
A simple pattern-matching algorithm for recovering empty nodes
and their antecedents∗

Mark Johnson
Brown Laboratory for Linguistic Information Processing

Brown University
Mark Johnson@Brown.edu

Abstract

This paper describes a simple pattern-
matching algorithm for recovering empty
nodes and identifying their co-indexed an-
tecedents in phrase structure trees that do
not contain this information. The pat-
terns are minimal connected tree frag-
ments containing an empty node and all
other nodes co-indexed with it. This pa-
per also proposes an evaluation proce-
dure for empty node recovery procedures
which is independent of most of the de-
tails of phrase structure, which makes it
possible to compare the performance of
empty node recovery on parser output
with the empty node annotations in a gold-
standard corpus. Evaluating the algorithm
on the output of Charniak’s parser (Char-
niak, 2000) and the Penn treebank (Mar-
cus et al., 1993) shows that the pattern-
matching algorithm does surprisingly well
on the most frequently occuring types of
empty nodes given its simplicity.

1 Introduction

One of the main motivations for research on pars-
ing is that syntactic structure provides important in-
formation for semantic interpretation; hence syntac-
tic parsing is an important first step in a variety of

∗ I would like to thank my colleages in the Brown Labora-
tory for Linguistic Information Processing (BLLIP) as well as
Michael Collins for their advice. This research was supported
by NSF awards DMS 0074276 and ITR IIS 0085940.

useful tasks. Broad coverage syntactic parsers with
good performance have recently become available
(Charniak, 2000; Collins, 2000), but these typically
produce as output a parse tree that only encodes lo-
cal syntactic information, i.e., a tree that does not
include any “empty nodes”. (Collins (1997) dis-
cusses the recovery of one kind of empty node, viz.,
WH-traces). This paper describes a simple pattern-
matching algorithm for post-processing the output
of such parsers to add a wide variety of empty nodes
to its parse trees.

Empty nodes encode additional information about
non-local dependencies between words and phrases
which is important for the interpretation of construc-
tions such as WH-questions, relative clauses, etc.1

For example, in the noun phrase the man Sam likes
the fact the man is interpreted as the direct object of
the verb likes is indicated in Penn treebank notation
by empty nodes and coindexation as shown in Fig-
ure 1 (see the next section for an explanation of why
likes is tagged VBZ t rather than the standard VBZ).

The broad-coverage statistical parsers just men-
tioned produce a simpler tree structure for such a rel-
ative clause that contains neither of the empty nodes
just indicated. Rather, they produce trees of the kind
shown in Figure 2. Unlike the tree depicted in Fig-
ure 1, this type of tree does not explicitly represent
the relationship between likes and the man.

This paper presents an algorithm that takes as its
input a tree without empty nodes of the kind shown

1There are other ways to represent this information that do
not require empty nodes; however, information about non-local
dependencies must be represented somehow in order to interpret
these constructions.

 Computational Linguistics (ACL), Philadelphia, July 2002, pp. 136-143.
 Proceedings of the 40th Annual Meeting of the Association for

NP

NP

DT

the

NN

man

SBAR

WHNP-1

-NONE-

0

S

NP

NNP

Sam

VP

VBZ t

likes

NP

-NONE-

T-1

Figure 1: A tree containing empty nodes.

in Figure 2 and modifies it by inserting empty nodes
and coindexation to produce a the tree shown in Fig-
ure 1. The algorithm is described in detail in sec-
tion 2. The standard Parseval precision and recall
measures for evaluating parse accuracy do not mea-
sure the accuracy of empty node and antecedent re-
covery, but there is a fairly straightforward extension
of them that can evaluate empty node and antecedent
recovery, as described in section 3. The rest of this
section provides a brief introduction to empty nodes,
especially as they are used in the Penn Treebank.

Non-local dependencies and displacement phe-
nomena, such as Passive and WH-movement, have
been a central topic of generative linguistics since
its inception half a century ago. However, current
linguistic research focuses on explaining the pos-
sible non-local dependencies, and has little to say
about how likely different kinds of dependencies
are. Many current linguistic theories of non-local
dependencies are extremely complex, and would be
difficult to apply with the kind of broad coverage de-
scribed here. Psycholinguists have also investigated
certain kinds of non-local dependencies, and their
theories of parsing preferences might serve as the
basis for specialized algorithms for recovering cer-
tain kinds of non-local dependencies, such as WH
dependencies. All of these approaches require con-
siderably more specialized linguitic knowledge than
the pattern-matching algorithm described here. This
algorithm is both simple and general, and can serve
as a benchmark against which more complex ap-
proaches can be evaluated.

NP

NP

DT

the

NN

man

SBAR

S

NP

NNP

Sam

VP

VBZ t

likes

Figure 2: A typical parse tree produced by broad-
coverage statistical parser lacking empty nodes.

The pattern-matching approach is not tied to any
particular linguistic theory, but it does require a tree-
bank training corpus from which the algorithm ex-
tracts its patterns. We used sections 2–21 of the
Penn Treebank as the training corpus; section 24
was used as the development corpus for experimen-
tation and tuning, while the test corpus (section 23)
was used exactly once (to obtain the results in sec-
tion 3). Chapter 4 of the Penn Treebank tagging
guidelines (Bies et al., 1995) contains an extensive
description of the kinds of empty nodes and the use
of co-indexation in the Penn Treebank. Table 1
contains summary statistics on the distribution of
empty nodes in the Penn Treebank. The entry with
POS SBAR and no label refers to a “compound”
type of empty structure labelled SBAR consisting of
an empty complementizer and an empty (moved) S
(thus SBAR is really a nonterminal label rather than
a part of speech); a typical example is shown in
Figure 3. As might be expected the distribution is
highly skewed, with most of the empty node tokens
belonging to just a few types. Because of this, a sys-
tem can provide good average performance on all
empty nodes if it performs well on the most frequent
types of empty nodes, and conversely, a system will
perform poorly on average if it does not perform at
least moderately well on the most common types of
empty nodes, irrespective of how well it performs on
more esoteric constructions.

2 A pattern-matching algorithm

This section describes the pattern-matching algo-
rithm in detail. In broad outline the algorithm can

Antecedent POS Label Count Description
NP NP * 18,334 NP trace (e.g., Sam was seen *)

NP * 9,812 NP PRO (e.g., * to sleep is nice)
WHNP NP *T* 8,620 WH trace (e.g., the woman who you saw *T*)

U 7,478 Empty units (e.g., $ 25 *U*)
0 5,635 Empty complementizers (e.g., Sam said 0 Sasha snores)

S S *T* 4,063 Moved clauses (e.g., Sam had to go, Sasha explained *T*)
WHADVP ADVP *T* 2,492 WH-trace (e.g., Sam explained how to leave *T*)

SBAR 2,033 Empty clauses (e.g., Sam had to go, Sasha explained (SBAR))
WHNP 0 1,759 Empty relative pronouns (e.g., the woman 0 we saw)
WHADVP 0 575 Empty relative pronouns (e.g., no reason 0 to leave)

Table 1: The distribution of the 10 most frequent types of empty nodes and their antecedents in sections 2–
21 of the Penn Treebank (there are approximately 64,000 empty nodes in total). The “label” column gives
the terminal label of the empty node, the “POS” column gives its preterminal label and the “Antecedent”
column gives the label of its antecedent. The entry with an SBAR POS and empty label corresponds to an
empty compound SBAR subtree, as explained in the text and Figure 3.

SINV

S-1

NP

NNS

changes

VP

VBD

occured

,

,

VP

VBD

said

SBAR

-NONE-

0

S

-NONE-

T-1

NP

NNP

Sam

Figure 3: A parse tree containing an empty com-
pound SBAR subtree.

be regarded as an instance of the Memory-Based
Learning approach, where both the pattern extrac-
tion and pattern matching involve recursively visit-
ing all of the subtrees of the tree concerned. It can
also be regarded as a kind of tree transformation, so
the overall system architecture (including the parser)
is an instance of the “transform-detransform” ap-
proach advocated by Johnson (1998). The algorithm
has two phases. The first phase of the algorithm
extracts the patterns from the trees in the training
corpus. The second phase of the algorithm uses
these extracted patterns to insert empty nodes and
index their antecedents in trees that do not contain
empty nodes. Before the trees are used in the train-
ing and insertion phases they are passed through a

common preproccessing step, which relabels preter-
minal nodes dominating auxiliary verbs and transi-
tive verbs.

2.1 Auxiliary and transitivity annotation
The preprocessing step relabels auxiliary verbs and
transitive verbs in all trees seen by the algorithm.
This relabelling is deterministic and depends only on
the terminal (i.e., the word) and its preterminal label.
Auxiliary verbs such as is and being are relabelled as
either a AUX or AUXG respectively. The relabelling
of auxiliary verbs was performed primarily because
Charniak’s parser (which produced one of the test
corpora) produces trees with such labels; experi-
ments (on the development section) show that aux-
iliary relabelling has little effect on the algorithm’s
performance.

The transitive verb relabelling suffixes the preter-
minal labels of transitive verbs with “ t”. For ex-
ample, in Figure 1 the verb likes is relabelled VBZ t
in this step. A verb is deemed transitive if its stem
is followed by an NP without any grammatical func-
tion annotation at least 50% of the time in the train-
ing corpus; all such verbs are relabelled whether or
not any particular instance is followed by an NP.

Intuitively, transitivity would seem to be a power-
ful cue that there is an empty node following a verb.
Experiments on the development corpus showed that
transitivity annotation provides a small but useful
improvement to the algorithm’s performance. The

SBAR

WHNP-1

-NONE-

0

S

NP VP

VBZ t NP

-NONE-

T-1

Figure 4: A pattern extracted from the tree displayed
in Figure 1.

accuracy of transitivity labelling was not systemati-
cally evaluated here.

2.2 Patterns and matchings

Informally, patterns are minimal connected tree
fragments containing an empty node and all nodes
co-indexed with it. The intuition is that the path
from the empty node to its antecedents specifies im-
portant aspects of the context in which the empty
node can appear.

There are many different possible ways of realiz-
ing this intuition, but all of the ones tried gave ap-
proximately similar results so we present the sim-
plest one here. The results given below were gener-
ated where the pattern for an empty node is the min-
imal tree fragment (i.e., connected set of local trees)
required to connect the empty node with all of the
nodes coindexed with it. Any indices occuring on
nodes in the pattern are systematically renumbered
beginning with 1. If an empty node does not bear
an index, its pattern is just the local tree containing
it. Figure 4 displays the single pattern that would be
extracted corresponding to the two empty nodes in
the tree depicted in Figure 1.

For this kind of pattern we define pattern match-
ing informally as follows. If p is a pattern and t is
a tree, then p matches t iff t is an extension of p ig-
noring empty nodes in p. For example, the pattern
displayed in Figure 4 matches the subtree rooted un-
der SBAR depicted in Figure 2.

If a pattern p matches a tree t, then it is possible
to substitute p for the fragment of t that it matches.
For example, the result of substituting the pattern

shown in Figure 4 for the subtree rooted under SBAR
depicted in Figure 2 is the tree shown in Figure 1.
Note that the substitution process must “standardize
apart” or renumber indices appropriately in order to
avoid accidentally labelling empty nodes inserted by
two independent patterns with the same index.

Pattern matching and substitution can be defined
more rigorously using tree automata (Gécseg and
Steinby, 1984), but for reasons of space these def-
initions are not given here.

In fact, the actual implementation of pattern
matching and substitution used here is considerably
more complex than just described. It goes to some
lengths to handle complex cases such as adjunction
and where two or more empty nodes’ paths cross
(in these cases the pattern extracted consists of the
union of the local trees that constitute the patterns
for each of the empty nodes). However, given the
low frequency of these constructions, there is prob-
ably only one case where this extra complexity is
justified: viz., the empty compound SBAR subtree
shown in Figure 3.

2.3 Empty node insertion

Suppose we have a rank-ordered list of patterns (the
next subsection describes how to obtain such a list).
The procedure that uses these to insert empty nodes
into a tree t not containing empty nodes is as fol-
lows. We perform a pre-order traversal of the sub-
trees of t (i.e., visit parents before their children),
and at each subtree we find the set of patterns that
match the subtree. If this set is non-empty we sub-
stitute the highest ranked pattern in the set into the
subtree, inserting an empty node and (if required)
co-indexing it with its antecedents.

Note that the use of a pre-order traversal effec-
tively biases the procedure toward “deeper”, more
embedded patterns. Since empty nodes are typi-
cally located in the most embedded local trees of
patterns (i.e., movement is usually “upward” in a
tree), if two different patterns (corresponding to dif-
ferent non-local dependencies) could potentially in-
sert empty nodes into the same tree fragment in t,
the deeper pattern will match at a higher node in t,
and hence will be substituted. Since the substitu-
tion of one pattern typically destroys the context for
a match of another pattern, the shallower patterns
no longer match. On the other hand, since shal-

lower patterns contain less structure they are likely
to match a greater variety of trees than the deeper
patterns, they still have ample opportunity to apply.

Finally, the pattern matching process can be
speeded considerably by indexing patterns appropri-
ately, since the number of patterns involved is quite
large (approximately 11,000). For patterns of the
kind described here, patterns can be indexed on their
topmost local tree (i.e., the pattern’s root node label
and the sequence of node labels of its children).

2.4 Pattern extraction
After relabelling preterminals as described above,
patterns are extracted during a traversal of each of
the trees in the training corpus. Table 2 lists the
most frequent patterns extracted from the Penn Tree-
bank training corpus. The algorithm also records
how often each pattern was seen; this is shown in
the “count” column of Table 2.

The next step of the algorithm determines approx-
imately how many times each pattern can match
some subtree of a version of the training corpus from
which all empty nodes have been removed (regard-
less of whether or not the corresponding substitu-
tions would insert empty nodes correctly). This in-
formation is shown under the “match” column in Ta-
ble 2, and is used to filter patterns which would most
often be incorrect to apply even though they match.
If c is the count value for a pattern and m is its match
value, then the algorithm discards that pattern when
the lower bound of a 67% confidence interval for its
success probability (given c successes out of m tri-
als) is less than 1/2. This is a standard technique
for “discounting” success probabilities from small
sample size data (Witten and Frank, 2000). (As ex-
plained immediately below, the estimates of c and m
given in Table 2 are inaccurate, so whenever the es-
timate of m is less than c we replace m by c in this
calculation). This pruning removes approximately
2,000 patterns, leaving 9,000 patterns.

The match value is obtained by making a second
pre-order traversal through a version of the train-
ing data from which empty nodes are removed. It
turns out that subtle differences in how the match
value is obtained make a large difference to the algo-
rithm’s performance. Initially we defined the match
value of a pattern to be the number of subtrees that
match that pattern in the training corpus. But as ex-

plained above, the earlier substitution of a deeper
pattern may prevent smaller patterns from applying,
so this simple definition of match value undoubt-
edly over-estimates the number of times shallow pat-
terns might apply. To avoid this over-estimation, af-
ter we have matched all patterns against a node of
a training corpus tree we determine the correct pat-
tern (if any) to apply in order to recover the empty
nodes that were originally present, and reinsert the
relevant empty nodes. This blocks the matching of
shallower patterns, reducing their match values and
hence raising their success probability. (Undoubt-
edly the “count” values are also over-estimated in
the same way; however, experiments showed that es-
timating count values in a similar manner to the way
in which match values are estimated reduces the al-
gorithm’s performance).

Finally, we rank all of the remaining patterns. We
experimented with several different ranking crite-
ria, including pattern depth, success probability (i.e.,
c/m) and discounted success probability. Perhaps
surprisingly, all produced similiar results on the de-
velopment corpus. We used pattern depth as the
ranking criterion to produce the results reported be-
low because it ensures that “deep” patterns receive
a chance to apply. For example, this ensures that
the pattern inserting an empty NP * and WHNP can
apply before the pattern inserting an empty comple-
mentizer 0.

3 Empty node recovery evaluation

The previous section described an algorithm for
restoring empty nodes and co-indexing their an-
tecedents. This section describes two evaluation
procedures for such algorithms. The first, which
measures the accuracy of empty node recovery but
not co-indexation, is just the standard Parseval eval-
uation applied to empty nodes only, viz., precision
and recall and scores derived from these. In this
evaluation, each node is represented by a triple con-
sisting of its category and its left and right string po-
sitions. (Note that because empty nodes dominate
the empty string, their left and right string positions
of empty nodes are always identical).

Let G be the set of such empty node represen-
tations derived from the “gold standard” evaluation
corpus and T the set of empty node representations

Count Match Pattern
5816 6223 (S (NP (-NONE- *)) VP)
5605 7895 (SBAR (-NONE- 0) S)
5312 5338 (SBAR WHNP-1 (S (NP (-NONE- *T*-1)) VP))
4434 5217 (NP QP (-NONE- *U*))
1682 1682 (NP $ CD (-NONE- *U*))
1327 1593 (VP VBN t (NP (-NONE- *)) PP)

700 700 (ADJP QP (-NONE- *U*))
662 1219 (SBAR (WHNP-1 (-NONE- 0)) (S (NP (-NONE- *T*-1)) VP))
618 635 (S S-1 , NP (VP VBD (SBAR (-NONE- 0) (S (-NONE- *T*-1)))) .)
499 512 (SINV ‘‘ S-1 , ’’ (VP VBZ (S (-NONE- *T*-1))) NP .)
361 369 (SINV ‘‘ S-1 , ’’ (VP VBD (S (-NONE- *T*-1))) NP .)
352 320 (S NP-1 (VP VBZ (S (NP (-NONE- *-1)) VP)))
346 273 (S NP-1 (VP AUX (VP VBN t (NP (-NONE- *-1)) PP)))
322 467 (VP VBD t (NP (-NONE- *)) PP)
269 275 (S ‘‘ S-1 , ’’ NP (VP VBD (S (-NONE- *T*-1))) .)

Table 2: The most common empty node patterns found in the Penn Treebank training corpus. The Count
column is the number of times the pattern was found, and the Match column is an estimate of the number of
times that this pattern matches some subtree in the training corpus during empty node recovery, as explained
in the text.

derived from the corpus to be evaluated. Then as is
standard, the precision P , recall R and f-score f are
calculated as follows:

P =
|G ∩ T |

|T |

R =
|G ∩ T |

|G|

f =
2P R

P + R

Table 3 provides these measures for two different
test corpora: (i) a version of section 23 of the
Penn Treebank from which empty nodes, indices
and unary branching chains consisting of nodes of
the same category were removed, and (ii) the trees
produced by Charniak’s parser on the strings of sec-
tion 23 (Charniak, 2000).

To evaluate co-indexation of empty nodes and
their antecedents, we augment the representation of
empty nodes as follows. The augmented represen-
tation for empty nodes consists of the triple of cat-
egory plus string positions as above, together with
the set of triples of all of the non-empty nodes the
empty node is co-indexed with. (Usually this set
of antecedents is either empty or contains a single
node). Precision, recall and f-score are defined for

these augmented representations as before.

Note that this is a particularly stringent evalua-
tion measure for a system including a parser, since
it is necessary for the parser to produce a non-empty
node of the correct category in the correct location to
serve as an antecedent for the empty node. Table 4
provides these measures for the same two corpora
described earlier.

In an attempt to devise an evaluation measure for
empty node co-indexation that depends less on syn-
tactic structure we experimented with a modified
augmented empty node representation in which each
antecedent is represented by its head’s category and
location. (The intuition behind this is that we do
not want to penalize the empty node antecedent-
finding algorithm if the parser misattaches modi-
fiers to the antecedent). In fact this head-based an-
tecedent representation yields scores very similiar
to those obtained using the phrase-based represen-
tation. It seems that in the cases where the parser
does not construct a phrase in the appropriate loca-
tion to serve as the antecedent for an empty node,
the syntactic structure is typically so distorted that
either the pattern-matcher fails or the head-finding
algorithm does not return the “correct” head either.

Empty node Section 23 Parser output
POS Label P R f P R f

(Overall) 0.93 0.83 0.88 0.85 0.74 0.79
NP * 0.95 0.87 0.91 0.86 0.79 0.82
NP *T* 0.93 0.88 0.91 0.85 0.77 0.81

0 0.94 0.99 0.96 0.86 0.89 0.88
U 0.92 0.98 0.95 0.87 0.96 0.92

S *T* 0.98 0.83 0.90 0.97 0.81 0.88
ADVP *T* 0.91 0.52 0.66 0.84 0.42 0.56
SBAR 0.90 0.63 0.74 0.88 0.58 0.70
WHNP 0 0.75 0.79 0.77 0.48 0.46 0.47

Table 3: Evaluation of the empty node restoration procedure ignoring antecedents. Individual results are
reported for all types of empty node that occured more than 100 times in the “gold standard” corpus (sec-
tion 23 of the Penn Treebank); these are ordered by frequency of occurence in the gold standard. Section 23
is a test corpus consisting of a version of section 23 from which all empty nodes and indices were removed.
The parser output was produced by Charniak’s parser (Charniak, 2000).

Empty node Section 23 Parser output
Antecedant POS Label P R f P R f

(Overall) 0.80 0.70 0.75 0.73 0.63 0.68
NP NP * 0.86 0.50 0.63 0.81 0.48 0.60
WHNP NP *T* 0.93 0.88 0.90 0.85 0.77 0.80

NP * 0.45 0.77 0.57 0.40 0.67 0.50
0 0.94 0.99 0.96 0.86 0.89 0.88
U 0.92 0.98 0.95 0.87 0.96 0.92

S S *T* 0.98 0.83 0.90 0.96 0.79 0.87
WHADVP ADVP *T* 0.91 0.52 0.66 0.82 0.42 0.56

SBAR 0.90 0.63 0.74 0.88 0.58 0.70
WHNP 0 0.75 0.79 0.77 0.48 0.46 0.47

Table 4: Evaluation of the empty node restoration procedure including antecedent indexing, using the mea-
sure explained in the text. Other details are the same as in Table 4.

4 Conclusion

This paper described a simple pattern-matching al-
gorithm for restoring empty nodes in parse trees
that do not contain them, and appropriately index-
ing these nodes with their antecedents. The pattern-
matching algorithm combines both simplicity and
reasonable performance over the frequently occur-
ing types of empty nodes.

Performance drops considerably when using trees
produced by the parser, even though this parser’s
precision and recall is around 0.9. Presumably this
is because the pattern matching technique requires
that the parser correctly identify large tree fragments
that encode long-range dependencies not captured
by the parser. If the parser makes a single parsing
error anywhere in the tree fragment matched by a
pattern, the pattern will no longer match. This is
not unlikely since the statistical model used by the
parser does not model these larger tree fragments.
It suggests that one might improve performance by
integrating parsing, empty node recovery and an-
tecedent finding in a single system, in which case the
current algorithm might serve as a useful baseline.
Alternatively, one might try to design a “sloppy” pat-
tern matching algorithm which in effect recognizes
and corrects common parser errors in these construc-
tions.

Also, it is undoubtedly possible to build pro-
grams that can do better than this algorithm on
special cases. For example, we constructed a
Boosting classifier which does recover *U* and
empty complementizers 0 more accurately than
the pattern-matcher described here (although the
pattern-matching algorithm does quite well on these
constructions), but this classifier’s performance av-
eraged over all empty node types was approximately
the same as the pattern-matching algorithm.

As a comparison of tables 3 and 4 shows, the
pattern-matching algorithm’s biggest weakness is its
inability to correctly distinguish co-indexed NP *
(i.e., NP PRO) from free (i.e., unindexed) NP *.
This seems to be a hard problem, and lexical infor-
mation (especially the class of the governing verb)
seems relevant. We experimented with specialized
classifiers for determining if an NP * is co-indexed,
but they did not perform much better than the algo-
rithm presented here. (Also, while we did not sys-

tematically investigate this, there seems to be a num-
ber of errors in the annotation of free vs. co-indexed
NP * in the treebank).

There are modications and variations on this al-
gorithm that are worth exploring in future work.
We experimented with lexicalizing patterns, but
the simple method we tried did not improve re-
sults. Inspired by results suggesting that the pattern-
matching algorithm suffers from over-learning (e.g.,
testing on the training corpus), we experimented
with more abstract “skeletal” patterns, which im-
proved performance on some types of empty nodes
but hurt performance on others, leaving overall per-
formance approximately unchanged. Possibly there
is a way to use both skeletal and the original kind of
patterns in a single system.

References
Ann Bies, Mark Ferguson, Karen Katz, and Robert Mac-

Intyre, 1995. Bracketting Guideliness for Treebank II
style Penn Treebank Project. Linguistic Data Consor-
tium.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In The Proceedings of the North American
Chapter of the Association for Computational Linguis-
tics, pages 132–139.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In The Proceedings of
the 35th Annual Meeting of the Association for Com-
putational Linguistics, San Francisco. Morgan Kauf-
mann.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. In Machine Learning: Pro-
ceedings of the Seventeenth International Conference
(ICML 2000), pages 175–182, Stanford, California.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations. Computational Linguistics,
24(4):613–632.

Michell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Ian H. Witten and Eibe Frank. 2000. Data mining: prac-
tical machine learning tools and techniques with Java
implementations. Morgan Kaufmann, San Francisco.

