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Abstract

We present an empirical analysis of state-of-
the-art systems for referring expression recog-
nition – the task of identifying the object
in an image referred to by a natural lan-
guage expression – with the goal of gaining
insight into how these systems reason about
language and vision. Surprisingly, we find
strong evidence that even sophisticated and
linguistically-motivated models for this task
may ignore linguistic structure, instead rely-
ing on shallow correlations introduced by unin-
tended biases in the data selection and annota-
tion process. For example, we show that a sys-
tem trained and tested on the input image with-
out the input referring expression can achieve
a precision of 71.2% in top-2 predictions. Fur-
thermore, a system that predicts only the ob-
ject category given the input can achieve a pre-
cision of 84.2% in top-2 predictions. These
surprisingly positive results for what should
be deficient prediction scenarios suggest that
careful analysis of what our models are learn-
ing – and further, how our data is constructed
– is critical as we seek to make substantive
progress on grounded language tasks.

1 Introduction

There has been increasing interest in modeling nat-
ural language in the context of a visual grounding.
Several benchmark datasets have recently been in-
troduced for describing a visual scene with nat-
ural language (Chen et al., 2015), describing or
localizing specific objects in a scene (Kazemzadeh
et al., 2014; Mao et al., 2016), answering natural
language questions about the scenes (Antol et al.,
2015), and performing visually grounded dialogue
(Das et al., 2016). Here, we focus on referring
expression recognition (RER) – the task of identi-
fying the object in an image that is referred to by a
natural language expression produced by a human
(Kazemzadeh et al., 2014; Mao et al., 2016; Hu

et al., 2016; Rohrbach et al., 2016; Yu et al., 2016;
Nagaraja et al., 2016; Hu et al., 2017).

Recent work on RER has sought to make
progress by introducing models that are better ca-
pable of reasoning about linguistic structure (Hu
et al., 2017; Nagaraja et al., 2016) – however, since
most of the state-of-the-arts systems involve com-
plex neural parameterizations, what these models
actually learn has been difficult to interpret. This
is concerning because several post-hoc analyses of
related tasks (Zhou et al., 2015; Devlin et al., 2015;
Agrawal et al., 2016; Jabri et al., 2016; Goyal et al.,
2016) have revealed that some positive results are
actually driven by superficial biases in datasets or
shallow correlations without deeper visual or lin-
guistic understanding. Evidently, it is hard to be
completely sure if a model is performing well for
the right reasons.

To increase our understanding of how RER sys-
tems function, we present several analyses inspired
by approaches that probe systems with perturbed in-
puts (Jia and Liang, 2017) and employ simple mod-
els to exploit and reveal biases in datasets (Chen
et al., 2016a). First, we investigate whether sys-
tems that were designed to incorporate linguistic
structure actually require it and make use of it. To
test this, we perform perturbation experiments on
the input referring expressions. Surprisingly, we
find that models are robust to shuffling the word
order and limiting the word categories to nouns and
adjectives. Second, we attempt to reveal shallower
correlations that systems might instead be leverag-
ing to do well on this task. We build two simple
systems called Neural Sieves: one that completely
ignores the input referring expression and another
that only predicts the category of the referred ob-
ject from the input expression. Again, surprisingly,
both sieves are able to identify the correct object
with surprising precision in top-2 and top-3 predic-
tions. When these two simple systems are com-
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bined, the resulting system achieves precisions of
84.2% and 95.3% for top-2 and top-3 predictions,
respectively. These results suggest that to make
meaningful progress on grounded language tasks,
we need to pay careful attention to what and how
our models are learning, and whether our datasets
contain exploitable bias.

2 Related Work
Referring expression recognition and generation
is a well studied problem in intelligent user in-
terfaces (Chai et al., 2004), human-robot interac-
tion (Fang et al., 2012; Chai et al., 2014; Williams
et al., 2016), and situated dialogue (Kennington
and Schlangen, 2017). Kazemzadeh et al. (2014)
and Mao et al. (2016) introduce two benchmark
datasets for referring expression recognition. Sev-
eral models that leverage linguistic structure have
been proposed. Nagaraja et al. (2016) propose a
model where target and supporting objects (i.e. ob-
jects that are mentioned in order to disambiguate
the target object) are identified and scored jointly.
The resulting model is able to localize supporting
objects without direct supervision. Hu et al. (2017)
introduce a compositional approach for the RER
task. They assume that the referring expression
can be decomposed into a triplet consisting of the
target object, the supporting object, and their spa-
tial relationship. This structured model achieves
state-of-the-art accuracy on the Google-Ref dataset.
Cirik et al. (2018) propose a type of neural modular
network (Andreas et al., 2016) where the compu-
tation graph is defined in terms of a constituency
parse of the input referring expression.

Previous studies on other tasks have found that
state-of-the-art systems may be successful for rea-
sons different than originally assumed. For exam-
ple, Chen et al. (2016b) show that a simple logistic
regression baseline with carefully defined features
can achieve competitive results for reading com-
prehension on CNN/Daily Mail datasets (Hermann
et al., 2015), indicating that more sophisticated
models may be learning realtively simple correla-
tions. Similarly, Gururangan et al. (2018) reveal
bias in a dataset for semantic inference by demon-
strating a simple model that achieves competitive
results without looking at the premise.

3 Analysis by Perturbation
In this section, we would like to analyze how
the state-of-the-art referring expression recognition
systems utilize linguistic structure. We conduct

experiments with perturbed referring expressions
where various aspects of linguistic structure are
obscured. We perform three types of analyses: the
first one studying syntactic structure (Section 3.2),
the second focusing on the importance of word cat-
egories (Section 3.3), and the final one analyzing
potential biases in the dataset (Section 3.4).

3.1 Analysis Methodology

To perform our analysis, we take two state-of-the-
art systems CNN+LSTM-MIL (Nagaraja et al.,
2016) and CMN (Hu et al., 2017) and train them
from scratch with perturbed referring expressions.
We note that the perturbation experiments ex-
plained in next subsections are performed on all
train and test instances. All experiments are done
on the standard train/test splits for the Google-Ref
dataset (Mao et al., 2016). Systems are evaluated
using the precision@k metric, the fraction of test
instances for which the target object is contained
in the model’s top-k predictions. We provide fur-
ther details of our experimental methodology in
Section 4.1.

3.2 Syntactic Analysis by Permuting Word
Order

In English, word order is important for correctly
understanding the syntactic structure of a sentence.
Both models we analyze use Recurrent Neural Net-
works (RNN) (Elman, 1990) with Long Short-Term
Memory (LSTM) cells (Hochreiter and Schmid-
huber, 1997). Previous studies have shown that
reccurrent architectures can perform well on tasks
where word order and syntax are important: for
example, tagging (Lample et al., 2016), parsing
(Sutskever et al., 2014), and machine translation
(Bahdanau et al., 2014). We seek to determine
whether recurrent models for RER depend on syn-
tactic structure.
Premise 1: Randomly permuting the word order
of an English referring expression will obscure its
syntactic structure.
We train CMN and CNN+LSTM-MIL with shuf-
fled referring expressions as input and evaluate
their performance.

Model No Perturbation Shuffled ∆

CMN .705 .675 -.030
LSTM+CNN-MIL .684 .630 -.054

Table 1: Results for Shuffling Word Order for Referring
Expressions. ∆ is the difference between no perturbation and
shuffled version of the same system.
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Figure 1: Overview of Neural Sieves. Sieve I filters object types having multiple instances. Sieve II filters objects of one
category mentioned in referring expression. Objects of the same category have the same color frames. Best seen in color.

Table 1 shows accuracies for models with and
without shuffled referring expressions. The column
with ∆ shows the difference in accuracy compared
to the best performing model without shuffling.
The drop in accuracy is surprisingly low. Thus, we
conclude that these models do not stongly depend
on the syntactic structure of the input expression
and may instead leverage other, shallower, correla-
tions.

3.3 Lexical Analysis by Discarding Words

Following the analysis presented in Section 3.2, we
are curious to study what other aspects of the input
referring expression may be essential for state-of-
the-art performance. If syntactic structure is largely
unimportant, it may be that spatial relationships can
be ignored. Spatial relationships between objects
are usually represented by prepositional phrases
and verb phrases. In contrast, simple descriptors
(e.g. green) and object types (e.g. table) are most
often represented by adjectives and nouns, respec-
tively. By discarding all words in the input that are
not nouns or adjectives, we hope to test whether
spatial relationships are actually important to state-
of-the-art models. Notably, both systems we test
were specifically designed to model object relation-
ships.
Premise 2: Keeping only nouns and adjectives
from the input expression will obscure the relation-
ships between objects that the referring expression
describes.

Table 2 shows accuracies resulting from train-
ing and testing these models on only the nouns
and adjectives in the input expression. Our first
observation is that the accuracies of models drop
the most when we discard the nouns (the rightmost
column in Table 2). This is reasonable since nouns

Models Noun & Adj (∆) Noun (∆) Adj (∆)

CMN .687 (-.018) .642 (-.063) .585 (-.120)
LSTM+CNN-MIL .644 (-.040) .597 (-.087) .533 (-.151)

Table 2: Results with discarded word categories. Numbers in
parentheses are ∆, the difference between the best performing
version of the original model.

define the types of the objects referred to in the
expression. Without nouns, it is extremely difficult
to identify which objects are being described. Sec-
ond, although both systems we analyze model the
relationship between objects, discarding verbs and
prepositions, which are essential in determining
the relationship among objects, does not drastically
effect their performance (the second column in Ta-
ble 2). This may indicate the superior performance
of these systems does not specifically come from
their modeling approach for object relationships.

3.4 Bias Analysis by Discarding Referring
Expressions

Goyal et al. (2016) show that some language and
vision datasets have exploitable biases. Could there
be a dataset bias that is exploited by the models for
RER?
Premise 3: Discarding the referring expression
entirely and keeping only the input image creates
a deficient prediction problem: achieving high-
peformance on this task indicates dataset bias.

We train CMN by removing all referring ex-
pressions from train and test. We call this model
“image-only” since it ignores the referring expre-
sion and will only use the input image. We compare
the CMN “image-only” model with the state-of-the-
art configuration of CMN and a random baseline.
Table 3 shows precision@k results. The “image-

Model P@1 P@2 P@3 P@4 P@5

CMN .705 .926 .979 .993 .998
CMN “image-only” .411 .731 .885 .948 .977
Random Baseline .204 .403 .557 .669 .750

Table 3: Results with discarded referring expressions. Sur-
prisingly, the top-2 prediction (73.1%) of the “image-only”
model is better than the top prediction of the state-of-the-art
(70.5%).

only” model is able to surpass the random baseline
by a large margin. This result indicates that the
dataset is biased, likely as a result of the data selec-
tion and annotation process. During the construc-
tion of the dataset, Mao et al. (2016) annotate an
object box only if there are at least 2 to 4 objects
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of the same type in the image. Thus, only a subset
of object categories ever appear as targets because
some object types rarely occur multiple times in
an image. In fact, out of 90 object categories in
MSCOCO, 43 of the object categories are selected
as target objects less than 1% of the time they oc-
cur in images. This potentially explains the relative
high performance of the “image-only” system.

3.5 Discussion

The previous analyses indicate that exploiting bias
in the data selection process and leveraging shal-
low linguistic correlations with the input expression
may go a long way towards achieving high perfor-
mance on this dataset. First, it may be possible
to simplify the decision of picking an object to a
much smaller set of candidates without even con-
sidering the referring expression. Second, because
removing all words except for nouns and adjectives
only marginally hurt performance for the systems
tested, it may be possible to further reduce the set
of candidates by focusing only on simple proper-
ties like the category of the target object rather than
its relations with the environment or with adjacent
objects.

4 Neural Sieves
We introduce a simple pipeline of neural networks,
Neural Sieves, that attempt to reduce the set of
candidate objects down to a much smaller set that
still contains the target object given an image, a set
of objects, and the referring expression describing
one of the objects.

Sieve I: Filtering Unlikely Objects. Inspired by
the results from Section 3.4, we design an “image-
only” model as the first sieve for filtering unlikely
objects. For example in Figure 1, Sieve I filters out
the backpack and the bench from the list of bound-
ing boxes since there is only one instance of these
object types. We use a similar parameterization of
one of the baselines (CMNLOC) proposed by Hu
et al. (2017) for Sieve I and train it by only pro-
viding spatial and visual features for the boxes, ig-
noring the referring expression. More specifically,
for visual features rvis of a bounding boxes of an
object, we use Faster-RCNN (Ren et al., 2015).
We use 5-dimensional vectors for spatial features
rspat = [xmin

WV
, ymin

HV
, xmax

WV
, ymax

WV
, Ar
AV

] where Ar is
the size and [xmin, ymin, xmax, ymax] are coordi-
nates for bounding box r and AV , WV , HV are the
area, the width, and the height of the input image

V . These two representations are concatenated as
rvis,spat = [rvisrspat] for a bounding box r.

We parameterize Sieve I with a list of bounding
boxes R as the input with parameter set ΘI as
follows:

sI = W score
I rvis,spat (1)

fI(R; ΘI) = softmax(sI) (2)

Each bounding box is scored using a matrix W score
I .

Scores for all bounding boxes are then fed to soft-
max to get a probability distribution over boxes.
The learned parameter ΘI is the scoring matrix
W score

I .

Sieve II: Filtering Based on Objects Categories
After filtering unlikely objects based only on the
image, the second step is to determine which ob-
ject category to keep as a candidate for prediction,
filtering out the other categories. For instance, in
Figure 1, only instances of suitcases are left as can-
didates after determining which type of object the
input expression is talking about. To perform this
step, Sieve II takes the list of object candidates
from Sieve I and keeps objects having the same
object category as the referred object. Unlike Sieve
I, Sieve II uses the referring expression to filter
bounding boxes of objects. We again use the base-
line model of CMNLOC from the previous work
(Hu et al., 2017) for the parametrization of Sieve
II with a minor modification: instead of predicting
the referred object, we make a binary decision for
each box of whether the object in the box is the
same category as the target object.

More specifically, we parameterize Sieve II as
follows:

r̂vis,spat = W vis,spat
II rvis,spat (3)

zII = r̂vis,spat � fatt(T ) (4)

ẑII = zII/ || zII ||2 (5)

sII = W score
II ẑs2 (6)

fII(T,R; ΘII) = sigmoid(sII) (7)

We encode the referring expression T into an em-
bedding with fatt(T ) which uses an attention mech-
anism (Bahdanau et al., 2014) on top of a 2-layer
bidirectional LSTM (Schuster and Paliwal, 1997).

We project bounding box features rvis,spat to the
same dimension as the embedding of referring ex-
pression (Eq 3). Text and box representations are
element-wise multiplied to get zII as a joint repre-
sentation of the text and bounding box (Eq 4). We
L2-normalize to produce ẑII (Eq 5, 6). Box scores

784



Model precision@k Accuracy

CMN 1 .705
CMN 2 .926
CMN 3 .979

LSTM+CNN-MIL 1 .684
LSTM+CNN-MIL 2 .907
LSTM+CNN-MIL 3 .972

Neural Sieve I 1 .401
Neural Sieve I 2 .712
Neural Sieve I 3 .866

Neural Sieve I + II 1 .488
Neural Sieve I + II 2 .842
Neural Sieve I + II 3 .953

Table 4: Precision@k accuracies for Neural Sieves and state-
of-the-art systems. Note that even without using the referring
expression, Sieve I is able to reduce the number of candidate
boxes to 3 for 86.6% of the instances. When we further predict
the type of objects with Sieve II, the number of candidate
boxes is reduced to 2 for 84.2% of the instances.

sII are calculated with a linear projection of the
joint representation (Eq 6) and fed to the sigmoid
function for a binary prediction for each box. The
learned parameters ΘII are W vis,spat

II ,W score
II , and

parameters of the encoding module fatt.

4.1 Filtering Experiments
We are interested in determining how accurate
these simple nueral sieves can be. High accuracy
here would give a possible explanation for the high
performance of more complex models.

Dataset. For our experiments, we use Google-
Ref (Mao et al., 2016) which is one of the standard
benchmarks for referring expression recognition. It
consists of around 26K images with 104K annota-
tions. We use their Ground-Truth evaluation setup
where the ground truth bounding box annotations
from MSCOCO (Lin et al., 2014) are provided to
the system as a part of the input. We used the split
provided by Nagaraja et al. (2016) where splits
have disjoint sets of images. We use precision@k
for evaluating the performance of models.

Implementation Details. To train our models,
we used stochastic gradient descent for 6 epochs
with an initial learning rate of 0.01 and multiplied
by 0.4 after each epoch. Word embeddings were
initialized using GloVe (Pennington et al., 2014)
and finetuned during training. We extracted fea-
tures for bounding boxes using the fc7 layer out-
put of Faster-RCNN VGG-16 network (Ren et al.,
2015) pre-trained on MSCOCO dataset (Lin et al.,
2014). Hyperparameters such as hidden layer size
of LSTM networks were picked based on the best

validation score. For perturbation experiments, we
did not perform any grid search for hyperparame-
ters. We used hyperparameters of the previously
reported best performing model in the literature.
We released our code for public use1.

Baseline Models. We compare Neural Sieves
to the state-of-the-art models from the literature.
LSTM + CNN - MIL Nagaraja et al. (2016) score
target object-context object pairs using LSTMs for
processing the referring expression and CNN fea-
tures for bounding boxes. The pair with the high-
est score is predicted as the referred object. They
use Multi-Instance Learning for training the model.
CMN (Hu et al., 2017) is a neural module network
with a tuple of object-relationship-subject nodes.
The text encoding of tuples is calculated with a
two-layer bi-directional LSTM and an attention
mechanism (Bahdanau et al., 2014) over the refer-
ring expression.

4.2 Results
Table 4 shows the precision scores. The referred
object is in the top-2 candidates selected by Sieve
I 71.2% of the time and in the top-3 predictions
86.6% of the time. Combining both sieves into a
pipeline, these numbers further increase to 84.2%
for top-2 predictions and to 95.3% for top-3 predic-
tions. Considering the simplicity of Neural Sieve
approach, these are surprising results: two simple
neural network systems, the first one ignoring the
referring expression, the second predicting only
object type, are able to reduce the number of candi-
date boxes down to 2 on 84.2% of instances.

5 Conclusion
We have analyzed two RER systems by variously
perturbing aspects of the input referring expres-
sions: shuffling, removing word categories, and fi-
nally, by removing the referring expression entirely.
Based on this analysis, we proposed a pipeline of
simple neural sieves that captures many of the easy
correlations in the standard dataset. Our results sug-
gest that careful analysis is important both while
constructing new datasets and while constructing
new models for grounded language tasks. The tech-
niques used here may be applied more generally to
other tasks to give better insight into what our mod-
els are learning and whether our datasets contain
exploitable bias.

1https://github.com/volkancirik/neural-sieves-refexp
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