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Abstract

The current state-of-the-art in neural graph-
based parsing uses only approximate decoding
at the training phase. In this paper aim to un-
derstand this result better. We show how recur-
rent models can carry out projective maximum
spanning tree decoding. This result holds for
both current state-of-the-art models for shift-
reduce and graph-based parsers, projective or
not. We also provide the first proof on the
lower bounds of projective maximum span-
ning tree, DAG, and digraph decoding.

1 Introduction
For several years, the NLP field has seen
widespread investigation into the application of
Neural Networks to NLP tasks, and with this,
much, rather inexplicable progress. A string of
very recent work (for example, Chen et al. (2018);
Weiss et al. (2018); Peng et al. (2018)), has at-
tempted to delve into the formal properties of neu-
ral network topology choices, in attempts to both
motivate, predict, and explain associated research
in the field. This paper aims to further contribute
along this line of research.

We present the results of our study into the
ability of state-of-the-art first-order neural graph-
based parsers, with seemingly simple architec-
tures, to explicitly forego structured learning and
prediction.1 In particular, this is not due to a
significantly faster, simpler, algorithm for pro-
jective maximum spanning tree (MST) decoding
than Eisner (1996)’s algorithm, which we for-
mally prove to be impossible, given the Exponen-
tial Time Hypothesis. But rather, this is due to the
capacity of recurrent components of these archi-
tectures to implicitly discover a projective MST.
We prove this formally by showing how these re-

1For the remainder of this paper, all decoding algorithms
discussed are first-order.

current components can intrinsically simulate ex-
act projective decoding.

The context. The current state-of-the-art for
graph-based syntactic dependency parsing is a
seemingly basic neural model by Dozat and Man-
ning (2017). The parser’s performance is an
improvement on the first, even simpler, rather
engineering-free, neural graph-based parser by
Kiperwasser and Goldberg (2016). This latter
parser updates with respect to an output structure:
projective decoding over a matrix of arc scores
coupled with hinge loss between predicted and
gold arcs, reporting parser performance of, for
example, 93.32% UAS and 91.2% LAS on the
converted Penn Treebank.2 Remarkably, the for-
mer parser by Dozat and Manning (2017) forgoes
entirely any structural learning, employing sim-
ple cross-entropy at training time, and saving (un-
constrained) maximum spanning tree decoding for
test time.

We further optimised Kiperwasser and Gold-
berg (2016)’s parser (Varab and Schluter, 2018)
and extended it for cross-entropy learning, as is
done by Dozat and Manning (2017). At test time,
instead of any explicit decoding algorithm over
the arc score matrix, we simply take the maxi-
mum weighted incoming arc for each word; that
is, the parser is highly streamlined, without any
heavy neural network engineering, but now also
without any structured learning, nor without any
structural decoding at test time. The resulting
neural parser still achieves an impressively com-
petitive UAS of 92.61% evaluated on the con-
verted Penn Treebank data, without recourse to
any pre-trained embeddings, unlike the systems by
Kiperwasser and Goldberg (2016) and Dozat and

2Training is on Sections 2-21, development on Section 22
and testing on Section 23), converted to dependency format
following the default configuration of the Stanford Depen-
dency Converter (version ≥ 3.5.2).
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Manning (2017). Using GloVe 100-dimensional
Wikipedia and Gigaword corpus (6 billion tokens)
pretrained embeddings, without updates, but lin-
early projected through a single linear dense layer
to the same dimension, the structure-less parser
achieves 93.18% UAS.3 With this paper, we shed
light on these surprising results from seemingly
simple architectures. The insights we present here
apply to any neural architecture that first encodes
input words of a sentence using some type of re-
current neural network–i.e., all current state-of-
the-art graph-based or shift reduce neural parsers.
Our contributions. This paper presents results
for understanding the surprisingly superior perfor-
mance of structure-free learning and prediction in
syntactic (tree) dependency parsing.
1. We provide a formal proof that there will never

be an algorithm that carries out projective MST
decoding in sub-cubic time, unless a widely be-
lieved assumption in computational complex-
ity theory, the Exponential Time Hypothesis
(ETH), is false.
Hence, computationally, we provide convinc-
ing evidence that these neural parsing architec-
tures cannot be as simple as they appear. These
results are then extended to projective maxi-
mum spanning DAG and digraph decoding.

2. In particular, we then show how to simulate
Eisner’s algorithm using a single recurrent neu-
ral network. This shows how, in particular, the
LSTM stacked architectures for graph-based
parsing by Dozat and Manning (2017), Cheng
et al. (2016), Hashimoto et al. (2017), Zhang
et al. (2017), and Kiperwasser and Goldberg
(2016), are capable of intrinsically decoding
over arc scores.
This therefore provides one practical appli-
cation where RNNs do not need supplemen-
tary approximation considerations (Chen et al.,
2018).

2 Preliminaries
The Exponential Time Hypothesis (ETH) and
k-Clique. The Exponential Time Hypothesis is a

3Our structure-less but optimised implementation of
the (Kiperwasser and Goldberg, 2016) graph-based parser,
with 100 dimensional generated word embeddings, 50 di-
mensional generated POS-tag embeddings, a stack of 3
BiLSTMs with an output dimension of 225 each (total
450 concatenated), no dropout, MLP mappings for arc
nodes of 400 dimension, and for labels of 100 dimen-
sions. We use DyNet 2.1 (Neubig et al., 2017), and the
parser code is freely available at https://github.com/
natschluter/MaxDecodeParser.

widely held though unproven computational hard-
ness assumption stating that 3-SAT (or any of the
several related NP-complete problems) cannot be
solved in sub-exponential time in the worst case
(Impagliazzo and Paturi, 1999). According to
ETH, if 3-SAT were solvable in sub-exponential
time, then also P = NP . But the ETH assump-
tion is stronger than the assumption that P 6= NP ,
so the converse is not necessarily true. ETH can be
used to show that many computational problems
are equivalent in complexity, in the sense that if
one of them has a subexponential time algorithm
then they all do.

The k-Clique problem is the parameterised ver-
sion of the NP-hard Max-Clique problem. This
canonical intractable problem in parameterised
complexity asks, given an input graph, whether
there exists a clique of size k. A naı̈ve algorithm
for this problem running in O(nk) time checks all
nk combinations of nodes and verifies each com-
bination inO(k2) time to see if they form a clique.
However, Chen et al. (2006) showed that the prob-
lem has no no(k) time algorithm–that is, the prob-
lem has no algorithm that runs in time subexpo-
nential in the exponent k assuming ETH.4.
Recurrent neural networks. Recurrent neural
networks (Rumelhart et al., 1986), as we gener-
ally use them in practise in NLP, take as input
a matrix x, containing a sequence of n vectors
x = x1,x2, . . . ,xn, and apply the following set
of equations recursively, with h0 the initial state:

ht =g(b + Wh(t−1) + Uxt)

Here, g is the activation function. Typically this
activation function is tanh, however the computa-
tional power of the model is theoretically main-
tained with any so-called “squashing” function
(Siegelmann, 1996).

The choice of g, on the other hand, has been
shown to affect the power of the recurrent model
in general, depending on the restrictions involved
in the formal investigation. For the purposes of
this paper, the activation function is a rectified
linear unit, or ReLU. The general computational
power of such RNNs has recently been formally
explored by Chen et al. (2018) (given infinite pre-
cision) and Weiss et al. (2018) (given finite pre-
cision), and empirically investigated for practical
considerations of convergence under training by
Le et al. (2015).

4The problem is said to be W [1]-complete (Flum and
Grohe, 2006)
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LSTMs (Hochreiter and Schmidhuber, 1997)
are RNNs with weighted self-loops (so-called
gates). The recurrence equations take the form:
ft =g1(bf + Wfh(t−1) + Ufxt)

it =g1(bi + Wih(t−1) + Uixt)

ot =g1(bo + Woh(t−1) + Uoxt)

ct =ft ◦ ct−1 + it ◦ g1(bc + Wch(t−1) + Ucxt)

ht =ot ◦ g2(ct)
where g1, g2 are activation functions. Setting all
Wf ,Wi,Wc,Uf ,Ui,Uc to be zero matrices, bf
to be a 0 vector, bi, bc to be 1 vectors, and the acti-
vation function g2 to be ReLUwe see that, in terms
of hidden states, the LSTM model includes that of
the RNN. In this paper, all activation functions are
ReLUs.

3 Related Work
State-of-the-art in neural syntactic dependency
parsing. The graph-based neural architectures
we refer to here have important commonalities.
We focus our discussion on the key contributions
by Kiperwasser and Goldberg (2016) (the simplest
architecture, and the first), and by Dozat and Man-
ning (2017) (the state-of-the-art).

The architectures can be partitioned into three
general components:

1. Word representation generation: Both ar-
chitectures generate word embeddings and
POS-tag embeddings. Pretrained embed-
dings, if they are being used, are added to
the trained embeddings, and concatenated to
corresponding POS-tag embedding. The em-
beddings are sent through a stacked BiLSTM.
Output embeddings are projected to two fur-
ther vector representations: as head node or
as dependent node (specialised representa-
tions).

2. Arc scoring: All (head, dependent) combi-
nations are scored.

3. Decoding: By some decoding process, the
arc score matrix yields a (possibly discon-
nected) graph representation of the input sen-
tence: (n-1) arcs, where no word has more
than one head, as well as their probabilities.

We show in this paper how the second and third
components can be carried out implicitly within
the BiLSTM layers of the first component. Since
currently state-of-the-art shift-reduce parsers also
encode input words of a sentence using some type
of recurrent neural network, this insight also ap-
plies to these non-graph-based models.

Related computational hardness results. To
date there is no known truly sub-cubic algorithm
for Boolean Matrix Multiplication (BMM), nor for
Context-Free Grammar (CFG) parsing. Adapting
Satta (1994)’s lower bound proof for Tree Ad-
joining Grammar parsing, Lee (1997) proved that
BMM can be reduced to finding a valid derivation
a string of length O(n

1
3 ) with respect to a CFG

of size Θ(n2). Lee (1997)’s reduction shows that
there can be a no O(|G|n3−ε) for some constant
ε > 0 (sub-cubic-time) algorithm for CFG-parsing
without implying a significant breakthrough in
BMM, which is widely believed not to be possi-
ble. However, the construction required the gram-
mar size |G| = Θ(n6) to be dependent on the the
input size n, which, as Lee (1997) points out, is
unrealistic in most applications.

Abboud et al. (2015), on the other hand, present
a proof of the unlikelihood of a sub-cubic algo-
rithm for CFG-parsing using ETH and specifically
the k-Clique problem. Given an instance of the
3k-Clique problem (i.e., an undirected graph and
the parameter 3k), they construct a string w of
length nk and a CFG, G of constant size (for any
3k) such that if G derives w in sub-cubic time,
then there is an algorithm running in time no(3k)

for the 3k-Clique problem, which, as we explained
in Section 2, is impossible, assuming ETH.

To date, no truly sub-cubic algorithm for projec-
tive maximum spanning tree decoding is known.
In the next section, we present a proof similar in
spirit to Abboud et al. (2015)’s that also shows that
such an algorithm most likely cannot be found.

4 Lower Bounds for First-Order
Projective Dependency Decoding

Current state-of-the-art neural graph-based parsers
forego structural learning and do not even seem to
require structured prediction. In this section, we
provide evidence that this is indeed not because
the parsers are so seemingly simple. Computation-
ally it is unlikely that some simpler and faster de-
coding method alone is achieving such a competi-
tive performance. We show this with the following
theorem.
Theorem 1. Under the assumption of ETH, there
is no algorithm that carries out projective MST
decoding in time significantly faster than O(n3);
that is, there is no sub-cubic (O(n3−ε) for some
constant ε > 0) time algorithm for finding the
maximally weighted projective spanning tree, T ∗,
over a weighted digraph input.
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Notation and special remarks. We denote by
[n] the set {1, . . . , n}. For lack of a better symbol,
we use � here to signify iterative string concate-
nation, which otherwise is signified by just writ-
ing symbols beside each other, or by the symbol
·. Rather than working over words of a sentence,
given the formal nature of the proof, the projective
MST algorithm must work over symbols of the in-
put word w. Hence the input is a weighted digraph
over the symbols of w and the output is a projec-
tive MST, T ∗, over these symbols. The reduction,
makes use of the weight of T ∗.

Proof (of Theorem 1). Let G = (V,E) be an ar-
bitrary simple undirected graph. We place an ar-
bitrary order on the nodes from V and fix it, so
V := {v1, . . . , vn}.

As in Abboud et al. (2015)’s reduction from 3k-
clique to CFG-parsing, we first generate a string
of length O(nk) to represent the graph for the task
at hand; we do so in O(nk) time. The string
contains a representation of all of the possible
k-cliques in the graph. We can create a listing
of all of these k-cliques using exhaustive search
in at most O(nk) time and space. Let K :=
{{vi1 , . . . , vik} a k-clique in G | ij ∈ [n], vij ∈
V } correspond to the set of k-cliques from G, and
place an arbitrary order on K := {k1, . . . , k|K|}.
So, |K| ∈ O(nk). We define 6 · k · |K| sets of
symbols with respect to V , each with n(= |V |)
elements:
• Unmarked symbols: Ai,t := {ai,j,t | j ∈

[n]} for i ∈ [k], t ∈ [|K|] where ai,j,t corre-
sponds to node vj ∈ V .
Similarly for the sets Bi,t and Ci,t.
• Marked symbols: Ai,t := {ai,j,t | ai,j,t ∈
Ai}. Similarly for the sets Bi,t and Ci,t.

We letA = ∪i∈[k],t∈[|K|](Ai,t∪Ai,t) and similarly
forB andC. Then the vocabulary for constructing
our input word is U := A ∪B ∪ C.

Constructing the input word w. We now con-
struct a word w over the vocabulary U such that if
the projective maximum spanning tree has weight
|w| + 2k − 2 + |K|, then the graph G has a 3k-
clique. We do this by defining the weights of pos-
sible arcs between carefully selected pairs of sym-
bols from the vocabulary. The entire construction
of the word w takes time O(nk) (coinciding with
the upper bound on the word’s length).

The input word is made up of a series of gad-
gets. For each k-clique, we have three types of
gadgets: A-, B-, and C-gadgets. A- and C-gadgets

each correspond both to a particular k-clique in
G, as well as all k-cliques in G. B-gadgets, on the
other hand, only correspond to particular k-cliques
in G. Let kt = {v(t,1), . . . , v(t,k)} ∈ K be the tth
k-clique. Even if each v(t,q) is a node in V (G)
the notation for indices is useful to refer to the qth
node of the tth k-clique. Also, in what follows, we
use the middle index of symbols to simultaneously
refer to the k-clique membership: j(t,q) ∈ [n], and
simultaneously allows us to refer to the qth node
in the tth k-clique from K, for q ∈ [k], t ∈ [|K|].
A-gadgets:
A(t) :=�i∈[k](ai,j(t,1),tai,j(t,2),t · · · ai,j(t,k),t)·

�i∈[k](ai,j(t,1),t · ai,j(t,2),t · · · ai,j(t,k),t)
C-gadgets:
C(t) :=(�i∈[k]ci,j(t,1),tci,j(t,2),t · · · ci,j(t,k),t)

·ck,j(t,k),t · ck−1,j(t,k−1),t · · · c1,j(t,1),t
and B-gadgets:
B(t) :=Ltbk,j(t,k),t · · · b2,j(t,2),tb1,j(t,1),tHtbk,j(t,k),t

·bk−1,j(t,k−1),t · · · b2,j(t,2),tb1,j(t,1),tRt,
We call the symbol Ht the head of the gadget
B(t), and Lt and Rt the gadget’s left and right
boundary symbols respectively.

We then set the word w to be(
�t∈[|K|]A(t)

)
·
(
�t∈[|K|]B(t)

)
·
(
�t∈[|K|]C(t)

)
consisting of an A-gadget region followed by a B-
gadget region, and then a C-gadget region.

Idea of the proof. The idea of the proof is to
allow an optimal projective MST, T ∗, to be built
that matches up one distinct (with respect to the k-
clique) gadget from each region, each represent-
ing different k-cliques whenever there is a 3k-
clique in G. We will deduce the existence of such
a clique by the weight of T ∗. Essentially, a pro-
jective spanning tree of weight |w|−1 will always
be present, but T ∗ having weight superior to this
will indicate a matching up of gadgets. Now, sup-
pose we have a sub-cubic projective MST algo-
rithm A. By our construction, if A returns a T ∗

with weight |w|+2k−2+ |K|, then there is a 3k-
clique. Otherwise, there is no 3k-clique. On input
of length nk, the sub-cubic time algorithm runs in
time O((nk)3−ε) = O(n3k−kε) ∈ no(3k) for some
constant ε > 0. ThusA will have solved 3k-clique
in time no(3k), which is impossible under the ETH
assumption.

Note that by the definition of a 3k-clique, a 3k-
clique can be partitioned arbitrarily into 3 equal
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sized sub-graphs over k nodes that must each form
a k-clique. So, if |K| < k, then there trivially can-
not be any 3k-clique in G. We therefore only con-
sider without loss of generality the argumentation
for the case where |K| ≥ k, since our algorithm
can simply return a negative answer about the ex-
istence of a 3k-clique in G after enumerating the
set K and before computing any projective MST.

The projective MST algorithm takes as input
the description of a weighted digraph, D, whose
nodes are defined by symbols of the input word
w. The digraph need not be explicitly constructed,
since the algorithm can simply use the description
of the digraph that follows instead to check for the
existence of arcs between symbols. This descrip-
tion has constant length.

A description of the input weighted graph D
over w. For the input digraph, arcs can (1) be
missing from the fully complete digraph, (2) have
weight 1, or (3) have weight 2. To construct D,
weights are assigned to arcs by the following rules.

Weight 1 arcs. The following arcs of our input
graph have weight 1.
1. Region connectivity arcs. These arcs ensure

connectivity is possible within respective gad-
get regions.
(a) All arcs (a1,j′,t, ai,j,t−1) and

(a1,j′,t, ai,j,t−1), i.e., the first symbol
of the tth A-gadget attaches to all symbols
of the previous (t− 1th) A-gadget.

(b) All arcs (c1,j′,t, ci,j,t+1) and
(c1,j′,t, ci,j,t+1), i.e., the last symbol
of the tth C-gadget attaches to all symbols
of the next (t+ 1th) C-gadget gadget.

(c) All arcs (bi,j,t, bi+1,j′,t) and
(bi+1,j,t, bi,j′,t) for i ∈ [k − 1].

(d) All arcs (bk,j,t, Lt), (b1,j′,t, Rt).
(e) All arcs (Ht, b1,j,t) and (Ht, bk,j′,t) mak-

ing Ht a possible head of the respective
B-gadget (B-gadget heads) for any MST.

(f) All arcs (Lt+1, Ht), (Rt, Ht+1) for all t ∈
[|K| − 1].

(g) All arcs (ck,j(t,k),t, ck,j,t), i.e., arcs from
the last nonmarked symbol to the first
marked symbol, in every C-gadget. Also,
all arcs (ci+1,j,t, ci,j,t) for i ∈ [k − 1], i.e.,
together forming a path of marked sym-
bols within each C-gadget.
The following arcs are the reversals of (1c)
through (1e).

(h) All arcs (bi+1,j,t, bi,j′,t) and

(bi,j,t, bi+1,j′,t) for i ∈ [k − 1].
(i) All arcs (Lt, bk,j,t), (Rt, b1,j′,t).
(j) All arcs (b1,j,t, Ht) and (bk,j′,t, Ht) mak-

ing Ht the head of the respective B-gadget
(B-gadget heads) for any MST.

2. Boundary connectivity arcs. These arcs en-
sure that the boundaries of regions are con-
nected.
(a) The arcs (L1, ai,j,|K|) and (L1, ai,j,|K|),

i.e., all symbols from the last of the A-
gadgets attach to the first symbol of the B-
gadget region.

(b) The arcs (R|K|, ci,j,1) and (R|K|, ci,j,1),
i.e., all symbols from the first of the C-
gadgets attach to the last symbol of the B-
gadget region.

3. G-induced arcs. These arcs reflect the connec-
tions of the original graphG, and ultimately the
existence of a 3k-clique.
(a) All arcs (bi,j,t, ai,j′,t′), for each i ∈ [k −

1], t 6= t′, if vjvj′ ∈ E(G) (i.e., not for
i = k, which has a weight of 2 rather).

(b) All arcs (bi,j,t, ci,j′,t′), for each i ∈
{2, . . . , k}, t 6= t′, if vjvj′ ∈ E(G) (i.e.,
not for i = 1, which has a weight of 2
rather).

(c) All arcs (ci,j,t, ai,j′,t′) for all i ∈ [k], t 6=
t′, if vjvj′ ∈ E(G) (i.e., this time also for
i = 1).

As we show in Lemma 1.1, with the region con-
nectivity arcs (1a-1g) and boundary connectivity
arcs (2), we ensure that the algorithm can al-
ways return a projective MST with weight at least
|w| − 1. The G-induced arcs and region connec-
tivity arcs (1h-1j, 4) on the other hand will be trig-
gered to use by the algorithm’s prioritisation of the
following arcs.
Weight 2 arcs. We have the following arcs of
weight 2.
4. Region connectivity arcs. (Lt+1, Lt) and

(Rt, Rt+1) for t ∈ [|K| − 1].
5. G-induced arcs.

(a) All arcs (bk,j,t, ak,j′,t′), for each t 6= t′, if
vjvj′ ∈ E(G)

(b) All arcs (b1,j,t, c1,j′,t′), for each t 6= t′, if
vjvj′ ∈ E(G)

There are no other arcs in the input digraph D.

Lemma 1.1. There always exists a projective MST
in D of weight |w| − 1.

Proof. The A-region, together with the symbol L1

from the B-region can form a tree rooted in L1
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using region connectivity arcs (1a) with boundary
connectivity arcs (2a)–all weight 1 arcs. Similarly
for the C-region with the symbol R|K| from the
B-region (arcs (1b) and (2b)). Moreover, these re-
gional sub-trees are trivially projective. If we con-
struct a projective subtree out of the B-region, in
which L1 and R|K| are leaf nodes, then we have
the result.

The combination of weight-1 arcs from
(1c), (1d), and (1e) results in each B-gadget
B(t) being a projective subtree headed by
its head node Ht made up of a combination
of two paths Ht, b1,j1,t, . . . , bk,jk,t, Lt and
Ht, bk,jk,t, . . . , b1,j1,t, Rt. To make a projective
subtree out of the entire B-region, we choose
some arbitrary Ht node as the root and take fur-
ther weight-1 arcs described in (1f): (Lp, Hp−1)
if p ≤ i and (Rp, Hp + 1) otherwise, for
i ∈ [2, |K| − 1]. In all these possible B-regional
projective subtrees, both L1 and R|K| are leaf
nodes, which gives the result.

Lemma 1.2. Let T ∗ be a projective MST over D.
There are at most 2k+(|K|−1) arcs of weight 2 in
T ∗: k from the B- to the A-region, k from the B- to
the C-region, and the rest internal to the B-region.

The number of arcs of weight 2, internal to or
originating from the B-region, will be maximised
if arcs exiting the B-region all originate from the
same B-gadget (instead of 2+ distinct ones).

Moreover, suppose distinct t1, t2, t3 ∈ [|K|]. If
T ∗ includes an arc of weight 2 from gadget B(t2)
to gadget A(t1) and from gadget B(t2) to gad-
get C(t3), then T ∗ must also include arcs charac-
terised by the following
1. all non-marked nodes in A(t1) have non-

marked heads in B(t2),
2. all non-marked nodes in C(t3) have marked

heads in B(t2), and
3. all marked nodes in A(t1) have marked heads

in C(t3).

Proof. There are only arcs of weight 2 in D from
the B-region to both the A- and the C-regions, and
internally in the B-region. We show that there are
at most k weight 2 arcs connecting the A- and B-
regions and C- and B-regions. Then we show that
the maximal number of weight 2 edges internal to
the B-region is (|K| − 1).

Suppose there are more than k arcs of weight
2 from the B-region to the A-region in T ∗. Then
there are at least two of these arcs entering differ-
ent A-gadgets: (b1,j′,t′ , a1,j,t) and (b1,i′,p′ , a1,i,p),

with p < t. Consider the barred symbols in the
tth A-gadget. There are only two possible heads:
(1) the symbol following the gadget (region con-
nectivity arcs (1a) or boundary connectivity arcs
(2a)), which by projectivity is excluded because
these arcs would cross (b1,j′,t′ , a1,j,t), or (2) sym-
bols from the C-region, which by projectivity is
also excluded because they would cross the arc
(b1,i′,p′ , a1,i,p).

The proof that there are at most k arcs of weight
2 from the B-region to the C-region in T ∗ is anal-
ogous.

For the maximal number of arcs of weight 2,
internal to the B-region, we first consider the max-
imum number of weight 2 region connectivity arcs
(4). By projectivity, a B-gadget with arcs entering
an A- or C-gadget cannot have any entering weight
2 region connectivity arc. Also, by projectivity, a
single B-gadget can have at most 1 weight 2 region
connectivity arc. Thus, the number of weight 2
arcs would be maximised by ensuring arcs exiting
the B-region originate from the same B-gadget, so
only one B-gadget does not have weight 2 enter-
ing arcs. Since there are |K| B-gadgets in total,
this means there are at most |K| − 1 weight 2 B-
region internal arcs.

The rest of the proof follows by the similar pro-
jectivity arguments.

Lemma 1.3. T ∗ has weight |w|+2k−1+(|K|−1)
if and only if there is a 3k-clique in G.

Proof. (⇐) Suppose there is a 3k-clique inG con-
sisting of the three k-cliques k1, k2, and k3, and
such that k1 ∪ k2 ∪ k3 is a 3k-clique. In w, there
must be corresponding gadgets in each of its gad-
get regions. We considerA(1) the gadget for k1 in
A, by B(2) the gadget for k2 in B, and by C(3)
the gadget for k3 in C. We build up a set S of
arcs based on these three gadgets. The set S con-
sists of all the possible G-induced (weight 1 and 2)
arcs between these three regions–a disconnected
set where no two arcs cross, by Lemma 1.2. By the
same lemma, S includes exactly 2k + (|K| − 1)
arcs of weight 2. We will add arcs to S to con-
nect the rest of the symbols in w until we form a
tree, and by Lemma 1.2 again we cannot add any
further weight 2 arcs.

We must now supplement S to make a tree. We
first connect the B-region. For t < 2, we connect
B-gadgets internally by making the path from the
Rt to Lt, using weight 1 region connectivity arcs.
We make paths in the opposite direction, from Lt
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to Rt for t > 2. We then add all possible weight
2 region connectivity arcs. This makes A(1) and
B-region connected.

All other A-gadgets are connected as in the
proof of Lemma 1.1. Similarly for the C-gadgets
before and after C(3).

The only nodes that still lack a head node are
the marked nodes from C(3). We connect these
using region connectivity arcs from (1g).

We have now constructed a projective tree of
weight |w| − 1 + 2k+ (|K| − 1). We cannot have
a higher weighted projective tree by Lemma 1.2.
Hence tree is an optimal T ∗.

(⇒) Suppose T ∗ has weight |w| − 1 + 2k +
(|K| − 1). By Lemma 1.2, T ∗ has exactly k arcs
of weight 2 from the B-region to the A-region, and
k from the B-region to the C-region, and that in
this case all possible G-induced arcs between the
three corresponding gadgets are in T ∗. Moreover,
internally to the B-region, there are |K|−1 weight
2 edges.

Let the gadgets be w.l.o.g., A(1), B(2), and
C(3). Each unmarked b symbol in B(2) corre-
sponds to a node in V , and is the head of an un-
marked symbol from A(1) corresponding to every
node in k-clique k1. This means that in G, all pos-
sible connections between nodes in k1 and k2 ex-
ist. The same holds for B(2) with C(3) and C(3)
with A(1). Hence there is a 3k-clique in G.

With Theorem 1, we have shown that the non-
structural graph-based neural parsing systems can-
not be carrying out explicit exact decoding in with
a significantly simpler algorithm. As we show in
the next section, in fact, the LSTM stacks of these
systems alone are powerful enough to simulate all
components.

In our proof, the algorithm consistently makes
a choice between edges of weight 1 and edges
of weight 2 for the result to preserve projectivity.
Possibly more edges of weight 1 may end up in a
maximum spanning projective DAG or digraph, so
we cannot necessarily use the weight in the same
way to deduce the result. The number of edges in
D is less than n2. Hence if we replace the weights
of weight 1 arcs in D by weight 1/(n2), then an
output maximum spanning projective digraph or
DAG with weight superior to 2k+(|K|−1) would
indicate a 3k-clique. By the algorithms to do this
from (Schluter, 2015) in cubic time, we therefore
have the same lower bound for finding a maximum
spanning projective DAG or digraph.

Corollary 1.1. Under the assumption of ETH,
there is no algorithm that carries out projective
maximum spanning DAG or digraph decoding in
sub-cubic time.

5 RNN Simulation of Eisner’s Algorithm

Eisner (1996)’s algorithm on an input sentence of
length n uses an n× n table M and dynamic pro-
gramming to compute for table cell Mi,j the high-
est weighted sub-trees over the span (i, j) of the
input sentence. The algorithm iterates over spans
of increasing length. For Mi,j , the weights of all
possible combinations of sub-spans are considered
as candidate sub-trees over the span, and the max-
imum of these is retained in Mi,j .

For our purposes, the problem with this version
of the algorithm is that the RNN cannot compute
the maximum of the correspondingO(n) values in
either constant space nor in one time-step, and the
corresponding sub-tree weight is required in the
computation of maximum sub-trees over the span
j − i+ 1 at the next recursive step.

In Algorithm 1, we precompute enough of the
comparisons required for finding the maximum
spanning sub-tree combination before the algo-
rithm arrives in that table cell (from line 5). Thus,
instead of taking the maximum across k ∈ O(n)
values, we only ever take the maximum across 2
values at a time. We now explain this algorithm.

A sub-tree over the span (i, j) is said to be com-
plete if it includes some arc between i and j. Oth-
erwise the sub-tree is called incomplete. We use
seven weight matrices (which we extend to 25 ma-
trices later):
• S an n×n matrix of arc scores, where S[i, j] is

the score of the (i, j) arc.
• I an n×nmatrix of incomplete sub-tree scores,

where I[i, j, h] is the incomplete sub-tree for the
span (i, j) with head h ∈ 0, 1. If h = 0, then i
is the root of the sub-tree, and if h = 1, then j
is the root.
• C is defined in the same way as I but for com-

plete sub-trees.
• Ir[i, j, h] (resp. Cr) stores the current “row”-

maximum value for I[i, j, h] across the span
combinations (i, k), (k+ 1, j) for k− i > (k+
1) − j (resp. (i, k), (k, j) for k − i > k − j).
These are the cases where the span (i, k) is the
largest of the two sub-spans (i, j). These table
values are adjusted while the algorithm visits
cells (i, k).
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• Ic[i, j, h] (resp. Cc) stores the current
“column”-maximum value for I[i, j, h] across
the span combinations (i, k), (k + 1, j) for k −
i ≤ k + 1 − j (resp. (i, k), (k, j) for k − i >
k − j). These are the cases where the span
(k + 1, j) (resp. (k, j)) is larger or equal to
the other sub-span of the partitioned span (i, j).
These table values are adjusted while the algo-
rithm visits cells (k + 1, j) (resp. (k, j)).
The pseudocode for this algorithm, which we

refer to as streaming-max-eisner is pre-
sented in Algorithm 1. The main difference with
the original version is that the internal loop parti-
tioning of a span is separated in Algorithm 1 over
several previous iterations of the loop, so that once
the algorithm visits cell (i, j), all that needs to be
computed is the maximum of the two row- and
column-maximum values, from Ir and Ic, or from
Cr and Cc.

It is straightforward to show the correctness of
this algorithm, which we state as Theorem 2. We
omit the proof due to space constraints. The algo-
rithm can also be easily adapted for backtracking.

Theorem 2. Algorithm 1 returns the weight of T ∗.

We make a final adjustment to the algorithm be-
fore stating the simulation construction. For the
simulation, we only have RNN operations at our
disposal: linear combinations and a ReLU activa-
tion function, but no explicit max operation. In
order to use only RNN operations, we replace the
explicit max function.

Replacing the explicit max function. We note
that to find the maximum of the two positive num-
bers a and b, we can use the ReLU function. With-
out loss of generality, suppose that a > b, then

(ReLU(a− b) + ReLU(b− a) + a+ b)

2

=
(a− b+ a+ b)

2
=

2a

2
= a

= max(a, b). (1)

In fact, since all weights are assumed positive,
Equation 1 can be rewritten as

max(a, b) =
1

2
(ReLU(a− b) + ReLU(b− a)

+ReLU(a) + ReLU(b)). (2)

We therefore make a final adjustment to the
original Eisner algorithm, over the version Al-
gorithm 1, replacing all max functions us-
ing Equation 2. Instead of storing only one

value for each matrix Ir, Ic, Cr, Cc, I, C, we
store four, denoted by the fields a, b, ab, ba cor-
responding the four values we need to store:
ReLU(a),ReLU(b),ReLU(a− b), and ReLU(b−
a) respectively. For instance, for the matrix I , we
have Ia, Ib, Iab, Iba. Then, for example, line 6 be-
comes
a← ReLU(

1

2
∗ (Ir[i, j, 0].a+Ir[i, j, 0].b

+Ir[i, j, 0].ab+Ir[i, j, 0].ba))(3)

b← ReLU(
1

2
∗ (Ic[i, j, 0].a+Ic[i, j, 0].b

+Ic[i, j, 0].ab+Ic[i, j, 0].ba))(4)
I[i, j, 0].a← ReLU(a)

I[i, j, 0].b← ReLU(b)

I[i, j, 0].ab← ReLU(a− b)
I[i, j, 0].ba← ReLU(b− a)

where Equations 3 and 4 are wrapped in an extra
ReLU operation which yields no difference to the
parameter, but which will be convenient for our
simulation in Section 5.

Lines 11-14 and 16-19 are adapted in the same
way. We provide the adaption of line 11 to make
this precise:

a←ReLU(
1

2
∗ (I[i, p, 1].a+ I[i, p, 1].b

+I[i, p, 1].ab+ I[i, p, 1].ba))

b←ReLU(
1

2
∗ (C[i, j, 0].a+ C[i, j, 0].b

+C[i, j, 0].ab+ C[i, j, 0].ba

+C[j + 1, p, 1].a+ C[j + 1, p, 1].b

+C[j + 1, p, 1].ab+ C[j + 1, p, 1].ba

+S[p, i]))

Ir[i, p, 1].a ← ReLU(a)

Ir[i, p, 1].b ← ReLU(b)

Ir[i, p, 1].ab← ReLU(a− b)
Ir[i, p, 1].ba← ReLU(b− a).

Algorithm 1 therefore uses 25 matrices on input of
length n–hence, still O(n2) space.

Simulating Algorithm 1. The projective depen-
dency parsing architectureM ′ to be simulated first
sends word embeddings xi, i ∈ [n] through a for-
ward (and backward) LSTM with output word rep-
resentations −→o ′i (and ←−o ′i) of dimension d. The
concatenated result [−→o ′i;

←−o ′i] is further specialised
through two unrelated nonlinear dense layers: one
for dependents and one for heads. Then all re-
sulting pairs (dependent,head) of word represen-
tations are sent through a scoring function to gen-
erate a score matrix as input to projective MST de-
coding (Kiperwasser and Goldberg, 2016).
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Algorithm 1 Projective MST algorithm computing the maximum over at most 2 arguments.
1: procedure STREAMING-MAX-EISNER
2: S, I , C, Ir , Ic, Cr , Cc all initialised to 0 matrices
3: for t← 1 to n-1 do . span for-loop
4: for i← 1 to n− t do . diagonal for-loop
5: j ← i+ t . the algorithm is visiting cells (i, j)
6: I[i, j, 0]← max(Ir[i, j, 0], Ic[i, j, 0])
7: I[i, j, 1]← max(Ir[i, j, 0], Ic[i, j, 1])
8: C[i, j, 0]← max(Cr[i, j, 0], Cc[i, j, 0])
9: C[i, j, 1]← max(Cr[i, j, 0], Cc[i, j, 1])

10: for p← j + 1 up to min(j + t+ 1, n) do . streaming-row for-loop, i.e., while p− (j + 1) ≤ t
11: Ir[i, p, 1] = max(I[i, p, 1], C[i, j, 0] + C[j + 1, p, 1] + S[p, i])
12: Ir[i, p, 0] = max(I[i, p, 0], C[i, j, 0] + C[j + 1, p, 1] + S[i, p])
13: Cr[i, p, 1] = max(C[i, p, 1], C[i, j, 1] + I[j + 1, p, 1])
14: Cr[i, p, 0] = max(C[i, p, 0], I[i, j, 0] + C[j + 1, p, 0])

15: for p← i− 1 down to max(i− 1− t, 1) do . streaming-column for-loop, i.e., while (i− 1)− p ≤ t
16: Ic[p, j, 1] = max(I[p, j, 1], C[p, i− 1, 0] + C[i− 1, j, 1] + S[p, i])
17: Ic[i, p, 0] = max(I[i, p, 0], C[i, j, 0] + C[j + 1, p, 1] + S[i, p])
18: Cc[i, p, 1] = max(C[i, p, 1], C[i, j, 1] + I[j + 1, p, 1])
19: Cc[i, p, 0] = max(C[i, p, 0], I[i, j, 0] + C[j + 1, p, 0])

20: Return I, C

The architecture M to simulate M ′ consists of
two components, each being a recurrent layer: a
BiLSTM (for contextual word representations and
word specialisations) and an RNN (for scoring and
to simulate Algorithm 1).

M starts by feeding word embeddings xi into
its first component, the BiLSTM. In the forward
direction, at the tth time step, the contextual rep-
resentation −→o ′t is generated, −→o ′t−1 is specialised
to −→o ht−1 (head) and −→o dt−1 (dependent), and the
previously specialised word representations in −→o t
(i.e., corresponding to −→o ′1, . . . ,

−→o ′t−2) are copied
over. We add a single extra (n+ 1)th time step to
each direction, so M can finish specialising con-
textualised word representations within this first
component. Similarly for the backward direction.

There is one single input to M ’s second com-
ponent, an RNN, which also works in n + 1 time
steps. We refer to the inputs for this component as
z1, . . . , z(n+1), where z2 . . . z(n+1) are all dummy
inputs. z1 is the concatenation of the final output
vectors from each direction of M ’s BiLSTM. In
the first time step of this component, M computes
the score matrix and stores it in the hidden state h1.
The hidden state has a dimension large enough to
house the 25 tables (O(n2) space) required by Al-
gorithm 1 for subtree score bookkeeping and com-
puting the maximum of two values using linear
combinations and a ReLU.

The outer loop (the span for-loop with variable
t) of the algorithm corresponds to each time-step
t of the RNN. For the first internal for-loop (the
diagonal for-loop with variable i), we note that, in

lines 6-9, no cells (i, i+ t) whose values are being
computed require information from each other at
this time-step t.

The streaming-row and streaming-column for
loops (lines 11-14, 16-19) on the other hand some-
times requires maximal values (i, i+ t) from lines
6-9 to be computed. This problem is simply solved
by replacing the corresponding expressions ap-
pearing as left-hand sides in lines 6-9 by the right-
hand sides.

The output hn+1 contains the desired maximum
value.

6 Concluding Remarks

Recent state-of-the art neural graph-based parsers
comprising, among other components, a short
stack of BiLSTMs, seem to obviate any explicit
structural learning or prediction. In this paper, un-
der the assumption of ETH, we showed that this
is not due to any possible indirect discovery of
a faster algorithm for finding a projective maxi-
mum spanning tree and extended the result to pro-
jective maximimum spanning DAGs and digraphs.
We further showed how these architectures allow
for simulating decoding, implying that they are in-
deed carrying out implicit structured learning and
prediction.
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