@inproceedings{wiegand-etal-2019-detection,
title = "{D}etection of {A}busive {L}anguage: the {P}roblem of {B}iased {D}atasets",
author = "Wiegand, Michael and
Ruppenhofer, Josef and
Kleinbauer, Thomas",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/landing_page/N19-1060/",
doi = "10.18653/v1/N19-1060",
pages = "602--608",
abstract = "We discuss the impact of data bias on abusive language detection. We show that classification scores on popular datasets reported in previous work are much lower under realistic settings in which this bias is reduced. Such biases are most notably observed on datasets that are created by focused sampling instead of random sampling. Datasets with a higher proportion of implicit abuse are more affected than datasets with a lower proportion."
}
Markdown (Informal)
[Detection of Abusive Language: the Problem of Biased Datasets](https://preview.aclanthology.org/landing_page/N19-1060/) (Wiegand et al., NAACL 2019)
ACL
- Michael Wiegand, Josef Ruppenhofer, and Thomas Kleinbauer. 2019. Detection of Abusive Language: the Problem of Biased Datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 602–608, Minneapolis, Minnesota. Association for Computational Linguistics.