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Linguistic typology aims to distinguish between log-
ically possible languages and actually observed la
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Abstract

A standard form of analysis for linguis-
tic typology is the universal implication.
These implications state facts about the
range of extant languages, such as “if ob-
jects come after verbs, then adjectives come
after nouns.” Such implications are typi-
cally discovered by painstaking hand anal-
ysis over a small sample of languages. We
propose a computational model for assist-
ing at this process. Our model is able to
discover both well-known implications as
well as some novel implications that deserve
further study. Moreover, through a careful
application of hierarchical analysis, we are
able to cope with the well-known sampling
problem: languages are not independent.
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at all pairs of features (typically several hundred) is
virtually impossible by hand. Moreover, it is insuf-
ficient to simply look at counts. For instance, results
presented in the form “verb precedes object implies
prepositions in 16/19 languages” are honconclusive.
While compelling, this is not enough evidence to de-
cide if this is a statistically well-founded implica-
tion. For one, mayb@9% of languages have prepo-
sitions: then the fact that we've achieved a rate of
84% actually seems really bad. Moreover, if thé
languages are highly related historically or areally
(geographically), and the oth&rare not, then we
may have only learned something about geography.
In this work, we propose a statistical model that
deals cleanly with these difficulties. By building a
computational model, it is possible to apply it to
a very large typological database and search over
many thousands of pairs of features. Our model
hinges on two novel components: a statistical noise
model a hierarchical inference over language fam-

Hi_es. To our knowledge, there is no prior work

guages. A fundamental building block for such arﬁj'reCtly in this area. The closest work is repre-
understanding is thaniversal implication(Green-

berg, 1963). These are short statements that restrit
the space of languages in a concrete way (for i
stance “object-verb ordering implies adjective-nou

sented by the bookPossible and Probable Lan-
agegNewmeyer, 2005) andanguage Classifica-

Adion by NumbergMcMahon and McMahon, 2005),

,?Ut the focus of these books is on automatically dis-

ordering”); Croft (2003), Hawkins (1983) and Songcovering phylogenetic trees for languages based on

(2001) provide excellent introductions to linguistic

Indo-European cognate sets (Dyen et al., 1992).

typology. We present a statistical model for auto2 Data

matically discovering such implications from a largeThe database on which we perform our analysis is
typological database (Haspelmath et al., 2005).
Analyses of universal implications are typicallymath et al., 2005). This database contains infor-
performed by linguists, inspecting an array 38F
100 languages and a few pairs of features. Lookinthe world; Figure 1 depicts the locations of lan-
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mation abouR150 languages (sampled from across
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Numeral Glottalized Number of
Language Classifiers | Rel/N Order | O/V Order | Consonants| Tone Genders
English Absent NRel VO None None Three
Hindi Absent RelN ov None None Two
Mandarin Obligatory RelN VO None Complex None
Russian Absent NRel VO None None Three
Tukang Besi| Absent ? Either Implosives None Three
Zulu Absent NRel VO Ejectives Simple Five+

Table 1: Example database entries for a selection of diverse languadjésatures.

of noise stems from transcription. WALS contains
data about languages documented by field linguists
as early as the 1900s. Much of this older data was
collected before there was significant agreement in
documentation style. Different field linguists of-
ten had different dimensions along which they seg-
mented language features into classes. This leads to
noise in the properties of individual languages.
Another difficulty stems from theampling prob-
lem. This is a well-documented issue (see, eg.,
guages). There ar&39 featuresin this database, (Croft, 2003)) stemming from the fact that any set of
broken down into categories such as “Nominal Catdanguages is not sampled uniformly from the space
gories,” “Simple Clauses,” “Phonology,” “Word Or- of all probable languages. Politically interesting
der,” etc. The database &parse for many lan- languages (eg., Indo-European) and typologically
guage/feature pairs, the feature value is unknown. knusual languages (eg., Dyirbal) are better docu-
fact, only about 6% of all possible language/feature mented than others. Moreover, languages are not in-
pairs are known. A sample of five languages and sitependent: German and Dutch are more similar than
features from the database are shown in Table 1. German and Hindi due to history and geography.
Importantly, the density of samples is not random. The first model, EAT, treats each language as in-
For certain languages (eg., English, Chinese, Rugependent. It is thus susceptible to sampling prob-
sian), nearly all features are known, whereas othéems. For instance, the WALS database contains a
languages (eg., Asturian, Omagua, Frisian) that hav@lf dozen versions of German. TheAT model
fewer than five feature values known. Furthermoresonsiders these versions of German just as statisti-
some features are known for many languages. Thiglly independent as, say, German and Hindi. To
is due to the fact that certain features take less effotope with this problem, we then augment theaF
to identify than others. Identifying, for instance, ifmodel into a HERarchical model that takes advan-
a language has a particular set of phonological feé&age of known hierarchies in linguistic phylogenet-
tures (such as glottalized consonants) requires onigs. The HER model explicitly models the fact that
listening to speakers. Other features, such as detérdividual languages areotindependent and exhibit
mining the order of relative clauses and nouns restrong familial dependencies. In both models, we
quire understanding much more of the language. initially restrict our attention to pairs of features. We
3 Models will describe our models as if all features are binary.
In this section, we propose two models for automat!/e €xpand any multi-valued feature witt values
ically uncovering universal implications from noisy, N0 & binary features in a “one versus rest” manner.
sparse data. First, note that even well attested imp81 The FLAT Model
cations are not always exceptionless. A common eXa the FLAT model, we consider 2 x N matrix of
ample is that verbs preceding objects (“VO”) impliedeature values. Th&’ corresponds to the number of
adjectives following nouns (“NA’). This implication languages, while the corresponds to the two fea-
(VO > NA) has one glaring exception: English.tures currently under consideration (eg., object/verb
This is one particular form of noise. Another sourcerder and noun/adjective order). The order of the
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Figure 1: Map of th&150 languages in the database



two features is importantf; implies fs is logically
different from f> implies f;. Some of the entries in

the matrix will be unknown. We may safely remove

all languages from consideration for whibbthare @ 0 @ @
unknown, but we doaotremove languages for which

only one is unknown. We do so because our model @ ° @

needs to capture the fact thatf§ is alwaystrue, N

thenf; O f is uninteresting. Figure 2: Graphical model for theL&T model.

The statistical model is set up as follows. There is _ _
a single variable (we will denote this variable:”) tion. We assume an underlying noise rate for the en-

corresponding to whether the implication holdstire data set, but that, conditioned on this underlying

Thus,m = 1 means thaff; implies f» andm = 0 rate, there is a language-specific noise level. We be-

means that it does not. Independentgfe specify lieve this to be an appropriate noise model because it
two feature priorsyr; and for f; and f, respec- models the fact that the majority of information for
tively. 7, specifies the prior probability tha will & Single language is from a single source. Thus, if
be true, andr, specifies the prior probability thas there is an error in the database, it is more likely that
will be true. One can then put the model togethePther errors will be for the same languages.

navely as follows. Ifm = 0 (i.e., the implication I order to model this statistically, we assume that
does not hold), then the entire data matrix is genef€re are latent variables,, ande,, for each lan-
ated by choosing values fdfi (resp.,f») indepen- 9uagen. If er,, = 1, then the first feature for lan-
dently according to the prior probability, (resp., 9uagen is wrong. Similarly, ifez,, = 1, then the
7). On the other hand, ifn = 1 (i.e., the impli- S&cond feature for languageis wrong. Given this

cationdoeshold), then the first column of the dataM0del, the probabilities are exactly as in thévea
matrix is generated by choosing values forinde- Model, with the exception that instead of usifig

pendently byr;, but the second column is generated®SP-./2), we use the exclusive-bf; ® e1 (resp.,
differently. In particular, if for a particular language, /2 ® ¢2) s0 that the feature values are flipped when-
we have thaff; is true, then the fact that the implica- 8Ver the noise model suggests an error.

tion holds means that, mustbe true. On the other  The graphical model for thelAT model is shown
hand, if f, is false for a particular language, then wdn Figure 2. Circular nodes denote random variables
may generatef, according to the prior probability and arrows denote conditional dependencies. The

m. Thus, havingn = 1 means that the model is réctangular plate denotes the fact that the elements
significantly more constrained. In equations: contained within it are replicatedl’ times (V is the
) number of languages). In this model, there are four
p(fi|m) ==t (1 —m)' ™" “root” nodes: the implication value:; the two fea-
_J Iz m=fi=1 ture prior probabilitiesr; andw,; and the language-
p(f2 | f1,7r2,m) - { 71_%2(1 _ ﬂ.2)1*f2 otherwise p p ! 2 g g
specific error rate. On all of these nodes we place

The problem with this rize model is that it does Bayesian priors. Since: is a binary random vari-
not take into account the fact that there is “noise@Ple, we place a Bernoulli prior on it. Thes are
in the data. (By noise, we refer either to mis-Bernoulli random variables, so they are given inde-

annotations, or to “strange” languages like English jéndent Beta priors. Finally, the noise rate also

To account for this, we introduce a simple noisdven a Beta prior. For the two Beta parameters gov-
model. There are several options for parameteri£Ming the error rate (i.eq, andb.) we set these by
ing the noise, depending on what independence #32nd so that the mean expected error rat@sand
sumptions we wish to make. One could simply spedl® probability of the error rate being betweei

ify a noise rate for the entire data set. One coul@nd10% is 50% (this number is based on an expert
alternatively specify a language-specific noise rat@P'nion of the noise-rate in the data). For the rest of
Or one could specify a feature'_SpeC'f'C NOISe raté. itphe exclusive-or of: andb, writtena ® b, is true exactly
We opt for a blend between the first and second op¢hen either or b is true but not both.
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the parameters we use uniform priors. A large positiven means that the implication is very

32 The HIER Model likely Fo hold. A large negative value means it is
o - _ _ _ very likely to not hold. The normal distributions

A significant difficulty in working with any large ty- across edges in the tree indicate that we expect the

pological database is that the languages will be sam; y4jyes not to change too much across the tree. At

plednoruniformly. In our case, this means that im-yhe |eaves (i.e., individual languages), the logistic-

plications that seem true in theLkT model may pinomial simply transforms the real-valueds into

pnly be true for, say, Indg-Europegn, and t_he rgmair@he range€0, 1] so as to make an appropriate input to
ing languages are considered noise. While this Map\e pinomial distribution.

be interesting in its own right, we are more interestegf Statistical Inference

in discovering implications that are truly universal. i ) ]
An this section, we describe how we use Markov

We model this using a hierarchical Bayesia , .
g Y chain Monte Carlo methods to perform inference

model. In essence, we take theAF model and . the statistical dels d ived in th :
build a notion of language relatedness into it. id" the staustical models described in the previous

particular, we enforce a hierarchy on theimpli- seitlpr:; g\no‘lfrleUtetN?(IEN(éO(t)B)hp.rOVIde a_lr_1hexli:el-
cation variables. For simplicity, suppose that ou}en introduction 1o echniques. € Key

“hierarchy” of languages is nearly flat. Of the iIdea behind MCMC techniques is to approximate in-

languages, half of them are Indo-European and tri{aactable expectations by drawing random samples

other half are Austronesian. We will use a nearlyrom the probability distribution of interest. The ex-
identical model to the EAT model, but instead of pectation can then be approximated by an empirical

having a singlen variable, we have three: one for SXPECtation over these sample.

IE, one for Austronesian and one for “all languages.” For the RAT model, we use a combination of

. L Gibbs sampling with rejection sampling as a sub-
For a general tree, we assign one implication vari-

able for each node (including the root and leaves Oilétl;r;eétss:eggi!ﬁtigfzgnrﬁgﬂggs'[tipesee::irs:zladsard
The gpal of the mferen.ce 'S to infer the value of theI'he Gibbs step is not available analytically for these.
m variable corresponding to the root of the tree. . . .

All that is left t i the full H del Hence, we use rejection sampling (drawing from the
: at Is e fo specp"y € Uil HER MOdEl gota prior and accepting according to the posterior).
is to specify the probability distribution of the:

random variables. We do this as follows. We The sampling procedure for theikk model is

. . . nly slightly more complicated. Instead of perform-
place a zero mean Gaussian prior with (unknown% y slightly p p

variances? on the rootm. Then, for a non-root thg a simple Gibbs sample fon in Step (4), we

_ ) first sample then values for the internal nodes us-
node, we use a Gaussian with mean equal to the . .
. . . ing simple Gibbs updates. For the leaf nodes, we
m” value of the parent and tied varianeé. In

. use rejection sampling. For this rejection, we draw
our three-node example, this means that the root is ) Ping :

distributed\or(0. %) and each child is distributed PrOPOSa! values from the Gaussian specified by the
N (mro0t, 72) V\;heremroot i< the random variable parentm, and compute acceptance probabilities.

: ) In all cases, we run the outer Gibbs sampler for
corresponding to the root. Finally, the leaves (cor- : : S .
. 1000 iterations and each rejection sampler 26rit-
responding to the languages themselves) are dis-

. . . rations. W m he marginal val for
tributedlogistic-binomial Thus, then random vari- €rations. We compute the marginal values forithe

able corresponding to a leaf (language) is distributég]pllcatlon variables by averaging the sampled val-

. ues after dropping00 “burn-in” iterations.
Bin(s(mpar)), wherempa is them value for the par- PPing ,
ent (internal) node and is the sigmoid function 5 Data Preprocessing and Search
s(x) = [1 + exp(—z)] L. After extracting the raw data from the WALS elec-
The intuition behind this model is that thevalue ~ tronic database (Haspelmath et al., 2605)e per-
at each node in the tree (where a node is either “dp'm & minor amount of preprocessing. Essen-
languages” or a specific language family or an intially, we have manually removed certain feature
_divid_ual_language) Spe_CiﬁeS _the extent to which the 2This is nontrivial—we are currently exploring the possibil-
implication under consideration holds for that nodeity of freely sharing these data.
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values from the database because they are underrepergies on new, plausible implications. In this sec-
resented. For instance, the “Glottalized Consonantsibn, we present the results of our method, together
feature has eight possible values (one for “noneWith both a quantitative and qualitative evaluation.
and seven for different varieties of glottalized conso- N .
. . « . » 6.1 Quantitative Evaluation
nants). We reduce this to simply two values “has” or
“has not.” 313 languages have no glottalized consoln this section, we perform a quantitative evaluation
nants and 39 have some variety of glottalized con-Of the results based opredictive power. That is,
sonant. We have done something similar with ag2ne generally would prefer a system that finds im-
proximately twenty of the features. plications that hold with high probability across the
For the HER model, we obtain the hierarchy in data. The word “generally” is important: this qual-
one of two ways. The first hierarchy we use is thdly is neither necessary nor sufficient for the model
“linguistic hierarchy” specified as part of the WALS to be good. For instance, finding00 implications
data. This hierarchy divides languages into familie§f the formA; > X, 45 5 X, ..., Ajpoo O X' is
and subfamilies. This leads to a tree with the leaveg@mpletely uninteresting i is true in99% of the
at depth four. The root hat8 immediate children Cases. Similarly, suppose that a model can fivfeD
(corresponding to the major families), and there arénplications of the formX > A;,..., X 5 Ajgoo,
a total of 314 internal nodes. The second hierarPut X is only true in five languages. In both of these
chy we use is an areal hierarchy obtained by clu&ases, according to a “predictive power” measure,
tering languages according to their latitude and lorfhese would be ideal systems. But they are both
gitude. For the clustering we first cluster all the lanSOmewhat uninteresting.
guages int® “macro-clusters.” We then cluster each Despite these difficulties with a predictive power-
macro-cluster individually int@5 “micro-clusters.” based evaluation, we feel that it is a good way to un-
These micro-clusters then have the languages at thégrstand the relative merits of our different models.
leaves. This yields a tree with internal nodes. Thus, we compare the following systems:aAf (our
Given the database (which contains approxiProposed flat model), INGHIER (our model using
mately 140 features), performing a raw search eveithe phylogenetic hierarchy), IBTHIER (our model
over all possiblgairs of features would lead to over using the areal hierarchy) andaRbom (a model
19,000 computations. In order to reduce this spacéhat ranks implications—that meet the three qualifi-

to a more manageable number, we filter: cations from the previous section—randomly).
e There must be at lea860 languages for whichothfea- The models are scored as follows. We take the
tures are known. entire WALS data set and “hide” a randoh®%

e There must be at leasp languages for which both fea- of the entries. We then perform full inference and
ture values hold simultaneously. . . ..
e Wheneverf is true, at least half of the languages alsoaSk the inferred model to predlct_ the missing val-
have f» true. ues. The accuracy of the model is the accuracy of
its predictions. To obtain a sense of the quality of
Performing all these filtration steps reduces thehe ranking, we perform this computation on the
number of pairs under consideration3®42. While  top k ranked implications provided by each model;
this remains a computationally expensive procedure, ¢ {2,4,8,...,512,1024}.
we were able to perform all the implication compu- The results of this quantitative evaluation are
tations for thes@442 possible pairs in about a weekshown in Figure 3 (on a log-scale for the x-axis).
on a single modern machine (in Matlab). The two best-performing models are the two hier-
6 Results archical models. The flat model does significantly
The task of discovering universal implications is, atvorse and the random model does terribly. The ver-
its heart, a data-mining task. As such, it is difficulttical lines are a standard deviation ou@0 folds of
to evaluate, since we often do not know the corred¢he experiment (hiding a differend% each time).
answers! If our model only found well-documentedThe difference between the two hierarchical mod-
implications, this would be interesting but uselesgls is typically not statistically significant. At the
from the perspective of aiding linguists focus theitop of the ranking, the model based on phylogenetic
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ing. The results are as follows. ComparingAf

to LINGHIER yield 7 = 0.4144, a very low correla-
tion. Between EAT and DSTHIER, 7 = 0.5213,
also very low. These two are as expected. Fi-
nally, between INGHIER and DSTHIER, we ob-
tainT = 0.5369, a very low correlation, considering
that both perform well predictively.

< i 6.3 Qualitative Analysis

[ = tnarier —e— owtter i Rendom | For the purpose of a qualitative analysis, we re-
produce the toB0 implications discovered by the
LINGHIER model in Table 2 (see the final page).
Figure 3: Results of quantitative (predictive) evaluaEach implication is numbered, then the actual im-
tion. Top curves are the hierarchical models; middiglication is presented. For instance, #7 says that
is the flat model; bottom is the random baseline. any language that has adjectives preceding their
governing nouns also has numerals preceding their

information performs marginally better: at the bot1ouns. We additionally provide an “analysis” of
tom of the ranking, the order flips. Comparing thd"@ny of these discovered implications. Many of
hierarchical models to the flat model, we see thdP€m (€g., #7) are well known in the typological lit-

adequately modeling treepriori similarity between €rature. These are simply numbered according to
languages is quite important. well-known references. For instance our #7 is im-

62 C del C ) plication #18 from Greenberg, reproduced by Song
: ross—.mo € orr.mparlson. (2001). Those that reference Hawkins (eg., #11) are
The results in the previous section support the Coflsased on implications described by Hawkins (1983);
clusion that the two hierarchical models are doing,sse that reference Lehmann are references to the
something significgntly different (and better) tha’brinciples decided by Lehmann (1981) in Ch 4 & 8.
the flat model. This clearly must be the case. The gome of the implications our model discovers
regults, however, dp not say whether the two hieragye gptained by composition of well-known implica-
chies are substantially different. Moreover, are thg,ns For instance, our #3 (namely, QVGenitive-
results that they produce s_ubst:_;mtially different. ThRIoun) can be obtained by combining Greenberg #4
answer to these wo questions is yes.” (OV O Postpositions) and Greenberg #2a (Postpo-
We first address the issue of tree similarity. Weitions 5 Genitive-Noun). It is quite encouraging
consider all pairs of languages which are at distanGfat 14 of our top 21 discovered implications are
0'in the areal tree (i.e., have the same parent). Wge|l.known in the literature (and this, not even con-
then look at the mean tree-distance between thosgjering the tautalogically true implications)! This
languages in the phylogenetic tree. We do this for allirongly suggests that our model is doing something
distances in the areal tree (because of its constrygsasonable and that there is true structure in the data.
tion, there are only threed, 2 and4). The mean |5 addition to many of the known implications
distances in the phylogenetic tree corresponding ¥8und by our model, there are many that are “un-
these three distances in the areal tree aré; 3.5 nown” Space precludes attempting explanations
andd.0, respectively. This means thatlanguages th@ them all, so we focus on a few. Some are easy.
are ‘nearby” in the areal tree are quite often very fagonsider #8 (Strongly suffixing Tense-aspect suf-
apartin the phylogenetic tree. fixes): this is quite plausible—if you have a lan-
To answer the issue of whether the results o Eym— del di | tautalogical imoli
. P n trutn, our modadel aiscovers several tautalogical Implica-
tained by the j[W_O tregs are similar, We_ emploBfions that we have removed by hand before presentation. These
Kendall's 7 statistic. Given two ordered lists, theare examples like “SV@ VO” or “No unusual consonants
T statistic computes how correlated they areis ho glottalized cons_onants.” Itis, of course, good that our model
| between and1. with 1 indicating identical discovers these, since they are obviously true. However, to save
a Way_s o ) g space, we have withheld them from presentation here 3Ute
ordering and) indicated completely reversed order-implication presented here is actually $&rd in our full list.
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guage that tends to have suffixes, it will probably Implicants__Implicand

. - Postposition :
have suffixes for tense/aspect. Similarly, #10 states Adjecti\‘,)e_,\,ounsa Demonstrative-Noun
that languages with verb morphology for questions ™~ Posessive prefixes o oo o
i i . i i i Tense-aspect suffixes ~c Ve voun
lack question particles; again, this can be easily ex-..... "*/>5 e Sfhigaa 1T
plained by an appeal to economy. |~ Plural suffi > Genitve-Noun
Some of the discovered implications require g Adjective-Noun_ \,

more involved explanation. One such example ... ... contve-Noun =7 .
High cons/vowel rati

#20: labial-velars implies no uvulafslt turns out | No front-rounded vowels’ 'NC tones

that labial-velars are most common in Africa just Negative affix_
north of the equator, which is also a place that has ... - Genitive-Noun™ ="

No front-rounded vowel I
very few uvulars (there are a handful of other ex- Labial Ve|ars% Large vowel quality inventory

amples, mostly in Papua New Guinea). While thig Subordinating suffi -

. p. . y P . . ) . . Tense-aspect suffixé Postpositions

implication has not been previously investigated, it 5 casa affixas
Initial subordinator word

makes some sense: if a language has one form pf | Prepositions” " o 00 e R
rare consonant, it is unlikely to have another. Stfong'lﬁ rsa‘ffgmgg Genitive-Noun

As another example, consider #28: Obligator
suffix pronouns implies no possessive affixes. Thisable 3: Top implications discovered by the
means is that in languages (like English) for which_iNngHIER multi-conditional model.
pro-drop is impossible, possession is not marked
morphologically on the head noun (like English,

y . ..~ . into looking at which implications hold, considering
book” appears the same regarless of if it is “his . o
. ) . o only “VO”" languages, or considering only languages
book” or “the book”). This also makes sense: if you . i . . >
with prepositions. It is straightforward to modify

cannot drop pronouns, then one usually will mark . .
PP y our model so that it searches over triples of features,

possession on the pro_noun, not the head noun. Th%%’nditioning on two and predicting the third. Space
you do not need marking on the head noun.

Finally, consider #25: High and mid front VOWE!Isprecludes an in-depth discussion of these results, but

(ie., /ul, etc.) implies large vowel inventor (7 we present the top examples in Table 3 (after remov-

L . , ing th logicall les, which
vowels). This is supported by typological ewdencéngt € tautalogically true examples, which are more

) . numerous in this case, as well as examples that are
that high and mid front vowels are the “last” vowels P

, : . directly obtainable from Table 2). It is encouraging
tobe added to a language’s repertoire. Thus, in ord lat in the top1000 multi-conditional implications

to get them, you must also have many other types of \nd. the most frequently used were “OVIT6
vowels already, leading to a large vowel inventory. . ’

: : : mes) “Postpositions” 157 times) and “Adjective-
Not all examples admit a simple explanation an ! . : R
. . oun” (89 times). This result agrees with intuition.

are worthy of further thought. Some of which (like . )
the ones predicated on “SV”) may just be peculiar/ Discussion
ities of the annotation style: the subject verb ordewe have presented a Bayesian model for discovering
changes frequently between transitive and intransimiversal linguistic implications from a typological
tive usages in many languages, and the annotatidatabase. Our model is able to account for noise in
reflects just one. Some others are bizzarre: why natlinguistically plausible manner. Our hierarchical
having fricatives should mean that you don’t havenodels deal with the sampling issue in a unique way,
tones (#27) is not a priori clear. by using prior knowledge about language families to

6.4 Multi-conditional Implications “group” related languages. Quantitatively, the hier-

Many implications in the literature have multiplearCh'Cal mformatlon_tgrns out to be_qune useful, re-
implicants. For instance, much research has goig@rdless of whetheritis phylogenetically- or areally-
- based. Qualitatively, our model can recover many

“Labial-velars_ and uvulars are rare consonants (order 1Gfe||-known implications as well as many more po-
languages). Labial-velars are joined sounds like /kp/ and /gi/ential implications that can be the object of future

(to English speakers, sounding like chicken noises); uvulars T ) )
sounds are made in the back of the throat, like snoring. linguistic study. We believe that our model is suf-
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# Implicant > Implicand Analysis
1 Postpositions Genitive-Noun Greenberg #2a
2 OV D Postpositions Greenberg #4
3 OV D Genitive-Noun Greenberg #4 + Greenberg #2a
4 Genitive-NourD Postpositions Greenberg #2a (converse)
5 Postpositions OV Greenberg #2b (converse)
6 SV D Genitive-Noun ?2??
7 Adjective-NounD> Numeral-Noun Greenberg #18
8 Strongly suffixingD Tense-aspect suffixes Clear explanation
9 VO D Noun-Relative Clause Lehmann
10 Interrogative verb morph No question particle Appeal to economy
11 Numeral-Nourp Demonstrative-Noun Hawkins XVI (for postpositional languages)
12 Preposition® VO Greenberg #3 (converse)
13 Adjective-NourD Demonstrative-Noun Greenberg #18
14 Noun-AdjectiveD Postpositions Lehmann
15 SV D Postpositions ?2??
16 VO D Prepositions Greenberg #3
17 Initial subordinator word Prepositions Operator-operand principle (Lehmann)
18 Strong prefixingd Prepositions Greenberg #27b
19 Little affixation> Noun-Adjective ?2??
20 Labial-velars> No uvular consonants See text
21 Negative word> No pronominal possessive affixesSee text
22 Strong prefixing> VO Lehmann
23 Subordinating suffixo Strongly suffixing 7?7
24 Final subordinator word Postpositions Operator-operand principle (Lehmann)
25 High and mid front vowels Large vowel inventories See text
26 Plural prefixo Noun-Genitive 7?7
27 No fricativesD No tones 2?7
28 Obligatory subject pronourts No pronominal possessive affixesSee text
29 Demonstrative-Noum Tense-aspect suffixes Operator-operand principle (Lehmann)
30 Prepositions Noun-Relative clause Lehmann, Hawkins

Table 2: Top30 implications discovered by thelhGHIER model.
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