rude .
FJ‘[J’FI Flfj Hiwo o~ deoEE o SMP
The guy at the front desk is pretty rude .
7 po3e R ssp

The guy at the front desk is pretty rude .
U S °

e 80\

The guy at the front desk is pretty rude .

Gold standard word alignments

Figure 5. Outputs of the three algorithms ESSP,
SMP and SSP on one sentence pair and gold standard
word alignments. Words in one pseudo-word are con-

catenated by “ 7

3.3.1 Pseudo-word Unpacking Perform-

ances on Small Corpus

We test pseudo-word unpacking in ESSP. Table
4 presents its performances on small corpus.

pseudo-word itself as basic translational unit,
does not rely very much on higher language
model order or longer max phrase length setting.

3.4  Pseudo-word Performances on Large

Corpus

Table 5 lists the performance of using pseudo-
words on large corpus. We apply SMP on this
task. ESSP is not applied because of its high
computational complexity. Table 5 shows that all
three configurations (PwepWen, WerPWen, PWerWen)
of SMP outperform the baseline. If we go back to
the definition of sequence significance, we can
see that it is a data-driven definition that utilizes
corpus frequencies. Corpus scale has an influ-
ence on computation of sequence significance in
long sentences which appear frequently in news
domain. SMP benefits from large corpus, and
WepWen, 1S significantly better than baseline
(p<0.01). Similar to performances on small cor-
pus, wgpw,., always performs better than the
other two cases, which indicates that Chinese
word prefers to have English pseudo-word
equivalence which has more than or equal to one
word.

unpackingggsp baseline
DPWenPWen WehPWen  PWcnWen
BLEU 0.4097 0.4182 0.4031 | 0.4029
NIST 7.5547 7.2893  7.2670 | 7.0419
METEOR | 0.5951 0.5874 0.5846 | 0.5785

Table 4. Performances of pseudo-word unpacking on
small corpus.

We can see that pseudo-word unpacking sig-
nificantly outperforms baseline. w pw,, is sig-
nificantly better than baseline (p<0.04) in BLEU
score. Unpacked pseudo-word performs com-
paratively with pseudo-word without unpacking.
There is no statistical difference between them. It
shows that the improvement derives from

SMP baseline
DPWeiPWen _ WerDWen  PWerWen
BLEU 0.3185 0.3230 0.3166 | 0.3146
NIST 8.9216 9.0447  8.9210 | 8.8462
METEOR | 0.5402 0.5489  0.5435 | 0.5335
Table 5. Performance of using pseudo-words on large
corpus.

3.4.1 Pseudo-word Unpacking Perform-

ances on Large Corpus

Table 6 presents pseudo-word unpacking per-
formances on large corpus. All three configura-
tions improve performance over baseline after
pseudo-word unpacking. pwgpw,, attains the
best BLEU among the three configurations, and
is significantly better than baseline (p<0.03).
WePWen 18 also significantly better than baseline
(p<0.04). By comparing table 6 with table 5, we
can see that unpacked pseudo-word performs
comparatively with pseudo-word without un-
packing. There is no statistical difference be-
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tween them. It shows that the improvement de-
rives from pseudo-word itself as basic transla-
tional unit, does not rely very much on higher
language model order or longer max phrase
length setting. In fact, slight improvement in
PWepWe, and pwew,, is seen after pseudo-word
unpacking, which indicates that higher language
model order and longer max phrase length im-
pact the performance in these two configurations.

Unpackinggyp Baseline
PWerlDWen  WeilPWen _ PWernWen
BLEU 0.3219 0.3192 0.3187 | 0.3146
NIST 8.9458 8.9325 8.9801 | 8.8462
METEOR | 0.5429 0.5424  0.5411 | 0.5335

Table 6. Performance of pseudo-word unpacking on
large corpus.

3.5 Comparison to English Chunking

English chunking is experimented to compare
with pseudo-word. We use FlexCRFs (Xuan-
Hieu Phan et al., 2005) to get English chunks.
Since there is no standard Chinese chunking data
and code, only English chunking is executed.
The experimental results show that English
chunking performs far below baseline, usually 8
absolute BLEU points below. It shows that sim-
ple chunks are not suitable for being basic trans-
lational units.

4  Conclusion

We have presented pseudo-word as a novel ma-
chine translational unit for phrase-based machine
translation. It is proposed to replace too fine-
grained word as basic translational unit. Pseudo-
word is a kind of basic multi-word expression
that characterizes minimal sequence of consecu-
tive words in sense of translation. By casting
pseudo-word searching problem into a parsing
framework, we search for pseudo-words in poly-
nomial time. Experimental results of Chinese-to-
English translation task show that, in phrase-
based machine translation model, pseudo-word
performs significantly better than word in both
spoken language translation domain and news
domain. Removing the power of higher order
language model and longer max phrase length,
which are inherent in pseudo-words, shows that
pseudo-words still improve translational per-
formance significantly over unary words.
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Abstract

We present a simple yet powerful hier-
archical search algorithm for automatic
word alignment. Our algorithm induces
a forest of alignments from which we
can efficiently extract a ranked k-best list.
We score a given alignment within the
forest with a flexible, linear discrimina-
tive model incorporating hundreds of fea-
tures, and trained on a relatively small
amount of annotated data. We report re-
sults on Arabic-English word alignment
and translation tasks. Our model out-
performs a GIZA++ Model-4 baseline by
6.3 points in F-measure, yielding a 1.1
BLEU score increase over a state-of-the-art
syntax-based machine translation system.

1 Introduction

Automatic word alignment is generally accepted
as a first step in training any statistical machine
translation system. It is a vital prerequisite for
generating translation tables, phrase tables, or syn-
tactic transformation rules. Generative alignment
models like IBM Model-4 (Brown et al., 1993)
have been in wide use for over 15 years, and while
not perfect (see Figure 1), they are completely un-
supervised, requiring no annotated training data to
learn alignments that have powered many current
state-of-the-art translation system.

Today, there exist human-annotated alignments
and an abundance of other information for many
language pairs potentially useful for inducing ac-
curate alignments. How can we take advantage
of all of this data at our fingertips? Using fea-
ture functions that encode extra information is one
good way. Unfortunately, as Moore (2005) points
out, it is usually difficult to extend a given genera-
tive model with feature functions without chang-
ing the entire generative story. This difficulty
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Figure 1: Model-4 alignment vs. a gold stan-

dard. Circles represent links in a human-annotated
alignment, and black boxes represent links in the
Model-4 alignment. Bold gray boxes show links
gained after fully connecting the alignment.

has motivated much recent work in discriminative
modeling for word alignment (Moore, 2005; Itty-
cheriah and Roukos, 2005; Liu et al., 2005; Taskar
et al., 2005; Blunsom and Cohn, 2006; Lacoste-
Julien et al., 2006; Moore et al., 2006).

We present in this paper a discriminative align-
ment model trained on relatively little data, with
a simple, yet powerful hierarchical search proce-
dure. We borrow ideas from both k-best pars-
ing (Klein and Manning, 2001; Huang and Chi-
ang, 2005; Huang, 2008) and forest-based, and
hierarchical phrase-based translation (Huang and
Chiang, 2007; Chiang, 2007), and apply them to
word alignment.

Using a foreign string and an English parse
tree as input, we formulate a bottom-up search
on the parse tree, with the structure of the tree
as a backbone for building a hypergraph of pos-
sible alignments. Our algorithm yields a forest of

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 157-166,
Uppsala, Sweden, 11-16 July 2010. (©2010 Association for Computational Linguistics
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Figure 2: Example of approximate search through a hypergraph with beam size = 5. Each black square
implies a partial alignment. Each partial alignment at each node is ranked according to its model score.
In this figure, we see that the partial alignment implied by the 1-best hypothesis at the leftmost NP
node is constructed by composing the best hypothesis at the terminal node labeled “the” and the 2nd-
best hypothesis at the terminal node labeled “man”. (We ignore terminal nodes in this toy example.)
Hypotheses at the root node imply full alignment structures.

word alignments, from which we can efficiently
extract the k-best. We handle an arbitrary number
of features, compute them efficiently, and score
alignments using a linear model. We train the
parameters of the model using averaged percep-
tron (Collins, 2002) modified for structured out-
puts, but can easily fit into a max-margin or related
framework. Finally, we use relatively little train-
ing data to achieve accurate word alignments. Our
model can generate arbitrary alignments and learn
from arbitrary gold alignments.
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2  Word Alignment as a Hypergraph

Algorithm input The input to our alignment al-
gorithm is a sentence-pair (e7, f{") and a parse tree
over one of the input sentences. In this work,
we parse our English data, and for each sentence
E = ¢Y, let T be its syntactic parse. To gener-
ate parse trees, we use the Berkeley parser (Petrov
et al., 2006), and use Collins head rules (Collins,
2003) to head-out binarize each tree.

Overview We present a brief overview here and
delve deeper in Section 2.1. Word alignments are
built bottom-up on the parse tree. Each node v in
the tree holds partial alignments sorted by score.
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(a) Score the left corner align-
ment first. Assume it is the 1-
best. Numbers in the rest of the
boxes are hidden at this point.

the 2nd best.

(b) Expand the frontier of align-
ments. We are now looking for

(c) Expand the frontier further.
After this step we have our top
k alignments.

Figure 3: Cube pruning with alignment hypotheses to select the top-k alignments at node v with children
(uy, uy). In this example, k£ = 3. Each box represents the combination of two partial alignments to create
a larger one. The score in each box is the sum of the scores of the child alignments plus a combination

cost.

Each partial alignment comprises the columns of
the alignment matrix for the e-words spanned by
v, and each is scored by a linear combination of
feature functions. See Figure 2 for a small exam-
ple.

Initial partial alignments are enumerated and
scored at preterminal nodes, each spanning a sin-
gle column of the word alignment matrix. To
speed up search, we can prune at each node, keep-
ing a beam of size k. In the diagram depicted in
Figure 2, the beam is size k = 5.

From here, we traverse the tree nodes bottom-
up, combining partial alignments from child nodes
until we have constructed a single full alignment at
the root node of the tree. If we are interested in the
k-best, we continue to populate the root node until
we have k alignments.!

We use one set of feature functions for preter-
minal nodes, and another set for nonterminal
nodes. This is analogous to local and nonlo-
cal feature functions for parse-reranking used by
Huang (2008). Using nonlocal features at a non-
terminal node emits a combination cost for com-
posing a set of child partial alignments.

Because combination costs come into play, we
use cube pruning (Chiang, 2007) to approxi-
mate the k-best combinations at some nonterminal
node v. Inference is exact when only local features
are used.

Assumptions There are certain assumptions re-
lated to our search algorithm that we must make:

'"We use approximate dynamic programming to store
alignments, keeping only scored lists of pointers to initial
single-column spans. Each item in the list is a derivation that
implies a partial alignment.
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(1) that using the structure of 1-best English syn-
tactic parse trees is a reasonable way to frame and
drive our search, and (2) that F-measure approxi-
mately decomposes over hyperedges.

We perform an oracle experiment to validate
these assumptions. We find the oracle for a given
(T ,e,f) triple by proceeding through our search al-
gorithm, forcing ourselves to always select correct
links with respect to the gold alignment when pos-
sible, breaking ties arbitrarily. The the F; score of
our oracle alignment is 98.8%, given this “perfect”
model.

2.1 Hierarchical search

Initial alignments We can construct a word
alignment hierarchically, bottom-up, by making
use of the structure inherent in syntactic parse
trees. We can think of building a word alignment
as filling in an M X N matrix (Figure 1), and we be-
gin by visiting each preterminal node in the tree.
Each of these nodes spans a single e word. (Line
2 in Algorithm 1).

From here we can assign links from each e word
to zero or more f words (Lines 6-14). At this
level of the tree the span size is 1, and the par-
tial alignment we have made spans a single col-
umn of the matrix. We can make many such partial
alignments depending on the links selected. Lines
5 through 9 of Algorithm 1 enumerate either the
null alignment, single-link alignments, or two-link
alignments. Each partial alignment is scored and
stored in a sorted heap (Lines 9 and 13).

In practice enumerating all two-link alignments
can be prohibitive for long sentence pairs; we set
a practical limit and score only pairwise combina-



Algorithm 1: Hypergraph Alignment
Input:

Source sentence e}
Target sentence f}"
Parse tree T over e/

Set of feature functions h
Weight vector w
Beam size k
Output:
A k-best list of alignments over e} and
function ALIGN(e’l’, flm, T)
for v € T in bottom-up order do
a, — 0
if 1s-PRETERMINALNODE(V) then
i « index-of(v)
for j =0tomdo
links « (i, J)
score «— w - h(links, v, e’l’,fl’")
Pusu(a,, (score, links), k)
fork=j+1tomdo
links « (i, j), (i, k)
score «— w - h(links, v, e’f, fl’")
Pusu(a,, (score, links), k)
end
end
else
a, < GrowSpaN(children(v), k)
end

m

1

15

16
17

18
end
end
function GROWSPAN({u1, 1), k)

return CuBePrRUNING({@y,, , @y, ), k,W,h)
end

19

20
21

23

1£1

tions of the top n = max{ 2

link alignments.

, 10} scoring single-

We limit the number of total partial alignments
a, kept at each node to k. If at any time we wish to
push onto the heap a new partial alignment when
the heap is full, we pop the current worst off the
heap and replace it with our new partial alignment
if its score is better than the current worst.

Building the hypergraph We now visit internal
nodes (Line 16) in the tree in bottom-up order. At
each nonterminal node v we wish to combine the
partial alignments of its children uy,...,u.. We
use cube pruning (Chiang, 2007; Huang and Chi-
ang, 2007) to select the k-best combinations of the
partial alignments of uy,...,u. (Line 19). Note

160

//\S—BARl
| —
| /m_cl |
| | - |
| N |
| .
NP-C; o NP—C—BA/R1\| |
e, I B B e | |
@BAR& | | | | NPIBQ | NPIBQ |
| @BARZ o /NPB\—BARZ | /NPB\—BARZ |
| |1 | NN
DT CD Jg VBN VBN IN DT NN NN CC CD JJ NN
. < & Y e
RET L Ay
[el[el[e] & el
E‘ E‘ %U".':“
@ o]
[ &l
[@ o
@ @ &l
@ XV
[el O s
O
[@ aoly
@

Figure 4: Correct version of Figure 1 after hyper-
graph alignment. Subscripts on the nonterminal
labels denote the branch containing the head word
for that span.

that Algorithm 1 assumes a binary tree?, but is not
necessary. In the general case, cube pruning will
operate on a d-dimensional hypercube, where d is
the branching factor of node v.

We cannot enumerate and score every possibil-
ity; without the cube pruning approximation, we
will have k¢ possible combinations at each node,
exploding the search space exponentially. Figure 3
depicts how we select the top-k alignments at a
node v from its children { uy, u, ).

3 Discriminative training

We incorporate all our new features into a linear
model and learn weights for each using the on-
line averaged perceptron algorithm (Collins, 2002)
with a few modifications for structured outputs in-
spired by Chiang et al. (2008). We define:

2We find empirically that using binarized trees reduces
search errors in cube pruning.



Figure 5: A common problem with GIZA++
Model 4 alignments is a weak distortion model.
The second English “in” is aligned to the wrong
Arabic token. Circles show the gold alignment.

Y = i, y) + w- (h(y;) —h(y) (1
where £(y;,y) is a loss function describing how bad
itis to guess y when the correct answer is y;. In our
case, we define €(y;,y) as 1-F1(y;,y). We select the
oracle alignment according to:

y* = arg miny(y) (2)

YECAND(X)

where canD(x) is a set of hypothesis alignments
generated from input x. Instead of the traditional
oracle, which is calculated solely with respect to
the loss €(y;,y), we choose the oracle that jointly
minimizes the loss and the difference in model
score to the true alignment. Note that Equation 2
is equivalent to maximizing the sum of the F-
measure and model score of y:

y" =argmax (Fi(y,y) +w-h(y))  (3)

YECAND(x)

Let § be the 1-best alignment according to our
model:

¥y = arg maxw - h(y) 4)
YECAND(X)
Then, at each iteration our weight update is:
w — w+nh(") - h()) (&)

where 7 is a learning rate parameter.> We find
that this more conservative update gives rise to a
much more stable search. After each iteration, we
expect y* to get closer and closer to the true y;.

4 Features

Our simple, flexible linear model makes it easy to
throw in many features, mapping a given complex

3We set 7 to 0.05 in our experiments.
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alignment structure into a single high-dimensional
feature vector. Our hierarchical search framework
allows us to compute these features when needed,
and affords us extra useful syntactic information.

We use two classes of features: local and non-
local. Huang (2008) defines a feature 4 to be lo-
cal if and only if it can be factored among the lo-
cal productions in a tree, and non-local otherwise.
Analogously for alignments, our class of local fea-
tures are those that can be factored among the local
partial alignments competing to comprise a larger
span of the matrix, and non-local otherwise. These
features score a set of links and the words con-
nected by them.

Feature development Our features are inspired
by analysis of patterns contained among our gold
alignment data and automatically generated parse
trees. We use both local lexical and nonlocal struc-
tural features as described below.

4.1 Local features

These features fire on single-column spans.

e From the output of GIZA++ Model 4, we
compute lexical probabilities p(e | f) and
p(f | e), as well as a fertility table ¢(e).
From the fertility table, we fire features ¢g(e),
¢1(e), and ¢, (e) when a word e is aligned
to zero, one, or two or more words, respec-
tively. Lexical probability features p(e | f)
and p(f | e) fire when a word e is aligned to
aword f.

Based on these features, we include a binary
lexical-zero feature that fires if both p(e | f)
and p(f | e) are equal to zero for a given word
pair (e, f). Negative weights essentially pe-
nalize alignments with links never seen be-
fore in the Model 4 alignment, and positive
weights encourage such links. We employ a
separate instance of this feature for each En-
glish part-of-speech tag: p(f | e, ?).

We learn a different feature weight for each.
Critically, this feature tells us how much to
trust alignments involving nouns, verbs, ad-
jectives, function words, punctuation, etc.
from the Model 4 alignments from which our
p(e | f) and p(f | e) tables are built. Ta-
ble 1 shows a sample of learned weights. In-
tuitively, alignments involving English parts-
of-speech more likely to be content words
(e.g. NNPS, NNS, NN) are more trustworthy
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Figure 6: Features PP-NP-head, NP-DT-head, and VP-VP-head fire on these tree-alignment patterns. For
example, PP-NP-head fires exactly when the head of the PP is aligned to exactly the same f words as the

head of it’s sister NP.

Penalty
NNPS -1.11
NNS -1.03
NN -0.80
NNP -0.62
VB -0.54
VBG -0.52
1 -0.50
JIS -0.46
VBN —-0.45
POS —0.0093
EX —-0.0056
RP —0.0037
WP$  —-0.0011
TO 0.037

Reward

Table 1: A sampling of learned weights for the lex-
ical zero feature. Negative weights penalize links
never seen before in a baseline alignment used to
initialize lexical p(e | f) and p(f | e) tables. Posi-
tive weights outright reward such links.

than those likely to be function words (e.g.
TO, RP, EX), where the use of such words is
often radically different across languages.

e We also include a measure of distortion.
This feature returns the distance to the diag-
onal of the matrix for any link in a partial
alignment. If there is more than one link, we
return the distance of the link farthest from
the diagonal.

As a lexical backoff, we include a tag prob-
ability feature, p(¢ | f) that fires for some
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link (e, f) if the part-of-speech tag of e is ¢.
The conditional probabilities in this table are
computed from our parse trees and the base-
line Model 4 alignments.

In cases where the lexical probabilities are
too strong for the distortion feature to
overcome (see Figure 5), we develop the
multiple-distortion feature. Although local
features do not know the partial alignments at
other spans, they do have access to the entire
English sentence at every step because our in-
put is constant. If some e exists more than
once in e} we fire this feature on all links con-
taining word e, returning again the distance to
the diagonal for that link. We learn a strong
negative weight for this feature.

and
im-

We find that Dbinary identity
punctuation-mismatch features are
portant. The binary identity feature fires if
e = f, and proves useful for untranslated
numbers, symbols, names, and punctuation
in the data. Punctuation-mismatch fires on
any link that causes nonpunctuation to be
aligned to punctuation.

Additionally, we include fine-grained versions of
the lexical probability, fertility, and distortion fea-
tures. These fire for for each link (e, f) and part-
of-speech tag. That is, we learn a separate weight
for each feature for each part-of-speech tag in our
data. Given the tag of e, this affords the model the
ability to pay more or less attention to the features
described above depending on the tag given to e.

Arabic-English specific features We describe
here language specific features we implement to
exploit shallow Arabic morphology.
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Figure 7: This figure depicts the tree/alignment
structure for which the feature PP-from-prep
fires. The English preposition “from” is aligned
to Arabic word .. Any aligned words in the span

of the sister NP are aligned to words following ..
English preposition structure commonly matches
that of Arabic in our gold data. This family of fea-
tures captures these observations.

e We observe the Arabic prefix o, transliterated
w- and generally meaning and, to prepend to
most any word in the lexicon, so we define
features p_,,(e | ) and p-,,(f | e). If f be-
gins with w-, we strip off the prefix and return
the values of p(e | f) and p(f | e). Otherwise,
these features return 0.

e We also include analogous feature functions
for several functional and pronominal pre-
fixes and suffixes.*

4.2 Nonlocal features

These features comprise the combination cost
component of a partial alignment score and may
fire when concatenating two partial alignments
to create a larger span. Because these features
can look into any two arbitrary subtrees, they
are considered nonlocal features as defined by
Huang (2008).

o Features PP-NP-head, NP-DT-head, and
VP-VP-head (Figure 6) all exploit head-
words on the parse tree. We observe English
prepositions and determiners to often align to
the headword of their sister. Likewise, we ob-
serve the head of a VP to align to the head of
an immediate sister VP.

*Affixes used by our model are currently: -, J, JI, JL,

& & L, o+ leg-. Others either we did not experiment
with, or seemed to provide no significant benefit, and are not
included.
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In Figure 4, when the search arrives at the
left-most NPB node, the NP-DT-head fea-
ture will fire given this structure and links
over the span [the ... tests]. When
search arrives at the second NPB node, it
will fire given the structure and links over the
span [the ... missle], but will not fire at
the right-most NPB node.

Local lexical preference features compete
with the headword features described above.
However, we also introduce nonlocal lexical-
ized features for the most common types of
English and foreign prepositions to also com-
pete with these general headword features.

PP features PP-of-prep, PP-from-prep, PP-
to-prep, PP-on-prep, and PP-in-prep fire at
any PP whose left child is a preposition and
right child is an NP. The head of the PP is one
of the enumerated English prepositions and is
aligned to any of the three most common for-
eign words to which it has also been observed
aligned in the gold alignments. The last con-
straint on this pattern is that all words un-
der the span of the sister NP, if aligned, must
align to words following the foreign preposi-
tion. Figure 7 illustrates this pattern.

Finally, we have a tree-distance feature to
avoid making too many many-to-one (from
many English words to a single foreign word)
links. This is a simplified version of and sim-
ilar in spirit to the tree distance metric used
in (DeNero and Klein, 2007). For any pair of
links (e;, f) and (e}, f) in which the e words
differ but the f word is the same token in
each, return the tree height of first common
ancestor of ¢; and e;.

This feature captures the intuition that it is
much worse to align two English words at
different ends of the tree to the same foreign
word, than it is to align two English words
under the same NP to the same foreign word.

To see why a string distance feature that
counts only the flat horizontal distance from
e; to e; is not the best strategy, consider the
following. We wish to align a determiner
to the same f word as its sister head noun
under the same NP. Now suppose there are
several intermediate adjectives separating the
determiner and noun. A string distance met-



ric, with no knowledge of the relationship be-
tween determiner and noun will levy a much
heavier penalty than its tree distance analog.

5 Related Work

Recent work has shown the potential for syntac-
tic information encoded in various ways to sup-
port inference of superior word alignments. Very
recent work in word alignment has also started to
report downstream effects on BLEU score.

Cherry and Lin (2006) introduce soft syntac-
tic ITG (Wu, 1997) constraints into a discrimi-
native model, and use an ITG parser to constrain
the search for a Viterbi alignment. Haghighi et
al. (2009) confirm and extend these results, show-
ing BLEU improvement for a hierarchical phrase-
based MT system on a small Chinese corpus.
As opposed to ITG, we use a linguistically mo-
tivated phrase-structure tree to drive our search
and inform our model. And, unlike ITG-style ap-
proaches, our model can generate arbitrary align-
ments and learn from arbitrary gold alignments.

DeNero and Klein (2007) refine the distor-
tion model of an HMM aligner to reflect tree
distance instead of string distance. Fossum et
al. (2008) start with the output from GIZA++
Model-4 union, and focus on increasing precision
by deleting links based on a linear discriminative
model exposed to syntactic and lexical informa-
tion.

Fraser and Marcu (2007) take a semi-supervised
approach to word alignment, using a small amount
of gold data to further tune parameters of a
headword-aware generative model. They show
a significant improvement over a Model-4 union
baseline on a very large corpus.

6 Experiments

We evaluate our model and and resulting align-
ments on Arabic-English data against those in-
duced by IBM Model-4 using GIZA++ (Och and
Ney, 2003) with both the union and grow-diag-
final heuristics. We use 1,000 sentence pairs and
gold alignments from LDC2006ES86 to train model
parameters: 800 sentences for training, 100 for
testing, and 100 as a second held-out development
set to decide when to stop perceptron training. We
also align the test data using GIZA++> along with
50 million words of English.

SWe use a standard training procedure: 5 iterations of

Model-1, 5 iterations of HMM, 3 iterations of Model-3, and 3
iterations of Model-4.
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Figure 8: Learning curves for 10 random restarts
over time for parallel averaged perceptron train-
ing. These plots show the current F-measure on
the training set as time passes. Perceptron training
here is quite stable, converging to the same general
neighborhood each time.
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Figure 9: Model robustness to the initial align-
ments from which the p(e | f) and p(f | e) features
are derived. The dotted line indicates the baseline
accuracy of GIZA++ Model 4 alone.

6.1 Alignment Quality

We empirically choose our beam size k from the
results of a series of experiments, setting k=1, 2,
4,8, 16, 32, and 64. We find setting k = 16 to yield
the highest accuracy on our held-out test data. Us-
ing wider beams results in higher F-measure on
training data, but those gains do not translate into
higher accuracy on held-out data.

The first three columns of Table 2 show the
balanced F-measure, Precision, and Recall of our
alignments versus the two GIZA++ Model-4 base-
lines. We report an F-measure 8.6 points over
Model-4 union, and 6.3 points over Model-4 grow-
diag-final.



F P R Arabic/English # Unknown

BLEU Words

M4 (union) 665 .636 .696 45.1 2,538
M4 (grow-diag-final)  .688 .702 .674 46.4 2,262
Hypergraph alignment .751 .780 .724 47.5 1,610

Table 2: F-measure, Precision, Recall, the resulting BLEU score, and number of unknown words on a
held-out test corpus for three types of alignments. BLEU scores are case-insensitive IBM BLEU. We
show a 1.1 BLEU increase over the strongest baseline, Model-4 grow-diag-final. This is statistically

significant at the p < 0.01 level.

Figure 8 shows the stability of the search proce-
dure over ten random restarts of parallel averaged
perceptron training with 40 CPUs. Training ex-
amples are randomized at each epoch, leading to
slight variations in learning curves over time but
all converge into the same general neighborhood.

Figure 9 shows the robustness of the model to
initial alignments used to derive lexical features
ple | f)and p(f | e). In addition to IBM Model 4,
we experiment with alignments from Model 1 and
the HMM model. In each case, we significantly
outperform the baseline GIZA++ Model 4 align-
ments on a heldout test set.

6.2 MT Experiments

We align a corpus of 50 million words with
GIZA++ Model-4, and extract translation rules
from a 5.4 million word core subset. We align
the same core subset with our trained hypergraph
alignment model, and extract a second set of trans-
lation rules. For each set of translation rules, we
train a machine translation system and decode a
held-out test corpus for which we report results be-
low.

We use a syntax-based translation system for
these experiments. This system transforms Arabic
strings into target English syntax trees Translation
rules are extracted from (e-tree, f-string, align-
ment) triples as in (Galley et al., 2004; Galley et
al., 2000).

We use a randomized language model (similar
to that of Talbot and Brants (2008)) of 472 mil-
lion English words. We tune the the parameters
of the MT system on a held-out development cor-
pus of 1,172 parallel sentences, and test on a held-
out parallel corpus of 746 parallel sentences. Both
corpora are drawn from the NIST 2004 and 2006
evaluation data, with no overlap at the document
or segment level with our training data.
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Columns 4 and 5 in Table 2 show the results
of our MT experiments. Our hypergraph align-
ment algorithm allows us a 1.1 BLEU increase over
the best baseline system, Model-4 grow-diag-final.
This is statistically significant at the p < 0.01
level. We also report a 2.4 BLEU increase over
a system trained with alignments from Model-4
union.

7 Conclusion

We have opened up the word alignment task to
advances in hypergraph algorithms currently used
in parsing and machine translation decoding. We
treat word alignment as a parsing problem, and
by taking advantage of English syntax and the hy-
pergraph structure of our search algorithm, we re-
port significant increases in both F-measure and
BLEU score over standard baselines in use by most
state-of-the-art MT systems today.
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Abstract

Texts and dialogues often express infor-
mation indirectly. For instance, speak-
ers’ answers to yes/no questions do not
always straightforwardly convey a ‘yes’
or ‘no’ answer. The intended reply is
clear in some cases (Was it good? It was
great!) but uncertain in others (Was it
acceptable? It was unprecedented.). In
this paper, we present methods for inter-
preting the answers to questions like these
which involve scalar modifiers. We show
how to ground scalar modifier meaning
based on data collected from the Web. We
learn scales between modifiers and infer
the extent to which a given answer conveys
‘yes’ or ‘no’. To evaluate the methods,
we collected examples of question—answer
pairs involving scalar modifiers from CNN
transcripts and the Dialog Act corpus and
use response distributions from Mechani-
cal Turk workers to assess the degree to
which each answer conveys ‘yes’ or ‘no’.
Our experimental results closely match the
Turkers’ response data, demonstrating that
meanings can be learned from Web data
and that such meanings can drive prag-
matic inference.

1 Introduction

An important challenge for natural language pro-
cessing is how to learn not only basic linguistic
meanings but also how those meanings are system-
atically enriched when expressed in context. For
instance, answers to polar (yes/no) questions do
not always explicitly contain a ‘yes’ or ‘no’, but
rather give information that the hearer can use to
infer such an answer in a context with some degree
of certainty. Hockey et al. (1997) find that 27% of
answers to polar questions do not contain a direct
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‘yes’ or ‘no’ word, 44% of which they regard as
failing to convey a clear ‘yes’ or ‘no’ response. In
some cases, interpreting the answer is straightfor-
ward (Was it bad? It was terrible.), but in others,
what to infer from the answer is unclear (Was it
good? It was provocative.). It is even common
for the speaker to explicitly convey his own uncer-
tainty with such answers.

In this paper, we focus on the interpretation
of answers to a particular class of polar ques-
tions: ones in which the main predication in-
volves a gradable modifier (e.g., highly unusual,
not good, little) and the answer either involves an-
other gradable modifier or a numerical expression
(e.g., seven years old, twenty acres of land). Inter-
preting such question—answer pairs requires deal-
ing with modifier meanings, specifically, learning
context-dependent scales of expressions (Horn,
1972; Fauconnier, 1975) that determine how, and
to what extent, the answer as a whole resolves the
issue raised by the question.

We propose two methods for learning the
knowledge necessary for interpreting indirect an-
swers to questions involving gradable adjectives,
depending on the type of predications in the ques-
tion and the answer. The first technique deals
with pairs of modifiers: we hypothesized that on-
line, informal review corpora in which people’s
comments have associated ratings would provide
a general-purpose database for mining scales be-
tween modifiers. We thus use a large collection of
online reviews to learn orderings between adjec-
tives based on contextual entailment (good < ex-
cellent), and employ this scalar relationship to in-
fer a yes/no answer (subject to negation and other
qualifiers). The second strategy targets numeri-
cal answers. Since it is unclear what kind of cor-
pora would contain the relevant information, we
turn to the Web in general: we use distributional
information retrieved via Web searches to assess
whether the numerical measure counts as a posi-
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tive or negative instance of the adjective in ques-
tion. Both techniques exploit the same approach:
using texts (the Web) to learn meanings that can
drive pragmatic inference in dialogue. This paper
demonstrates to some extent that meaning can be
grounded from text in this way.

2 Related work

Indirect speech acts are studied by Clark (1979),
Perrault and Allen (1980), Allen and Perrault
(1980) and Asher and Lascarides (2003), who
identify a wide range of factors that govern how
speakers convey their intended messages and how
hearers seek to uncover those messages from
uncertain and conflicting signals. In the com-
putational literature, Green and Carberry (1994,
1999) provide an extensive model that interprets
and generates indirect answers to polar questions.
They propose a logical inference model which
makes use of discourse plans and coherence rela-
tions to infer categorical answers. However, to ad-
equately interpret indirect answers, the uncertainty
inherent in some answers needs to be captured (de
Marneffe et al., 2009). While a straightforward
‘yes’ or ‘no’ response is clear in some indirect an-
swers, such as in (1), the intended answer is less
certain in other cases (2):!

(1)  A: Do you think that’s a good idea, that we
just begin to ignore these numbers?
B: Ithink it’s an excellent idea.
(2)  A: Is he qualified?

B: I think he’s young.

In (2), it might be that the answerer does not
know about qualifications or does not want to talk
about these directly, and therefore shifts the topic
slightly. As proposed by Zeevat (1994) in his work
on partial answers, the speaker’s indirect answer
might indicate that he is deliberately leaving the
original question only partially addressed, while
giving a fully resolving answer to another one.
The hearer must then interpret the answer to work
out the other question. In (2) in context, we get a
sense that the speaker would resolve the issue to
‘no’, but that he is definitely not committed to that
in any strong sense. Uncertainty can thus reside
both on the speaker and the hearer sides, and the
four following scenarios are attested in conversa-
tion:

'Here and throughout, the examples come from the corpus
described in section 3.
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. The speaker is certain of ‘yes’ or ‘no’ and
conveys that directly and successfully to the
hearer.

The speaker is certain of ‘yes’ or ‘no’ but
conveys this only partially to the hearer.

. The speaker is uncertain of ‘yes’ or ‘no’ and
conveys this uncertainty to the hearer.

The speaker is uncertain of ‘yes’ or ‘no’,
but the hearer infers one of those with con-
fidence.

The uncertainty is especially pressing for pred-
ications built around scalar modifiers, which are
inherently vague and highly context-dependent
(Kamp and Partee, 1995; Kennedy and McNally,
2005; Kennedy, 2007). For example, even if we
fix the basic sense for /ittle to mean ‘young for a
human’, there is a substantial amount of gray area
between the clear instances (babies) and the clear
non-instances (adults). This is the source of un-
certainty in (3), in which B’s children fall into the
gray area.

(3) A: Are your kids little?

B: I have a seven year-old and a ten
year-old.

3 Corpus description

Since indirect answers are likely to arise in in-
terviews, to gather instances of question—answer
pairs involving gradable modifiers (which will
serve to evaluate the learning techniques), we use
online CNN interview transcripts from five dif-
ferent shows aired between 2000 and 2008 (An-
derson Cooper, Larry King Live, Late Edition,
Lou Dobbs Tonight, The Situation Room). We
also searched the Switchboard Dialog Act corpus
(Jurafsky et al., 1997). We used regular expres-
sions and manual filtering to find examples of two-
utterance dialogues in which the question and the
reply contain some kind of gradable modifier.

3.1 Types of question—answer pairs

In total, we ended up with 224 question—answer
pairs involving gradable adjectives. However
our collection contains different types of answers,
which naturally fall into two categories: (I) in
205 dialogues, both the question and the answer
contain a gradable modifier; (II) in 19 dialogues,
the reply contains a numerical measure (as in (3)
above and (4)).



Modification in answer Example Count
I Other adjective D, 2) 125
Adverb - same adjective 5) 55
Negation - same adjective 6), (7) 21
Omitted adjective (8) 4
II  Numerical measure 3), 4 19

Table 1: Types of question—answer pairs, and
counts in the corpus.

I Modification in answer Mean SD
Other adjective 1.1 0.6
Adverb - same adjective 0.8 0.6
Negation - same adjective 1.0 05
Omitted adjective 1.1 0.2

I Numerical measure 1.5 02

Table 2: Mean entropy values and standard devi-
ation obtained in the Mechanical Turk experiment
for each question—answer pair category.

(4)  A: Have you been living there very long?
B: I'm in here right now about twelve and

a half years.

Category I, which consists of pairs of modifiers,
can be further divided. In most dialogues, the an-
swer contains another adjective than the one used
in the question, such as in (1). In others, the an-
swer contains the same adjective as in the ques-
tion, but modified by an adverb (e.g., very, basi-
cally, quite) as in (5) or a negation as in (6).

(5) A: That seems to be the biggest sign of
progress there. Is that accurate?
B: That’s absolutely accurate.
(6) A: Are you bitter?
B: I’m not bitter because I'm a soldier.

The negation can be present in the main clause
when the adjectival predication is embedded, as in
example (7).
(7) A: [...] Is that fair?
B: I don’t think that’s a fair statement.

In a few cases, when the question contains an ad-
jective modifying a noun, the adjective is omitted
in the answer:
(8)  A: Isthat a huge gap in the system?
B: Itis a gap.

Table 1 gives the distribution of the types ap-
pearing in the corpus.
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3.2 Answer assignment

To assess the degree to which each answer con-
veys ‘yes’ or ‘no’ in context, we use response dis-
tributions from Mechanical Turk workers. Given a
written dialogue between speakers A and B, Turk-
ers were asked to judge what B’s answer conveys:
‘definite yes’, ‘probable yes’, ‘uncertain’, ‘proba-
ble no’, ‘definite no’. Within each of the two ‘yes’
and ‘no’ pairs, there is a scalar relationship, but
the pairs themselves are not in a scalar relationship
with each other, and ‘uncertain’ is arguably a sep-
arate judgment. Figure 1 shows the exact formu-
lation used in the experiment. For each dialogue,
we got answers from 30 Turkers, and we took the
dominant response as the correct one though we
make extensive use of the full response distribu-
tions in evaluating our approach.> We also com-
puted entropy values for the distribution of an-
swers for each item. Overall, the agreement was
good: 21 items have total agreement (entropy of
0.0 — 11 in the “adjective” category, 9 in the
“adverb-adjective” category and 1 in the “nega-
tion” category), and 80 items are such that a single
response got chosen 20 or more times (entropy <
0.9). The dialogues in (1) and (9) are examples of
total agreement. In contrast, (10) has response en-
tropy of 1.1, and item (11) has the highest entropy
of 2.2.

©)

A: Advertisements can be good or bad.
Was it a good ad?

B: It was a great ad.

(10) A: Am/I clear?
B: I wish you were a little more forthright.

(11)  A: 91 percent of the American people still
express confidence in the long-term
prospect of the U.S. economy; only 8
percent are not confident. Are they
overly optimistic, in your professional
assessment?

2120 Turkers were involved (the median number of items
done was 28 and the mean 56.5). The Fleiss” Kappa score for
the five response categories is 0.46, though these categories
are partially ordered. For the three-category response system
used in section 5, which arguably has no scalar ordering, the
Fleiss’ Kappa is 0.63. Despite variant individual judgments,
aggregate annotations done with Mechanical Turk have been
shown to be reliable (Snow et al., 2008; Sheng et al., 2008;
Munro et al., 2010). Here, the relatively low Kappa scores
also reflect the uncertainty inherent in many of our examples,
uncertainty that we seek to characterize and come to grips
with computationally.



Indirect Answers to Yes/No Questions

In the following dialogue, speaker A asks a simple Yes/No
question, but speaker B answers with something more in-
direct and complicated.

Which of the following best captures what speaker B
meant here:

B definitely meant to convey “Yes”.

B probably meant to convey “Yes”.

B definitely meant to convey “No”.

B probably meant to convey “No”.

(I really can’t tell whether B meant to convey “Yes”
or “No”.)

Figure 1: Design of the Mechanical Turk experi-
ment.

B: I think it shows how wise the American
people are.

Table 2 shows the mean entropy values for the
different categories identified in the corpus. Inter-
estingly, the pairs involving an adverbial modifi-
cation in the answer all received a positive answer
(‘yes’ or ‘probable yes’) as dominant response.
All 19 dialogues involving a numerical measure
had either ‘probable yes’ or ‘uncertain’ as domi-
nant response. There is thus a significant bias for
positive answers: 70% of the category I items and
74% of the category II items have a positive an-
swer as dominant response. Examining a subset
of the Dialog Act corpus, we found that 38% of
the yes/no questions receive a direct positive an-
swers, whereas 21% have a direct negative answer.
This bias probably stems from the fact that people
are more likely to use an overt denial expression
where they need to disagree, whether or not they
are responding indirectly.

4 Methods

In this section, we present the methods we propose
for grounding the meanings of scalar modifiers.

4.1 Learning modifier scales and inferring
yes/no answers

The first technique targets items such as the ones
in category I of our corpus. Our central hypothesis
is that, in polar question dialogues, the semantic
relationship between the main predication Py in
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the question and the main predication P4 in the an-
swer is the primary factor in determining whether,
and to what extent, ‘yes’ or ‘no’ was intended. If
P, is at least as strong as Py, the intended answer
is ‘yes’; if P, is weaker than Py, the intended an-
swer is ‘no’; and, where no reliable entailment re-
lationship exists between P4 and Pg, the result is
uncertainty.

For example, good is weaker (lower on the rel-
evant scale) than excellent, and thus speakers in-
fer that the reply in example (1) above is meant to
convey ‘yes’. In contrast, if we reverse the order
of the modifiers — roughly, Is it a great idea?;
It’s a good idea — then speakers infer that the
answer conveys ‘no’. Had B replied with It’s a
complicated idea in (1), then uncertainty would
likely have resulted, since good and complicated
are not in a reliable scalar relationship. Negation
reverses scales (Horn, 1972; Levinson, 2000), so it
flips ‘yes’ and ‘no’ in these cases, leaving ‘uncer-
tain’ unchanged. When both the question and the
answer contain a modifier (such as in (9-11)), the
yes/no response should correlate with the extent to
which the pair of modifiers can be put into a scale
based on contextual entailment.

To ground such scales from text, we collected a
large corpus of online reviews from IMDB. Each
of the reviews in this collection has an associated
star rating: one star (most negative) to ten stars
(most positive). Table 3 summarizes the distribu-
tion of reviews as well as the number of words and
vocabulary across the ten rating categories.

As is evident from table 3, there is a signif-
icant bias for ten-star reviews. This is a com-
mon feature of such corpora of informal, user-
provided reviews (Chevalier and Mayzlin, 2006;
Hu et al., 2006; Pang and Lee, 2008). However,
since we do not want to incorporate the linguis-
tically uninteresting fact that people tend to write
a lot of ten-star reviews, we assume uniform pri-
ors for the rating categories. Let count(w, r) be
the number of tokens of word w in reviews in rat-
ing category r, and let count(r) be the total word
count for all words in rating category r. The prob-
ability of w given a rating category r is simply
Pr(w|r) count(w, r)/ count(r). Then under the
assumption of uniform priors, we get Pr(rlw) =
Pr(wlr)/ 2 er Pr(wlr’).

In reasoning about our dialogues, we rescale
the rating categories by subtracting 5.5 from each,
to center them at 0. This yields the scale R



Rating Reviews Words ~ Vocabulary ~ Average words per review
1 124,587 25,389,211 192,348 203.79

2 51,390 11,750,820 133,283 228.66

3 58,051 13,990,519 148,530 241.00

4 59,781 14,958,477 156,564 250.22

5 80,487 20,382,805 188,461 253.24

6 106,145 27,408,662 225,165 258.22

7 157,005 40,176,069 282,530 255.89

8 195,378 48,706,843 313,046 249.30

9 170,531 40,264,174 273,266 236.11

10 358,441 73,929,298 381,508 206.25
Total 1,361,796 316,956,878 1,160,072 206.25

Table 3: Numbers of reviews, words and vocabulary size per rating category in the IMDB review corpus,

as well as the average number of words per review.
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Figure 2: The distribution of some scalar modifiers across the ten rating categories. The vertical lines
mark the expected ratings, defined as a weighted sum of the probability values (black dots).

(-4.5,-3.5,-2.5,-1.5,-0.5,0.5,1.5,2.5,3.5,4.5).

Our rationale for this is that modifiers at the neg-
ative end of the scale (bad, awful, terrible) are
not linguistically comparable to those at the
positive end of the scale (good, excellent, superb).
Each group forms its own qualitatively different
scale (Kennedy and McNally, 2005). Rescaling
allows us to make a basic positive vs. negative
distinction. Once we have done that, an increase
in absolute value is an increase in strength. In
our experiments, we use expected rating values
to characterize the polarity and strength of mod-
ifiers. The expected rating value for a word w
is ER(w) = },cg 7 Pr(rlw). Figure 2 plots these
values for a number of scalar terms, both positive
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and negative, across the rescaled ratings, with
the vertical lines marking their ER values. The
weak scalar modifiers all the way on the left are
most common near the middle of the scale, with
a slight positive bias in the top row and a slight
negative bias in the bottom row. As we move
from left to right, the bias for one end of the scale
grows more extreme, until the words in question
are almost never used outside of the most extreme
rating category. The resulting scales correspond
well with linguistic intuitions and thus provide
an initial indication that the rating categories
are a reliable guide to strength and polarity for
scalar modifiers. We put this information to use
in our dialogue corpus via the decision procedure



Let D be a dialogue consisting of (i) a polar question
whose main predication is based on scalar predicate P,
and (ii) an indirect answer whose main predication is
based on scalar predicate P4. Then:

1. if P4 or Py is missing from our data, infer ‘Uncer-
tain’;

2. else if ER(Py) and ER(P,) have different signs, in-
fer ‘No’;

3. else if abs(ER(Py)) < abs(ER(P,)), infer ‘Yes’;
4. else infer ‘No’.

5. In the presence of negation, map ‘Yes’ to ‘No’, ‘No’
to ‘Yes’, and ‘Uncertain’ to ‘Uncertain’.

Figure 3: Decision procedure for using the word
frequencies across rating categories in the review
corpus to decide what a given answer conveys.

described in figure 3.

4.2 Interpreting numerical answers

The second technique aims at determining
whether a numerical answer counts as a positive
or negative instance of the adjective in the ques-
tion (category II in our corpus).

Adjectives that can receive a conventional unit
of measure, such as little or long, inherently pos-
sess a degree of vagueness (Kamp and Partee,
1995; Kennedy, 2007): while in the extreme cases,
judgments are strong (e.g., a six foot tall woman
can clearly be called “a tall woman” whereas a
five foot tall woman cannot), there are borderline
cases for which it is difficult to say whether the
adjectival predication can truthfully be ascribed
to them. A logistic regression model can capture
these facts. To build this model, we gather distri-
butional information from the Web.

For instance, in the case of (3), we can retrieve
from the Web positive and negative examples of
age in relation to the adjective and the modified en-
tity “little kids”. The question contains the adjec-
tive and the modified entity. The reply contains the
unit of measure (here “year-old”) and the numer-
ical answer. Specifically we query the Web using
Yahoo! BOSS (Academic) for “little kids” year-
old (positive instances) as well as for “not little
kids” year-old (negative instances). Yahoo! BOSS
is an open search services platform that provides a
query API for Yahoo! Web search. We then ex-

tract ages from the positive and negative snippets
obtained, and we fit a logistic regression to these
data. To remove noise, we discard low counts
(positive and negative instances for a given unit
< 5). Also, for some adjectives, such as little or
young, there is an inherent ambiguity between ab-
solute and relative uses. Ideally, a word sense dis-
ambiguation system would be used to filter these
cases. For now, we extract the largest contiguous
range for which the data counts are over the noise
threshold.®> When not enough data is retrieved for
the negative examples, we expand the query by
moving the negation outside the search phrase. We
also replace the negation and the adjective by the
antonyms given in WordNet (using the first sense).

The logistic regression thus has only one fac-
tor — the unit of measure (age in the case of [it-
tle kids). For a given answer, the model assigns a
probability indicating the extent to which the ad-
jectival property applies to that answer. If the fac-
tor is a significant predictor, we can use the prob-
abilities from the model to decide whether the an-
swer qualifies as a positive or negative instance of
the adjective in the question, and thus interpret the
indirect response as a ‘yes’ or a ‘no’. The prob-
abilistic nature of this technique adheres perfectly
to the fact that indirect answers are intimately tied
up with uncertainty.

5 Evaluation and results

Our primary goal is to evaluate how well we can
learn the relevant scalar and entailment relation-
ships from the Web. In the evaluation, we thus ap-
plied our techniques to a manually coded corpus
version. For the adjectival scales, we annotated
each example for its main predication (modifier, or
adverb—modifier bigram), including whether that
predication was negated. For the numerical cases,
we manually constructed the initial queries: we
identified the adjective and the modified entity in
the question, and the unit of measure in the answer.
However, we believe that identifying the requisite
predications and recognizing the presence of nega-
tion or embedding could be done automatically us-
ing dependency graphs.*

30therwise, our model is ruined by references to “young
80-year olds”, using the relative sense of young, which are
moderately frequent on the Web.

4As a test, we transformed our corpus into the Stanford
dependency representation (de Marneffe et al., 2006), using
the Stanford parser (Klein and Manning, 2003) and were able

to automatically retrieve all negated modifier predications,
except one (We had a view of it, not a particularly good one),
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Modification in answer Precision  Recall Response  Precision Recall F1
1 Other adjective 60 60 WordNet-based Yes 82 83 82.5

Adverb - same adjective 95 95 (items I) No 60 56 58

Negation - same adjective 100 100

Omitted adjective 100 100 Table 6: Precision, recall, and F1 (%) per response
ITIotal Numerical 52 ;1(1) category for the WordNet-based approach.

Table 4: Summary of precision and recall (%) by
type.

Response  Precision Recall Fl1

I Yes 87 76 81
No 57 71 63

II Yes 100 36 53
Uncertain 67 40 50

Table 5: Precision, recall, and F1 (%) per response
category. In the case of the scalar modifiers exper-
iment, there were just two examples whose dom-
inant response from the Turkers was ‘Uncertain’,
so we have left that category out of the results. In
the case of the numerical experiment, there were
not any ‘No’ answers.

To evaluate the techniques, we pool the Me-
chanical Turk ‘definite yes’ and ‘probable yes’
categories into a single category ‘Yes’, and we
do the same for ‘definite no’ and ‘probable no’.
Together with ‘uncertain’, this makes for three-
response categories. We count an inference as
successful if it matches the dominant Turker re-
sponse category. To use the three-response scheme
in the numerical experiment, we simply catego-
rize the probabilities as follows: 0-0.33 = ‘No’,
0.33-0.66 = ‘Uncertain’, 0.66—-1.00 = ‘Yes’.

Table 4 gives a breakdown of our system’s per-
formance on the various category subtypes. The
overall accuracy level is 71% (159 out of 224 in-
ferences correct). Table 5 summarizes the results
per response category, for the examples in which
both the question and answer contain a gradable
modifier (category I), and for the numerical cases
(category II).

6 Analysis and discussion

Performance is extremely good on the “Adverb —
same adjective” and “Negation — same adjective”
cases because the ‘Yes’ answer is fairly direct for
them (though adverbs like basically introduce an
interesting level of uncertainty). The results are

because of a parse error which led to wrong dependencies.
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somewhat mixed for the “Other adjective” cate-
gory.

Inferring the relation between scalar adjectives
has some connection with work in sentiment de-
tection. Even though most of the research in that
domain focuses on the orientation of one term us-
ing seed sets, techniques which provide the ori-
entation strength could be used to infer a scalar
relation between adjectives. For instance, Blair-
Goldensohn et al. (2008) use WordNet to develop
sentiment lexicons in which each word has a posi-
tive or negative value associated with it, represent-
ing its strength. The algorithm begins with seed
sets of positive, negative, and neutral terms, and
then uses the synonym and antonym structure of
WordNet to expand those initial sets and refine
the relative strength values. Using our own seed
sets, we built a lexicon using Blair-Goldensohn
et al. (2008)’s method and applied it as in figure
3 (changing the ER values to sentiment scores).
Both approaches achieve similar results: for the
“Other adjective” category, the WordNet-based
approach yields 56% accuracy, which is not signif-
icantly different from our performance (60%); for
the other types in category I, there is no difference
in results between the two methods. Table 6 sum-
marizes the results per response category for the
WordNet-based approach (which can thus be com-
pared to the category I results in table 5). However
in contrast to the WordNet-based approach, we re-
quire no hand-built resources: the synonym and
antonym structures, as well as the strength values,
are learned from Web data alone. In addition, the
WordNet-based approach must be supplemented
with a separate method for the numerical cases.

In the “Other adjective” category, 31 items
involve oppositional terms: canonical antonyms
(e.g., right/wrong, good/bad) as well as terms
that are “statistically oppositional” (e.g., ready/
premature, true/preposterous, confident/nervous).
“Statistically oppositional” terms are not opposi-
tional by definition, but as a matter of contingent
fact. Our technique accurately deals with most
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Figure 4: Probabilities of being appropriately described as “little”, “young” or “warm”, fitted on data
retrieved when querying the Web for “little kids”, “young kids” and “warm weather”.

of the canonical antonyms, and also finds some
contingent oppositions (qualified/young, wise/
neurotic) that are lacking in antonymy resources or
automatically generated antonymy lists (Moham-
mad et al., 2008). Out of these 31 items, our tech-
nique correctly marks 18, whereas Mohammad et
al.’s list of antonyms only contains 5 and Blair-
Goldensohn et al. (2008)’s technique finds 11. Our
technique is solely based on unigrams, and could
be improved by adding context: making use of de-
pendency information, as well as moving beyond
unigrams.

In the numerical cases, precision is high but re-
call is low. For roughly half of the items, not
enough negative instances can be gathered from
the Web and the model lacks predictive power (as
for items (4) or (12)).

(12) A: Do you happen to be working for a
large firm?

B: It’s about three hundred and fifty
people.

Looking at the negative hits for item (12), one
sees that few give an indication about the num-
ber of people in the firm, but rather qualifications
about colleagues or employees (great people, peo-
ple’s productivity), or the hits are less relevant:
“Most of the people 1 talked to were actually pretty
optimistic. They were rosy on the job market
and many had jobs, although most were not large
firm jobs”. The lack of data comes from the fact
that the queries are very specific, since the adjec-
tive depends on the product (e.g., “expensive ex-
ercise bike”, “deep pond”). However when we
do get a predictive model, the probabilities corre-
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Figure 5: Correlation between agreement among
Turkers and whether the system gets the correct
answer. For each dialogue, we plot a circle at
Turker response entropy and either 1 = correct
inference or 0 = incorrect inference, except the
points are jittered a little vertically to show where
the mass of data lies. As the entropy rises (i.e., as
agreement levels fall), the system’s inferences be-
come less accurate. The fitted logistic regression
model (black line) has a statistically significant co-
efficient for response entropy (p < 0.001).



late almost perfectly with the Turkers’ responses.
This happens for 8 items: “expensive to call (50
cents a minute)”, “little kids (7 and 10 year-old)”,
“long growing season (3 months)”, “lot of land
(80 acres)”, “warm weather (80 degrees)”, “young
kids (5 and 2 year-old)”, “young person (31 year-
old)” and “large house (2450 square feet)”. In
the latter case only, the system output (uncer-
tain) doesn’t correlate with the Turkers’ judgment
(where the dominant answer is ‘probable yes’ with
15 responses, and 11 answers are ‘uncertain’).

The logistic curves in figure 4 capture nicely the
intuitions that people have about the relation be-
tween age and “little kids” or “young kids”, as
well as between Fahrenheit degrees and “warm
weather”. For “little kids”, the probabilities of be-
ing little or not are clear-cut for ages below 7 and
above 15, but there is a region of vagueness in be-
tween. In the case of “young kids”, the probabil-
ities drop less quickly with age increasing (an 18
year-old can indeed still be qualified as a “young
kid”). In sum, when the data is available, this
method delivers models which fit humans’ intu-
itions about the relation between numerical mea-
sure and adjective, and can handle pragmatic in-
ference.

If we restrict attention to the 66 examples on
which the Turkers completely agreed about which
of these three categories was intended (again pool-
ing ‘probable’ and ‘definite’), then the percent-
age of correct inferences rises to 89% (59 cor-
rect inferences). Figure 5 plots the relation-
ship between the response entropy and the accu-
racy of our decision procedure, along with a fit-
ted logistic regression model using response en-
tropy to predict whether our system’s inference
was correct. The handful of empirical points in
the lower left of the figure show cases of high
agreement between Turkers but incorrect infer-
ence from the system. The few points in the up-
per right indicate low agreement between Turk-
ers and correct inference from the system. Three
of the high-agreement/incorrect-inference cases
involve the adjectives right—correct. For low-
agreement/correct-inference, the disparity could
trace to context dependency: the ordering is clear
in the context of product reviews, but unclear in
a television interview. The analysis suggests that
overall agreement is positively correlated with our
system’s chances of making a correct inference:
our system’s accuracy drops as human agreement
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levels drop.

7 Conclusion

We set out to find techniques for grounding ba-
sic meanings from text and enriching those mean-
ings based on information from the immediate lin-
guistic context. We focus on gradable modifiers,
seeking to learn scalar relationships between their
meanings and to obtain an empirically grounded,
probabilistic understanding of the clear and fuzzy
cases that they often give rise to (Kamp and Partee,
1995). We show that it is possible to learn the req-
uisite scales between modifiers using review cor-
pora, and to use that knowledge to drive inference
in indirect responses. When the relation in ques-
tion is not too specific, we show that it is also pos-
sible to learn the strength of the relation between
an adjective and a numerical measure.
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Abstract

Current turn-taking approaches for spoken
dialogue systems rely on the speaker re-
leasing the turn before the other can take it.
This reliance results in restricted interac-
tions that can lead to inefficient dialogues.
In this paper we present a model we re-
fer to as Importance-Driven Turn-Bidding
that treats turn-taking as a negotiative pro-
cess. Each conversant bids for the turn
based on the importance of the intended
utterance, and Reinforcement Learning is
used to indirectly learn this parameter. We
find that Importance-Driven Turn-Bidding
performs better than two current turn-
taking approaches in an artificial collabo-
rative slot-filling domain. The negotiative
nature of this model creates efficient dia-
logues, and supports the improvement of
mixed-initiative interaction.

1 Introduction

As spoken dialogue systems are designed to
perform ever more elaborate tasks, the need
for mixed-initiative interaction necessarily grows.
Mixed-initiative interaction, where agents (both
artificial and human) may freely contribute to
reach a solution efficiently, has long been a focus
of dialogue systems research (Allen et al., 1999;
Guinn, 1996). Simple slot-filling tasks might
not require the flexible environment that mixed-
initiative interaction brings but those of greater
complexity, such as collaborative task comple-
tion or long-term planning, certainly do (Fergu-
son et al., 1996). However, translating this interac-
tion into working systems has proved problematic
(Walker et al., 1997), in part to issues surround-
ing turn-taking: the transition from one speaker to
another.

Many computational turn-taking approaches
seek to minimize silence and utterance overlap
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during transitions. This leads to the speaker con-
trolling the turn transition. For example, systems
using the Keep-Or-Release approach will not at-
tempt to take the turn unless it is sure the user
has released it. One problem with this approach
is that the system might have important informa-
tion to give but will be unable to get the turn.
The speaker-centric nature of current approaches
does not enable mixed-initiative interaction and
results in inefficient dialogues. Primarily, these
approaches have been motivated by smooth tran-
sitions reported in the human turn-taking studies
of Sacks et al. (1974) among others.

Sacks et al. also acknowledge the negotiative
nature of turn-taking, stating that the “the turn as
unit is interactively determined”(p. 727). Other
studies have supported this, suggesting that hu-
mans negotiate the turn assignment through the
use of cues and that these cues are motivated by
the importance of what the conversant wishes to
contribute (Duncan and Niederehe, 1974; Yang
and Heeman, 2010; Schegloff, 2000). Given
this, any dialogue system hoping to interact with
humans efficiently and naturally should have a
negotiative and importance-driven quality to its
turn-taking protocol. We believe that, by focus-
ing on the rationale of human turn-taking be-
havior, a more effective turn-taking system may
be achieved. We propose the Importance-Driven
Turn-Bidding (IDTB) model where conversants
bid for the turn based on the importance of their
utterance. We use Reinforcement Learning to map
a given situation to the optimal utterance and bid-
ding behavior. By allowing conversants to bid for
the turn, the IDTB model enables negotiative turn-
taking and supports true mixed-initiative interac-
tion, and with it, greater dialogue efficiency.

We compare the IDTB model to current turn-
taking approaches. Using an artificial collab-
orative dialogue task, we show that the IDTB
model enables the system and user to complete
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the task more efficiently than the other approaches.
Though artificial dialogues are not ideal, they al-
low us to test the validity of the IDTB model be-
fore embarking on costly and time-consuming hu-
man studies. Since our primary evaluation criteria
is model comparison, consistent user simulations
provide a constant needed for such measures and
increase the external validity of our results.

2 Current Turn-Taking Approaches

Current dialogue systems focus on the release-turn
as the most important aspect of turn-taking, in
which a listener will only take the turn after the
speaker has released it. The simplest of these ap-
proaches only allows a single utterance per turn,
after which the turn necessarily transitions to the
next speaker. This Single-Utterance (SU) model
has been extended to allow the speaker to keep the
turn for multiple utterances: the Keep-Or-Release
(KR) approach. Since the KR approach gives the
speaker sole control of the turn, it is overwhelm-
ingly speaker-centric, and so necessarily unnego-
tiative. This restriction is meant to encourage
smooth turn-transitions, and is inspired by the or-
der, smoothness, and predictability reported in hu-
man turn-taking studies (Duncan, 1972; Sacks et
al., 1974).

Systems using the KR approach differ on how
they detect the user’s release-turn. Turn releases
are commonly identified in two ways: either us-
ing a silence-threshold (Sutton et al., 1996), or
the predictive nature of turn endings (Sacks et al.,
1974) and the cues associated with them (e.g. Gra-
vano and Hirschberg, 2009). Raux and Eskenazi
(2009) used decision theory with lexical cues to
predict appropriate places to take the turn. Simi-
larly, Jonsdottir, Thorisson, and Nivel (2008) used
Reinforcement Learning to reduce silences be-
tween turns and minimize overlap between utter-
ances by learning the specific turn-taking patterns
of individual speakers. Skantze and Schlangan
(2009) used incremental processing of speech and
prosodic turn-cues to reduce the reaction time of
the system, finding that that users rated this ap-
proach as more human-like than a baseline system.

In our view, systems built using the KR turn-
taking approach suffer from two deficits. First,
the speaker-centricity leads to inefficient dialogues
since the speaker may continue to hold the turn
even when the listener has vital information to
give. In addition, the lack of negotiation forces
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the turn to necessarily transition to the listener af-
ter the speaker releases it. The possibility that the
dialogue may be better served if the listener does
not get the turn is not addressed by current ap-
proaches.

Barge-in, which generally refers to allowing
users to speak at any time (Strom and Seneff,
2000), has been the primary means to create a
more flexible turn-taking environment. Yet, since
barge-in recasts speaker-centric systems as user-
centric, the system’s contributions continue to be
limited. System barge-in has also been investi-
gated. Sato et al. (2002) used decision trees to de-
termine whether the system should take the turn or
not when the user pauses. An incremental method
by DeVault, Sagae, and Traum (2009) found pos-
sible points that a system could interrupt without
loss of user meaning, but failed to supply a rea-
sonable model as to when to use such information.
Despite these advances, barge-in capable systems
lack a negotiative turn-taking method, and con-
tinue to be deficient for reasons similar to those
described above.

3 Importance-Driven Turn-Bidding
(IDTB)

We introduce the IDTB model to overcome the de-
ficiencies of current approaches. The IDTB model
has two foundational components: (1) The impor-
tance of speaking is the primary motivation behind
turn-taking behavior, and (2) conversants use turn-
cue strength to bid for the turn based on this impor-
tance. Importance may be broadly defined as how
well the utterance leads to some predetermined
conversational success, be it solely task comple-
tion or encompassing a myriad of social etiquette
components.

Importance-Driven Turn-Bidding is motivated
by empirical studies of human turn-conflict res-
olution. Yang and Heeman (2010) found an in-
crease of turn conflicts during tighter time con-
straints, which suggests that turn-taking is in-
fluenced by the importance of task completion.
Schlegoff (2000) proposed that persistent utter-
ance overlap was indicative of conversants hav-
ing a strong interest in holding the turn. Walker
and Whittaker (1990) show that people will inter-
rupt to remedy some understanding discrepancy,
which is certainly important to the conversation’s
success. People communicate the importance of
their utterance through turn-cues. Duncan and



Niederehe (1974) found that turn-cue strength was
the best predictor of who won the turn, and this
finding is consistent with the use of volume to win
turns found by Yang and Heeman (2010).

The IDTB model uses turn-cue strength to bid
for the turn based on the importance of the utter-
ance. Stronger turn-cues should be used when the
intended utterance is important to the overall suc-
cess of the dialogue, and weaker ones when it is
not. In the prototype described in Section 5, both
the system and user agents bid for the turn after ev-
ery utterance and the bids are conceptualized here
as utterance onset: conversants should be quick
to speak important utterances but slow with less
important ones. This is relatively consistent with
Yang and Heeman (2010). A mature version of
our work will use cues in addition to utterance on-
set, such as those recently detailed in Gravano and
Hirshberg (2009).!

A crucial element of our model is the judgment
and quantization of utterance importance. We use
Reinforcement Learning (RL) to determine impor-
tance by conceptualizing it as maximizing the re-
ward over an entire dialogue. Whatever actions
lead to a higher return may be thought of as more
important than ones that do not.> By using RL to
learn both the utterance and bid behavior, the sys-
tem can find an optimal pairing between them, and
choose the best combination for a given conversa-
tional situation.

4 Information State Update and
Reinforcement Learning

We build our dialogue system using the Informa-
tion State Update approach (Larsson and Traum,
2000) and use Reinforcement Learning for action
selection (Sutton and Barto, 1998). The system
architecture consists of an Information State (IS)
that represents the agent’s knowledge and is up-
dated using a variety of rules. The IS also uses
rules to propose possible actions. A condensed
and compressed subset of the IS — the Reinforce-
ment Learning State — is used to learn which pro-
posed action to take (Heeman, 2007). It has been
shown that using RL to learn dialogue polices is
generally more effective than “hand crafted” di-

'Our work (present and future) is distinct from some re-
cent work on user pauses (Sato et al., 2002) since we treat
turn-taking as an integral piece of dialogue success.

2We gain an inherent flexibility in using RL since the re-
ward can be computed by a wide array of components. This
is consistent with the broad definition of importance.
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alogue policies since the learning algorithm may
capture environmental dynamics that are unat-
tended to by human designers (Levin et al., 2000).

Reinforcement Learning learns an optimal pol-
icy, a mapping between a state s and action a,
where performing a in s leads to the lowest ex-
pected cost for the dialogue (we use minimum
cost instead of maximum reward). An e-greedy
search is used to estimate Q-scores, the expected
cost of some state—action pair, where the system
chooses a random action with € probability and the
argmin,()(s,a) action with 1-¢ probability. For
Q-learning, a popular RL algorithm and the one
used here, € is commonly set at 0.2 (Sutton and
Barto, 1998). Q-learning updates Q)(s,a) based
on the best action of the next state, given by the
following equation, with the step size parameter
a=1/4/N(s,a) where N(s,a) is the number of
times the s, a pair has been seen since the begin-
ning of training.

Q(st,at) = Q(st, ar) + afcostiyy
+ argmin,Q(st+1,a) — Q(s¢, at)]

The state space should be formulated as a
Markov Decision Process (MDP) for Q-learning
to update Q-scores properly. An MDP relies on
a first-order Markov assumption in that the transi-
tion and reward probability from some s;, a; pair
is completely contained by that pair and is unaf-
fected by the history s;_jas_1, s¢_2a¢—2,.... For
this assumption to be met, care is required when
deciding which features to include for learning.
The RL State features we use are described in the
following section.

5 Domain and Turn-Taking Models

In this section, we show how the IDTB ap-
proach can be implemented for a collaborative
slot filling domain. We also describe the Single-
Utterance and Keep-Or-Release domain imple-
mentations that we use for comparison.

5.1 Domain Task

We use a food ordering domain with two partici-
pants, the system and a user, and three slots: drink,
burger, and side. The system’s objective is to fill
all three slots with the available fillers as quickly
as possible. The user’s role is to specify its de-
sired filler for each slot, though that specific filler
may not be available. The user simulation, while
intended to be realistic, is not based on empirical
data. Rather, it is designed to provide a rich turn-



taking domain to evaluate the performance of dif-
ferent turn-taking designs. We consider this a col-
laborative slot-filling task since both conversants
must supply information to determine the intersec-
tion of available and desired fillers.

Users have two fillers for each slot.> A user’s
top choice is either available, in which case we say
that the user has adequate filler knowledge, or their
second choice will be available, in which we say
it has inadequate filler knowledge. This assures
that at least one of the user’s filler is available.
Whether a user has adequate or inadequate filler
knowledge is probabilistically determined based
on user type, which will be described in Section
5.2.

Table 1: Agent speech acts

Agent | Actions

System || query slot, inform [yes/no],
inform avail. slot fillers,
inform filler not available, bye

User inform slot filler,
query filler availability

We model conversations at the speech act level,
shown in Table 1, and so do not model the actual
words that the user and system might say. Each
agent has an Information State that proposes possi-
ble actions. The IS is made up of a number of vari-
ables that model the environment and is slightly
different for the system and the user. Shared vari-
ables include QUD, a stack which manages the
questions under discussion; lastUtterance, the pre-
vious utterance, and slotList, a list of the slot
names. The major system specific IS variables
that are not included in the RL State are availSlot-
Fillers, the available fillers for each slot; and three
slotFiller variables that hold the fillers given by the
user. The major user specific IS variables are three
desiredSlotFiller variables that hold an ordered list
of fillers, and unvisitedSlots, a list of slots that the
user believes are unfilled.

The system has a variety of speech actions: in-
form [yes/no], to answer when the user has asked a
filler availability question; inform filler not avail-
able, to inform the user when they have specified
an unavailable filler; three query slot actions (one
for each slot), a query which asks the user for a
filler and is proposed if that specific slot is unfilled;

3We use two fillers so as to minimize the length of train-
ing. This can be increased without substantial effort.

three inform available slot fillers actions, which
lists the available fillers for that slot and is pro-
posed if that specific slot is unfilled or filled with
an unavailable filler; and bye, which is always pro-
posed.

The user has two actions. They can inform the
system of a desired slot filler, inform slot filler, or
query the availability of a slot’s top filler, query
filler availability. A user will always respond with
the same slot as a system query, but may change
slots entirely for all other situations. Additional
details on user action selection are given in Section
5.2.

Specific information is used to produce an in-
stantiated speech action, what we refer to as an
utterance. For example, the speech action inform
slot filler results in the utterance of “inform drink
d1.” A sample dialogue fragment using the Single-
Utterance approach is shown in Table 2. Notice
that in Line 3 the system informs the user that
their first filler, d1, is unavailable. The user then
asks asks about the availability of its second drink
choice, d2 (Line 4), and upon receiving an affirma-
tive response (Line 5), informs the system of that
filler preference (Line 6).

Table 2: Single-Utterance dialogue

Spkr || Speech Action Utterance
1S: || g. slot q. drink
2U: || i slot filler i. drink d1

3S: || i filler not avail | i. not have d1

4 U: || q. filler avail g. drink have d2
5S: || i slot i. yes
6 U: || i slotfiller i. drink d2

7 S: || i. avail slot fillers | i. burger have bl

Implementation in RL: The system uses RL to
learn which of the IS proposed actions to take. In
this domain we use a cost function based on dia-
logue length and the number of slots filled with an
available filler: C' = Number of Utterances + 25 -
unavailablyFilledSlots. In the present implemen-
tation the system’s bye utterance is costless. The
system chooses the action that minimizes the ex-
pected cost of the entire dialogue from the current
state.

The RL state for the speaker has seven vari-
ables:* QUD-speaker, the stack of speakers who
have unresolved questions; Incorrect-Slot-Fillers,

“We experimented with a variety of RL States and this one
proved to be both small and effective.
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a list of slot fillers (ordered chronologically on
when the user informed them) that are unavail-
able and have not been resolved; Last-Sys-Speech-
Action, the last speech action the system per-
formed; Given-Slot-Fillers, a list of slots that the
system has performed the inform available slot
filler action on; and three booleans variables, slot-
RL, that specify whether a slot has been filled cor-
rectly or not (e.g. Drink-RL).

5.2 User Types

We define three different types of users — Experts,
Novices, and Intermediates. User types differ
probabilistically on two dimensions: slot knowl-
edge, and slot belief strength. We define experts to
have a 90 percent chance of having adequate filler
knowledge, intermediates a 50 percent chance,
and novices a 10 percent chance. These proba-
bilities are independent between slots. Slot belief
strength represents the user’s confidence that it has
adequate domain knowledge for the slot (i.e. the
top choice for that slot is available). It is either
a strong, warranted, or weak belief (Chu-Carroll
and Carberry, 1995). The intuition is that experts
should know when their top choice is available,
and novices should know that they do not know
the domain well.

Initial slot belief strength is dependent on user
type and whether their filler knowledge is ade-
quate (their initial top choice is available). Ex-
perts with adequate filler knowledge have a 70,
20, and 10 percent chance of having Strong, War-
ranted, and Weak beliefs respectfully. Similarly,
intermediates with adequate knowledge have a 50,
25, and 25 percent chance of the respective belief
strengths. When these user types have inadequate
filler knowledge the probabilities are reversed to
determine belief strength (e.g. Experts with inad-
equate domain knowledge for a slot have a 70%
chance of having a weak belief). Novice users al-
ways have a 10, 10, and 80 percent chance of the
respective belief strengths.

The user choses whether to use the guery or
inform speech action based on the slot’s belief
strength. A strong belief will always result in an
inform, a warranted belief resulting in an inform
with p = 0.5, and weak belief will result in an in-
form with p = 0.25. If the user is informed of the
correct fillers by the system’s inform, that slot’s
belief strength is set to strong. If the user is in-
formed that a filler is not available, than that filler
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is removed from the desired filler list and the belief
remains the same.’

5.3 Turn-Taking Models

We now discuss how turn-taking works for the
IDTB model and the two competing models that
we use to evaluate our approach. The system
chooses its turn action based on the RL state and
we add a boolean variable turn-action to the RL
State to indicate when the system is performing a
turn action or a speech action. The user uses belief
to choose its turn action.

Turn-Bidding: Agents bid for the turn at the
end of each utterance to determine who will speak
next. Each bid is represented as a value between 0
and 1, and the agent with the lower value (stronger
bid) wins the turn. This is consistent with the
use of utterance onset. There are 5 types of bids,
highest, high, middle, low, and lowest, which are
spread over a portion of the range as shown in Fig-
ure 1. The system uses RL to choose a bid and
a random number (uniform distribution) is gener-
ated from that bid’s range. The users’ bids are de-
termined by their belief strength, which specifies
the mean of a Gaussian distribution, as shown in
Figure 1 (e.g Strong belief implies a p = 0.35).
Computing bids in this fashion leads to, on av-
erage, users with strong beliefs bidding highest,
warranted beliefs bidding in the middle, and weak
beliefs bidding lowest. The use of the probabil-
ity distributions allows us to randomly decide ties
between system and user bids.

User Bids

System Bids

X
Nl

\Q\d@

\Q\q:\’\

Figure 1: Bid Value Probability Distribution

Single-Utterance: The Single-Utterance (SU)
approach, as described in Section 2, has a rigid
5In this simple domain the next filler is guaranteed to be

available if the first is not. We do not model this with belief
strength since it is probably not representative of reality.



turn-taking mechanism. After a speaker makes a
single utterance the turn transitions to the listener.
Since the turn transitions after every utterance the
system must only choose appropriate utterances,
not turn-taking behavior. Similarly, user agents do
not have any turn-taking behavior and slot beliefs
are only used to choose between a query and an
inform.

Keep-Or-Release = Model: The  Keep-Or-
Release (KR) model, as described in Section
2, allows the speaker to either keep the turn to
make multiple utterances or release it. Taking the
same approach as English and Heeman (2005),
the system learns to keep or release the turn after
each utterance that it makes. We also use RL
to determine which conversant should begin the
dialogue. While the use of RL imparts some
importance onto the turn-taking behavior, it
is not influencing whether the system gets the
turn when it did not already have it. This is an
crucial distinction between KR and IDTB. IDTB
allows the conversants to negotiate the turn using
turn-bids motivated by importance, whereas in
KR only the speaker determines when the turn
can transition.

Users in the KR environment choose whether to
keep or release the turn similarly to bid decisions.®
After a user performs an utterance, it chooses the
slot that would be in the next utterance. A number,
k, is generated from a Gaussian distribution using
belief strength in the same manner as the IDTB
users’ bids are chosen. If k¥ < 0.55 then the user
keeps the turn, otherwise it releases it.

5.4 Preliminary Turn-Bidding System

We described a preliminary turn-bidding system
in earlier work presented at a workshop (Selfridge
and Heeman, 2009). A major limitation was an
overly simplified user model. We used two user
types, expert and novice, who had fixed bids. Ex-
perts always bid high and had complete domain
knowledge, and the novices always bid low and
had incomplete domain knowledge. The system,
using all five bid types, was always able to out bid
and under bid the simulated users. Among other
things, this situation gives the system complete
control of the turn, which is at odds with the nego-
tiative nature of IDTB. The present contribution is
a more realistic and mature implementation.

SWe experimented with a few different KR decision
strategies, and chose the one that performed the best.
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6 Evaluation and Discussion

We now evaluate the IDTB approach by compar-
ing it against the two competing models: Single-
Utterance and Keep-Or-Release. The three turn-
taking approaches are trained and tested in four
user conditions: novice, intermediate, expert, and
combined. In the combined condition, one of the
three user types is randomly selected for each dia-
logue. We train ten policies for each condition and
turn-taking approach. Policies are trained using Q-
learning, and e—greedy search for 10000 epochs
(1 epoch =100 dialogues, after which the Q-scores
are updated) with ¢ = 0.2. Each policy is then
ran over 10000 test dialogues with no exploration
(e = 0), and the mean dialogue cost for that pol-
icy is determined. The 10 separate policy values
are then averaged to create the mean policy cost.
The mean policy cost between the turn-taking ap-
proaches and user conditions are shown in Table 3.
Lower numbers are indicative of shorter dialogues,
since the system learns to successfully complete
the task in all cases.

Table 3: Mean Policy Cost for Model and User

condition’
Model || Novice | Int. | Expert | Combined
SuU 7.61 7.09 | 6.43 7.05
KR 6.00 6.35 | 4.46 6.01
IDTB || 6.09 5.77 | 4.35 5.52

Single User Conditions: Single user conditions
show how well each turn-taking approach can op-
timize its behavior for specific user populations
and handle slight differences found in those pop-
ulations. Table 3 shows that the mean policy cost
of the SU model is higher than the other two mod-
els which indicates longer dialogues on average.
Since the SU system must respond to every user
utterance and cannot learn a turn-taking strategy
to utilize user knowledge, the dialogues are neces-
sarily longer. For example, in the expert condition
the best possible dialogue for a SU interaction will
have a cost of five (three user utterances for each
slot, two system utterances in response). This cost
is in contrast to the best expert dialogue cost of
three (three user utterances) for KR and IDTB in-
teractions.

The IDTB turn-taking approach outperforms
the KR design in all single user conditions ex-

SD between policies < 0.04



cept for novice (6.09 vs. 6.00). In this condi-
tion, the KR system takes the turn first, informs
the available fillers for each slot, and then releases
the turn. The user can then inform its filler eas-
ily. The IDTB system attempts a similar dialogue
strategy by using highest bids but sometimes loses
the turn when users also bid highest. If the user
uses the turn to query or inform an unavailable
filler the dialogue grows longer. However, this is
quite rare as shown by small difference in perfor-
mance between the two models. In all other single
user conditions, the IDTB approach has shorter di-
alogues than the KR approach (5.77 and 4.35 vs.
6.35 and 4.46). A detailed explanation of IDTB’s
performance will be given in Section 6.1.

Combined User Condition: We next measure
performance on the combined condition that
mixes all three user types. This condition is more
realistic than the other three, as it better mimics
how a system will be used in actual practice. The
IDTB approach (mean policy cost = 5.52) outper-
forms the KR (mean policy cost = 6.01) and SU
(mean policy cost = 7.05) approaches. We also
observe that KR outperforms SU. These results
suggest that the more a turn-taking design can be
flexible and negotiative, the more efficient the dia-
logues can be.

Exploiting User bidding differences: It fol-
lows that IDTB’s performance stems from its ne-
gotiative turn transitions. These transitions are dis-
tinctly different than KR transitions in that there is
information inherent in the users bids. A user that
has a stronger belief strength is more likely to be
have a higher bid and inform an available filler.
Policy analysis shows that the IDTB system takes
advantage of this information by using moderate
bids —neither highest nor lowest bids— to filter
users based on their turn behavior. The distribu-
tion of bids used over the ten learned policies is
shown in Table 4. The initial position refers to
the first bid of the dialogue; final position, the last
bid of the dialogue; and medial position, all other
bids. Notice that the system uses either the low or
mid bids as its initial policy and that 67.2% of di-
alogue medial bids are moderate. These distribu-
tions show that the system has learned to use the
entire bid range to filter the users, and is not seek-
ing to win or lose the turn outright. This behavior
is impossible in the KR approach.
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Table 4: Bid percentages over ten policies in the
Combined User condition for IDTB

Position | H-est | High | Mid | Low | L-est
Initial 0.0 0.0 70.0 | 30.0 | 0.0
Medial | 20.5 | 194 | 245|233 | 123
Final 495 410 |95 |00 |0.0

6.1 IDTB Performance:

In our domain, performance is measured by dia-
logue length and solution quality. However, since
solution quality never affects the dialogue cost for
a trained system, dialogue length is the only com-
ponent influencing the mean policy cost.

The primary cause of longer dialogues are un-
available filler inform and query (UFI-Q) utter-
ances by the user, which are easily identified.
These utterances lengthen the dialogue since the
system must inform the user of the available fillers
(the user would otherwise not know that the filler
was unavailable) and then the user must then in-
form the system of its second choice. The mean
number of UFI-Q utterance for each dialogue over
the ten learned policies are shown for all user con-
ditions in Table 5. Notice that these numbers are
inversely related to performance: the more UFI-
Q utterances, the worse the performance. For ex-
ample, in the combined condition the IDTB users
perform 0.38 UFI-Q utterances per dialogue (u/d)
compared to the 0.94 UFI-Q u/d for KR users.
While a KR user will release the turn if its planned

Table 5: Mean number of UFI-Q utterances over

policies
Model || Novice | Int. | Expert | Combined
KR 0.0 1.15 | 0.53 0.94
IDTB || 0.1 0.33 | 0.39 0.38

utterance has a weak belief, it may select that weak
utterance when first getting the turn (either after a
system utterance or at the start of the dialogue).
This may lead to a UFI-Q utterance. The IDTB
system, however, will outbid the same user, result-
ing in a shorter dialogue. This situation is shown
in Tables 6 and 7. The dialogue is the same un-
til utterance 3, where the IDTB system wins the
turn with a mid bid over the user’s low bid. In the
KR environment however, the user gets the turn
and performs an unavailable filler inform, which
the system must react to. This is an instance of
the second deficiency of the KR approach, where



Table 6: Sample IDTB dialogue in Combined User
condition; Cost=6

Sys Usr Spkr | Utt

llow | mid || U: inform burger bl

2 h-est | low S: inform burger have b3
3mid | low | S: inform side have sl

4 mid | h-est || U: inform burger b3
5mid | high || U: inform drink d1

6 l-est | h-est || U: inform side s1

7 high | mid || S: bye

Table 7: Sample KR dialogue in Combined User
condition; Cost=7

Agent || Utt Turn-Action
1U: inform burger b1 Release

28S: inform burger have b3 || Release
3U: inform side sl Keep

4 U: inform drink d1 Keep

5U: inform burger b3 Release

6S: inform side have s2 Release
7U: inform side s2 Release

8S: bye

the speaking system should not have released the
turn. The user has the same belief in both scenar-
ios, but the negotiative nature of IDTB enables a
shorter dialogues. In short, the IDTB system can
win the turn when it should have it, but the KR
system cannot.

A lesser cause of longer dialogues is an instance
of the first deficiency of the KR systems; the lis-
tening user cannot get the turn when it should have
it. Usually, this situation presents itself when the
user releases the turn, having randomly chosen the
weaker of the two unfilled slots. The system then
has the turn for more than one utterance, inform-
ing the available fillers for two slots. However,
the user already had a strong belief and available
top filler for one of those slots, and the system
has increased the dialogue length unnecessarily. In
the combined condition, the KR system produces
0.06 unnecessary informs per dialogue, whereas
the IDTB system produces 0.045 per dialogue.
The novice and intermediate conditions mirror this
(IDTB: 0.009, 0.076 ; KR: 0.019, 0.096 respect-
fully), but the expert condition does not (IDTB:
0.011, KR: 0.0014). In this case, the IDTB system
wins the turn initially using a low bid and informs
one of the strong slots, whereas the expert user ini-
tiates the dialogue for the KR environment and un-
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necessary informs are rarer. In general, however,
the KR approach has more unnecessary informs
since the KR system can only infer that one of the
user’s beliefs was probably weak, otherwise the
user would not have released the turn. The IDTB
system handles this situation by using a high bid,
allowing the user to outbid the system as its con-
tribution is more important. In other words, the
IDTB user can win the turn when it should have it,
but the KR user cannot.

7 Conclusion

This paper presented the Importance-Driven Turn-
Bidding model of turn-taking. The IDTB model is
motivated by turn-conflict studies showing that the
interest in holding the turn influences conversant
turn-cues. A computational prototype using Re-
inforcement Learning to choose appropriate turn-
bids performs better than the standard KR and SU
approaches in an artificial collaborative dialogue
domain. In short, the Importance-Driven Turn-
Bidding model provides a negotiative turn-taking
framework that supports mixed-initiative interac-
tions.

In the previous section, we showed that the KR
approach is deficient for two reasons: the speak-
ing system might not keep the turn when it should
have, and might release the turn when it should
not have. This is driven by KR’s speaker-centric
nature; the speaker has no way of judging the
potential contribution of the listener. The IDTB
approach however, due to its negotiative quality,
does not have this problem.

Our performance differences arise from situa-
tions when the system is the speaker and the user
is the listener. The IDTB model also excels in the
opposite situation, when the system is the listener
and the user is the speaker, though our domain is
not sophisticated enough for this situation to oc-
cur. In the future we hope to develop a domain
with more realistic speech acts and a more diffi-
cult dialogue task that will, among other things,
highlight this situation. We also plan on imple-
menting a fully functional IDTB system, using an
incremental processing architecture that not only
detects, but generates, a wide array of turn-cues.
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Abstract good reason to believe that the importance of these
factors vary across languages. For instance, freer-
word-order languages exhibit word order patterns
which are dependent on discourse factors relating
to information structure, in addition to the gram-
matical roles of nominal arguments of the main
verb. We thus expect word order information to be
particularly important in these languages in dis-
course analysis, which includes coherence mod-
elling.

For example, Strube and Hahn (1999) introduce
Functional Centeringa variant of Centering The-
ory which utilizes information status distinctions
between hearer-old and hearer-new entities. They
apply their model to pronominal anaphora reso-
lution, identifying potential antecedents of sub-
sequent anaphora by considering syntactic and
word order information, classifying constituents
by their familiarity to the reader. They find that
their approach correctly resolves more pronomi-

One goal of natural language generation is
to produce coherent text that presents in-
formation in a logical order. In this pa-
per, we show that topological fields, which
model high-level clausal structure, are an
important component of local coherence
in German. First, we show in a sen-
tence ordering experiment that topologi-
cal field information improves the entity
grid model of Barzilay and Lapata (2008)
more than grammatical role and simple
clausal order information do, particularly
when manual annotations of this informa-
tion are not available. Then, we incor-
porate the model enhanced with topolog-
ical fields into a natural language gen-
eration system that generates constituent
orders for German text, and show that

the added coherence component improves
performance slightly, though not statisti-
cally significantly.

nal anaphora than a grammatical role-based ap-
proach which ignores word order, and the differ-
ence between the two approaches is larger in Ger-

man corpora than in English ones. Unfortunately,
their criteria for ranking potential antecedents re-
One type of coherence modelling that has captureduire complex syntactic information in order to
recent research interest is local coherence modilassify whether proper names are known to the
elling, which measures the coherence of a docuhearer, which makes their algorithm hard to auto-
ment by examining the similarity between neigh-mate. Indeed, all evaluation is done manually.
bouring text spans. The entity-based approach, We instead use topological fields, a model of
in particular, considers the occurrences of nourelausal structure which is indicative of information
phrase entities in a document (Barzilay and Lapstructure in German, but shallow enough to be au-
ata, 2008). Local coherence modelling has beetomatically parsed at high accuracy. We test the
shown to be useful for tasks like natural languagéypothesis that they would provide a good com-
generation and summarization, (Barzilay and Leeplement or alternative to grammatical roles in lo-
2004) and genre classification (Barzilay and Lap-cal coherence modelling. We show that they are
ata, 2008). superior to grammatical roles in a sentence or-
Previous work on English, a language with rel-dering experiment, and in fact outperforms sim-
atively fixed word order, has identified factors thatple word-order information as well. We further
contribute to local coherence, such as the gramshow that these differences are particularly large
matical roles associated with the entities. There isvhen manual syntactic and grammatical role an-

1 Introduction
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Millionen von Mark verschwendet der Senat jeden Monat, weil er sparen will.

“The senate wastes millions of marks each month, because it wants to save.”

Figure 1: The clausal and topological field structure of a German sent®&uatice that the subordinate
clause receives its own topology.

notations are not available. such as verbal arguments, adjuncts, and discourse
We then embed these topological field annotacues.
tions into a natural language generation system to TheVF (Vorfeldor “pre-field”) is so-named be-
show the utility of local coherence information in cause it occurs before the left bracket. As the first
an applied setting. We add contextual featuregonstituent of most matrix clauses in declarative
using topological field transitions to the model sentences, it has special significance for the coher-
of Filippova and Strube (2007b) and achieve aence of a passage, which we will further discuss
slight improvement over their model in a con- below. TheMF (Mittelfeld or “middle field”) is
stituent ordering task, though not statistically sig-the field bounded by the two brackets. Most verb
nificantly. We conclude by discussing possiblearguments, adverbs, and prepositional phrases are
reasons for the utility of topological fields in lo- found here, unless they have been fronted and put

cal coherence modelling. in the VF, or are prosodically heavy and postposed
to the NF field. TheNF (Nachfeldor “post-field”)
2 Background and Related Work contains prosodically heavy elements such as post-

posed prepositional phrases or relative clauses,

. , and occasionally postposed noun phrases.
Topological fields are sequences of one or more

contiguous phrases found in an enclosing syntac2.2 The Role of the Vorfeld

tic region, which is the clause in the case of theg e of the reasons that we use topological fields
German topological field model @hle, 1983). ¢, |ocal coherence modeliing is the role that the

These fields may have constraints on the numb&yr )4y in signalling the information structure of
of words or phrases they contain, and do not NeC;erman clauses, as it often contains the topic of
essarily form a semantically coherent constituent o cantence.

In German, the topology serves to identify all of |, 50t its role is much more complex than be-

the components of the verbal head of a clause, a}ﬁg simply the topic position. Dipper and Zins-
well as clause-level structure such as complemer, qister (2009) distinguish multiple uses of the VF
tizers and subordinating conjunctions. TOpOIOg"depending on whether it contains an element re-

cal fields are a useful abstraction of word ordery,e 1 the surrounding discourse. They find that
because while Germanic word order is relatlvely45_10/0 of VFs are clearly related to the previous

free with respect to grammatical functions, the Or-¢ eyt by a reference or discourse relation, and a

der of the topological fields is strict and unvarying. ¢ ,ther 21.9% are deictic and refer to the situation
A German clause can be considered t0 be arjegcribed in the passage in a corpus study. They
chored by two “brackets” which contain modals, ;5 ryn a sentence insertion experiment where
verbs and complementizers. The leftbrackek€ g hiects are asked to place an extracted sentence
Klammey LK) may contain a complementizer, i, it original location in a passage. The authors

subordinating conjunction, or a finite verb, de- remark that extracted sentences with VFs that are

pending on the clause type, and the right brackeluterenially related to previous context (e.g., they
contains the verbal compleXC). The other topo- ., yain a coreferential noun phrase or a discourse

logical fields are defined in relation to these tWO,a|ation like “therefore”) are reinserted at higher
brackets, and contain all other parts of the Clausﬁccuracies

2.1 German Topological Field Parsing
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# | Original Sentence and Translation
Einen Zufluchtsortifr Frauen die von ihren Minnern mifhandelt werden, gibt es nunmehr auch
1 | in Treptow.
“There is now a sanctuary for women who are mistreated by their husiamdsptow as well.”
Das Bezirksamt bietet Fraugauch mit Kindern) in derartigen Notsituationen viergehend
> eine Unterkunft. _ _ _ .
“The district office offers women (even with children) in this type of emagyetemporary
accommodation.”
Zugleich werden die Betroffenater Regelung des Unterhalts, bei Betlendgingen und auch
3 bei der Wohnungssuche untétst. _ N o _ _
“At the same time, the affected are supported with provisions of necessitidealing with
authorities, and also in the search for new accommodations.”
b)
DE | Zufluchtsort Frauen Mannern Treptow Kindern
EN | sanctuary women husbands Treptow children
1| acc oth oth oth —
2| — oth — — oth
3| - nom — — —
c)
- = — nom — acc — oth nom — nom nom | nom acc | nom oth
0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0
acc— accnom | accacc acc oth oth — oth nom | oth acc oth oth
0.1 0.0 0.0 0.0 0.3 0.1 0.0 0.1

Table 1. a) An example of a document froniBa-D/Z, b) an abbreviated entity grid representation of
it, and c) the feature vector representation of the abbreviated entity gridafwsitions of length two.
Mentions of the entityfFrauenare underlined. nom: nominative, acc: accusative, oth: dative, oblique
and other arguments

Filippova and Strube (2007c) also examine thamportant for coherence modelling because men-
role of the VF in local coherence and natural lan-tions of an entity tend to appear in clusters of
guage generation, focusing on the correlation beneighbouring or nearby sentences in coherent doc-
tween VFs and sentential topics. They follow Ja-uments. This last assumption is adapted from Cen-
cobs (2001) in distinguishing thepic of addres- tering Theory approaches to discourse modelling.
sation which is the constituent for which the In Barzilay and Lapata (2008), an entity grid is
proposition holds, anftame-setting topigavhich  constructed for each document, and is represented
is the domain in which the proposition holds, suchas a matrix in which each row represents a sen-
as a temporal expression. They show in a useence, and each column represents an entity. Thus,
study that frame-setting topics are preferred to topa cell in the matrix contains information about an
ics of addressation in the VF, except when a conentity in a sentence. The cell is marked by the
stituent needs to be established as the topic of agbresence or absence of the entity, and can also be
dressation. augmented with other information about the en-
tity in this sentence, such as the grammatical role
of the noun phrase representing that entity in that
sentence, or the topological field in which the noun
Barzilay and Lapata (2008) introduce the entityphrase appears.
grid as a method of representing the coherence of a Consider the document in Table 1. An entity
document. Entity grids indicate the location of thegrid representation which incorporates the syntac-
occurrences of an entity in a document, which istic role of the noun phrase in which the entity ap-

2.3 Using Entity Grids to Model Local
Coherence
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pears is also shown (not all entities are listed forence, grammatical role and topological field infor-
brevity). We tabulate the transitions of entities be-mation. This set is larger than the set that was used
tween different syntactic positions (or their non-in Experiment 1 of Barzilay and Lapata (2008),
occurrence) in sentences, and convert the frequemhich consists of 400 documents in two English
cies of transitions into a feature vector representasubcorpora on earthquakes and accidents respec-
tion of transition probabilities in the document.  tively. The average document length in thiéBa-

To calculate transition probabilities, we divide D/Z subcorpus is also greater, at 19.2 sentences
the frequency of a particular transition by the totalcompared to about 11 for the two subcorpora. Up
number of transitions of that length. to 20 random permutations of sentences were gen-

This model of local coherence was investigatecerated from each document, with duplicates re-
for German by Filippova and Strube (2007a). Themoved.
main focus of that work, however, was to adapt There are 216 documents and 4126 original-
the model for use in a low-resource situation wherpermutation pairs in the training set, and 24 docu-
perfect coreference information is not available ments and 465 pairs in the development set. The
This is particularly useful in natural language un-remaining 240 documents are in the final test set
derstanding tasks. They employ a semantic clus4243 pairs). The entity-based model is parame-
tering model to relate entities. In contrast, ourterized as follows.
work focuses on improving performance by anno- Transition length- the maximum length of the
tating entities with additional linguistic informa- transitions used in the feature vector representa-
tion, such as topological fields, and is geared totion of a document.
wards natural language generation systems where Representatior when marking the presence of
perfect information is available. an entity in a sentence, what information about

Similar models of local coherence include vari-the entity is marked (topological field, grammat-
ous Centering Theory accounts of local coherenceal role, or none). We will describe the represen-
((Kibble and Power, 2004; Poesio et al., 2004)tations that we try in section 3.2.
inter alia). The model of Elsner and Charniak  Salience- whether to set a threshold for the fre-
(2007) uses syntactic cues to model the discoursejuency of occurrence of entities. If this is set, all
newness of noun phrases. There are also mommtities below a certain frequency are treated sep-
global content models of topic shifts between senarately from those reaching this frequency thresh-

tences like Barzilay and Lee (2004). old when calculating transition probabilities. In

. . the example in Table 1, with a salience thresh-
3 Sentence Ordering Experiments old of 2, Frauenwould be treated separately from
3.1 Method Mannernor Kindern

We test . £ th ity arid ‘ Transition length, salience, and a regularization
ve test a version of the entily grid represen a'parameter are tuned on the development set. We
tion augmented with topological fields in a sen-

: . : only report results using the setting of transition
tenpe ordering expgnment corresponding to EX]ength < 4, and no salience threshold, because
pe”me”t 1. of Barz"a?’. anq Lapata (2_008)_' Thethey give the best performance on the development
task is a binary classification task to identify theSet This is in contrast to the findings of Barzi-
original version of a document from another ver—Iay and Lapata (2008), who report that transition

sion which contains the sentences in a randomlyength< 3 and a salience threshold of 2 perform
permuted order, which is taken to be incoherentbest on their data

We solve this problem in a supervised machine

learning setting, where the input is the feature vec3.2 Entity Representations

tor representations of the twg versions qf the d_OCThe main goal of this study is to compare word
ument, and the output is a binary value indicating, qer grammatical role and topological field in-
the document with the original sentence orderingt,mation, which is encoded into the entity grid at
We useSVM i ght 's ranking module for classifi- - o40h gccurrence of an entity. Here, we describe

cation (Joachims, 2002). _ the variants of the entity representations that we
The corpus in our experiments consists of the,,moare.

last 480 documents ofuBa-D/Z version 4 (Telljo-
hann et al., 2004), which contains manual corefer-
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Baseline Representations We implement sev- other. Prepositional objects are treated the same
eral baseline representations against which we tests other noun phrases here.

our topological field-enhanced model. The SIm_Combined We tried a representation which

plest baseline representation marks the mere ap- mbin rammatical role and topoloaical field
pearance of an entity without any additional infor- 0 €s grammatical Tole and fopological Tie

mation, which we refer to aef aul t . into a single representationsubj / obj xvf

Another class of baseline representations mart(vhICh takes the Cartesian productsibj / obj
andvf above.

the order in which entities appear in the clause. : , . .

. . Topological fields do not map directly to topic-
The correlation between word order and informa-, S . .
) . focus distinctions. For example, besides the topic
tion structure is well known, and has formed the

basis of some theories of syntax such as the Pragt?é the sentence, the Vorfeld may contain discourse

School’s (Sgall et al., 1986). The two versions“Ue>: ex_pletlve pronouns, or the informational or
. contrastive focus. Furthermore, there are addi-
of clausal order we tried arer der 1/ 2/ 3+,

) . tional constraints on constituent order related to
which marks a noun phrase as the first, the sec- o . "
ronominalization. Thus, we devised additional

ond, or the third or later to appear in a clause, angntit representations t nt for th i
order 1/ 2+, which marks a noun phrase as thee y representations to account for these aspects

: : of German.
first, or the second or later to appear in a clause. t opi ¢ attempts to identify the sentential topic
Since noun phrases can be embedded in other, P P . P
. of a clause. A noun phrase is marked as TOPIC
noun phrases, overlaps can occur. In this case, thF. o : o ,
it it is in VF as in vf pp, or if it is the first

dominating noun phrase takes the smallest order : . )
g n phras noun phrase in MF and also the first NP in the
number among its dominated noun phrases.

. . . clause. Other noun phrases in MF are marked
The third class of baseline representations we . .

. . . as NONTOPIC. Categories for NF and miscella-
employ mark an entity by its grammatical role

in the clause. Barzilay and Lapata (2008) found€OUS noun phrases also exist. While this repre-

: : ._sentation may appear to be very similar to sim-

that grammatical role improves performance in L . o
) . ply distinguishing the first entity in a clause as for
this task for an English corpus. Because Ger: rder 1/ 2+ in that TOPIC would corr nd
man distinguishes more grammatical roles moro! 9€ a ould correspo

. . . ... to the first entity in the clause, they are in fact dis-
phologically than English, we experiment with tinct. Due to i related t rdination
various granularities of role labelling. In particu- cl. Lue tossues related fo coordination, appos

lar, subj / obj distinguishes the subject position, itive constructions, and fragments which do not

the object position, and another category for a”receive a topology of fields, the first entity in a
. T . clause is labelled the TOPIC only 80.8% of the
other positionscases distinguishes five types of . . -
. . .__time in the corpus. This representation also distin-
entities corresponding to the four morphological” . .
: . uishes NFs, which clausal order does not.
cases of German in addition to another categor

. t opi c+pr on refines the above by taking into
for noun phrases which are not complements of o
the main verb. account a word order restriction in German that

pronouns appear before full noun phrases in the
Topological Field-Based These representations MF field. The following set of decisions repre-
mark the topological field in which an entity ap- sents how a noun phrase is marked: If the first NP
pears. Some versions mark entities which arén the clause is a pronoun in an MF field and is the
prepositional objects separately. We try versionsubject, we mark it as TOPIC. If it is not the sub-
which distinguish VF from non-VF, as well as ject, we mark itas NONTOPIC. For other NPs, we
more general versions that make use of a greatdollow thet opi ¢ representation.
set of topological fieldsvf marks the noun phrase ) .
as belonging to a VF (and not in a PP) or not3-3 Automatic annotations
vf pp is the same as above, but allows preposiWhile it is reasonable to assume perfect annota-
tional objects inside the VF to be marked as VFtions of topological fields and grammatical roles in
t opf / pp distinguishes entities in the topological many NLG contexts, this assumption may be less
fields VF, MF, and NF, contains a separate catappropriate in other applications involving text-to-
egory for PP, and a category for all other nountext generation where the input to the system is
phrasest opf distinguishes between VF, MF, and text such as paraphrasing or machine translation.
NF, on the one hand, and everything else on thdhus, we test the robustness of the entity repre-
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Representation Manual Automatic Annotation Accuracy(%)

topf/ pp 94.44 94.89 Grammatical role 83.6

topic 94.13 94.53 Topological field (+PP) 93.8

t opi c+pron 94.08 94.51 Topological field £PP) 95.7

t opf 93.87 93.11 Clausal order 90.8

subj / obj 93.83 91.7++ _ _

cases 033% 90.93++ Table 3: Accuracy of automatic annotations of
order 1/ 2+ 92 514+ 92 1+ noun p_h_rases With coreferents. +PP means that
subj / obj xvf 92 304+ 90 74++ prepositional objepts are treated as a separate cate-
def aul t 91 d0++ o1 0++ 901y from topological fields—PP means they are

vi pp 91374+ 91 684+ treated as other noun phrases.

vf 91.21++ 91.16++

order 1/2/3+ 91.16++ 90.71++

tional phrases. However, we can approximate the
Table 2: Accuracy (%) of the permutation de-grammatical role of an entity using the morpho-
tection experiment with various entity represen-ogical case. We follow the annotation conven-
tations using manual and automatic annotation§ons of TuBa-D/Z in not assigning a grammati-
of topological fields and grammatical roles. Thecal role when the noun phrase is a prepositional
baseline without any additional annotation is un-object. We also do not assign a grammatical role
derlined. Two-tailed sign tests were calculated fowhen the noun phrase is in the genitive case, as
each result against the best performing model ifgenitive objects are very rare in German and are
each column'( p = 0.101; 2: p = 0.053; +: statis-  far outnumbered by the possessive genitive con-
tically significant,p < 0.05; ++: very statistically ~struction.

significant,p < 0.01 ). 3.4 Results

Table 2 shows the results of the sentence ordering

sentations to automatic extraction in the absencBermutation detection experiment. The top four
of manual annotations. We employ the following performing entity representations are all topologi-

two systems for extracting topological fields angc@! field-based, and they outperform grammatical
grammatical roles. role-based and simple clausal order-based mod-

To parse topological fields, we use the Berke-£ls- These'resu_lts indicaf[e that the information
ley parser of Petrov and Klein (2007), which hasthat topolog_lc_:al f|eIQS prqwde a_bout clause _stru_c—
been shown to perform well at this task (Cheung[”re’ appositives, .rlght dislocation, etf:. 'WhICh is
and Penn, 2009). The parser is trained on sectior°t captured by simple clausal order is important
of TUiBa-D/Z which do not overlap with the sec- for cohe_rencg m.od.elllng. The rep_re.sentatlons in-
tion from which the documents for this experimentcorpor"’ltlng Ilngwstlcs—paseq heuristics do not out-
were drawn, and obtains an overall parsing perperform_p.urely topological field-based models._
formance of 93.35% on topological fields and ~ SurPrisingly, the VF-based models fare quite

clausal nodes without gold POS tags on the sectioRCY performing worse than not adding any an-
of TuBa-D/Z it was tested on. notations, despite the fact that topological field-

We tried two methods to obtain grammatical based models in general perform well. This result
roles. First, we tried extracting grammatical roles™ay Pe a result of the heterogeneous uses of the
from the parse trees which we obtained from the/F ) ] ] )
Berkeley parser, as this information is present in The automatic topological field annotations are
the edge labels that can be recovered from th@hore accurate than the automatic grammatical role
parse. However, we found that we achieved betdnnotations (Table 3), which may partly explain
ter accuracy by usingRFTagger (Schmid and why grammatical role-based models suffer more

Laws, 2008), which tags nouns with their morpho-When using automatic annotations. Note, how-
logical case. Morphological case is distinct from€Ver that the models based on automatic topolog-

grammatical role, as noun phrases can function d§@! field annotations outperform even the gram-

adjuncts in possessive constructions and prepogifatical role-based models using manual annota-
tion (at marginal significance, < 0.1). The topo-
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logical field annotations are accurate enough that Representation Accuracy(%)
automatic annotations produce no decrease in per-t opf / pp 93.83
formance. t opi c 93.31
These results show the upper bound of entity- t opi c+pr on 03.31
based local coherence modelling with perfect ¢ opf 92.49
coreference information. The results we obtain “gypj / obj 88.99
are higher than the results for the English cor- ", der 1/ 2+ 88.89
pora of Barzilay and Lapata (2008) (87.2% onthe ~5 . qer 1/ 2/ 3+ 88.84
Earthquakes corpus and 90.4% on the Accidents - z5es 88.63
corpus), but this is probably due to corpus differ- =z 87.60
ences as well as the availability of perfect corefer- vipp 8817
ence information in our experiments defaul t 8755
Due to the high performance we obtained, we mj VT 87 71
calculated Kendall tau coefficients (Lapata, 2006) (Filippova and Strube, 2007) 75

over the sentence orderings of the cases in which
our best performing model is incorrect, to deter-Table 4: Accuracy (%) of permutation detection
mine whether the remaining errors are instancegxperiment with various entity representations us-
where the permuted ordering is nearly identical tdng manual and automatic annotations of topolog-
the original ordering. We obtainedraof 0.0456  ical fields and grammatical roles on subset of cor-
in these cases, compared te af —0.0084 for all  pus used by Filippova and Strube (2007a).

the pairs, indicating that this is not the case.

To facilitate comparison to the results of Filip-

pova and Strube (2007a), we rerun this experimenhay be nested NP nodes in the original corpus.

on the same subsections of the corpus as in thathere may also be noise in the dependency con-
work for training and testing. The first 100 arti- yersjon process.

cles of TuBa-D/Z are used for testing, while the  The relative rankings of different entity repre-
next 200 are used for training and development. sentations in this experiment are similar to the
Unlike the previous experiments, we do not dorankings of the previous experiment, with topolog-

parameter tuning on this set of data. Instead, Wi field-based models outperforming grammati-

sition lengths of up to three. We do not put in
a salience threshold. We see that our results a# Local Coherence for Natural Language
much better than the ones reported in that work, Generation

even for thedef aul t representation. The main One of the motivations of the entitv arid-based
reason for this discrepancy is probably the way € of the motivations of Ihe entity grid-base

o model is to improve surface realization decisions
that entities are created from the corpus. In ou1|rn NLG tems. A tvoical experimental desian
experiments, we create an entity for every single d SYys Et)h s typtca fethpet te at. es gf
noun phrase node that we encounter, then mergv<¥Ou pass the contents of the test section ot a

the entities that are linked by coreference. FiIip—Corlous as inputto the NLG system with the order-

pova and Strube (2007a) convert the annotationd'9 information stripped away. The task is then to

of TuBa-D/Z into a dependency format, then oy €generate the ordering of the information found

tract entities from the noun phrases found there!! the original corpus. Various coherence models

They may thus annotate fewer entities, as ther%?r/eeszri?)Iteesfa?rellrr:qgﬁirspu;-t;?s?gos;)Gccs)?r:gg?:

'Barzilay and Lapata (2008) use the coreference sysseveral versions of Centering Theory-based met-

tem of Ng and Cardie (2002) to obtain coreference anno-. -
tations. We are not aware of similarly well-tested, pub- rics of coherence on corpora by examining how

licly available coreference resolution systems that handle alhighly the original ordering found in the corpus
types of anaphora for German. We considered adapting this ranked compared to other possible orderings of

BART coreference resolution toolkit (Versley et al., 2008) to it A tri f Il if it K
German, but a number of language-dependent decisions r@ropositions. metric performs well It 1t ranks

garding preprocessing, feature engineering, and the learnindhe original ordering better than the alternative or-
paradigm would need to be made in order to achieve readerings.

sonable performance comparable to state-of-the-art English . .
coreference resolution systems. In our next experiment, we incorporate local co-

192



herence information into the system of Filippova e the semantic class of the constituent (per-
and Strube (2007b). We embed entity topologi- son, temporal, location, etc.) The biographee,
cal field transitions into their probabilistic model, in particular, is marked by its own semantic
and show that the added coherence component class.

slightly improves the performance of the baseline ) ) ]

NLG system in generating constituent orderingsin N the first VF selection stegVAXENT simply

a German corpus, though not to a statistically Sigproduces a probability of each constituent being a
nificant degree. VF, and the constituent with the highest probabil-

ity is selected. In the second st&fAXENT2 takes
4.1 Method the featural representation of two constituents, and

We use the WikiBiography corp@or our exper- pr_oduces an o.utput probability of the first con-
iments. The corpus consists of more than 1100 bistituent preceding the second constituent. The fi-
ographies taken from the German Wikipedia, and'@! ordering is achieved by first randomizing the
contains automatic annotations of morphologicalOrder of the constituents in a clause (besides the
syntactic, and semantic information. Each articldI'St One, which is selected to be the VF), then
also contains the coreference chain of the subje@Orting them according to the precedence proba-
of the biography (the biographee). The first 100bilities. _Spemflc_ally, a constituent A is put before
articles are used for testing, the next 200 for de@ constituent B iMAXENT2(A,B) > 0.5. Because
velopment, and the rest for training. this precedence relation is not antisymmetric (i.e.,
The baseline generation system already incoXENT2(A,B) > 0.5 and MAXENT2(B.A) >
porates topological field information into the con-0-5 May be simultaneously true or simultaneously
stituent ordering process. The system operates i@/Se), different initializations of the order pro-
two steps. First, in main clauses, one constituenguce different sorted results. In our experiments,
is selected as the Vorfeld (VF). This is done us-We correct this by defining the precedence rela-
ing a maximum entropy model (call MAXENT). ~ tion to be A precedes B ifMAXENT2(A,B) >
Then, the remaining constituents are ordered usin"~XENT2(B,A). This change does not greatly im-
a second maximum entropy mod&XXENT2). !oact the performance, a_nd removes the random-
Significantly, Filippova and Strube (2007b) found ized element of the algorithm.
that selecting the VF first, and then ordering the 1Nhe baseline system does not directly model the
remaining constituents results in a 9% absolut&ONtext when ordering constituents. Al of the
improvement over the corresponding model wherd€atures but one in the original maximum entropy
the selection is performed in one step by the sortModels rely on local properties of the clause. We

ing algorithm alone. incorporate local coherence information into the
The maximum entropy model for both steps re|ymodel by adding entity transition features which
on the following features: we found to be useful in the sentence ordering ex-

periment in Section 3 above.
o features on the voice, valency, and identity of Specifically, we add features indicating the
the main verb of the clause topological fields in which entities occur in the
, . previous sentences. We found that looking back
o features on the mprphologlcal and Syn'[""Ct'cup to two sentences produces the best results (by
status of the constituent to be ordered tuning on the development set). Because this cor-
e whether the constituent occurs in the precedPUsS does not come with general coreference in-
ing sentence formation except for the coreference chain of the
biographee, we use the semantic classes instead.
o features for whether the constituent containsso, all constituents in the same semantic class are
a determiner, an anaphoric pronoun, or a relireated as one coreference chain. An example of a
ative clause feature may bdiog-last2, which takes on a value
such as ‘v-’, meaning that this constituent refers
to the biographee, and the biographee occurs in
the VF two clauses ago (v), but does not appear in
>http://waww. e - r esear ch. de/ engl i sh/ the previous clause). For a constituent which is
resear ch/ nl p/ downl oad/ wi ki bi ogr aphy. php not the biographee, this feature would be marked

e the size of the constituent in number of mod-
ifiers, in depth, and in number of words
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Method VF Acc(%) Acc(%) Tau We suggest that the utility of topological fields
Baseline 68.7 60.9 0.72 in local coherence modelling comes from the in-
+Coherence 69.2 61.5 0.72 teraction between word order and information
structure in freer-word-order languages. Crucially,
Table 5: Results of adding coherence features intgypological fields take into account issues such
a natural language generation system. VF Acc%s coordination, appositives, sentential fragments
is the accuracy of selecting the first constituent irand differences in clause types, which word or-
main clauses. Acc % is the percentage of perger alone does not. They are also shallow enough
fectly ordered clauses, tau is Kendalf'son the o be accurately parsed automatically for use in
constituent Ordering. The test set contains 2246esource_poor app”cations_
clauses, of which 1662 are main clauses. Further refinement of the topological field an-
notations to take advantage of the fact that they
do not correspond neatly to any single information
‘na’ (not applicable). status such as topic or focus could provide addi-
42 Results tional performance gains. The model also shows

_ promise for other discourse-related tasks such as
Table 5 shows the results of adding these contexsyreference resolution and discourse parsing.
tual features into the maximum entropy models.
We see that we obtain a small improvement in théAcknowledgements
accuracy of VF selection, and in the accuracy o — -
Y . . y RNe are grateful to Katja Filippova for providing us
correctly ordering the entire clause. These im- . . . -
- S with source code for the experiments in Section 4
provements are not statistically significant by Mc- ) . :
, and for answering related questions, and to Tim-
Nemar’s test. We suggest that the lack of coref- ) .
: ) . ., othy Fowler for useful discussions and comments
erence information for all entities in the article

may have reduced the benefit of the coherenc®" & draft of the paper. This work is supported in
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Abstract

The analysis of reading times can pro-
vide insights into the processes that under-
lie language comprehension, with longer
reading times indicating greater cognitive
load. There is evidence that the language
processor is highly predictive, such that
prior context allows upcoming linguistic
material to be anticipated. Previous work
has investigated the contributions of se-
mantic and syntactic contexts in isolation,
essentially treating them as independent
factors. In this paper we analyze reading
times in terms of a single predictive mea-
sure which integrates a model of seman-
tic composition with an incremental parser
and a language model.

1 Introduction

Psycholinguists have long realized that language
comprehension is highly incremental, with readers
and listeners continuously extracting the meaning
of utterances on a word-by-word basis. As soon
as they encounter a word in a sentence, they inte-
grate it as fully as possible into a representation
of the sentence thus far (Marslen-Wilson 1973;
Konieczny 2000; Tanenhaus et al. 1995; Sturt and
Lombardo 2005). Recent research suggests that
language comprehension can also be highly pre-
dictive, i.e., comprehenders are able to anticipate
upcoming linguistic material. This is beneficial as
it gives them more time to keep up with the in-
put, and predictions can be used to compensate for
problems with noise or ambiguity.

Two types of prediction have been observed in
the literature. The first type is semantic predic-
tion, as evidenced in semantic priming: a word
that is preceded by a semantically related prime
or a semantically congruous sentence fragment is
processed faster (Stanovich and West 1981; van
Berkum et al. 1999; Clifton et al. 2007). Another
example is argument prediction: listeners are able
to launch eye-movements to the predicted argu-
ment of a verb before having encountered it, e.g.,
they will fixate an edible object as soon as they
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hear the word eat (Altmann and Kamide 1999).
The second type of prediction is syntactic predic-
tion. Comprehenders are faster at naming words
that are syntactically compatible with prior con-
text, even when they bear no semantic relationship
to the context (Wright and Garrett 1984). Another
instance of syntactic prediction has been reported
by Staub and Clifton (2006): following the word
either, readers predict or and the complement that
follows it, and process it faster compared to a con-
trol condition without either.

Thus, human language processing takes advan-
tage of the constraints imposed by the preceding
semantic and syntactic context to derive expecta-
tions about the upcoming input. Much recent work
has focused on developing computational mea-
sures of these constraints and expectations. Again,
the literature is split into syntactic and semantic
models. Probably the best known measure of syn-
tactic expectation is surprisal (Hale 2001) which
can be coarsely defined as the negative log proba-
bility of word w; given the preceding words, typ-
ically computed using a probabilistic context-free
grammar.

Modeling work on semantic constraint focuses
on the degree to which a word is related to its
preceding context. Pynte et al. (2008) use La-
tent Semantic Analysis (LSA, Landauer and Du-
mais 1997) to assess the degree of contextual con-
straint exerted on a word by its context. In this
framework, word meanings are represented as vec-
tors in a high dimensional space and distance in
this space is interpreted as an index of process-
ing difficulty. Other work (McDonald and Brew
2004) models contextual constraint in information
theoretic terms. The assumption is that words
carry prior semantic expectations which are up-
dated upon seeing the next word. Expectations are
represented by a vector of probabilities which re-
flects the likely location in semantic space of the
upcoming word.

The measures discussed above are typically
computed automatically on real-language corpora
using data-driven methods and their predictions
are verified through analysis of eye-movements
that people make while reading. Ample evidence
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(Rayner 1998) demonstrates that eye-movements
are related to the moment-to-moment cognitive ac-
tivities of readers. They also provide an accurate
temporal record of the on-line processing of nat-
ural language, and through the analysis of eye-
movement measurements (e.g., the amount of time
spent looking at a word) can give insight into the
processing difficulty involved in reading.

In this paper, we investigate a model of predic-
tion that is incremental and takes into account syn-
tactic as well as semantic constraint. The model
essentially integrates the predictions of an incre-
mental parser (Roark 2001) together with those
of a semantic space model (Mitchell and Lap-
ata 2009). The latter creates meaning representa-
tions compositionally, and therefore builds seman-
tic expectations for word sequences (e.g., phrases,
sentences, even documents) rather than isolated
words. Some existing models of sentence process-
ing integrate semantic information into a prob-
abilistic parser (Narayanan and Jurafsky 2002;
Pad¢ et al. 2009); however, the semantic compo-
nent of these models is limited to semantic role in-
formation, rather than attempting to build a full se-
mantic representation for a sentence. Furthermore,
the models of Narayanan and Jurafsky (2002) and
Padé6 et al. (2009) do not explicitly model pre-
diction, but rather focus on accounting for garden
path effects. The proposed model simultaneously
captures semantic and syntactic effects in a sin-
gle measure which we empirically show is predic-
tive of processing difficulty as manifested in eye-
movements.

2  Models of Processing Difficulty

As described in Section 1, reading times provide
an insight into the various cognitive activities that
contribute to the overall processing difficulty in-
volved in comprehending a written text. To quan-
tify and understand the overall cognitive load asso-
ciated with processing a word in context, we will
break that load down into a sum of terms repre-
senting distinct computational costs (semantic and
syntactic). For example, surprisal can be thought
of as measuring the cost of dealing with unex-
pected input. When a word conforms to the lan-
guage processor’s expectations, surprisal is low,
and the cognitive load associated with processing
that input will also be low. In contrast, unexpected
words will have a high surprisal and a high cogni-
tive cost.

However, high-level syntactic and semantic fac-
tors are only one source of cognitive costs. A siz-
able proportion of the variance in reading times is
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accounted for by costs associated with low-level
features of the stimuli, e.g.. relating to orthography
and eye-movement control (Rayner 1998). In ad-
dition, there may also be costs associated with the
integration of new input into an incremental rep-
resentation. Dependency Locality Theory (DLT,
Gibson 2000) is essentially a distance-based mea-
sure of the amount of processing effort required
when the head of a phrase is integrated with its
syntactic dependents. We do not consider integra-
tion costs here (as they have not been shown to
correlate reliably with reading times; see Demberg
and Keller 2008 for details) and instead focus on
the costs associated with semantic and syntactic
constraint and low-level features, which appear to
make the most substantial contributions.

In the following subsections we describe the
various features which contribute to the process-
ing costs of a word in context. We begin by look-
ing at the low-level costs and move on to con-
sider the costs associated with syntactic and se-
mantic constraint. For readers unfamiliar with the
methodology involved in modeling eye-tracking
data, we note that regression analysis (or the more
general mixed effects models) is typically used to
study the relationship between dependent and in-
dependent variables. The independent variables
are the various costs of processing effort and
the dependent variables are measurements of eye-
movements, three of which are routinely used in
the literature: first fixation duration (the duration
of the first fixation on a word regardless of whether
it is the first fixation on a word or the first of mul-
tiple fixations on the same word), first pass dura-
tion, also known as gaze duration, (the sum of all
fixations made on a word prior to looking at an-
other word), and total reading time (the sum of
all fixations on a word including refixations after
moving on to other words).

2.1 Low-level Costs

Low-level features include word frequency (more
frequent words are read faster), word length
(shorter words are read faster), and the position
of the word in the sentence (later words are read
faster). Oculomotor variables have also been
found to influence reading times. These include
previous fixation (indicating whether or not the
previous word has been fixated), launch distance
(how many characters intervene between the cur-
rent fixation and the previous fixation), and land-
ing position (which letter in the word the fixation
landed on).

Information about the sequential context of a
word can also influence reading times. Mc-



Donald and Shillcock (2003) show that forward
and backward transitional probabilities are pre-
dictive of first fixation and first pass durations:
the higher the transitional probability, the shorter
the fixation time. Backward transitional prob-
ability is essentially the conditional probabil-
ity of a word given its immediately preceding
word, P(wk|wg—1). Analogously, forward proba-
bility is the conditional probability of the current
word given the next word, P(wg|wi1).

2.2 Syntactic Constraint

As mentioned earlier, surprisal (Hale 2001; Levy
2008) is one of the best known models of process-
ing difficulty associated with syntactic constraint,
and has been previously applied to the modeling of
reading times (Demberg and Keller 2008; Ferrara
Boston et al. 2008; Roark et al. 2009; Frank 2009).
The basic idea is that the processing costs relating
to the expectations of the language processor can
be expressed in terms of the probabilities assigned
by some form of language model to the input.
These processing costs are assumed to arise from
the change in the expectations of the language pro-
cessor as new input arrives. If we express these ex-
pectations in terms of a distribution over all possi-
ble continuations of the input seen so far, then we
can measure the magnitude of this change in terms
of the Kullback-Leibler divergence of the old dis-
tribution to the updated distribution. This measure
of processing cost for an input word, wyy, given
the previous context, wy...wy, can be expressed
straightforwardly in terms of its conditional prob-
ability as:

S —1OgP(Wk+1‘W1...Wk) (1)
That is, the processing cost for a word decreases as
its probability increases, with zero processing cost
incurred for words which must appear in a given
context, as these do not result in any change in the
expectations of the language processor.

The original formulation of surprisal (Hale
2001) used a probabilistic parser to calculate these
probabilities, as the emphasis was on the process-
ing costs incurred when parsing structurally am-
biguous garden path sentences.! Several variants
of calculating surprisal have been developed in the
literature since using different parsing strategies

'While hearing a sentence like The horse raced past the
barn fell (Bever 1970), English speakers are inclined to in-
terpreted horse as the subject of raced expecting the sentence
to end at the word barn. So upon hearing the word fell they
are forced to revise their analysis of the sentence thus far and
adopt a reduced relative reading.
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(e.g., left-to-right vs. top-down, PCFGs vs de-
pendency parsing) and different degrees of lexi-
calization (see Roark et al. 2009 for an overview) .
For instance, unlexicalized surprisal can be easily
derived by substituting the words in Equation (1)
with parts of speech (Demberg and Keller 2008).
Surprisal could be also defined using a vanilla
language model that does not take any structural
or grammatical information into account (Frank
2009).

2.3 Semantic Constraint

Distributional models of meaning have been com-
monly used to quantify the semantic relation be-
tween a word and its context in computational
studies of lexical processing. These models are
based on the idea that words with similar mean-
ings will be found in similar contexts. In putting
this idea into practice, the meaning of a word is
then represented as a vector in a high dimensional
space, with the vector components relating to the
strength on occurrence of that word in various
types of context. Semantic similarities are then
modeled in terms of geometric similarities within
the space.

To give a concrete example, Latent Semantic
Analysis (LSA, Landauer and Dumais 1997) cre-
ates a meaning representation for words by con-
structing a word-document co-occurrence matrix
from a large collection of documents. Each row in
the matrix represents a word, each column a doc-
ument, and each entry the frequency with which
the word appeared within that document. Because
this matrix tends to be quite large it is often trans-
formed via a singular value decomposition (Berry
et al. 1995) into three component matrices: a ma-
trix of word vectors, a matrix of document vectors,
and a diagonal matrix containing singular values.
Re-multiplying these matrices together using only
the initial portions of each (corresponding to the
use of a lower dimensional spatial representation)
produces a tractable approximation to the original
matrix. In this framework, the similarity between
two words can be easily quantified, e.g., by mea-
suring the cosine of the angle of the vectors repre-
senting them.

As LSA is one the best known semantic space
models it comes as no surprise that it has been
used to analyze semantic constraint. Pynte et al.
(2008) measure the similarity between the next
word and its preceding context under the assump-
tion that high similarity indicates high semantic
constraint (i.e., the word was expected) and analo-
gously low similarity indicates low semantic con-
straint (i.e., the word was unexpected). They oper-



ationalize preceding contexts in two ways, either
as the word immediately preceding the next word
as the sentence fragment preceding it. Sentence
fragments are represented as the average of the
words they contain independently of their order.
The model takes into account only content words,
function words are of little interest here as they can
be found in any context.

Pynte et al. (2008) analyze reading times on the
French part of the Dundee corpus (Kennedy and
Pynte 2005) and find that word-level LSA similar-
ities are predictive of first fixation and first pass
durations, whereas sentence-level LSA is only
predictive of first pass duration (i.e., for a mea-
sure that includes refixation). This latter finding
is somewhat counterintuitive, one would expect
longer contexts to have an immediate effect as
they are presumably more constraining. One rea-
son why sentence-level influences are only visible
on first pass duration may be due to LSA itself,
which is syntax-blind. Another reason relates to
the way sentential context was modeled as vec-
tor addition (or averaging). The idea of averag-
ing is not very attractive from a linguistic perspec-
tive as it blends the meanings of individual words
together. Ideally, the combination of simple el-
ements onto more complex ones must allow the
construction of novel meanings which go beyond
those of the individual elements (Pinker 1994).

The only other model of semantic constraint we
are aware of is Incremental Contextual Distinc-
tiveness (ICD, McDonald 2000; McDonald and
Brew 2004). ICD assumes that words carry prior
semantic expectations which are updated upon
seeing the next word. Context is represented by
a vector of probabilities which reflects the likely
location in semantic space of the upcoming word.
When the latter is observed, the prior expecta-
tion is updated using a Bayesian inference mecha-
nism to reflect the newly arrived information. Like
LSA, ICD is based on word co-occurrence vectors,
however it does not employ singular value decom-
position, and constructs a word-word rather than a
word-document co-occurrence matrix. Although
this model has been shown to successfully simu-
late single- and multiple-word priming (McDon-
ald and Brew 2004), it failed to predict processing
costs in the Embra eye-tracking corpus (McDon-
ald and Shillcock 2003).

In this work we model semantic constraint us-
ing the representational framework put forward in
Mitchell and Lapata (2008). Their aim is not so
much to model processing difficulty, but to con-
struct vector-based meaning representations that
go beyond individual words. They introduce a
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general framework for studying vector composi-
tion, which they formulate as a function f of two
vectors u and v:

h = f(u,v) 2

where h denotes the composition of u and v. Dif-
ferent composition models arise, depending on
how f is chosen. Assuming that h is a linear func-
tion of the Cartesian product of u and v allows to
specify additive models which are by far the most
common method of vector combination in the lit-
erature:

hy =u; +v; 3)

Alternatively, we can assume that h is a linear
function of the tensor product of u and v, and thus
derive models based on multiplication:

4

Mitchell and Lapata (2008) show that several ad-
ditive and multiplicative models can be formu-
lated under this framework, including the well-
known tensor products (Smolensky 1990) and cir-
cular convolution (Plate 1995). Importantly, com-
position models are not defined with a specific se-
mantic space in mind, they could easily be adapted
to LSA, or simple co-occurrence vectors, or more
sophisticated semantic representations (e.g., Grif-
fiths et al. 2007), although admittedly some com-
position functions may be better suited for partic-
ular semantic spaces.

Composition models can be straightforwardly
used as predictors of processing difficulty, again
via measuring the cosine of the angle between a
vector w representing the upcoming word and a
vector h representing the words preceding it:

hl-:u,-'vi

_ w-h

= — 5
[wilh) ©)

sim(w,h)
where h is created compositionally, via some (ad-
ditive or multiplicative) function f.

In this paper we evaluate additive and compo-
sitional models in their ability to capture seman-
tic prediction. We also examine the influence of
the underlying meaning representations by com-
paring a simple semantic space similar to Mc-
Donald (2000) against Latent Dirichlet Allocation
(Blei et al. 2003; Griffiths et al. 2007). Specif-
ically, the simpler space is based on word co-
occurrence counts; it constructs the vector repre-
senting a given target word, #, by identifying all the
tokens of 7 in a corpus and recording the counts of
context words, ¢; (within a specific window). The
context words, ¢;, are limited to a set of the n most



common content words and each vector compo-
nent is given by the ratio of the probability of a c;
given ¢ to the overall probability of c;.

pleilt)
;= 6
T (@) ©

Despite its simplicity, the above semantic space
(and variants thereof) has been used to success-
fully simulate lexical priming (e.g., McDonald
2000), human judgments of semantic similarity
(Bullinaria and Levy 2007), and synonymy tests
(Padé and Lapata 2007) such as those included in
the Test of English as Foreign Language (TOEFL).

LDA is a probabilistic topic model offering an
alternative to spatial semantic representations. It
is similar in spirit to LSA, it also operates on a
word-document co-occurrence matrix and derives
areduced dimensionality description of words and
documents. Whereas in LSA words are repre-
sented as points in a multi-dimensional space,
LDA represents words using topics. Specifically,
each document in a corpus is modeled as a distri-
bution over K topics, which are themselves char-
acterized as distribution over words. The individ-
ual words in a document are generated by repeat-
edly sampling a topic according to the topic distri-
bution and then sampling a single word from the
chosen topic. Under this framework, word mean-
ing is represented as a probability distribution over
a set of latent topics, essentially a vector whose
dimensions correspond to topics and values to the
probability of the word given these topics. Topic
models have been recently gaining ground as a
more structured representation of word meaning
(Griffiths et al. 2007; Steyvers and Griffiths 2007).
In contrast to more standard semantic space mod-
els where word senses are conflated into a single
representation, topics have an intuitive correspon-
dence to coarse-grained sense distinctions.

3 Integrating Semantic Constraint into
Surprisal

The treatment of semantic and syntactic constraint
in models of processing difficulty has been some-
what inconsistent. While surprisal is a theo-
retically well-motivated measure, formalizing the
idea of linguistic processing being highly predic-
tive in terms of probabilistic language models, the
measurement of semantic constraint in terms of
vector similarities lacks a clear motivation. More-
over, the two approaches, surprisal and similarity,
produce mathematically different types of mea-
sures. Formally, it would be preferable to have
a single approach to capturing constraint and the
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obvious solution is to derive some form of seman-
tic surprisal rather than sticking with similarity.
This can be achieved by turning a vector model
of semantic similarity into a probabilistic language
model.

There are in fact a number of approaches to de-
riving language models from distributional mod-
els of semantics (e.g., Bellegarda 2000; Coccaro
and Jurafsky 1998; Gildea and Hofmann 1999).
We focus here on the model of Mitchell and La-
pata (2009) which tackles the issue of the compo-
sition of semantic vectors and also integrates the
output of an incremental parser. The core of their
model is based on the product of a trigram model
p(wa/w"~}) and a semantic component A(w,,h)
which determines the factor by which this proba-
bility should be scaled up or down given the prior
semantic context /:

p(wn) = p(wa|WiZ3) - A(wy, 1) (7)

The factor A(wy,h) is essentially based on a com-
parison between the vector representing the cur-
rent word w,, and the vector representing the prior
history h. Varying the method for constructing
word vectors (e.g., using LDA or a simpler seman-
tic space model) and for combining them into a
representation of the prior context 4 (e.g., using
additive or multiplicative functions) produces dis-
tinct models of semantic composition.

The calculation of A is then based on a weighted
dot product of the vector representing the upcom-
ing word w, with the vector representing the prior
context A:

A(w,h) = Zwihip(ci) 8)

As shown in Equation (7) this semantic factor then
modulates the trigram probabilities, to take ac-
count of the effect of the semantic content outside
the n-gram window.

Mitchell and Lapata (2009) show that a com-
bined semantic-trigram language model derived
from this approach and trained on the Wall Street
Journal outperforms a baseline trigram model in
terms of perplexity on a held out set. They also
linearly interpolate this semantic language model
with the output of an incremental parser, which
computes the following probability:

pwlh) = Api(wlh) + (1 =A)pa(wlh)  (9)

where pi(w|h) is computed as in Equation (7)
and py(w|h) is computed by the parser. Their im-
plementation uses Roark’s (2001) top-down incre-
mental parser which estimates the probability of



the next word based upon the previous words of
the sentence. These prefix probabilities are calcu-
lated from a grammar, by considering the likeli-
hood of seeing the next word given the possible
grammatical relations representing the prior con-
text.

Equation (9) essentially defines a language
model which combines semantic, syntactic and
n-gram structure, and Mitchell and Lapata (2009)
demonstrate that it improves further upon a se-
mantic language model in terms of perplexity. We
argue that the probabilities from this model give
us a means to model the incrementally and predic-
tivity of the language processor in a manner that
integrates both syntactic and semantic constraints.
Converting these probabilities to surprisal should
result in a single measure of the processing cost as-
sociated with semantic and syntactic expectations.

4 Method

Data The models discussed in the previous sec-
tion were evaluated against an eye-tracking cor-
pus. Specifically, we used the English portion
of the Dundee Corpus (Kennedy and Pynte 2005)
which contains 20 texts taken from The Indepen-
dent newspaper. The corpus consists of 51,502
tokens and 9,776 types in total. It is annotated
with the eye-movement records of 10 English na-
tive speakers, who each read the whole corpus.
The eye-tracking data was preprocessed following
the methodology described in Demberg and Keller
(2008). From this data, we computed total reading
time for each word in the corpus. Our statistical
analyses were based on actual reading times, and
so we only included words that were not skipped.
We also excluded words for which the previous
word had been skipped, and words on which the
normal left-to-right movement of gaze had been
interrupted, i.e., by blinks, regressions, etc. Fi-
nally, because our focus is the influence of seman-
tic context, we selected only content words whose
prior sentential context contained at least two fur-
ther content words. The resulting data set con-
sisted of 53,704 data points, which is about 10%
of the theoretically possible total.?

2The total of all words read by all subjects is 515,020.
The pre-processing recommended by Demberg and Keller’s
(2008) results in a data sets containing 436,000 data points.
Removing non-content words leaves 205,922 data points. It
only makes sense to consider words that were actually fixated
(the eye-tracking measures used are not defined on skipped
words), which leaves 162,129 data points. Following Pynte
et al. (2008), we require that the previous word was fixated,
with 70,051 data points remaining. We exclude words on
which the normal left to right movement of gaze had been
interrupted, e.g., by blinks and regressions, which results in
the final total to 53,704 data points.
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Model Implementation All elements of our
model were trained on the BLLIP corpus, a col-
lection of texts from the Wall Street Journal
(years 1987-89). The training corpus consisted of
38,521,346 words. We used a development cor-
pus of 50,006 words and a test corpus of similar
size. All words were converted to lowercase and
numbers were replaced with the symbol (num). A
vocabulary of 20,000 words was chosen and the
remaining tokens were replaced with (unk).

Following Mitchell and Lapata (2009), we con-
structed a simple semantic space based on co-
occurrence statistics from the BLLIP training set.
We used the 2,000 most frequent word types as
contexts and a symmetric five word window. Vec-
tor components were defined as in Equation (6).
We also trained the LDA model on BLLIP, using
the Gibb’s sampling procedure discussed in Grif-
fiths et al. (2007). We experimented with different
numbers of topics on the development set (from 10
to 1,000) and report results on the test set with 100
topics. In our experiments, the hyperparameter o
was initialized to .5, and the B word probabilities
were initialized randomly.

We integrated our compositional models with a
trigram model which we also trained on BLLIP.
The model was built using the SRILM toolkit
(Stolcke 2002) with backoff and Kneser-Ney
smoothing. As our incremental parser we used
Roark’s (2001) parser trained on sections 2-21 of
the Penn Treebank containing 936,017 words. The
parser produces prefix probabilities for each word
of a sentence which we converted to conditional
probabilities by dividing each current probability
by the previous one.

Statistical Analysis The statistical analyses in
this paper were carried out using linear mixed
effects models (LME, Pinheiro and Bates 2000).
The latter can be thought of as generalization of
linear regression that allows the inclusion of ran-
dom factors (such as participants or items) as well
as fixed factors (e.g., word frequency). In our
analyses, we treat participant as a random factor,
which means that our models contain an intercept
term for each participant, representing the individ-
ual differences in the rates at which they read.?
We evaluated the effect of adding a factor to a
model by comparing the likelihoods of the mod-
els with and without that factor. If a %2 test on the

30ther random factors that are appropriate for our anal-
yses are word and sentence; however, due to the large num-
ber of instances for these factors (given that the Dundee cor-
pus contains 51,502 tokens), we were not able to include
them: the model fitting algorithm we used (implemented in
the R package 1me4) does not converge for such large models.



Factor Coefficient
Intercept —.011
Word Length 264
Launch Distance .109
Landing Position .612
Word Frequency —.010
Reading Time of Last Word 151

Table 1: Coefficients of the baseline LME model
for total reading time

likelihood ratio is significant, then this indicates
that the new factor significantly improves model
fit. We also experimented with adding random
slopes for participant to the model (in addition to
the random intercept); however, this either led to
non-convergence of the model fitting procedure, or
failed to result in an increase in model fit accord-
ing to the likelihood ratio test. Therefore, all mod-
els reported in the rest of this paper contain ran-
dom intercept of participants as the sole random
factor.

Rather than model raw reading times, we model
times on the log scale. This is desirable for a
number of reasons. Firstly, the raw reading times
tend to have a skew distribution and taking logs
produces something closer to normal, which is
preferable for modeling. Secondly, the regres-
sion equation makes more sense on the log scale
as the contribution of each term to raw reading
time is multiplicative rather than additive. That is,
log(t) = ¥,; Bix; implies t = [];¢P#. In particular,
the intercept term for each participant now repre-
sents a multiplicative factor by which that partici-
pant is slower or faster.

5 Results

We computed separate mixed effects models for
three dependent variables, namely first fixation du-
ration, first pass duration, and total reading time.
We report results for total times throughout, as
the results of the other two dependent variables
are broadly similar. Our strategy was to first con-
struct a baseline model of low-level factors influ-
encing reading time, and then to take the resid-
uals from that model as the dependent variable
in subsequent analyses. In this way we removed
the effects of low-level factors before investigating
the factors associated with syntactic and semantic
constraint. This avoids problems with collinear-
ity between low-level factors and the factors we
are interested in (e.g., trigram probability is highly
correlated with word frequency). The baseline
model contained the factors word length, word fre-
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Model Composition Coefficient
$SS Additive —.03820***
Multiplicative ~ —.00895***
Additive —.02500%**
LDA " Multiplicative  —.00262%*

Table 2: Coefficients of LME models including
simple semantic space (SSS) or Latent Dirichlet
Allocation (LDA) as factors; ***p < .001

quency, launch distance, landing position, and the
reading time for the last fixated word, and its pa-
rameter estimates are given in Table 1. To further
reduce collinearity, we also centered all fixed fac-
tors, both in the baseline model, and in the models
fitted on the residuals that we report in the follow-
ing. Note that some intercorrelations remain be-
tween the factors, which we will discuss at the end
of Section 5.

Before investigating whether an integrated
model of semantic and syntactic constraint im-
proves the goodness of fit over the baseline, we ex-
amined the influence of semantic constraint alone.
This was necessary as compositional models have
not been previously used to model processing
difficulty.  Besides, replicating Pynte et al.’s
(2008) finding, we were also interested in assess-
ing whether the underlying semantic representa-
tion (simple semantic space or LDA) and com-
position function (additive versus multiplicative)
modulate reading times differentially.

We built an LME model that predicted the resid-
ual reading times of the baseline model using the
similarity scores from our composition models as
factors. We then carried out a % test on the like-
lihood ratio of a model only containing the ran-
dom factor and the intercept, and a model also
containing the semantic factor (cosine similarity).
The addition of the semantic factor significantly
improves model fit for both the simple semantic
space and LDA. This result is observed for both
additive and multiplicative composition functions.
Our results are summarized in Table 2 which re-
ports the coefficients of the four LME models fit-
ted against the residuals of the baseline model, to-
gether with the p-values of the x? test.

Before evaluating our integrated surprisal mea-
sure, we evaluated its components individually in
order to tease their contributions apart. For ex-
ample, it may be the case that syntactic surprisal
is an overwhelmingly better predictor of reading
time than semantic surprisal, however we would
not be able to detect this by simply adding a factor
based on Equation (9) to the baseline model. The



Factor SSS Coef LDA Coef

—Tog(p) 00760 00760
< —log(A) 03810% 00622
T log(h+(1—2)22) 00953 00943
= —log(A) 011107 —.00033
S log(A+(1—-2)E) 00882 00133

Table 3: Coefficients of nested LME models with
the components of SSS or LDA surprisal as fac-
tors; only the coefficient of the additional factor at
each step are shown

integrated surprisal measure can be written as:

§ = —log(Ap1+(1—1)p2) (10)
Where p» is the incremental parser probability and
p1 is the product of the semantic component, A,
and the trigram probability, p. This can be broken
down into the sum of two terms:

$= ~log(p1) ~log(A+ (1 -3)7
1

) an

Since the first term, —log(p1) is itself a product it
can also be broken down further:
S=

—log<p>—logm)flog(wlfx)%) (12)

Thus, to evaluate the contribution of the three
components to the integrated surprisal measure we
fitted nested LME models, i.e., we entered these
terms one at a time into a mixed effects model
and tested the significance of the improvement in
model fit for each additional term.

We again start with an LME model that only
contains the random factor and the intercept, with
the residuals of the baseline models as the depen-
dent variable. Considering the trigram model first,
we find that adding this factor to the model gives a
significant improvement in fit. Also adding the se-
mantic component (— log(A)) improves fit further,
both for additive and multiplicative composition
functions using a simple semantic space. Finally,
the addition of the parser probabilities (log(A +
(1—=2) %)) again improves model fit significantly.
As far as LDA is concerned, the additive model
significantly improves model fit, whereas the mul-
tiplicative one does not. These results mirror
the findings of Mitchell and Lapata (2009), who
report that a multiplicative composition function
produced the lowest perplexity for the simple se-
mantic space model, whereas an additive function
gave the best perplexity for the LDA space. Ta-
ble 3 lists the coefficients for the nested models for
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Model Composition  Coefficient
3SS Additive .00804***
Multiplicative ~ .00819***
Additive .00817***
LDA " Multiplicative .00640%

Table 4: Coefficients of LME models with inte-
grated surprisal measure (based on SSS or LDA)
as factor

all four variants of our semantic constraint mea-
sure.

Finally, we built a separate LME model where
we added the integrated surprisal measure (see
Equation (9)) to the model only containing the ran-
dom factor and the intercept (see Table 4). We
did this separately for all four versions of the in-
tegrated surprisal measure (SSS, LDA; additive,
multiplicative). We find that model fit improved
significantly all versions of integrated surprisal.

One technical issue that remains to be discussed
is collinearity, i.e., intercorrelations between the
factors in a model. The presence of collinearity
is problematic, as it can render the model fitting
procedure unstable; it can also affect the signifi-
cance of individual factors. As mentioned in Sec-
tion 4 we used two techniques to reduce collinear-
ity: residualizing and centering. Table 5 gives
an overview of the correlation coefficients for all
pairs of factors. It becomes clear that collinear-
ity has mostly been removed; there is a remaining
relationship between word length and word fre-
quency, which is expected as shorter words tend to
be more frequent. This correlation is not a prob-
lem for our analysis, as it is confined to the base-
line model. Furthermore, word frequency and tri-
gram probability are highly correlated. Again this
is expected, given that the frequencies of unigrams
and higher-level n-grams tend to be related. This
correlation is taken care of by residualizing, which
isolates the two factors: word frequency is part
of the baseline model, while trigram probability is
part of the separate models that we fit on the resid-
uals. All other correlations are small (with coeffi-
cients of .27 or less), with one exception: there is
a high correlation between the —log(A) term and
the log(A+ (1 — k)%) term in the multiplicative
LDA model. This collinearity issue may explain
the absence of a significant improvement in model
fit when these two terms are added to the baseline
(see Table 3).



Factor Len Freq —1(p) —1(A)
Frequency -.310
—log(p) .230 —.700
75 —log(A) 016 —.120 .025
A< log(h+(1 —A)%2) 024 .036 —.270 .065
nZ —log(A) —.015—.110 .035
»nS log(A+(1 —k)%) .020 .028 —.260 .160
<z —log(A) —.024 —.130 .046
a< log(A+(1 —X)%) .005 .014 —.250 .030
<= —log(A) —.120 .006 —.046
55 log(A+(1—2)22)—.089 —.005 —.180 740

Table 5: Intercorrelations between model factors

6 Discussion

In this paper we investigated the contributions of
syntactic and semantic constraint in modeling pro-
cessing difficulty. Our work departs from previ-
ous approaches in that we propose a single mea-
sure which integrates syntactic and semantic fac-
tors. Evaluation on an eye-tracking corpus shows
that our measure predicts reading time better than
a baseline model that captures low-level factors
in reading (word length, landing position, etc.).
Crucially, we were able to show that the semantic
component of our measure improves reading time
predictions over and above a model that includes
syntactic measures (based on a trigram model and
incremental parser). This means that semantic
costs are a significant predictor of reading time in
addition to the well-known syntactic surprisal.

An open issue is whether a single, integrated
measure (as evaluated in Table 4) fits the eye-
movement data significantly better than separate
measures for trigram, syntactic, and semantic sur-
prisal (as evaluated in Table 3. However, we are
not able to investigate this hypothesis: our ap-
proach to testing the significance of factors re-
quires nested models; the log-likelihood test (see
Section 4) is only able to establish whether adding
a factor to a model improves its fit; it cannot com-
pare models with disjunct sets of factors (such as
a model containing the integrated surprisal mea-
sure and one containing the three separate ones).
However, we would argue that a single, integrated
measure that captures human predictive process-
ing is preferable over a collection of separate mea-
sures. It is conceptually simpler (as it is more par-
simonious), and is also easier to use in applica-
tions (such as readability prediction). Finally, an
integrated measure requires less parameters; our
definition of surprisal in 12 is simply the sum of
the trigram, syntactic, and semantic components.

An LME model containing separate factors, on the
other hand, requires a coefficient for each of them,
and thus has more parameters.

In evaluating our model, we adopted a broad
coverage approach using the reading time data
from a naturalistic corpus rather than artificially
constructed experimental materials. In doing so,
we were able to compare different syntactic and
semantic costs on the same footing. Previous
analyses of semantic constraint have been con-
ducted on different eye-tracking corpora (Dundee
and Embra Corpus) and on different languages
(English, French). Moreover, comparisons of the
individual contributions of syntactic and semantic
factors were generally absent from the literature.
Our analysis showed that both of these factors can
be captured by our integrated surprisal measure
which is uniformly probabilistic and thus prefer-
able to modeling semantic and syntactic costs dis-
jointly using a mixture of probabilistic and non-
probabilistic measures.

An interesting question is which aspects of se-
mantics our model is able to capture, i.e., why
does the combination of LSA or LDA representa-
tions with an incremental parser yield a better fit of
the behavioral data. In the psycholinguistic liter-
ature, various types of semantic information have
been investigated: lexical semantics (word senses,
selectional restrictions, thematic roles), senten-
tial semantics (scope, binding), and discourse se-
mantics (coreference and coherence); see Keller
(2010) of a detailed discussion. We conjecture that
our model is mainly capturing lexical semantics
(through the vector space representation of words)
and sentential semantics (through the multiplica-
tion or addition of words). However, discourse
coreference effects (such as the ones reported by
Altmann and Steedman (1988) and much subse-
quent work) are probably not amenable to a treat-
ment in terms of vector space semantics; an ex-
plicit representation of discourse entities and co-
reference relations is required (see Dubey 2010
for a model of human sentence processing that can
handle coreference).

A key objective for future work will be to in-
vestigate models that integrate semantic constraint
with syntactic predictions more tightly. For ex-
ample, we could envisage a parser that uses se-
mantic representations to guide its search, e.g., by
pruning syntactic analyses that have a low seman-
tic probability. At the same time, the semantic
model should have access to syntactic informa-
tion, i.e., the composition of word representations
should take their syntactic relationships into ac-
count, rather than just linear order.
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Abstract

Once released, treebanks tend to remain
unchanged despite any shortcomings in
their depth of linguistic analysis or cover-
age of specific phenomena. Instead, sepa-
rate resources are created to address such
problems. In this paper we show how to
improve the quality of a treebank, by in-
tegrating resources and implementing im-
proved analyses for specific constructions.

We demonstrate this rebanking process
by creating an updated version of CCG-
bank that includes the predicate-argument
structure of both verbs and nouns, base-
NP brackets, verb-particle constructions,
and restrictive and non-restrictive nominal
modifiers; and evaluate the impact of these
changes on a statistical parser.

1 Introduction

Progress in natural language processing relies on
direct comparison on shared data, discouraging
improvements to the evaluation data. This means
that we often spend years competing to reproduce
partially incorrect annotations. It also encourages
us to approach related problems as discrete tasks,
when a new data set that adds deeper information
establishes a new incompatible evaluation.

Direct comparison has been central to progress
in statistical parsing, but it has also caused prob-
lems. Treebanking is a difficult engineering task:
coverage, cost, consistency and granularity are all
competing concerns that must be balanced against
each other when the annotation scheme is devel-
oped. The difficulty of the task means that we
ought to view treebanking as an ongoing process
akin to grammar development, such as the many
years of work on the ERG (Flickinger, 2000).

This paper demonstrates how a treebank can be
rebanked to incorporate novel analyses and infor-

u
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mation from existing resources. We chose to work
on CCGbank (Hockenmaier and Steedman, 2007),
a Combinatory Categorial Grammar (Steedman,
2000) treebank acquired from the Penn Treebank
(Marcus et al., 1993). This work is equally ap-
plicable to the corpora described by Miyao et al.
(2004), Shen et al. (2008) or Cahill et al. (2008).

Our first changes integrate four previously sug-
gested improvements to CCGbank. We then de-
scribe a novel CCG analysis of NP predicate-
argument structure, which we implement using
NomBank (Meyers et al., 2004). Our analysis al-
lows the distinction between core and peripheral
arguments to be represented for predicate nouns.

With this distinction, an entailment recognition
system could recognise that Google’s acquisition
of YouTube entailed Google acquired YouTube, be-
cause equivalent predicate-argument structures are
built for both. Our analysis also recovers non-
local dependencies mediated by nominal predi-
cates; for instance, Google is the agent of acquire
in Google’s decision to acquire YouTube.

The rebanked corpus extends CCGbank with:

NP brackets from Vadas and Curran (2008);
Restored and normalised punctuation;
Propbank-derived verb subcategorisation;
Verb particle structure drawn from Propbank;
Restrictive and non-restrictive adnominals;

Reanalyses to promote better head-finding;

N A w N

Nombank-derived noun subcategorisation.

Together, these changes modify 30% of the la-
belled dependencies in CCGbank, demonstrating
how multiple resources can be brought together in
a single, richly annotated corpus. We then train
and evaluate a parser for these changes, to investi-
gate their impact on the accuracy of a state-of-the-
art statistical CCG parser.

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 207-215,
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2 Background and motivation

Formalisms like HPSG (Pollard and Sag, 1994),
LFG (Kaplan and Bresnan, 1982), and CCG (Steed-
man, 2000) are linguistically motivated in the
sense that they attempt to explain and predict
the limited variation found in the grammars of
natural languages. They also attempt to spec-
ify how grammars construct semantic representa-
tions from surface strings, which is why they are
sometimes referred to as deep grammars. Anal-
yses produced by these formalisms can be more
detailed than those produced by skeletal phrase-
structure parsers, because they produce fully spec-
ified predicate-argument structures.

Unfortunately, statistical parsers do not take ad-
vantage of this potential detail. Statistical parsers
induce their grammars from corpora, and the
corpora for linguistically motivated formalisms
currently do not contain high quality predicate-
argument annotation, because they were derived
from the Penn Treebank (PTB Marcus et al., 1993).
Manually written grammars for these formalisms,
such as the ERG HPSG grammar (Flickinger, 2000)
and the XLE LFG grammar (Butt et al., 2006)
produce far more detailed and linguistically cor-
rect analyses than any English statistical parser,
due to the comparatively coarse-grained annota-
tion schemes of the corpora statistical parsers are
trained on. While rule-based parsers use gram-
mars that are carefully engineered (e.g. Oepen
et al., 2004), and can be updated to reflect the best
linguistic analyses, statistical parsers have so far
had to take what they are given.

What we suggest in this paper is that a tree-
bank’s grammar need not last its lifetime. For a
start, there have been many annotations of the PTB
that add much of the extra information needed to
produce very high quality analyses for a linguis-
tically motivated grammar. There are also other
transformations which can be made with no addi-
tional information. That is, sometimes the existing
trees allow transformation rules to be written that
improve the quality of the grammar.

Linguistic theories are constantly changing,
which means that there is a substantial lag between
what we (think we) understand of grammar and
the annotations in our corpora. The grammar en-
gineering process we describe, which we dub re-
banking, is intended to reduce this gap, tightening
the feedback loop between formal and computa-
tional linguistics.
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2.1 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG; Steed-
man, 2000) is a lexicalised grammar, which means
that all grammatical dependencies are specified
in the lexical entries and that the production of
derivations is governed by a small set of rules.

Lexical categories are either atomic (S, NP,
PP, N), or a functor consisting of a result, direc-
tional slash, and argument. For instance, in might
head a PP-typed constituent with one NP-typed
argument, written as PP/ NP.

A category can have a functor as its result, so
that a word can have a complex valency structure.
For instance, a verb phrase is represented by the
category S\NP: it is a function from a leftward
NP (a subject) to a sentence. A transitive verb
requires an object to become a verb phrase, pro-
ducing the category (S\NP)/NP.

A CCG grammar consists of a small number of
schematic rules, called combinators. CCG extends
the basic application rules of pure categorial gram-
mar with (generalised) composition rules and type
raising. The most common rules are:

XY Y = X )
Y X\VY = X

X)Y Y/Z = X/Z B
Y\Z X\Y = X\Z «B
Y/Z X\Y = X/Z (B

CCGbank (Hockenmaier and Steedman, 2007)
extends this compact set of combinatory rules with
a set of type-changing rules, designed to strike a
better balance between sparsity in the category set
and ambiguity in the grammar. We mark type-
changing rules TC in our derivations.

In wide-coverage descriptions, categories are
generally modelled as typed-feature structures
(Shieber, 1986), rather than atomic symbols. This
allows the grammar to include a notion of headed-
ness, and to unify under-specified features.

We occasionally must refer to these additional
details, for which we employ the following no-
tation. Features are annotated in square-brackets,
e.g. S[dcl]. Head-finding indices are annotated on
categories in subscripts, e.g. (NP,\NP,)/NP,.
The index of the word the category is assigned to
is left implicit. We will sometimes also annotate
derivations with the heads of categories as they are
being built, to help the reader keep track of what
lexemes have been bound to which categories.



3 Combining CCGbank corrections

There have been a few papers describing correc-
tions to CCGbank. We bring these corrections to-
gether for the first time, before building on them
with our further changes.

3.1 Compound noun brackets

Compound noun phrases can nest inside each
other, creating bracketing ambiguities:

(1) (crude oil) prices
(2) crude (oil prices)

The structure of such compound noun phrases
is left underspecified in the Penn Treebank (PTB),
because the annotation procedure involved stitch-
ing together partial parses produced by the Fid-
ditch parser (Hindle, 1983), which produced flat
brackets for these constructions. The bracketing
decision was also a source of annotator disagree-
ment (Bies et al., 1995).

When Hockenmaier and Steedman (2002) went
to acquire a CCG treebank from the PTB, this posed
a problem. There is no equivalent way to leave
these structures under-specified in CCG, because
derivations must be binary branching. They there-
fore employed a simple heuristic: assume all such
structures branch to the right. Under this analysis,
crude oil is not a constituent, producing an incor-
rect analysis as in (1).

Vadas and Curran (2007) addressed this by
manually annotating all of the ambiguous noun
phrases in the PTB, and went on to use this infor-
mation to correct 20,409 dependencies (1.95%) in
CCGbank (Vadas and Curran, 2008). Our changes
build on this corrected corpus.

3.2 Punctuation corrections

The syntactic analysis of punctuation is noto-
riously difficult, and punctuation is not always
treated consistently in the Penn Treebank (Bies
et al., 1995). Hockenmaier (2003) determined
that quotation marks were particularly problem-
atic, and therefore removed them from CCGbank
altogether. We use the process described by Tse
and Curran (2008) to restore the quotation marks
and shift commas so that they always attach to the
constituent to their left. This allows a grammar
rule to be removed, preventing a great deal of spu-
rious ambiguity and improving the speed of the
C&C parser (Clark and Curran, 2007) by 37%.
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3.3 Verb predicate-argument corrections

Semantic role descriptions generally recognise a
distinction between core arguments, whose role
comes from a set specific to the predicate, and pe-
ripheral arguments, who have a role drawn from a
small, generic set. This distinction is represented
in the surface syntax in CCG, because the category
of a verb must specify its argument structure. In
(3) as a director is annotated as a complement; in
(4) it is an adjunct:

(3) He joined as a director
NP (S\NP)/PP PP
(4) He joined as a director

NP S\NP (S\NP)\(S\NP)

CCGbank contains noisy complement and ad-
junct distinctions, because they were drawn from
PTB function labels which imperfectly represent
the distinction. In our previous work we used
Propbank (Palmer et al., 2005) to convert 1,543
complements to adjuncts and 13,256 adjuncts to
complements (Honnibal and Curran, 2007). If a
constituent such as as a director received an ad-
junct category, but was labelled as a core argu-
ment in Propbank, we changed it to a comple-
ment, using its head’s part-of-speech tag to infer
its constituent type. We performed the equivalent
transformation to ensure all peripheral arguments
of verbs were analysed as adjuncts.

3.4 Verb-particle constructions

Propbank also offers reliable annotation of verb-
particle constructions. This was not available in
the PTB, so Hockenmaier and Steedman (2007)
annotated all intransitive prepositions as adjuncts:

(5) He woke up
NP S\NP (S\NP)\(S\NP)

We follow Constable and Curran (2009) in ex-
ploiting the Propbank annotations to add verb-
particle distinctions to CCGbank, by introducing a
new atomic category PT for particles, and chang-
ing their status from adjuncts to complements:

(6) He woke up
NP (S\NP)/PT PT

This analysis could be improved by adding extra
head-finding logic to the verbal category, to recog-
nise the multi-word expression as the head.



Rome ’s

gift

of peace to Europe

NP (NP/(N/PP))\NP (N/PP)/PP)/PP PP/NP NP PP/NP NP

N/(N/PP)

>

rpP PP

(N/PP)/PP

N/PP

NP

Figure 1: Deverbal noun predicate with agent, patient and beneficiary arguments.

4 Noun predicate-argument structure

Many common nouns in English can receive
optional complements and adjuncts, realised by
prepositional phrases, genitive determiners, com-
pound nouns, relative clauses, and for some nouns,
complementised clauses. For example, deverbal
nouns generally have argument structures similar
to the verbs they are derived from:

(7) Rome’s destruction of Carthage
(8) Rome destroyed Carthage

The semantic roles of Rome and Carthage are the
same in (7) and (8), but the noun cannot case-
mark them directly, so of and the genitive clitic
are pressed into service. The semantic role de-
pends on both the predicate and subcategorisation
frame:

(9) Carthage’s;, destructionp;eq.
(10) Rome’s, destructionp,¢q. of Carthage,,
(11) Rome’s, giftp eq.

(12) Rome’s, giftp,eq. of peacey, to Europey,

In (9), the genitive introduces the patient, but
when the patient is supplied by the PP, it instead
introduces the agent. The mapping differs for gift,
where the genitive introduces the agent.

Peripheral arguments, which supply generically
available modifiers of time, place, cause, quality
etc, can be realised by pre- and post-modifiers:

(13) The portrait in the Louvre
(14) The fine portrait
(15) The Louvre’s portraits

These are distinct from core arguments because
their interpretation does not depend on the pred-
icate. The ambiguity can be seen in an NP such as
The nobleman’s portrait, where the genitive could
mark possession (peripheral), or it could introduce
the patient (core). The distinction between core
and peripheral arguments is particularly difficult
for compound nouns, as pre-modification is very
productive in English.
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4.1 CCG analysis

We designed our analysis for transparency be-
tween the syntax and the predicate-argument
structure, by stipulating that all and only the core
arguments should be syntactic arguments of the
predicate’s category. This is fairly straightforward
for arguments introduced by prepositions:

destruction of Carthage
N/PP, PP,/NP, NP
>
PP Carthage
>

Ndestruction

In our analysis, the head of of Carthage is
Carthage, as of is assumed to be a semantically
transparent case-marker. We apply this analysis
to prepositional phrases that provide arguments to
verbs as well — a departure from CCGbank.

Prepositional phrases that introduce peripheral
arguments are analysed as syntactic adjuncts:

The war in 149 B.C.
NP,/N, N (N,\N,)/NP, NP
>
(Ny\Ny)in
Nwar
NPyar -

Adjunct prepositional phrases remain headed by
the preposition, as it is the preposition’s semantics
that determines whether they function as temporal,
causal, spatial etc. arguments. We follow Hocken-
maier and Steedman (2007) in our analysis of gen-
itives which realise peripheral arguments, such as
the literal possessive:

/

Rome S

NP

aqueducts
N

(NPy/Ny)\NP,
(NPy/Ny)’s

NP, aqueducts
Arguments introduced by possessives are a lit-
tle trickier, because the genitive also functions as
a determiner. We achieve this by having the noun
subcategorise for the argument, which we type
PP, and having the possessive subcategorise for
the unsaturated noun to ultimately produce an NP:

>




!

Google S decision

to buy YouTube

NP (NPy/(Ny/PP;)y)\NP; (N/PPy)/(S[to]\NPy). (S[to],\NP:),/(S[b],\NP:), (S[b]\NP,)/NP, NP

pr/(Ny/PPGooglc)y

STI\NP,

>B

NPdecision/(S[to}y\NPGoogle)y

S[to]buy\NPy

NP

Figure 2: The coindexing on decision’s category allows the hard-to-reach agent of buy to be recovered. A non-normal form

derivation is shown so that instantiated variables can be seen.

Carthage 's destruction
NP (NP,/(N,/PP,),)\NP, N/PP,
(NPy/(Ny/PPcarthage)y)'s
NPcstruction i

In this analysis, we regard the genitive clitic as a
case-marker that performs a movement operation
roughly analogous to WH-extraction. Its category
is therefore similar to the one used in object ex-
traction, (N\N)/(S/NP). Figure 1 shows an ex-
ample with multiple core arguments.

This analysis allows recovery of verbal argu-
ments of nominalised raising and control verbs, a
construction which both Gildea and Hockenmaier
(2003) and Boxwell and White (2008) identify as a
problem case when aligning Propbank and CCG-
bank. Our analysis accommodates this construc-
tion effortlessly, as shown in Figure 2. The cate-
gory assigned to decision can coindex the missing
NP argument of buy with its own PP argument.
When that argument is supplied by the genitive,
it is also supplied to the verb, buy, filling its de-
pendency with its agent, Google. This argument
would be quite difficult to recover using a shallow
syntactic analysis, as the path would be quite long.
There are 494 such verb arguments mediated by
nominal predicates in Sections 02-21.

These analyses allow us to draw comple-
ment/adjunct distinctions for nominal predicates,
so that the surface syntax takes us very close to
a full predicate-argument analysis. The only in-
formation we are not specifying in the syntac-
tic analysis are the role labels assigned to each
of the syntactic arguments. We could go further
and express these labels in the syntax, produc-
ing categories like (N/PP{0},)/PP{1}, and
(N/PP{1},)/PP{0}., but we expect that this
would cause sparse data problems given the lim-
ited size of the corpus. This experiment would be
an interesting subject of future work.

The only local core arguments that we do not
annotate as syntactic complements are compound
nouns, such as decision makers. We avoided these
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arguments because of the productivity of noun-
noun compounding in English, which makes these
argument structures very difficult to recover.

We currently do not have an analysis that allows
support verbs to supply noun arguments, so we
do not recover any of the long-range dependency
structures described by Meyers et al. (2004).

4.2 Implementation and statistics

Our analysis requires semantic role labels for each
argument of the nominal predicates in the Penn
Treebank — precisely what NomBank (Meyers
et al., 2004) provides. We can therefore draw our
distinctions using the process described in our pre-
vious work, Honnibal and Curran (2007).

NomBank follows the same format as Prop-
bank, so the procedure is exactly the same. First,
we align CCGbank and the Penn Treebank, and
produce a version of NomBank that refers to CCG-
bank nodes. We then assume that any preposi-
tional phrase or genitive determiner annotated as
a core argument in NomBank should be analysed
as a complement, while peripheral arguments and
adnominals that receive no semantic role label at
all are analysed as adjuncts.

We converted 34,345 adnominal prepositional
phrases to complements, leaving 18,919 as ad-
juncts. The most common preposition converted
was of, which was labelled as a core argument
99.1% of the 19,283 times it occurred as an ad-
nominal. The most common adjunct preposition
was in, which realised a peripheral argument in
59.1% of its 7,725 occurrences.

The frequent prepositions were more skewed to-
wards core arguments. 73% of the occurrences of
the 5 most frequent prepositions (of, in, for, on and
to) realised peripheral arguments, compared with
53% for other prepositions.

Core arguments were also more common than
peripheral arguments for possessives. There are
20,250 possessives in the corpus, of which 75%
were converted to complements. The percentage
was similar for both personal pronouns (such as
his) and genitive phrases (such as the boy’s).



S Adding restrictivity distinctions

Adnominals can have either a restrictive or a non-
restrictive (appositional) interpretation, determin-
ing the potential reference of the noun phrase
it modifies. This ambiguity manifests itself in
whether prepositional phrases, relative clauses and
other adnominals are analysed as modifiers of
either N or NP, yielding a restrictive or non-
restrictive interpretation respectively.

In CCGbank, all adnominals attach to NPs,
producing non-restrictive interpretations.  We
therefore move restrictive adnominals to N nodes:

All  staff on
NP/N N (N\N)/NP N/N N

casual contracts

N >
TC
NP
>
N\N
N
>

NP

This corrects the previous interpretation, which
stated that there were no permanent staff.

5.1 Implementation and statistics

The Wall Street Journal’s style guide mandates
that this attachment ambiguity be managed by
bracketing non-restrictive relatives with commas
(Martin, 2002, p. 82), as in casual staff, who have
no health insurance, support it. We thus use punc-
tuation to make the attachment decision.

All NP\ NP modifiers that are not preceded by
punctuation were moved to the lowest N node
possible and relabelled N\ N. We select the low-
est (i.e. closest to leaf) N node because some ad-
jectives, such as present or former, require scope
over the qualified noun, making it safer to attach
the adnominal first.

Some adnominals in CCGbank are created by
the S\ NP — NP\ NP unary type-changing rule,
which transforms reduced relative clauses. We in-
troduce a S\NP — N\N in its place, and add a
binary rule cued by punctuation to handle the rela-
tively rare non-restrictive reduced relative clauses.

The rebanked corpus contains 34,134 N\ N re-
strictive modifiers, and 9,784 non-restrictive mod-
ifiers. Most (61%) of the non-restrictive modifiers
were relative clauses.
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6 Reanalysing partitive constructions

True partitive constructions consist of a quantifier
(16), a cardinal (17) or demonstrative (18) applied
to an NP via of. There are similar constructions
headed by common nouns, as in (19):

(16) Some of us

(17) Four of our members
(18) Those of us who smoke
(19) A glass of wine

We regard the common noun partitives as headed
by the initial noun, such as glass, because this
noun usually controls the number agreement. We
therefore analyse these cases as nouns with prepo-
sitional arguments. In (19), glass would be as-
signed the category N /PP.

True partitive constructions are different, how-
ever: they are always headed by the head of the NP
supplied by of. The construction is quite common,
because it provides a way to quantify or apply two
different determiners.

Partitive constructions are not given special
treatment in the PTB, and were analysed as noun
phrases with a PP modifier in CCGbank:

Four of our members
NP (NP,\NP,)/NP, NP,/N, N
NPrembers
(N P y\N P y)of
NProur

This analysis does not yield the correct seman-
tics, and may even hurt parser performance, be-
cause the head of the phrase is incorrectly as-
signed. We correct this with the following anal-
ysis, which takes the head from the NP argument
of the PP:

Four Of our memb €ers
NP,/PP, PP,/NP, NP,/N, N
NP pembers
PPrembers N
NPpembers

The cardinal is given the category NP /PP,
in analogy with the standard determiner category
which is a function from a noun to a noun phrase
(NP/N).



Corpus [L.DEPS U.DEPS CATS
+NP brackets 97.2 97.7 985
+Quotes 97.2 97.7 985
+Propbank 93.0 949  96.7
+Particles 92.5 948 96.2
+Restrictivity 79.5 944 90.6
+Part. Gen. 76.1 90.1 904
+NP Pred-Arg 70.6 83.3 848

Table 1: Effect of the changes on CCGbank, by percentage
of dependencies and categories left unchanged in Section 00.

6.1 Implementation and Statistics

We detect this construction by identifying NPs
post-modified by an of PP. The NP’s head must
either have the POS tag CD, or be one of the follow-
ing words, determined through manual inspection
of Sections 02-21:

all, another, average, both, each, another, any,
anything, both, certain, each, either, enough, few,
little, most, much, neither, nothing, other, part,
plenty, several, some, something, that, those.
Having identified the construction, we simply rela-
bel the NP to NP/PP, and the NP\ NP adnom-
inal to PP. We identified and reanalysed 3,010

partitive genitives in CCGbank.

7 Similarity to CCGbank

Table 1 shows the percentage of labelled depen-
dencies (L. Deps), unlabelled dependencies (U.
Deps) and lexical categories (Cats) that remained
the same after each set of changes.

A labelled dependency is a 4-tuple consisting of
the head, the argument, the lexical category of the
head, and the argument slot that the dependency
fills. For instance, the subject fills slot 1 and the
object fills slot 2 on the transitive verb category
(S\NP)/NP. There are more changes to labelled
dependencies than lexical categories because one
lexical category change alters all of the dependen-
cies headed by a predicate, as they all depend on
its lexical category. Unlabelled dependencies con-
sist of only the head and argument.

The biggest changes were those described in
Sections 4 and 5. After the addition of nominal
predicate-argument structure, over 50% of the la-
belled dependencies were changed. Many of these
changes involved changing an adjunct to a com-
plement, which affects the unlabelled dependen-
cies because the head and argument are inverted.

8 Lexicon statistics

Our changes make the grammar sensitive to new
distinctions, which increases the number of lexi-
cal categories required. Table 2 shows the number
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Corpus [ CATS Cats > 10 CATS/WORD
CCGbank 1286 425 8.6
+NP brackets 1298 429 8.9
+Quotes 1300 431 8.8
+Propbank 1342 433 8.9
+Particles 1405 458 9.1
+Restrictivity | 1447 471 9.3
+Part. Gen. 1455 474 9.5
+NP Pred-Arg | 1574 511 10.1

Table 2: Effect of the changes on the size of the lexicon.

of lexical categories (Cats), the number of lexical
categories that occur at least 10 times in Sections
02-21 (Cats > 10), and the average number of cat-
egories available for assignment to each token in
Section 00 (Cats/Word). We followed Clark and
Curran’s (2007) process to determine the set of
categories a word could receive, which includes
a part-of-speech back-off for infrequent words.

The lexicon steadily grew with each set of
changes, because each added information to the
corpus. The addition of quotes only added two cat-
egories (LQU and RQU), and the addition of the
quote tokens slightly decreased the average cate-
gories per word. The Propbank and verb-particle
changes both introduced rare categories for com-
plicated, infrequent argument structures.

The NP predicate-argument structure modifica-
tions added the most information. Head nouns
were previously guaranteed the category N in
CCGbank; possessive clitics always received the
category (NP/N)\NP; and possessive personal
pronouns were always NP/N. Our changes in-
troduce new categories for these frequent tokens,
which meant a substantial increase in the number
of possible categories per word.

9 Parsing Evaluation

Some of the changes we have made correct prob-
lems that have caused the performance of a sta-
tistical CCG parser to be over-estimated. Other
changes introduce new distinctions, which a parser
may or may not find difficult to reproduce. To in-
vestigate these issues, we trained and evaluated the
C&C CCG parser on our rebanked corpora.

The experiments were set up as follows. We
used the highest scoring configuration described
by Clark and Curran (2007), the hybrid depen-
dency model, using gold-standard POS tags. We
followed Clark and Curran in excluding sentences
that could not be parsed from the evaluation. All
models obtained similar coverage, between 99.0
and 99.3%. The parser was evaluated using depen-



wsJ 00 wsSJ 23
Corpus LF UF CAT LF UF CAT
CCGbank 872 929 941|877 93.0 944
+NP brackets | 86.9 92.8 93.8 |87.3 92.8 939
+Quotes 86.8 92.7 939 |87.1 92.6 94.0
+Propbank 86.7 92.6 94.0|87.0 92.6 94.0
+Particles 86.4 925 93.8|86.8 92.6 93.8
All Rebanking | 84.2 91.2 919 84.7 91.3 922

Table 3: Parser evaluation on the rebanked corpora.

Corpus Rebanked CCGbank
LF UF LF UF
+NP brackets | 86.45 92.36 | 86.52 92.35
+Quotes 86.57 92.40 | 86.52 92.35
+Propbank 87.76 92.96 | 87.74 92.99
+Particles 87.50 92.77 | 87.67 92.93
All Rebanking | 87.23 92.71 | 88.02 93.51

Table 4: Comparison of parsers trained on CCGbank and
the rebanked corpora, using dependencies that occur in both.

dencies generated from the gold-standard deriva-
tions (Boxwell, p.c., 2010).

Table 3 shows the accuracy of the parser on Sec-
tions 00 and 23. The parser scored slightly lower
as the NP brackets, Quotes, Propbank and Parti-
cles corrections were added. This apparent decline
in performance is at least partially an artefact of
the evaluation. CCGbank contains some depen-
dencies that are trivial to recover, because Hock-
enmaier and Steedman (2007) was forced to adopt
a strictly right-branching analysis for NP brackets.

There was a larger drop in accuracy on the
fully rebanked corpus, which included our anal-
yses of restrictivity, partitive constructions and
noun predicate-argument structure. This might
also be explained by the evaluation, as the re-
banked corpus includes much more fine-grained
distinctions. The labelled dependencies evaluation
is particularly sensitive to this, as a single category
change affects multiple dependencies. This can be
seen in the smaller gap in category accuracy.

We investigated whether the differences in per-
formance were due to the different evaluation data
by comparing the parsers’ performance against the
original parser on the dependencies they agreed
upon, to allow direct comparison. To do this, we
extracted the CCGbank intersection of each cor-
pus’s Section 00 dependencies.

Table 4 compares the labelled and unlabelled re-
call of the rebanked parsers we trained against the
CCGbank parser on these intersections. Note that
each row refers to a different intersection, so re-
sults are not comparable between rows. This com-
parison shows that the declines in accuracy seen in
Table 3 were largely confined to the corrected de-

214

pendencies. The parser’s performance remained
fairly stable on the dependencies left unchanged.
The rebanked parser performed 0.8% worse
than the CCGbank parser on the intersection de-
pendencies, suggesting that the fine-grained dis-
tinctions we introduced did cause some sparse data
problems. However, we did not change any of
the parser’s maximum entropy features or hyper-
parameters, which are tuned for CCGbank.

10 Conclusion

Research in natural language understanding is
driven by the datasets that we have available. The
most cited computational linguistics work to date
is the Penn Treebank (Marcus et al., 1993). Prop-
bank (Palmer et al., 2005) has also been very
influential since its release, and NomBank has
been used for semantic dependency parsing in the
CoNLL 2008 and 2009 shared tasks.

This paper has described how these resources
can be jointly exploited using a linguistically moti-
vated theory of syntax and semantics. The seman-
tic annotations provided by Propbank and Nom-
Bank allowed us to build a corpus that takes much
greater advantage of the semantic transparency
of a deep grammar, using careful analyses and
phenomenon-specific conversion rules.

The major areas of CCGbank’s grammar left to
be improved are the analysis of comparatives, and
the analysis of named entities. English compar-
atives are diverse and difficult to analyse. Even
the XTAG grammar (Doran et al., 1994), which
deals with the major constructions of English in
enviable detail, does not offer a full analysis of
these phenomena. Named entities are also difficult
to analyse, as many entity types obey their own
specific grammars. This is another example of a
phenomenon that could be analysed much better
in CCGbank using an existing resource, the BBN
named entity corpus.

Our rebanking has substantially improved
CCGbank, by increasing the granularity and lin-
guistic fidelity of its analyses. We achieved this
by exploiting existing resources and crafting novel
analyses. The process we have demonstrated can
be used to train a parser that returns dependencies
that abstract away as much surface syntactic vari-
ation as possible — including, now, even whether
the predicate and arguments are expressed in a
noun phrase or a full clause.

"http://clair.si.umich.edu/clair/anthology/rankings.cgi
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Abstract

In this paper we present BabelNet — a
very large, wide-coverage multilingual se-
mantic network. The resource is automat-
ically constructed by means of a method-
ology that integrates lexicographic and en-
cyclopedic knowledge from WordNet and
Wikipedia. In addition Machine Transla-
tion is also applied to enrich the resource
with lexical information for all languages.
We conduct experiments on new and ex-
isting gold-standard datasets to show the
high quality and coverage of the resource.

1 Introduction

In many research areas of Natural Language Pro-
cessing (NLP) lexical knowledge is exploited to
perform tasks effectively. These include, among
others, text summarization (Nastase, 2008),
Named Entity Recognition (Bunescu and Pagca,
2006), Question Answering (Harabagiu et al.,
2000) and text categorization (Gabrilovich and
Markovitch, 2006). Recent studies in the diffi-
cult task of Word Sense Disambiguation (Nav-
igli, 2009b, WSD) have shown the impact of the
amount and quality of lexical knowledge (Cuadros
and Rigau, 2006): richer knowledge sources can
be of great benefit to both knowledge-lean systems
(Navigli and Lapata, 2010) and supervised classi-
fiers (Ng and Lee, 1996; Yarowsky and Florian,
2002).

Various projects have been undertaken to make
lexical knowledge available in a machine read-
able format. A pioneering endeavor was Word-
Net (Fellbaum, 1998), a computational lexicon of
English based on psycholinguistic theories. Sub-
sequent projects have also tackled the significant
problem of multilinguality. These include Eu-
roWordNet (Vossen, 1998), MultiWordNet (Pianta
et al., 2002), the Multilingual Central Repository
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(Atserias et al., 2004), and many others. How-
ever, manual construction methods inherently suf-
fer from a number of drawbacks. First, maintain-
ing and updating lexical knowledge resources is
expensive and time-consuming. Second, such re-
sources are typically lexicographic, and thus con-
tain mainly concepts and only a few named enti-
ties. Third, resources for non-English languages
often have a much poorer coverage since the con-
struction effort must be repeated for every lan-
guage of interest. As a result, an obvious bias ex-
ists towards conducting research in resource-rich
languages, such as English.

A solution to these issues is to draw upon
a large-scale collaborative resource, namely
Wikipedia'. Wikipedia represents the perfect com-
plement to WordNet, as it provides multilingual
lexical knowledge of a mostly encyclopedic na-
ture. While the contribution of any individual user
might be imprecise or inaccurate, the continual in-
tervention of expert contributors in all domains re-
sults in a resource of the highest quality (Giles,
2005). But while a great deal of work has been re-
cently devoted to the automatic extraction of struc-
tured information from Wikipedia (Wu and Weld,
2007; Ponzetto and Strube, 2007; Suchanek et
al., 2008; Medelyan et al., 2009, inter alia), the
knowledge extracted is organized in a looser way
than in a computational lexicon such as WordNet.

In this paper, we make a major step towards the
vision of a wide-coverage multilingual knowledge
resource. We present a novel methodology that
produces a very large multilingual semantic net-
work: BabelNet. This resource is created by link-
ing Wikipedia to WordNet via an automatic map-
ping and by integrating lexical gaps in resource-

'http://download.wikipedia.org. We use the
English Wikipedia database dump from November 3, 2009,
which includes 3,083,466 articles. Throughout this paper, we
use Sans Serif for words, SMALL CAPS for Wikipedia pages
and CAPITALS for Wikipedia categories.
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Figure 1: An illustrative overview of BabelNet.

poor languages with the aid of Machine Transla-
tion. The result is an “encyclopedic dictionary”,
that provides concepts and named entities lexical-
ized in many languages and connected with large
amounts of semantic relations.

2 BabelNet

We encode knowledge as a labeled directed graph
G = (V,E) where V is the set of vertices — i.e.
concepts® such as balloon—and £ C V x RxV is
the set of edges connecting pairs of concepts. Each
edge is labeled with a semantic relation from R,
e.g. {is-a, part-of, ..., €}, where € denotes an un-
specified semantic relation. Importantly, each ver-
tex v € V contains a set of lexicalizations of the
concept for different languages, e.g. { balloongy,
Ballonyg, aerostatogs, . .., montgolfieregy }.

Concepts and relations in BabelNet are har-
vested from the largest available semantic lexi-
con of English, WordNet, and a wide-coverage
collaboratively edited encyclopedia, the English
Wikipedia (Section 3.1). We collect (a) from
WordNet, all available word senses (as concepts)
and all the semantic pointers between synsets (as
relations); (b) from Wikipedia, all encyclopedic
entries (i.e. pages, as concepts) and semantically
unspecified relations from hyperlinked text.

In order to provide a unified resource, we merge
the intersection of these two knowledge sources
(i.e. their concepts in common) by establishing a
mapping between Wikipedia pages and WordNet
senses (Section 3.2). This avoids duplicate con-
cepts and allows their inventories of concepts to
complement each other. Finally, to enable mul-
tilinguality, we collect the lexical realizations of
the available concepts in different languages by

>Throughout the paper, unless otherwise stated, we use

the general term concept to denote either a concept or a
named entity.

using (a) the human-generated translations pro-
vided in Wikipedia (the so-called inter-language
links), as well as (b) a machine translation sys-
tem to translate occurrences of the concepts within
sense-tagged corpora, namely SemCor (Miller et
al.,, 1993) — a corpus annotated with WordNet
senses — and Wikipedia itself (Section 3.3). We
call the resulting set of multilingual lexicalizations
of a given concept a babel synset. An overview of
BabelNet is given in Figure 1 (we label vertices
with English lexicalizations): unlabeled edges are
obtained from links in the Wikipedia pages (e.g.
BALLOON (AIRCRAFT) links to WIND), whereas
labeled ones from WordNet® (e.g. balloon) has-
part gasbag.). In this paper we restrict ourselves
to concepts lexicalized as nouns. Nonetheless, our
methodology can be applied to all parts of speech,
but in that case Wikipedia cannot be exploited,
since it mainly contains nominal entities.

3 Methodology

3.1 Knowledge Resources

WordNet. The most popular lexical knowledge
resource in the field of NLP is certainly WordNet,
a computational lexicon of the English language.
A concept in WordNet is represented as a synonym
set (called synset), i.e. the set of words that share
the same meaning. For instance, the concept wind
is expressed by the following synset:

{ wind?, air current’., current of air} },

where each word’s subscripts and superscripts in-
dicate their parts of speech (e.g. n stands for noun)

3We use in the following WordNet version 3.0. We de-
note with w, the i-th sense of a word w with part of speech
p. We use word senses to unambiguously denote the corre-
sponding synsets (e.g. plane;, for { airplane;,, aeroplaney,,
plane}l 1. Hereafter, we use word sense and synset inter-
changeably.
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and sense number, respectively. For each synset,
WordNet provides a textual definition, or gloss.
For example, the gloss of the above synset is: “air
moving from an area of high pressure to an area of
low pressure”.

Wikipedia. Our second resource, Wikipedia,
is a Web-based collaborative encyclopedia. A
Wikipedia page (henceforth, Wikipage) presents
the knowledge about a specific concept (e.g. BAL-
LOON (AIRCRAFT)) or named entity (e.g. MONT-
GOLFIER BROTHERS). The page typically con-
tains hypertext linked to other relevant Wikipages.
For instance, BALLOON (AIRCRAFT) is linked to
WIND, GAS, and so on. The title of a Wikipage
(e.g. BALLOON (AIRCRAFT)) is composed of
the lemma of the concept defined (e.g. balloon)
plus an optional label in parentheses which speci-
fies its meaning if the lemma is ambiguous (e.g.
AIRCRAFT vs. TOY). Wikipages also provide
inter-language links to their counterparts in other
languages (e.g. BALLOON (AIRCRAFT) links to
the Spanish page AEROSTATO). Finally, some
Wikipages are redirections to other pages, e.g.
the Spanish BALON AEROSTATICO redirects to
AEROSTATO.

3.2 Mapping Wikipedia to WordNet

The first phase of our methodology aims to estab-
lish links between Wikipages and WordNet senses.
We aim to acquire a mapping u such that, for each
Wikipage w, we have:

if a link can be
established,
otherwise,

s € Sensesyx(w)

p(w)

where Sensesyy(w) is the set of senses of the
lemma of w in WordNet. For example, if our map-
ping methodology linked BALLOON (AIRCRAFT)
to the corresponding WordNet sense balloon?,
we would have (BALLOON (AIRCRAFT)) = bal-
loon}.

In order to establish a mapping between the
two resources, we first identify the disambigua-
tion contexts for Wikipages (Section 3.2.1) and
WordNet senses (Section 3.2.2). Next, we inter-
sect these contexts to perform the mapping (see
Section 3.2.3).

3.2.1 Disambiguation Context of a Wikipage

Given a Wikipage w, we use the following infor-
mation as disambiguation context:
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e Sense labels: e.g. given the page BALLOON
(AIRCRAFT), the word aircraft is added to the
disambiguation context.

e Links: the titles’ lemmas of the pages linked

from the target Wikipage (i.e., outgoing links).

For instance, the links in the Wikipage BAL-

LOON (AIRCRAFT) include wind, gas, etc.

Categories: Wikipages are typically classi-
fied according to one or more categories.
For example, the Wikipage BALLOON (AIR-
CRAFT) is categorized as BALLOONS, BAL-
LOONING, etc. While many categories are
very specific and do not appear in Word-
Net (e.g., SWEDISH WRITERS or SCIEN-
TISTS WHO COMMITTED SUICIDE), we
use their syntactic heads as disambiguation con-
text (i.e. writer and scientist, respectively).

Given a Wikipage w, we define its disambiguation
context C'tz(w) as the set of words obtained from
all of the three sources above.

3.2.2 Disambiguation Context of a WordNet
Sense

Given a WordNet sense s and its synset .S, we col-
lect the following information:

e Synonymy: all synonyms of s in S. For in-
stance, given the sense airplane) and its cor-
responding synset { airplane), aeroplane},
plane) }, the words contained therein are in-
cluded in the context.
Hypernymy/Hyponymy: all synonyms in the
synsets [ such that [ is either a hypernym
(i.e., a generalization) or a hyponym (i.e., a
specialization) of S. For example, given bal-
loon?, we include the words from its hypernym
{ lighter-than-air craft! } and all its hyponyms
(e.g. { hot-air balloon? }).

Sisterhood: words from the sisters of S. A sis-
ter synset S’ is such that S and S’ have a com-
mon direct hypernym. For example, given bal-
loon?, it can be found that { balloon! } and
{ airship}, dirigible. } are sisters. Thus air-
ship and dirigible are included in the disam-
biguation context of s.

Gloss: the set of lemmas of the content words
occurring within the WordNet gloss of S.

We thus define the disambiguation context Ctx(s)
of sense s as the set of words obtained from all of
the four sources above.



3.2.3

In order to link each Wikipedia page to a WordNet
sense, we perform the following steps:

Mapping Algorithm

o Initially, our mapping p is empty, i.e. it links
each Wikipage w to e.

e For each Wikipage w whose lemma is monose-
mous both in Wikipedia and WordNet we map
w to its only WordNet sense.

e For each remaining Wikipage w for which no
mapping was previously found (i.e., u(w) = e),
we assign the most likely sense to w based on
the maximization of the conditional probabili-
ties p(s|w) over the senses s € Sensesyy(w)
(no mapping is established if a tie occurs).

To find the mapping of a Wikipage w, we need
to compute the conditional probability p(s|w) of
selecting the WordNet sense s given w. The sense
s which maximizes this probability is determined
as follows:

argmax  p(slw) = argmax
s€Senseswn(w) s

p(w) =

= argmaxp(s,w)
S

The latter formula is obtained by observing that
p(w) does not influence our maximization, as it is
a constant independent of s. As a result, determin-
ing the most appropriate sense s consists of find-
ing the sense s that maximizes the joint probability
p(s,w). We estimate p(s, w) as:

score(s,w)

p(s,w) =
>

s'€Senseswyn(w),
’LU/GSG'I’LSGSWiki (w)

)

score(s’,w')

where score(s,w) = |Ctx(s) N Ctx(w)| + 1 (we
add 1 as a smoothing factor). Thus, in our al-
gorithm we determine the best sense s by com-
puting the intersection of the disambiguation con-
texts of s and w, and normalizing by the scores
summed over all senses of w in Wikipedia and
WordNet. More details on the mapping algorithm
can be found in Ponzetto and Navigli (2010).

3.3 Translating Babel Synsets

So far we have linked English Wikipages to Word-
Net senses. Given a Wikipage w, and provided it
is mapped to a sense s (i.e., u(w) = s), we cre-
ate a babel synset S U W, where S is the WordNet
synset to which sense s belongs, and W includes:
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(1) w; (i) all its inter-language links (that is, trans-
lations of the Wikipage to other languages); (iii)
the redirections to the inter-language links found
in the Wikipedia of the target language. For in-
stance, given that u(BALLOON) = balloon!, the
corresponding babel synset is { balloongy, Bal-
lonpe, aerostatogs, baldn aerostaticogs, ...,
pallone aerostatico;; }. However, two issues
arise: first, a concept might be covered only in
one of the two resources (either WordNet or
Wikipedia), meaning that no link can be estab-
lished (e.g., FERMI GAS or gasbag! in Figure
1); second, even if covered in both resources, the
Wikipage for the concept might not provide any
translation for the language of interest (e.g., the
Catalan for BALLOON is missing in Wikipedia).

In order to address the above issues and thus
guarantee high coverage for all languages we de-
veloped a methodology for translating senses in
the babel synset to missing languages. Given a
WordNet word sense in our babel synset of interest
(e.g. balloon! ) we collect its occurrences in Sem-
Cor (Miller et al., 1993), a corpus of more than
200,000 words annotated with WordNet senses.
We do the same for Wikipages by retrieving sen-
tences in Wikipedia with links to the Wikipage of
interest. By repeating this step for each English
lexicalization in a babel synset, we obtain a col-
lection of sentences for the babel synset (see left
part of Figure 1). Next, we apply state-of-the-art
Machine Translation* and translate the set of sen-
tences in all the languages of interest. Given a spe-
cific term in the initial babel synset, we collect the
set of its translations. We then identify the most
frequent translation in each language and add it to
the babel synset. Note that translations are sense-
specific, as the context in which a term occurs is
provided to the translation system.

3.4 Example

We now illustrate the execution of our method-
ology by way of an example. Let us focus on
the Wikipage BALLOON (AIRCRAFT). The word
is polysemous both in Wikipedia and WordNet.
In the first phase of our methodology we aim
to find a mapping ((BALLOON (AIRCRAFT)) to
an appropriate WordNet sense of the word. To

“We use the Google Translate API. An initial prototype
used a statistical machine translation system based on Moses
(Koehn et al., 2007) and trained on Europarl (Koehn, 2005).
However, we found such system unable to cope with many

technical names, such as in the domains of sciences, litera-
ture, history, etc.



this end we construct the disambiguation context
for the Wikipage by including words from its la-
bel, links and categories (cf. Section 3.2.1). The
context thus includes, among others, the follow-
ing words: aircraft, wind, airship, lighter-than-
air. We now construct the disambiguation context
for the two WordNet senses of balloon (cf. Sec-
tion 3.2.2), namely the aircraft (#1) and the toy
(#2) senses. To do so, we include words from
their synsets, hypernyms, hyponyms, sisters, and
glosses. The context for balloon), includes: air-
craft, craft, airship, lighter-than-air. The con-
text for balloon? contains: toy, doll, hobby. The
sense with the largest intersection is #1, so the
following mapping is established: p(BALLOON
(AIRCRAFT)) = balloon). After the first phase,
our babel synset includes the following English
words from WordNet plus the Wikipedia inter-
language links to other languages (we report Ger-
man, Spanish and Italian): { balloongy, Ballony,
aerostatogg, balon aerostaticogs, pallone aero-
statico,; }.

In the second phase (see Section 3.3), we col-
lect all the sentences in SemCor and Wikipedia in
which the above English word sense occurs. We
translate these sentences with the Google Trans-
late API and select the most frequent transla-
tion in each language. As a result, we can en-
rich the initial babel synset with the following
words: mongolfieregg, globusc,, globogs, mon-
golfiera;;. Note that we had no translation for
Catalan and French in the first phase, because the
inter-language link was not available, and we also
obtain new lexicalizations for the Spanish and Ital-
ian languages.

4 Experiment 1: Mapping Evaluation

Experimental setting. We first performed an
evaluation of the quality of our mapping from
Wikipedia to WordNet. To create a gold stan-
dard for evaluation we considered all lemmas
whose senses are contained both in WordNet and
Wikipedia: the intersection between the two re-
sources contains 80,295 lemmas which corre-
spond to 105,797 WordNet senses and 199,735
Wikipedia pages. The average polysemy is 1.3
and 2.5 for WordNet senses and Wikipages, re-
spectively (2.8 and 4.7 when excluding monose-
mous words). We then selected a random sam-
ple of 1,000 Wikipages and asked an annotator
with previous experience in lexicographic annota-

| [ P [ R [F | A]
| Mapping algorithm | 81.9 | 77.5 [ 79.6 | 84.4 |
MFS BL 243[478[322243
Random BL 23.8 | 46.8 | 31.6 | 23.9

Table 1: Performance of the mapping algorithm.

tion to provide the correct WordNet sense for each
page (an empty sense label was given, if no correct
mapping was possible). The gold-standard dataset
includes 505 non-empty mappings, i.e. Wikipages
with a corresponding WordNet sense. In order to
quantify the quality of the annotations and the dif-
ficulty of the task, a second annotator sense tagged
a subset of 200 pages from the original sample.
Our annotators achieved a k inter-annotator agree-
ment (Carletta, 1996) of 0.9, indicating almost
perfect agreement.

Results and discussion. Table 1 summarizes the
performance of our mapping algorithm against
the manually annotated dataset. Evaluation is per-
formed in terms of standard measures of preci-
sion, recall, and F;-measure. In addition we calcu-
late accuracy, which also takes into account empty
sense labels. As baselines we use the most fre-
quent WordNet sense (MFS), and a random sense
assignment.

The results show that our method achieves al-
most 80% F; and it improves over the baselines by
a large margin. The final mapping contains 81,533
pairs of Wikipages and word senses they map to,
covering 55.7% of the noun senses in WordNet.
As for the baselines, the most frequent sense is
just 0.6% and 0.4% above the random baseline in
terms of F; and accuracy, respectively. A x? test
reveals in fact no statistical significant difference
at p < 0.05. This is related to the random distri-
bution of senses in our dataset and the Wikipedia
unbiased coverage of WordNet senses. So select-
ing the first WordNet sense rather than any other
sense for each target page represents a choice as
arbitrary as picking a sense at random.

5 Experiment 2: Translation Evaluation

We perform a second set of experiments concern-
ing the quality of the acquired concepts. This is as-
sessed in terms of coverage against gold-standard
resources (Section 5.1) and against a manually-
validated dataset of translations (Section 5.2).
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Language | Word senses | Synsets
German 15,762 9,877
Spanish 83,114 55,365
Catalan 64,171 40,466

Italian 57,255 32,156
French 44,265 31,742

Table 2: Size of the gold-standard wordnets.

5.1 Automatic Evaluation

Datasets. We compare BabelNet against gold-
standard resources for 5 languages, namely: the
subset of GermaNet (Lemnitzer and Kunze, 2002)
included in EuroWordNet for German, Multi-
WordNet (Pianta et al., 2002) for Italian, the Mul-
tilingual Central Repository for Spanish and Cata-
lan (Atserias et al., 2004), and WOrdnet Libre
du Frangais (Benoit and FiSer, 2008, WOLF) for
French. In Table 2 we report the number of synsets
and word senses available in the gold-standard re-
sources for the 5 languages.

Measures. Let B be BabelNet, F our gold-
standard non-English wordnet (e.g. GermaNet),
and let £ be the English WordNet. All the gold-
standard non-English resources, as well as Babel-
Net, are linked to the English WordNet: given a
synset Sy € F, we denote its corresponding babel
synset as Sp and its synset in the English Word-
Net as Sg. We assess the coverage of BabelNet
against our gold-standard wordnets both in terms
of synsets and word senses. For synsets, we calcu-
late coverage as follows:

~ 25,er (58, 5F)

SynsetCov(B, F) = (SreFy

where §(Sg, Sx) = 1 if the two synsets Sz and
S have a synonym in common, 0 otherwise. That
is, synset coverage is determined as the percentage
of synsets of F that share a term with the corre-
sponding babel synsets. For word senses we cal-
culate a similar measure of coverage:

ZS]:E]: ZS}‘ES]: 6,(S~T‘7 SB)
WordCov(B, F) = {5y €Sr: SpeFl

where sr is a word sense in synset Sr and
8 (sx,Sp) = 1if sg € Sp, 0 otherwise. That
is we calculate the ratio of word senses in our
gold-standard resource JF that also occur in the
corresponding synset Sg to the overall number of
senses in F.
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However, our gold-standard resources cover
only a portion of the English WordNet, whereas
the overall coverage of BabelNet is much higher.
We calculate extra coverage for synsets as follows:

> seee\r 0(58, Se)

SynsetExtraCov(B, F) = H{Sr € F}
f

Similarly, we calculate extra coverage for word
senses in BabelNet corresponding to WordNet
synsets not covered by the reference resource F.

Results and discussion. We evaluate the cov-
erage and extra coverage of word senses and
synsets at different stages: (a) using only the inter-
language links from Wikipedia (WIKI Links); (b)
and (c) using only the automatic translations of the
sentences from Wikipedia (WIKI Transl.) or Sem-
Cor (WN Transl.); (d) using all available transla-
tions, i.e. BABELNET.

Coverage results are reported in Table 3. The
percentage of word senses covered by BabelNet
ranges from 52.9% (Italian) to 66.4 (Spanish)
and 86.0% (French). Synset coverage ranges from
73.3% (Catalan) to 76.6% (Spanish) and 92.9%
(French). As expected, synset coverage is higher,
because a synset in the reference resource is con-
sidered to be covered if it shares at least one word
with the corresponding synset in BabelNet.

Numbers for the extra coverage, which pro-
vides information about the percentage of word
senses and synsets in BabelNet but not in the gold-
standard resources, are given in Figure 2. The re-
sults show that we provide for all languages a high
extra coverage for both word senses — between
340.1% (Catalan) and 2,298% (German) — and
synsets — between 102.8% (Spanish) and 902.6%
(German).

Table 3 and Figure 2 show that the best results
are obtained when combining all available trans-
lations, i.e. both from Wikipedia and the machine
translation system. The performance figures suf-
fer from the errors of the mapping phase (see Sec-
tion 4). Nonetheless, the results are generally high,
with a peak for French, since WOLF has been cre-
ated semi-automatically by combining several re-
sources, including Wikipedia. The relatively low
word sense coverage for Italian (55.4%) is, in-
stead, due to the lack of many common words in
the Italian gold-standard synsets. Examples in-
clude whipgy translated as staffile;r but not as the
more common frusta,r, playboygy translated as
vitaiolo,; but not gigold,r, etc.
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Figure 2: Extra coverage against gold-standard wordnets: word senses (a) and synsets (b).

] \ Resource Method \ SENSES \ SYNSETS
= | Wikt { Links 39.6 50.7
g Transl. 42.6 58.2
5 | WN Transl. 21.0 28.6
O | BABELNET Al 57.6 73.4
= | Wik { Links 344 40.7
iz Transl. 47.9 56.1
g | WN Transl. | 252 | 300
“2 | BABELNET All 66.4 76.6
= | wiki { Links 20.3 25.2
= Transl. 46.9 54.1
£ | WN Transl. | 25.0 29.6
O | BABELNET  All 64.0 73.3

WiKI { Links 28.1 40.0
= Transl. 399 58.0
= | WN Transl. 19.7 28.7
= | BABELNET All 529 | 737

WIKI { Links 70.0 72.4
5 Transl. 69.6 79.6
S | WN Transl. | 163 | 194
= | BABELNET All 86.0 92.9

Table 3: Coverage against gold-standard wordnets
(we report percentages).

5.2 Manual Evaluation

Experimental setup. The automatic evaluation
quantifies how much of the gold-standard re-
sources is covered by BabelNet. However, it
does not say anything about the precision of the
additional lexicalizations provided by BabelNet.
Given that our resource has displayed a remark-
ably high extra coverage — ranging from 340%
to 2,298% of the national wordnets (see Figure
2) — we performed a second evaluation to assess
its precision. For each of our 5 languages, we
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selected a random set of 600 babel synsets com-
posed as follows: 200 synsets whose senses ex-
ist in WordNet only, 200 synsets in the intersec-
tion between WordNet and Wikipedia (i.e. those
mapped with our method illustrated in Section
3.2), 200 synsets whose lexicalizations exist in
Wikipedia only. Therefore, our dataset included
600 x 5=3,000 babel synsets. None of the synsets
was covered by any of the five reference wordnets.
The babel synsets were manually validated by ex-
pert annotators who decided which senses (i.e.
lexicalizations) were appropriate given the corre-
sponding WordNet gloss and/or Wikipage.

Results and discussion. We report the results in
Table 4. For each language (rows) and for each
of the three regions of BabelNet (columns), we
report precision (i.e. the percentage of synonyms
deemed correct) and, in parentheses, the over-
all number of synonyms evaluated. The results
show that the different regions of BabelNet con-
tain translations of different quality: while on av-
erage translations for WordNet-only synsets have
a precision around 72%, when Wikipedia comes
into play the performance increases considerably
(around 80% in the intersection and 95% with
Wikipedia-only translations). As can be seen from
the figures in parentheses, the number of trans-
lations available in the presence of Wikipedia is
higher. This quantitative difference is due to our
method collecting many translations from the redi-
rections in the Wikipedia of the target language
(Section 3.3), as well as to the paucity of examples
in SemCor for many synsets. In addition, some of
the synsets in WordNet with no Wikipedia coun-
terpart are very difficult to translate. Examples
include terms like stammel, crape fern, base-
ball clinic, and many others for which we could



Language WN WN N Wiki Wiki

German | 73.76 (282) | 78.37 (777) | 97.74 (709)
Spanish | 69.45 (275) | 78.53 (643) | 92.46 (703)
Catalan 75.58 (258) | 82.98 (517) |92.71 (398)
Italian 72.32 271) | 80.83 (574) | 99.09 (552)
French 67.16 (268) | 77.43 (709) | 96.44 (758)

Table 4: Precision of BabelNet on synonyms in
WordNet (WN), Wikipedia (Wiki) and their inter-
section (WN N Wiki): percentage and total num-
ber of words (in parentheses) are reported.

not find translations in major editions of bilingual
dictionaries. In contrast, good translations were
produced using our machine translation method
when enough sentences were available. Examples
are: chaudrée de poissongy, for fish chowdergy,
grano de cafégg for coffee beangy, etc.

6 Related Work

Previous attempts to manually build multilingual
resources have led to the creation of a multi-
tude of wordnets such as EuroWordNet (Vossen,
1998), MultiWordNet (Pianta et al., 2002), Balka-
Net (Tufis et al., 2004), Arabic WordNet (Black
et al., 2006), the Multilingual Central Repository
(Atserias et al., 2004), bilingual electronic dic-
tionaries such as EDR (Yokoi, 1995), and fully-
fledged frameworks for the development of multi-
lingual lexicons (Lenci et al., 2000). As it is of-
ten the case with manually assembled resources,
these lexical knowledge repositories are hindered
by high development costs and an insufficient cov-
erage. This barrier has led to proposals that ac-
quire multilingual lexicons from either parallel
text (Gale and Church, 1993; Fung, 1995, inter
alia) or monolingual corpora (Sammer and Soder-
land, 2007; Haghighi et al., 2008). The disam-
biguation of bilingual dictionary glosses has also
been proposed to create a bilingual semantic net-
work from a machine readable dictionary (Nav-
igli, 2009a). Recently, Etzioni et al. (2007) and
Mausam et al. (2009) presented methods to pro-
duce massive multilingual translation dictionaries
from Web resources such as online lexicons and
Wiktionaries. However, while providing lexical
resources on a very large scale for hundreds of
thousands of language pairs, these do not encode
semantic relations between concepts denoted by
their lexical entries.
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The research closest to ours is presented by de
Melo and Weikum (2009), who developed a Uni-
versal WordNet (UWN) by automatically acquir-
ing a semantic network for languages other than
English. UWN is bootstrapped from WordNet and
is built by collecting evidence extracted from ex-
isting wordnets, translation dictionaries, and par-
allel corpora. The result is a graph containing
800,000 words from over 200 languages in a hier-
archically structured semantic network with over
1.5 million links from words to word senses. Our
work goes one step further by (1) developing an
even larger multilingual resource including both
lexical semantic and encyclopedic knowledge, (2)
enriching the structure of the ‘core’ semantic net-
work (i.e. the semantic pointers from WordNet)
with topical, semantically unspecified relations
from the link structure of Wikipedia. This result
is essentially achieved by complementing Word-
Net with Wikipedia, as well as by leveraging the
multilingual structure of the latter. Previous at-
tempts at linking the two resources have been pro-
posed. These include associating Wikipedia pages
with the most frequent WordNet sense (Suchanek
et al., 2008), extracting domain information from
Wikipedia and providing a manual mapping to
WordNet concepts (Auer et al., 2007), a model
based on vector spaces (Ruiz-Casado et al., 2005),
a supervised approach using keyword extraction
(Reiter et al., 2008), as well as automatically
linking Wikipedia categories to WordNet based
on structural information (Ponzetto and Navigli,
2009). In contrast to previous work, BabelNet
is the first proposal that integrates the relational
structure of WordNet with the semi-structured in-
formation from Wikipedia into a unified, wide-
coverage, multilingual semantic network.

7 Conclusions

In this paper we have presented a novel methodol-
ogy for the automatic construction of a large multi-
lingual lexical knowledge resource. Key to our ap-
proach is the establishment of a mapping between
a multilingual encyclopedic knowledge repository
(Wikipedia) and a computational lexicon of En-
glish (WordNet). This integration process has
several advantages. Firstly, the two resources
contribute different kinds of lexical knowledge,
one is concerned mostly with named entities, the
other with concepts. Secondly, while Wikipedia
is less structured than WordNet, it provides large



amounts of semantic relations and can be lever-
aged to enable multilinguality. Thus, even when
they overlap, the two resources provide comple-
mentary information about the same named enti-
ties or concepts. Further, we contribute a large
set of sense occurrences harvested from Wikipedia
and SemCor, a corpus that we input to a state-of-
the-art machine translation system to fill in the gap
between resource-rich languages — such as English
— and resource-poorer ones. Our hope is that the
availability of such a language-rich resource’® will
enable many non-English and multilingual NLP
applications to be developed.

Our experiments show that our fully-automated
approach produces a large-scale lexical resource
with high accuracy. The resource includes millions
of semantic relations, mainly from Wikipedia
(however, WordNet relations are labeled), and
contains almost 3 million concepts (6.7 labels per
concept on average). As pointed out in Section
5, such coverage is much wider than that of ex-
isting wordnets in non-English languages. While
BabelNet currently includes 6 languages, links to
freely-available wordnets® can immediately be es-
tablished by utilizing the English WordNet as an
interlanguage index. Indeed, BabelNet can be ex-
tended to virtually any language of interest. In
fact, our translation method allows it to cope with
any resource-poor language.

As future work, we plan to apply our method
to other languages, including Eastern European,
Arabic, and Asian languages. We also intend to
link missing concepts in WordNet, by establish-
ing their most likely hypernyms — e.g., a la Snow
et al. (2006). We will perform a semi-automatic
validation of BabelNet, e.g. by exploiting Ama-
zon’s Mechanical Turk (Callison-Burch, 2009) or
designing a collaborative game (von Ahn, 2006)
to validate low-ranking mappings and translations.
Finally, we aim to apply BabelNet to a variety of
applications which are known to benefit from a
wide-coverage knowledge resource. We have al-
ready shown that the English-only subset of Ba-
belNet allows simple knowledge-based algorithms
to compete with supervised systems in standard
coarse-grained and domain-specific WSD settings
(Ponzetto and Navigli, 2010). We plan in the near
future to apply BabelNet to the challenging task of
cross-lingual WSD (Lefever and Hoste, 2009).

SBabelNet can be freely downloaded for research pur-

poses athttp://lcl.uniromal.it/babelnet.
*http://www.globalwordnet .org.
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Fully Unsupervised Core-Adjunct Argument Classification
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Abstract roles are more predicate-specific, e.g., [on his col-

league] has a different meaning with the verbs ‘op-
The core-adjunct argument distinctionisa  grate’ and ‘count'.
basic one in the theory of argument struc- Sometimes the same argument plays a different
ture. The task of distinguishing between  (q|e in different sentences. In (3), [in the park]
the two has strong relations to various ba-  paces a well-defined situation (Yuri playing foot-
sic NLP tasks such as syntactic parsing,  pa|)in a certain location. However, in “The troops
semantic role labeling and subcategoriza- 516 pased in the park]’, the same argument is

tion acquisition. This paper presents &  gpjigatory, since being based requires a place to
novel unsupervised algorithm for the task o pased in.

that uses no supervised models, utilizing
instead state-of-the-art syntactic induction
algorithms. This is the first work to tackle
this task in a fully unsupervised scenario.

Distinguishing between the two argument types
has been discussed extensively in various formu-
lations in the NLP literature, notably in PP attach-
ment, semantic role labeling (SRL) and subcatego-
rization acquisition. However, no work has tack-
led it yet in a fully unsupervised scenario. Unsu-
The distinction between core arguments (hencepervised models reduce reliance on the costly and
forth, cores) and adjuncts is included in most the-error prone manual multi-layer annotation (POS
ories on argument structure (Dowty, 2000). Thetagging, parsing, core-adjunct tagging) commonly
distinction can be viewed syntactically, as oneused for this task. They also allow to examine the
between obligatory and optional arguments, omnature of the distinction and to what extent it is
semantically, as one between arguments whosa&ccounted for in real data in a theory-independent
meanings are predicate dependent and indepemanner.
dent. The latter (cores) are those whose functionin In this paper we present a fully unsupervised al-
the described event is to a large extent determinegorithm for core-adjunct classification. We utilize
by the predicate, and are obligatory. Adjuncts argeading fully unsupervised grammar induction and
optional arguments which, like adverbs, modify POS induction algorithms. We focus on preposi-
the meaning of the described event in a predictabléonal arguments, since non-prepositional ones are
or predicate-independent manner. generally cores. The algorithm uses three mea-

Consider the following examples: sures based on different characterizations of the

1. The surgeon operated [on his colleague]. ~ core-adjunct distinction, and combines them us-
ing an ensemble method followed by self-training.
The measures used are based on selectional prefer-

3. Yuri played football [in the park]. ence, predicate-slot collocation and argument-slot

The marked argument is a core in 1 and an adeollocation.
junct in 2 and 3. Adjuncts form an independent We evaluate against PropBank (Palmer et al.,
semantic unit and their semantic role can often b@005), obtaining roughly 70% accuracy when
inferred independently of the predicate (e.g., [af-evaluated on the prepositional arguments and
ter lunch] is usually a temporal modifier). Core more than 80% for the entire argument set. These
T~ Omri Abend is grateful to the Azrieli Foundation for "€SUlts are substantially better than those obtained
the award of an Azrieli Fellowship. by a non-trivial baseline.

1 Introduction

2. Ron will drop by [after lunch].
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Section 2 discusses the core-adjunct distinctionframe allows a ‘Duration’ non-core argument, the
Section 3 describes the algorithm. Sections 4 ant\ctive Perception’ frame does not.

5 present our experimental setup and results. PB and FN tend to agree in clear (prototypical)
_ _ _ cases, but to differ in others. For instance, both
2 Core-Adjunct in Previous Work schemes would tag “Yuri played football [in the

PropBank. PropBank (PB) (Palmer et al., 2005) park]” as an adjunct and “The commander_placed
is a widely used corpus, providing SRL annotation® 9uard [in the park]” as a core. However, in *He

for the entire WSJ Penn Treebank. Its core label¥/alked [into his office]", the marked argument is
are predicate specific, while adjunct (or modifierst2g9€d as a directional adjunct in PB but as a "Di-

under their terminology) labels are shared acrosEction’ core in FN.
predicates. The adjuncts are subcategorized into Under both schemes, non-cores are usually con-
several classes, the most frequent of which aréned to a few specific semantic domains, no-
locative, temporal and manrer tably time, place gnd manner, in contrast to cores
The organization of PropBank is based onthat are not restricted in their scope of applica-
the notion of diathesis alternations, which arePility. This approach is quite common, e.g,, the
(roughly) defined to be alternations between twoCOBUILD English grammar (Willis, 2004) cate-
subcategorization frames that preserve meaning §0rizes adjuncts to be of manner, aspect, opinion,
change it systematically. The frames in whichPlace, time, frequency, duration, degree, extent,
each verb appears were collected and sets of a@mphasis, focus and probability.
ternating frames were defined. Each such set WaS.mantic Role Labeling. Work in SRL does
assumed to have a unique set of roles, named ‘ro"?fot tackle the core-adjunct task separately but as
set’. These roles include all roles gppearing .in aMYart of general argument classification. Super-
of thg frames, excep tofthose def!ned as adjunct ised approaches obtain an almost perfect score
Adjuncts are deflned t(_) be optional arguments, distinguishing between the two in an in-domain
appearing W'th awide vquety of.verbs- and framesScenario. For instance, the confusion matrix in
They can be \./'eWEd as fixed points with respect t?Toutanova et al., 2008) indicates that their model
alte_rnatlons, i.e., as arguments that do not Changsecores 99.5% accuracy on this task. However,
their pla_lce or .SIOt when the frgme undergoeg al%\daptation results are lower, with the best two
alternation. ThIS fqllows the n_otlons_ of optionality models in the CONLL 2005 shared task (Carreras
and composm(_)nallty-that deflne_z adjuncts. _ and Marquez, 2005) achieving 95.3% (Pradhan et
' D.et'ectlng diathesis alternatlon.s.autom'at.lgallyal_’ 2008) and 95.6% (Punyakanok et al., 2008) ac-
is difficult (McCarthy, 2001), requiring an initial curacy in an adaptation between the relatively sim-
acquisition of a subcategorization lexicon. Thisilar corpora WSJ and Brown.
alone is a challenging task tackled in the past us- Despite the hiah performance in supervised sce-
[ ised parsers (see below). eSp! ehighp : pen
ng supervised p narios, tackling the task in an unsupervised man-
FrameNet. FrameNet (FN) (Baker et al., 1998) ner is not easy. The success of supervised methods
is a large-scale lexicon based on frame semanticstems from the fact that the predicate-slot com-
It takes a different approach from PB to semantiddination (slot is represented in this paper by its
roles. Like PB, it distinguishes between core andoreposition) strongly determines whether a given
non-core arguments, but it does so for each ang@rgument is an adjunct or a core (see Section 3.4).
every frame separately. It does not commit that &upervised models are provided with an anno-
semantic role is consistently tagged as a core dited corpus from which they can easily learn the
a non-core across frames. For example, the sénapping between predicate-slot pairs and their
mantic role ‘path’ is considered core in the ‘Self core/adjunct label. However, induction of the
Motion’ frame, but as non-core in the ‘Placing’ Mmapping in an unsupervised manner must be based
frame. Another difference is that FN does not al-on inherent core-adjunct properties. In addition,
low any type of non-core argument to attach tosupervised models utilize supervised parsers and
a given frame. For instance, while the ‘Getting’ POS taggers, while the current state-of-the-art in
T ——— _ unsupervised parsing and POS tagging is consid-
PropBank annotates modals and negation words as mo

ifiers. Since these are not arguments in the common usage%!abl_y worse than their superwsed counterparts.
the term, we exclude them from the discussion in this paper. This challenge has some resemblance to un-
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supervised detection of multiword expressiondormulation models the core-adjunct distinction
(MWESs). An important MWE sub-class is that explicitly. Therefore, any CCG parser can be used
of phrasal verbs, which are also characterized bws a core-adjunct classifier (Hockenmaier, 2003).
verb-preposition pairs (Li et al., 2003; Sporleder
and Li, 2009) (see also (Boukobza and Rappoport,

2009)). Both tasks aim to determine semantic o o )
compositionality, which is a highly challenging Subcategorization Acquisition. This task spec-
task. ifies for each predicate the number, type and order
Few works addressed unsupervised SRL—reIateaf obligatory arg_umc_ents. Determining _the allow—_
tasks. The setup of (Grenager and Manning?ble subcateg_orl_zatlon frames fqr a given predi-
ate necessarily involves separating its cores from

2006), who presented a Bayesian Network modeY

for argument classification, is perhaps closest tﬂ)ts allowable adjuncts (which are not framed). No-

ours. Their work relied on a supervised parse}able works in the field include (Briscoe and Car-

and arule-based argument identification (both dur[O”’ 1997; Sarkar and Zeman, 2000; Korhonen,

ing training and testing). Swier and Stevensonzooz)' All these works used a parsed corpus in
rder to collect, for each predicate, a set of hy-

(2004, 2005), while addressing an unsupervise8 ) . .
SRL task, greatly differ from us as their algorithm pothesized subcategorization frames, to be filtered

uses the VerbNet (Kipper et al., 2000) verb Iex—by hypothesis testing methods.

icon, in addition to supervised parses. Finally, This line of work differs from ours in a few
Abend et al. (2009) tackled the argument identi-gspects. First, all works use manual or super-
fication task alone and did not perform argumenyjised syntactic annotations, usually including a
classification of any sort. POS tagger. Second, the common approach to the
_ task focuses on syntax and tries to identify the en-
PP attachment. PP attachmentis the task of de- e frame, rather than to tag each argument sep-
termining whether a prepositional phrase WhICharately. Finally, most works address the task at
immediately follows a noun phrase attaches to th‘?he verb type level, trying to detect the allowable
latter or to the preceding verb. This task’s relation. o < for each type. Consequently, the common
to the core-adjunct distinction was addressed i o1 ation focuses on the quality of the allowable
several works. Fo_r |n§tance, the rgsults of (Hindl& 5 mes acquired for each verb type, and not on the
and Rooth, 1993) indicate that their PP attachment,sification of specific arguments in a given cor-
system works better for cores than for adjuncts. s - 5ych a token level evaluation was conducted

Merlo ?‘n_d Esteve Ferrer (2006) suggest a sysy, g few works (Briscoe and Carroll, 1997; Sarkar
tem that jointly tackles the PP attachment and theng zeman, 2000), but often with a small num-
core-adjunct distinction tasks. Unlike in this work, per of verbs or a small number of frames. A dis-

their classifier requires extensive supervision inssion of the differences between type and token
cluding WordNet, language-specific features andeye| evaluation can be found in (Reichart et al.,
a supervised parser. Their features are generallyom)_

motivated by common linguistic considerations.
Features found adaptable to a completely unsuper- The core-adjunct distinction task was tackled in
vised scenario are used in this work as well. the context of child language acquisition. Villav-

. . . o icencio (2002) developed a classifier based on
Syntactic Parsing. The core-adjunct distinction ( ) P

o . . i reposition selection and frequency information
is included in many syntactic annotation schemes? P d y

.. “for modeling the distinction for locative preposi-
Although the Penn Treebank does not eXpIICItIytional phrases. Her approach is not entirely corpus

annotate adjuncts and cores, a few works sug- . . .
o ) : . ased, as it assumes the input sentences are given
gested mapping its annotation (including func-in a basic logical form
tion tags) to core-adjunct labels. Such a mapping '
was presented in (Collins, 1999). In his Model The study of prepositions is a vibrant research
2, Collins modifies his parser to provide a core-areain NLP. A special issue Gomputational Lin-
adjunct prediction, thereby improving its perfor- guistics which includes an extensive survey of re-
mance. lated work, was recently devoted to the field (Bald-

The Combinatory Categorial Grammar (CCG)win et al., 2009).
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3 Algorithm (PSH) joint distribution. This section details the

Wi _ gi . process of extracting samples from this joint dis-
e are given a (predicate, argumer_wt) pair in a testiy tion given a raw text corpus.

sentence, and we need to determine whether the

; : We start by parsing the corpus using the Seginer
argument is a core or an adjunct. Test argumentE yp 9 P 9 g

arser (Seginer, 2007). This parser is unique in its
a-bility to induce a bracketing (unlabeled parsing)
from raw text (without even using POS tags) with
strong results. Its high speed (thousands of words

i N o per second) allows us to use millions of sentences,
Our algorithm utilizes statistics based on thea prohibitive number for other parsers.

(predicate, slot, argument head) (PSH) joint dis- We continue by tagging the corpus using

tributiqn @ SlOt. is_rgpres_en_t ed _by its prepOSition)'CIark’s unsupervised POS tagger (Clark, 2003)
To estimate this joint dlsjm_butlon, PSH §amplesand the unsupervised Prototype Tagger (Abend et
are e_:xtracted from the training corpus using unsug, - 2010. The classes corresponding to preposi-
pervised POS taggers _(Clark, 2003, Ab_end et al. ions and to verbs are manually selected from the
2010) and an unsupervised parser (Seginer, 2007.

i ifiduced clustes A preposition is defined to be
As current performance of unsupervised parsergmy word which is the first word of an argument
for long sentences is low, we use only short sen

‘ 0 10 q udi tuati and belongs to a prepositions cluster. A verb is
ences (up to words, excluding punctua Ion)'any word belonging to a verb cluster. This manual
The length of test sentences is not bounded. O

its will show that the training dat t'“gelection requires only a minute, since the number
resufts will show that the training data accountSye o55qeg js very small (34 in our experiments).
well for the argument realization phenomena in

In addition, knowing what is considered a prepo-
the test set, despite the length bound on its sen; g prep

) . _ c’jtion is part of the task definition itself.
tences. The sample extraction process is detaile ) e
in Section 3.2 Argument identification is hard even for super-

vised models and is considerably more so for un-

_O_ur z_;\pproach_ mak(_as use of both aspgpts O].c thgupervised ones (Abend et al., 2009). We there-
distinction — obligatoriness and composmonallty.fore confine ourselves to sentences of length not

We. deﬂne three measures, one quan'glfylng th%reater than 10 (excluding punctuation) which
obligatoriness of the slot, another quantifying the

. contain a single verb. A sequence of words will
selectional preference of the verb to the argumerge marked as an argument of the verb if it is a con-

ﬁ]ndha trl;rd thc?t qléaf[ﬂt'f'elstth € asso;:_latlo;ltﬁetwezgtituem that does not contain the verb (according
the head word and Ihe slotirrespective ottn€ predi, 1he unsupervised parse tree), whose parent is
icate (Section 3.3).

an ancestor of the verb. This follows the pruning

_ Th_e measures’ predictions are expected to CO'r}ieuristic of (Xue and Palmer, 2004) often used by
cide in clear cases, but may be less successful i8R algorithms

others. Therefore, an ensemble-based method Is . . .
. . . The corpus is now tagged using an unsupervised
used to combine the three measures into a singl

i . . . ...~ POS tagger. Since the sentences in question are
classifier. This results in a high accuracy classifier . :
. . - short, we consider every word which does not be-
with relatively low coverage. A self-training step

. : : long to a closed class cluster as a head word (an
is now performed to increase coverage with only a

. . o . argument can have several head words). A closed
minor deterioration in accuracy (Section 3.4).

We f itional s, N class is a class of function words with relatively

€ E[)_cuslon prepos;l |o_naEargf_urr11qetn Sd i oS'few word types, each of which is very frequent.

prepositional argumen's n =nglish tend 1o b ypical examples include determiners, preposi-
cores (e.g., in more than 85% of the cases in;

PB " 521}, whil itional i ons and conjunctions. A class which is not closed
sections 2-21), while prepositional argumen s open. In this paper, we define closed classes to

tend to be equally divided between cores and a be clusters in which the ratio between the number

Juncts._ The difficulty of _the task thus lies in the of word tokens and the number of word types ex-
classification of prepositional arguments.

are assumed to be correctly bracketed. We are
lowed to utilize a training corpus of raw text.

3.1 Overview

. 2Clark's tagger was replaced by the Prototype Tagger
3.2 Data Collection where the latter gave a significant improvement. See Sec-

- ... tion 4.
The statistical measurgs used by our classifier We also explore a scenario in which they are identified
are based on the (predicate, slot, argument heady a supervised tagger. See Section 4.
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ceeds a threshold*. This is a natural extension of the naive (and sparse)

Using these annotation layers, we traverse thenaximum likelihood estimatoPr(h/|p, s), which
corpus and extract every (predicate, slot, argumens obtained by takingim(h, h’) to be 1 ifh = 1’/
head) triplet. In case an argument has several heahd 0 otherwise.
words, each of them is considered as an inde- The similarity measure we use is based on the
pendent sample. We denote the nhumber of timeslot distributions of the arguments. That is, two
that a triplet occurred in the training corpus byarguments are considered similar if they tend to
N(p,s,h). appear in the same slots. Each head worsl as-
signed a vector where each coordinate corresponds
to a slots. The value of the coordinate is the num-
In this section we present the three types of meaber of timesh appeared irs, i.e. £, N(p', s, h)
sures used by the algorithm and the rationale b’ is summed over all predicates). The similarity
hind each of them. These measures are all basefleasure between two head words is then defined
on the PSH joint distribution. as the cosine measure of their vectors.

Given a (predicate, prepositional argument) pair  Since arguments in the test set can be quite long,
from the test set, we first tag and parse the arguaot every open class word in the argument is taken
ment using the unsupervised tools abbv&ach  to be a head word. Instead, only those appearing in
word in the argument is now represented by itshe top level (depth = 1) of the argument under its
word form (without lemmatization), its unsuper- unsupervised parse tree are taken. In case there are
vised POS tag and its depth in the parse tree of theo such open class words, we take those appearing
argument. The last two will be used to determinein depth 2. The selectional preference of the whole
which are the head words of the argument (see beargument is then defined to be the arithmetic mean
low). The head words themselves, once chosemf this measure over all of its head words. If the ar-
are represented by the lemma. We now computgument has no head words under this definition or
the following measures. if none of the head words appeared in the training
corpus, the selectional preference is undefined.

3.3 Collocation Measures

Selectional Preference (SP). Since the seman-
tics of cores is more predicate dependent than theredicate-Slot Collocation. Since cores are
semantics of adjuncts, we expect arguments foobligatory, when a predicate persistently appears
which the predicate has a strong preference (in @ith an argument in a certain slot, the arguments
specific slot) to be cores. in this slot tends to be cores. This notion can be
Selectional preference induction is a well-captured by thgpredicate, slot) joint distribu-
established task in NLP. It aims to quantify thetion. We use the Pointwise Mutual Information
likelihood that a certain argument appears in aneasure (PMI) to capture the slot and the predi-
certain slot of a predicate. Several methods haveate’s collocation tendency. Letbe a predicate
been suggested (Resnik, 1996; Li and Abe, 1998nds a slot, then:
Schulte im Walde et al., 2008). Pr(p. )
We use the paradigm of (Erk, 2007). Foragiven PS(p,s) = PMI(p,s) = log$ =
predicate slot paifp, s), we define its preference Pr(s) - Pr(p)
to the argument heddto be: N(p,s)Ey ¢ N(p',s")

= log ; NS -
SP(p,s,h) = Z Pr(h'|p, s) - sim(h,h) _ . T N(p,s)Zp NP, s) |
W e Heads Since there is only a meager number of possi-
ble slots (that is, of prepositions), estimating the
Pr(hlp, s) = _Nlp,s,h) (predicate, slot) distribution can be made by the
N (p, s, h') maximum likelihood estimator with manageable

sim(h, h') is a similarity measure between argu-sparsity.
ment heads.Heads is the set of all head words.  In order not to bias the counts towards predi-
“We use sections 2—21 of the PTB WSJ for these counts(,'t"’lt(:"S which tend to take more argumepts, we de-
containing 0.95M words. OUF was set to 50. fine hereN(p, s) to be the number of times the
°Note that while current unsupervised parsers have lowy, s) pair occurred in the training corpus, irre-
performance on long sentences, arguments, even in long sen- .
spective of the number of head words the argu-

tences, are usually still short enough for them to operate well
Their average length in the test set is 5.1 words. ment had (and not e.g%,N(p,s,h)). Argu-
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ments with no prepositions are included in thesdhe classifiers abstained, i.e., when sufficient infor-
counts as well (witns = NULL), so not to bias mation was available to make all three predictions.
against predicates which tend to have less nonfhe prediction is determined by the majority vote.
prepositional arguments. The ensemble classifier has high precision but
_ _ low coverage. In order to increase its coverage, a
Argument-Slot Collocation. Adjuncts tend 10 gt raining step is performed. We observe that a
belong to one of a few specific semantic domaing, g jicate and a slot generally determine whether
(see Section 2). Therefore, if an argument tends t4, ar0ument is a core or an adjunct. For instance,
appear in a certain slot in many of its instances, if, o development data, a classifier which assigns
is an indication that this argument tends to have & 5rguments that share a predicate and a slot their
cons_lstent semantic flavor in most of its ms_t_ancesmost common label, yields 94.3% accuracy on the
In this case, the argument and the preposition CaBairs appearing at least 5 times. This property of

be viewed as forming a unit on their own, indepensy,q ore_adjunct distinction greatly simplifies the
dent of the predicate with which they appear. We, for supervised algorithms (see Section 2).

therefore expect such arguments to be adjuncts. We therefore apply the following procedure: (1)

We formalize this notion using the following (54 the training data with the ensemble classifier:
measure. Lep, s, h be a predicate, a slot and a (o) tor each test sample if more than a ratio of:
head word respectively. We then fise of the training samples sharing the same predicate

Yy N, s, h) and slot withx are labeled as cores, tagas core.
S, e N(p, s, h) Otherwise, tag: as adjunct.

Test samples which do not share a predicate and

We select the head words of the argument aa slot with any training sample are considered out
we did with the selectional preference measureof coverage. The parameteris chosen so half
Again, the AS of the whole argument is definedof the arguments are tagged as cores and half as
to be the arithmetic mean of the measure over alhdjuncts. In our experimentswas about 0.25.
of its head words.

AS(s,h) =1—Pr(slh) =1—

_ 4 Experimental Setup
Thresholding. In order to turn these measures

into classifiers, we set a threshold below which arExperiments were conducted in two scenarios. In
guments are marked as adjuncts and above whidhe ‘SID (supervised identification of prepositions
as cores. In order to avoid tuning a parameter foand verbs) scenario, a gold standard list of prepo-
each of the measures, we set the threshold as tisgions was provided. The list was generated by
median value of this measure in the test set. Thataking every word tagged by the preposition tag
is, we find the threshold which tags half of the ar-('IN") in at least one of its instances under the
guments as cores and half as adjuncts. This religgold standard annotation of the WSJ sections 2—
on the prior knowledge that prepositional argu-21. Verbs were identified using MXPOST (Ratna-
ments are roughly equally divided between coregarkhi, 1996). Words tagged with any of the verb

and adjuncts tags, except of the auxiliary verbs (‘have’, ‘be’ and
o ‘do’) were considered predicates. This scenario
3.4 Combination Model decouples the accuracy of the algorithm from the

The algorithm proceeds to integrate the predicAuality of the unsupervised POS tagging.

tions of the weak classifiers into a single classi- In the ‘Fully Unsupervisetdscenario, preposi-
fier. We use an ensemble method (Breiman, 1996}ions and verbs were identified using Clark’s tag-
Each of the classifiers may either classify an arguger (Clark, 2003). It was asked to produce a tag-
ment as an adjunct, classify it as a core, or abging into 34 classes. The classes corresponding
stain. In order to obtain a high accuracy classifiert0 prepositions and to verbs were manually identi-
to be used for self-training below, the ensembldied. Prepositions in the test set were detected with

classifier only tags arguments for which none of84.2% precision and 91.6% recall.
The prediction of whether a word belongs to an

®The conditional probability is subtracted from 1 so thatopen class or a closed was based on the output of
higher values correspond to cores, as with the other measur

€s.
"In case the test data is small, we can use the median vaIJz]e Prototype tagger _(Aben(_j e_t_al-’ 2010)- The
on the training data instead. Prototype tagger provided significantly more ac-
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curate predictions in this context than Clark’s.  in which the ensemble is used to tag arguments
The 39832 sentences of PropBank’s sections 2for which all three measures give a prediction
21 were used as a test set without bounding theifthe ‘Ensemble(Intersectionylassifier) and one
length$. Cores were defined to be any argumenin which the ensemble tags all arguments for
bearing the labels ‘A0’ — ‘A5’, ‘C-A0’ — ‘C-A5’  which at least one classifier gives a prediction (the
or ‘R-A0" — ‘R-A5’. Adjuncts were defined to ‘Ensemble(Union)lassifier). For the latter, a tie
be arguments bearing the labels ‘AM’, ‘C-AM’ or is broken in favor of the core label. ThEnsem-
‘R-AM’. Modals (‘AM-MOD’) and negation mod- ble(Union) classifier is not a part of our model
ifiers (AM-NEG’) were omitted since they do not and is evaluated only as a reference.
represent adjuncts. In order to provide a broader perspective on the
The test set includes 213473 arguments, 4593task, we compare the measures in the basis of our
(21.5%) are prepositional. Of the latter, 22442algorithm to simplified or alternative measures.
(48.9%) are cores and 23497 (51.1%) are adjunctyVe experiment with the following measures:
The non-prepositional arguments include 145767 1.Simple SR-a selectional preference measure
(87%) cores and 21767 (13%) adjuncts. The averdefined to bePr(head|slot, predicate).
age number of words per argument is 5.1. 2. Vast Corpus SR- similar to ‘Simple SP
The NANC (Graff, 1995) corpus was used as aout with a much larger corpus. It uses roughly
training set. Only sentences of length not greatetOOM arguments which were extracted from the
than 10 excluding punctuation were used (see Setveb-crawling based corpus of (Gabrilovich and
tion 3.2), totaling 4955181 sentences. 767387#arkovitch, 2005) and the British National Cor-
(5635810) arguments were identified in tig4D’  pus (Burnard, 2000).
(‘Fully Unsupervisetl scenario. The average 3. Thesaurus SPaselectional preference mea-
number of words per argument is 1.6 (1.7). sure which follows the paradigm of (Erk, 2007)
Since this is the first work to tackle this task (Section 3.3) and defines the similarity between
using neither manual nor supervised syntactic antwo heads to be the Jaccard affinity between their
notation, there is no previous work to comparetwo entries in Lin's automatically compiled the-
to. However, we do compare against a non-triviasaurus (Lin, 19985
baseline, which closely follows the rationale of 4. Pr(slotpredicate)- an alternative to the used
cores as obligatory arguments. predicate-slot collocation measure.
Our Window Baselingags a corpus using MX-  9- PMI(slot, head)- an alternative to the used
POST and computes, for each predicate an@'gument-siot collocation measure.
preposition, the ratio between the number of times 6. Head Dependence the entropy of the pred-
that the preposition appeared in a windowlgf  icate distribution given the slot and the head (fol-
words after the verb and the total number oflowing (Merlo and Esteve Ferrer, 2006)):
times that the verb appeared. If this number ex- HD(s,h) = —S,Pr(p|s, h) - log(Pr(pls, h))
ceeds a certain threshojg all arguments hav-
ing that predicate and preposition are tagged akow entropy implies a core.
cores. Otherwise, they are tagged as adjuncts. We For each of the scenarios and the algorithms,
used 18.7M sentences from NANC of unboundedve report accuracy, coverage and effective accu-
length for this baselinell” and3 were fine-tuned racy. Effective accuracy is defined to be the ac-
against the test sét curacy obtained when all out of coverage argu-
We also report results for partial versions ofments are tagged as adjuncts. This procedure al-
the algorithm, starting with the three measuresvays yields a classifier with 100% coverage and
used (selectional preference, predicate-slot coltherefore provides an even ground for comparing
location and argument-slot collocation). Resultghe algorithms’ performance.
for the ensemble classifier (prior to the bootstrap- We see accuracy as important on its own right
ping stage) are presented in two variants: onaince increasing coverage is often straightforward

— _ given easily obtainable larger training corpora.
The first 15K arguments were used for the algorithm’s

development and therefore excluded from the evaluation. 1Since we aim for a minimally supervised scenario,
9Their optimal value was found to B&=2, 3=0.03. The we used the proximity-based version of his thesaurus

low optimal value of5 is an indication of the noisiness of this which does not require parsing as pre-processing.

technique. http://webdocs.cs.ualberta.edihdek/Downloads/sims.Isp.gz
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Collocation Measures Ensemble + Cov.
Sel. Preferencg Pred-Slot| Arg-Slot || Ensemble(l)|| Ensemble(U)] E(I) + ST
SID Scenario Accuracy 65.6 64.5 72.4 74.1 68.7 70.6
Coverage 35.6 77.8 44.7 33.2 88.1 74.2
Eff. Acc. 56.7 64.8 58.8 58.8 67.8 68.4
Fully Unsupervised| Accuracy 62.6 61.1 69.4 70.6 64.8 68.8
Scenario Coverage 24.8 59.0 38.7 22.8 74.2 56.9
Eff. Acc. 52.6 575 55.8 53.8 61.0 61.4

Table 1: Results for the various models. Accuracy, coverage and effeativeracy are presented in percents. Effective
accuracy is defined to be the accuracy resulting from labeling eachf maverage argument with an adjunct label. The
rows represent the following models (left to right): selectional prefegepredicate-slot collocation, argument-slot collocation,
‘Ensemble(Intersection) Ensemble(Uniorand the Ensemble(Intersectiorfpllowed by self-training (see Section 3.4En-
semble(Intersectiohpbtains the highest accuracy. The ensemble + self-training obtainsghesh effective accuracy.

Selectional Preference Measurgs  Pred-Slot Measures Arg-Slot Measures
SP | S.SP] VC.SP| LinSP || PS | Pr(dp) | Window || AS™ [ PMI(s, h) HD
Acc. 65.6 | 41.6 44.8 49.9 64.5| 58.9 64.1 72.4 67.5 67.4
Cov. 35.6| 36.9 45.3 36.7 778 77.8 92.6 44.7 44.7 44.7
Eff. Acc. || 56.7 | 48.2 47.7 51.3 || 64.8] 60.5 65.0 58.8 56.6 56.6

Table 2:Comparison of the measures used by our model to alternative meéstite SID’ scenario. Results are in percents.
The sections of the table are (from left to right): selectional preferaere@sures, predicate-slot measures, argument-slot mea-
sures and head dependence. The measures are (left to righf)Si8Hle SP, Vast Corpus SP, Lin SP,"PBr(slotpredicate),
Window Baseline, AS, PMI(slot, head) and Head Dependence. The measures marked avitithe ones used by our model.
See Section 4.

Another reason is that a high accuracy classifiethe number of unlabeled matchés
may provide training data to be used by subse-
guent supervised algorithms. 5 Results

For completeness, we also provide results fofrapie 1 presents the results of our main experi-

the entire set of arguments. The great majority Ofnents. In hoth scenarios, the most accurate of the
non-prepositional arguments are cores (87% in thg,ree hasic classifiers was the argument-slot col-

test set). We therefore tag all non-prepositional ag,.ation classifier. This is an indication that the

cores and tag prepositional arguments using oY jiocation between the argument and the prepo-
model. In order to minimize supervision, we dis- gjsion is more indicative of the core/adjunct label
tinguish between the prepositional and the nong, 4y the obligatoriness of the slot (as expressed by
prepositional arguments using Clark's tagger.  he predicate-slot collocation).

Finally, we experiment on a scenario where Indeed, we can find examples where adjuncts,
even argument identification on the test set islthough optional, appear very often with a certain
not provided, but performed by the algorithm of verb. An example is ‘meet’, which often takes a
(Abend et al., 2009), which uses neither syntacti@emporal adjunct, as in ‘Let’s meet [in July]'. This
nor SRL annotation but does utilize a superviseds a semantic property of ‘meet’, whose syntactic
POS tagger. We therefore run it in th8lD’' sce-  expression is not obligatory.
nario. We apply it to the sentences of length at All measures suffered from a comparable dete-
most 10 contained in sections 2-21 of PB (1158Gioration of accuracy when moving from th8ID
arguments in 6007 sentences). Non-prepositionab the ‘Fully Unsupervisedscenario. The dete-
arguments are invariably tagged as cores and ouioration in coverage, however, was considerably
of coverage prepositional arguments as adjuncts.lower for the argument-slot collocation.

We report labeled and unlabeled recall, preci- The ‘Ensemble(Intersection)nodel in both
sion and F-scores for this experiment. An un-cases is more accurate than each of the basic clas-
labeled match is defined to be an argument thasifiers alone. This is to be expected as it combines
agrees in its boundaries with a gold standard arthe predictions of all three. The self-training step
gument and a labeled match requires in additiorsignificantly increases the ensemble model’s cov-

that the arguments agree in their core/adjunct la—; _
Note that the reported unlabeled scores are slightly lower

be'_' We also report labeling accuracy which is thethan those reported in the 2009 paper, due to the exclusion of
ratio between the number of labeled matches anthe modals and negation modifiers.
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— Prgg‘?"” %%Cg” F;Cgre IAcc. somewhat higher than the score on the entire test
[abeled o7 554 [ 480 | 836 set (‘SID' scenario), which was 83.0% (68.4%),

probably due to the bounded length of the test sen-
Table 3: Unlabeled and labeled scores for the experi-tences in this case.

ments using the unsupervised argument identification system

of (Abend et al., 2009). Precision, recall, F-score and label :

ing accuracy are given in percents. 6 Conclusion

We presented a fully unsupervised algorithm for

erage (with some loss in accuracy), thus obtaininéhe classification of arguments into cores and ad-

the highest effective accuracy. Itis also more acculUncts. Since most non-preposi_ti_onal arguments
rate than the simpler classifiEnsemble(Uniont) ~ &re cores, we focused on prepositional arguments,

(although the latter's coverage is higher). which are roughly equally divided between cores

Table 2 presents results for the comparison t&Nd adjuncts. The algorithm computes three sta-
simpler or alternative measures. Results indicatdiStical measures and utilizes ensemble-based and

that the three measures used by our a|gorithrﬁelf—training methods to combine their predictions.

(leftmost column in each section) obtain superior 1N€ algorithm applies state-of-the-art unsuper-
results. The only case in which performance ivised parser and POS tagger to coI_Iect statistics
comparable is the window baseline compared td'om & large raw t((a)xt corpus. It obtains an accu-
the Pred-Slot measure. However, the baseline8CY Of roughly 70%. We also show that (some-

score was obtained by using a much larger corpu‘é’hat surprisingly) an argument-slot collocation
and a careful hand-tuning of the parameters measure gives more accurate predictions than a

The poor performance @imple SRcan be as- predicate-slot collocation measure on this task.
cribed to sparsity. This is demonstrated by theWVe speculate the reason is that the head word dis-

median value of 0, which this measure obtainedMpPiguates the preposition and that this disam-
on the test set. Accuracy is only somewhat bettePiguation generally determines whether a preposi-
with a much larger corpus/ast Corpus SP The tional argument is a core or an adjunct (somewhat

Thesaurus SPost probably failed due to insuffi- I"dependently of the predicate). This calls for
cient coverage, despite its applicability in a similar@ future study into the semantics of prepositions
supervised task (Zapirain et al., 2009). and their relation to the core-adjunct distinction.

The Head Dependence measure achieves a rd[! thiS context two recent project$he Preposi-
atively high accuracy of 67.4%. We therefore at.tion Project(Litkowski and Hargraves, 2005) and

tempted to incorporate it into our model, but failed P"ePNet (Saint-Dizier, 2006), which attempt to

to achieve a significant improvement to the overalfaracterize and categorize the complex syntactic

result. We expect a further study of the relations2d Semantic behavior of prepositions, may be of

between the measures will suggest better ways dflevance. _ , _
combining their predictions. Itis our hope that this work will provide a better

The obtained effective accuracy for the entire!derstanding of core-adjunct phenomena. Cur-
set of arguments, where the prepositional argu[entsgperwsed SRL models tend to perform worse
ments are automatically identified, was 81.6%. °N adjuncts than on cores (Pradhan et al., 2008;

Table 3 presents results of our experiments WithTouta_nova etal, _2008)' We believe a better under-
the unsupervised argument identification modeiStandlng of the differences between cores and ad-

of (Abend et al., 2009). The unlabeled scoreduncts may contribute to the development of better
. ' SRL techniques, in both its supervised and unsu-

reflect performance on argument identification . |
pervised variants.

alone, while the labeled scores reflect the joint per
formance of both the 2009 and our algorithms.
These results, albeit low, are potentially benefiReferences

cial for unsupervised subcategorization acquisi-O  Abend. Roi Reichart and Ari R ¢ 2009
. . mri end, ROl reichart an I kKappoport, .
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Abstract

Current Semantic Role Labeling technolo-
gies are based on inductive algorithms
trained over large scale repositories of
annotated examples. Frame-based sys-
tems currently make use of the FrameNet
database but fail to show suitable general-
ization capabilities in out-of-domain sce-
narios. In this paper, a state-of-art system
for frame-based SRL is extended through
the encapsulation of a distributional model
of semantic similarity. The resulting argu-
ment classification model promotes a sim-
pler feature space that limits the potential
overfitting effects. The large scale em-
pirical study here discussed confirms that
state-of-art accuracy can be obtained for
out-of-domain evaluations.

1 Introduction

The availability of large scale semantic lexicons,
such as FrameNet (Baker et al., 1998), allowed the
adoption of a wide family of learning paradigms
in the automation of semantic parsing. Building
upon the so called frame semantic model (Fill-
more, 1985), the Berkeley FrameNet project has
developed a semantic lexicon for the core vocab-
ulary of English, since 1997. A frame is evoked
in texts through the occurrence of its lexical units
(LU), i.e. predicate words such verbs, nouns, or
adjectives, and specifies the participants and prop-
erties of the situation it describes, the so called
frame elements (F'Es).

Semantic Role Labeling (SRL) is the task of
automatic recognition of individual predicates to-
gether with their major roles (e.g. frame ele-
ments) as they are grammatically realized in in-
put sentences. It has been a popular task since
the availability of the PropBank and FrameNet an-
notated corpora (Palmer et al., 2005), the seminal

work of (Gildea and Jurafsky, 2002) and the suc-
cessful CoNLL evaluation campaigns (Carreras
and Marquez, 2005). Statistical machine learning
methods, ranging from joint probabilistic models
to support vector machines, have been success-
fully adopted to provide very accurate semantic
labeling, e.g. (Carreras and Marquez, 2005).

SRL based on FrameNet is thus not a novel task,
although very few systems are known capable of
completing a general frame-based annotation pro-
cess over raw texts, noticeable exceptions being
discussed for example in (Erk and Pado, 2006),
(Johansson and Nugues, 2008b) and (Coppola et
al., 2009). Some critical limitations have been out-
lined in literature, some of them independent from
the underlying semantic paradigm.

Parsing Accuracy. Most of the employed
learning algorithms are based on complex sets of
syntagmatic features, as deeply investigated in (Jo-
hansson and Nugues, 2008b). The resulting recog-
nition is thus highly dependent on the accuracy of
the underlying parser, whereas wrong structures
returned by the parser usually imply large misclas-
sification errors.

Annotation costs. Statistical learning ap-
proaches applied to SRL are very demanding with
respect to the amount and quality of the train-
ing material. The complex SRL architectures
proposed (usually combining local and global,
i.e. joint, models of argument classification, e.g.
(Toutanova et al., 2008)) require a large number
of annotated examples. The amount and quality of
the training data required to reach a significant ac-
curacy is a serious limitation to the exploitation of
SRL in many NLP applications.

Limited Linguistic Generalization. Several
studies showed that even when large training
sets exist the corresponding learning exhibits
poor generalization power. Most of the CoNLL
2005 systems show a significant performance drop
when the tested corpus, i.e. Brown, differs from
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the training one (i.e. Wall Street Journal), e.g.
(Toutanova et al., 2008). More recently, the state-
of-art frame-based semantic role labeling system
discussed in (Johansson and Nugues, 2008b) re-
ports a 19% drop in accuracy for the argument
classification task when a different test domain is
targeted (i.e. NTI corpus). Out-of-domain tests
seem to suggest the models trained on BNC do not
generalize well to novel grammatical and lexical
phenomena. As also suggested in (Pradhan et al.,
2008), the major drawback is the poor generaliza-
tion power affecting lexical features. Notice how
this is also a general problem of statistical learning
processes, as large fine grain feature sets are more
exposed to the risks of overfitting.

The above problems are particularly critical
for frame-based shallow semantic parsing where,
as opposed to more syntactic-oriented semantic
labeling schemes (as Propbank (Palmer et al.,
2005)), a significant mismatch exists between the
semantic descriptors and the underlying syntac-
tic annotation level. In (Johansson and Nugues,
2008b) an upper bound of about 83.9% for the ac-
curacy of the argument identification task is re-
ported, it is due to the complexity in projecting
frame element boundaries out from the depen-
dency graph: more than 16% of the roles in the
annotated material lack of a clear grammatical sta-
tus.

The limited level of linguistic generalization
outlined above is still an open research problem.
Existing solutions have been proposed in litera-
ture along different lines. Learning from richer
linguistic descriptions of more complex structures
is proposed in (Toutanova et al., 2008). Limit-
ing the cost required for developing large domain-
specific training data sets has been also studied,
e.g., (Fiirstenau and Lapata, 2009). Finally, the ap-
plication of semi-supervised learning is attempted
to increase the lexical expressiveness of the model,
e.g. (Goldberg and Elhadad, 2009).

In this paper, this last direction is pursued. A
semi-supervised statistical model exploiting use-
ful lexical information from unlabeled corpora is
proposed. The model adopts a simple feature
space by relying on a limited set of grammati-
cal properties, thus reducing its learning capac-
ity. Moreover, it generalizes lexical information
about the annotated examples by applying a ge-
ometrical model, in a Latent Semantic Analysis
style, inspired by a distributional paradigm (Pado
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and Lapata, 2007). As we will see, the accu-
racy reachable through a restricted feature space is
still quite close to the state-of-art, but interestingly
the performance drops in out-of-domain tests are
avoided.

In the following, after discussing existing ap-
proaches to SRL (Section 2), a distributional ap-
proach is defined in Section 3. Section 3.2 dis-
cusses the proposed HMM-based treatment of
joint inferences in argument classification. The
large scale experiments described in Section 4 will
allow to draw the conclusions of Section 5.

2 Related Work

State-of-art approaches to frame-based SRL are
based on Support Vector Machines, trained over
linear models of syntactic features, e.g. (Jo-
hansson and Nugues, 2008b), or tree-kernels, e.g.
(Coppola et al., 2009). S RL proceeds through two
main steps: the localization of arguments in a sen-
tence, called boundary detection (BD), and the as-
signment of the proper role to the detected con-
stituents, that is the argument classification, (AC)
step. In (Toutanova et al., 2008) a SRL model
over Propbank that effectively exploits the seman-
tic argument frame as a joint structure, is pre-
sented. It incorporates strong dependencies within
a comprehensive statistical joint model with a rich
set of features over multiple argument phrases.
This approach effectively introduces a new step
in SRL, also called Joint Re-ranking, (RR), e.g.
(Toutanova et al., 2008) or (Moschitti et al., 2008).
First local models are applied to produce role
labels over individual arguments, then the joint
model is used to decide the entire argument se-
quence among the set of the m-best competing
solutions. While these approaches increase the
expressive power of the models to capture more
general linguistic properties, they rely on com-
plex feature sets, are more demanding about the
amount of training information and increase the
overall exposure to overfitting effects.

In (Johansson and Nugues, 2008b) the impact of
different grammatical representations on the task
of frame-based shallow semantic parsing is stud-
ied and the poor lexical generalization problem
is outlined. An argument classification accuracy
of 89.9% over the FrameNet (i.e. BNC) dataset
is shown to decrease to 71.1% when a different
test domain is evaluated (i.e. the Nuclear Threat
Initiative corpus). The argument classification



component is thus shown to be heavily domain-
dependent whereas the inclusion of grammatical
function features is just able to mitigate this sen-
sitivity. In line with (Pradhan et al., 2008), it is
suggested that lexical features are domain specific
and their suitable generalization is not achieved.

The lack of suitable lexical information is also
discussed in (Fiirstenau and Lapata, 2009) through
an approach aiming to support the creation of
novel annotated resources. Accordingly a semi-
supervised approach for reducing the costs of the
manual annotation effort is proposed. Through a
graph alignment algorithm triggered by annotated
resources, the method acquires training instances
from an unlabeled corpus also for verbs not listed
as existing FrameNet predicates.

2.1 The role of Lexical Semantic Information

It is widely accepted that lexical information (as
features directly derived from word forms) is cru-
cial for training accurate systems in a number of
NLP tasks. Indeed, all the best systems in the
CoNLL shared task competitions (e.g. Chunk-
ing (Tjong Kim Sang and Buchholz, 2000)) make
extensive use of lexical information. Also lexi-
cal features are beneficial in SRL usually either
for systems on Propbank as well as for FrameNet-
based annotation.

In (Goldberg and Elhadad, 2009), a different
strategy to incorporate lexical features into clas-
sification models is proposed. A more expres-
sive training algorithm (i.e. anchored SVM) cou-
pled with an aggressive feature pruning strategy
is shown to achieve high accuracy over a chunk-
ing and named entity recognition task. The sug-
gested perspective here is that effective semantic
knowledge can be collected from sources exter-
nal to the annotated corpora (very large unanno-
tated corpora or on manually constructed lexical
resources) rather than learned from the raw lexi-
cal counts of the annotated corpus. Notice how
this is also the strategy pursued in recent work on
deep learning approaches to NLP tasks. In (Col-
lobert and Weston, 2008) a unified architecture
for Natural Language Processing that learns fea-
tures relevant to the tasks at hand given very lim-
ited prior knowledge is presented. It embodies the
idea that a multitask learning architecture coupled
with semi-supervised learning can be effectively
applied even to complex linguistic tasks such as
SRL. In particular, (Collobert and Weston, 2008)
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proposes an embedding of lexical information us-
ing Wikipedia as source, and exploiting the result-
ing language model within the multitask learning
process. The idea of (Collobert and Weston, 2008)
to obtain an embedding of lexical information by
acquiring a language model from unlabeled data is
an interesting approach to the problem of perfor-
mance degradation in out-of-domain tests, as al-
ready pursued by (Deschacht and Moens, 2009).
The extensive use of unlabeled texts allows to
achieve a significant level of lexical generalization
that seems better capitalize the smaller annotated
data sets.

3 A Distributional Model for Argument
Classification

High quality lexical information is crucial for ro-
bust open-domain SRL, as semantic generaliza-
tion highly depends on lexical information. For
example, the following two sentences evoke the
STATEMENT frame, through the LUs say and
state, where the FEs, SPEAKER and MEDIUM, are
shown.

[President Kennedy) speaxer said to an astronaut, ”Man
is still the most extraordinary computer of all.” (1)

[The report] mepium Stated, that some problems needed
to be solved. (2)

In sentence (1), for example, President Kennedy
is the grammatical subject of the verb say and
this justifies its role of SPEAKER. However, syn-
tax does not entirely characterize argument seman-
tics. In (1) and (2), the same syntactic relation is
observed. It is the semantics of the grammatical
heads, i.e. report and Kennedy, the main respon-
sible for the difference between the two resulting
proto-agentive roles, SPEAKER and MEDIUM.

In this work we explore two different aspects.
First, we propose a model that does not depend
on complex syntactic information in order to min-
imize the risk of overfitting. Second, we improve
the lexical semantic information available to the
learning algorithm. The proposed “minimalistic”
approach will consider only two independent fea-
tures:

o the semantic head (h) of a role, as it can
be observed in the grammatical structure. In
sentence (2), for example, the MEDIUM FE is
realized as the logical subject, whose head is
report.



o the dependency relation (r) connecting the
semantic head to the predicate words. In (2),
the semantic head report is connected to the
LU stated through the subject (SBJ) relation.

In the rest of the section the distributional model
for the argument classification step is presented.
A lexicalized model for individual semantic roles
is first defined in order to achieve robust seman-
tic classification local to each argument. Then a
Hidden Markov Model is introduced in order to
exploit the local probability estimators, sensitive
to lexical similarity, as well as the global informa-
tion on the entire argument sequence.

3.1 Distributional Local Models

As the classification of semantic roles is strictly
related to the lexical meaning of argument heads,
we adopt a distributional perspective, where the
meaning is described by the set of textual con-
texts in which words appear. In distributional
models, words are thus represented through vec-
tors built over these observable contexts: similar
vectors suggest semantic relatedness as a func-
tion of the distance between two words, capturing
paradigmatic (e.g. synonymy) or syntagmatic re-
lations (Pado, 2007). Vectors Z) are described by
an adjacency matrix M, whose rows describe tar-
get words (h) and whose columns describe their
corpus contexts. Latent Semantic Analysis (LSA)
(Landauer and Dumais, 1997), is then applied to
M to acquire meaningful representations 7. LSA
exploits the linear transformation called Singular
Value Decomposition (SVD) and produces an ap-
proximation of the original matrix M, capturing
(semantic) dependencies between context vectors.
M is replaced by a lower dimensional matrix M,
capturing the same statistical information in a new
l-dimensional space, where each dimension is a
linear combination of some of the original fea-
tures (i.e. contexts). These derived features may
be thought as artificial concepts, each one repre-
senting an emerging meaning component, as the
linear combination of many different words.

In the argument classification task, the similar-
ity between two a