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Daniel Beck†∗ Adrià de Gispert‡ Gonzalo Iglesias‡ Aurelien Waite‡ Bill Byrne‡
†Department of Computer Science, University of Sheffield, United Kingdom

debeck1@sheffield.ac.uk
‡SDL Research, Cambridge, United Kingdom

{agispert,giglesias,rwaite,bbyrne}@sdl.com

Abstract

We address the problem of automatically
finding the parameters of a statistical ma-
chine translation system that maximize BLEU
scores while ensuring that decoding speed ex-
ceeds a minimum value. We propose the use
of Bayesian Optimization to efficiently tune
the speed-related decoding parameters by eas-
ily incorporating speed as a noisy constraint
function. The obtained parameter values are
guaranteed to satisfy the speed constraint with
an associated confidence margin. Across three
language pairs and two speed constraint val-
ues, we report overall optimization time re-
duction compared to grid and random search.
We also show that Bayesian Optimization can
decouple speed and BLEU measurements, re-
sulting in a further reduction of overall op-
timization time as speed is measured over a
small subset of sentences.

1 Introduction

Research in Statistical Machine Translation (SMT)
aims to improve translation quality, typically mea-
sured by BLEU scores (Papineni et al., 2001), over
a baseline system. Given a task defined by a lan-
guage pair and its corpora, the quality of a system is
assessed by contrasting choices made in rule/phrase
extraction criteria, feature functions, decoding algo-
rithms and parameter optimization techniques.

Some of these choices result in systems with sig-
nificant differences in performance. For example,
in phrase-based translation (PBMT) (Koehn et al.,

∗ This work was done during an internship of the first au-
thor at SDL Research, Cambridge.

2003), decoder parameters such as pruning thresh-
olds and reordering constraints can have a dramatic
impact on both BLEU and decoding speed. How-
ever, unlike feature weights, which can be optimized
by MERT (Och and Ney, 2004), it is difficult to op-
timize decoder parameters either for speed or for
BLEU.

We are interested in the problem of automatically
finding the decoder parameters and feature weights
that yield the best BLEU at a specified minimum de-
coding speed. This is potentially very expensive be-
cause each change in a decoder parameter requires
re-decoding to assess both BLEU and translation
speed. This is under-studied in the literature, despite
its importance for real-life commercial SMT engines
whose speed and latency can be as significant for
user satisfaction as overall translation quality.

We propose to use Bayesian Optimiza-
tion (Brochu et al., 2010b; Shahriari et al., 2015)
for this constrained optimization task. By using
prior knowledge of the function to be optimized
and by exploring the most uncertain and the most
promising regions of the parameter space, Bayesian
Optimization (BO) is able to quickly find optimal
parameter values. It is particularly well-suited to
optimize expensive and non-differentiable functions
such as the BLEU score of a decoder on a tuning
set. The BO framework can also incorporate noisy
constraints, such as decoder speed measurements,
yielding parameters that satisfy these constraints
with quantifiable confidence values.

For a set of fixed feature weights, we use BO to
optimize phrase-based decoder parameters for speed
and BLEU. We show across 3 different language
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pairs that BO can find fast configurations with high
BLEU scores much more efficiently than other tun-
ing techniques such as grid or random search. We
also show that BLEU and decoding speed can be
treated as decoupled measurements by BO. This re-
sults in a further reduction of overall optimization
time, since speed can be measured over a smaller set
of sentences than is needed for BLEU.

Finally, we discuss the effects of feature weights
reoptimization after speed tuning, where we show
that further improvements in BLEU can be obtained.
Although our analysis is done on a phrase-based
system with standard decoder parameters (decoding
stack size, distortion limit, and maximum number of
translations per source phrase), BO could be applied
to other decoding paradigms and parameters.

The paper is organized as follows. Section 2 gives
a brief overview of Bayesian Optimization and de-
scribes how it can be applied to our problem, Section
3 reports our speed-constrained tuning experiments,
Section 4 reviews related work, and Section 5 con-
cludes.

2 Bayesian Optimization

We are interested in finding a global maximizer of
an objective function f :

θ? = arg max
θ∈Θ

f(θ) (1)

where θ is a parameter vector from a search space
Θ. It is assumed that f has no simple closed form
but can be evaluated at an arbitrary θ point. In this
paper, we take f as the BLEU score produced by an
SMT system on a tuning set, and θ will be the PBMT
decoder parameters.

Bayesian Optimization is a powerful framework
to efficiently address this problem. It works by
defining a prior model over f and evaluating it se-
quentially. Evaluation points are chosen to maxi-
mize the utility of the measurement, as estimated
by an acquisition function that trades off exploration
of uncertain regions in Θ versus exploitation of re-
gions that are promising, based on function eval-
uations over all x points gathered so far. BO is
particularly well-suited when f is non-convex, non-
differentiable and costly to evaluate (Shahriari et al.,
2015).

2.1 Prior Model
The first step in performing BO is to define the prior
model over the function of interest. While a num-
ber of different approaches exist in the literature, in
this work we follow the concepts presented in Snoek
et al. (2012) and implemented in the Spearmint1

toolkit, which we detail in this Section.
The prior over f is defined as a Gaussian Process

(GP) (Rasmussen and Williams, 2006):

f ∼ GP(m(θ), k(θ, θ′)) (2)

where m and k are the mean and kernel (or co-
variance) functions. The mean function is fixed to
the zero constant function, as usual in GP models.
This is not a large restriction because the posterior
over f will have non-zero mean in general. We use
the Matèrn52 kernel, which makes little assumptions
about the function smoothness.

The observations, BLEU scores in our work, are
assumed to have additive Gaussian noise over f
evaluations. In theory we do not expect variations
in BLEU for a fixed set of decoding parameters but
in practice assuming some degree of noise helps to
make the posterior calculation more stable.

2.2 Adding Constraints
The optimization problem of Equation 1 can be ex-
tended to incorporate an added constraint on some
measurement c(θ):

θ? = arg max
θ∈Θ

f(θ) s.t. c(θ) > t (3)

In our setup, c(θ) is the decoding speed of a con-
figuration θ, and t is the minimum speed we wish
the decoder to run at. This formulation assumes c is
deterministic given a set of parameters θ. However,
as we show in Section 3.2, speed measurements are
inherently noisy, returning different values when us-
ing the same decoder parameters.

So, we follow Gelbart et al. (2014) and redefine
Equation 3 by assuming a probabilistic model p over
c(θ):

θ? = arg max
θ∈Θ

f(θ) s.t. p(c(θ) > t) ≥ 1− δ (4)

where δ is a user-defined tolerance value. For our
problem, the formulation above states that we wish

1https://github.com/HIPS/Spearmint
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to optimize the BLEU score for decoders that run at
speeds faster than t with probability 1− δ. Like f , c
is also assumed to have a GP prior with zero mean,
Matèrn52 kernel and additive Gaussian noise.

2.3 Acquisition Function

The prior model combined with observations gives
rise to a posterior distribution over f . The poste-
rior mean gives information about potential optima
in Θ, in other words, regions we would like to ex-
ploit. The posterior variance encodes the uncertainty
in unknown regions of Θ, i.e., regions we would like
to explore. This exploration/exploitation trade-off is
a fundamental aspect not only in BO but many other
global optimization methods.

Acquisition functions are heuristics that use in-
formation from the posterior to suggest new eval-
uation points. They naturally encode the explo-
ration/exploitation trade-off by taking into account
the full posterior information. A suggestion is ob-
tained by maximizing this function, which can be
done using standard optimization techniques since
they are much cheaper to evaluate compared to the
original objective function.

Most acquisition functions used in the literature
are based on improving the best evaluation obtained
so far. However, it has been shown that this approach
has some pathologies in the presence of constrained
functions (Gelbart et al., 2014). Here we employ
Predictive Entropy Search with Constraints (PESC)
(Hernández-Lobato et al., 2015), which aims to
maximize the information about the global optimum
θ?. This acquisition function has been empirically
shown to obtain better results when dealing with
constraints and it can easily take advantage of a sce-
nario known as decoupled constraints (Gelbart et
al., 2014), where the objective (BLEU) and the con-
straint (speed) values can come from different sets of
measurements. This is explained in the next Section.

Algorithm 1 summarizes the BO procedure under
constraints. It starts with a set D0 of data points
(selected at random, for instance), where each data
point is a (θ, f, c) triple made of parameter values,
one function evaluation (BLEU) and one constraint
evaluation (decoding speed). Initial posteriors over
the objective and the constraint are calculated2. At

2Note that the objective posterior p(f |D) does not depend

every iteration, the algorithm selects a new evalu-
ation point by maximizing the acquisition function
α, measures the objective and constraint values on
this point and updates the respective posterior dis-
tributions. It repeats this process until it reaches a
maximum number of iterations N , and returns the
best set of parameters obtained so far that is valid
according to the constraint.

Algorithm 1 Constrained Bayesian Optimization
Input max. number of iterations N , acquisition

function α, initial evaluations D0, min. con-
straint value t, tolerance δ

1: Θ = ∅
2: for i = 1, . . . , N do
3: select new θi by maximizing α:

θi = arg max
θ

α(θ, p(f |Di−1), p(c|Di−1))

4: Θ = Θ∪ θi
5: query objective f(θi)
6: query constraint c(θi)
7: augment data Di = Di ∪ (θ, f, c)i
8: update objective posterior p(f |Di)
9: update constraint posterior p(c|Di)

10: end for
11: return θ? as per Equation 4

2.4 Decoupling Constraints

Translation speed can be measured on a much
smaller tuning set than is required for reliable BLEU
scores. In speed-constrained BLEU tuning, we can
decouple the constraint by measuring speed on a
small set of sentences, while still measuring BLEU
on the full tuning set. In this scenario, BO could
spend more time querying values for the speed con-
straint (as they are cheaper to obtain) and less time
querying the BLEU objective.

We use PESC as the acquisition function because
it can easily handle decoupled constraints (Gelbart,
2015, Sec. 4.3). Effectively, we modify Algorithm 1
to update either the objective or the constraint pos-
terior at each iteration, according to what is obtained
by maximizing PESC at line 3. This kind of decou-
pling is not allowed by standard acquisition func-
tions used in BO.

on the constraint measurements, and the constraint posterior
p(c|D) does not depend on the objective measurements.
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The decoupled scenario makes good use of het-
erogeneous computing resources. For example, we
are interested in measuring decoding speed on a spe-
cific machine that will be deployed. But translating
the tuning set to measure BLEU can be parallelized
over whatever computing is available.

3 Speed Tuning Experiments

We report translation results in three language
pairs, chosen for the different challenges they pose
for SMT systems: Spanish-to-English, English-to-
German and Chinese-to-English. For each language
pair, we use generic parallel data extracted from the
web. The data sizes are 1.7, 1.1 and 0.3 billion
words, respectively.

For Spanish-to-English and English-to-German
we use mixed-domain tuning/test sets, which have
about 1K sentences each and were created to evenly
represent different domains, including world news,
health, sport, science and others. For Chinese-to-
English we use in-domain sets (2K sentences) cre-
ated by randomly extracting unique parallel sen-
tences from in-house parallel text collections; this
in-domain data leads to higher BLEU scores than in
the other tasks, as will be reported later. In all cases
we have one reference translation.

We use an in-house implementation of a
phrase-based decoder with lexicalized reordering
model (Galley and Manning, 2008). The system
uses 21 features, whose weights are optimized for
BLEU via MERT (Och and Ney, 2004) at very
slow decoder parameter settings in order to mini-
mize search errors in tuning. The feature weights
remain fixed during the speed tuning process.

3.1 Decoder Parameters

We tune three standard decoder parameters θ =
(d, s, n) that directly affect the translation speed. We
describe them next.

d: distortion limit. The maximum number of source
words that may be skipped by the decoder as
it generates phrases left-to-right on the target
side.

s: stack size. The maximum number of hypotheses
allowed to survive histogram pruning in each
decoding stack.

n: number of translations. The maximum num-
ber of alternative translations per source phrase
considered in decoding.

3.2 Measuring Decoding Speed

To get a better understanding of the speed measure-
ments we decode the English-German tuning set 100
times with a slow decoder parameter setting, i.e.
θ = (5, 100, 100), and repeat for a fast setting with
θ = (0, 1, 1). We collect speed measurements in
number of translated words per minute (wpm)3.

The plots in Figure 1 show histograms contain-
ing the measurements obtained for both slow and
fast settings. While both fit in a Gaussian distri-
bution, the speed ranges approximately from 750
to 950 wpm in the slow setting and from 90K to
120K wpm in the fast setting. This means that speed
measurements exhibit heteroscedasticity: they fol-
low Gaussian distributions with different variances
that depend on the decoder parameter values. This
is a problem for our BO setting because the GP we
use to model the constraint assumes homoscedastic-
ity, or constant noise over the support set Θ.

Figure 1: Histograms of speed measurements. The solid line

shows a Gaussian fit with the empirical mean and variance.

Note the difference in scale between the two settings, showing

the heteroscedasticity.

A simple way to reduce the effect of heteroscedas-
ticity is to take the logarithm of the speed measure-
ments, which is also a standard practice when mod-
eling non-negative measures in a GP (Gelbart et al.,
2014). Table 1 shows the values for mean and stan-
dard deviation before and after the log transforma-
tion. Using the logarithm keeps the GP inference

3Measured on an Intel Xeon E5-2450 at 2.10GHz.
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Slow setting Fast setting
Mean Std Mean Std

speed 854.23 33.88 105.7k 5.6k
log speed 6.75 0.0398 11.57 0.0541

Table 1: Speed means and standard deviations in words per

minute before and after the logarithmic transformation.

formulas tractable so we use this solution in our ex-
periments.

3.3 BO Details and Baselines

All BO experiments use Spearmint (Snoek et al.,
2012) with default values unless explicitly stated
otherwise. We set the minimum and maximum val-
ues for d, s and n as [0, 10], [1, 500] and [1, 100],
respectively. We model d in linear scale but s and
n in logarithmic scale for both BO and the base-
lines. This scaling is based on the intuition that op-
timal values for s and n will be in the lower interval
values, which was confirmed in preliminary experi-
ments on all three datasets.

We run two sets of experiments, using 2000wpm
and 5000wpm as minimum speed constraints. In ad-
dition, we use the following BO settings:

Standard (BO-S): in this setting each BO iteration
performs a full decoding of the tuning set in order to
obtain both the BLEU score and the decoding speed
jointly. We use δ = 0.01 as the constraint tolerance
described in Section 2.2.

Decoupled (BO-D): here we decouple the objec-
tive and the constraint as explained in Section 2.4.
We still decode the full tuning set to get BLEU
scores, but speed measurements are taken from a
smaller subset of 50 sentences. Since speed mea-
surements are faster in this case, we enforce BO to
query for speed more often by modeling the task du-
ration as described by Snoek et al. (2012). We use a
higher constraint tolerance (δ = 0.05), as we found
that BO otherwise focused on the speed constraints
at the expense of optimizing BLEU.

We compare these settings against two baselines:
grid search and random search (Bergstra and Ben-
gio, 2012). Grid search and random search seek pa-
rameter values in a similar way: a set of parameter
values is provided; the decoder runs over the tun-
ing set for all these values; the parameter value that

yields the highest BLEU at a speed above the con-
straint is returned. For grid search, parameter val-
ues are chosen to cover the allowed value range in
even splits given a budget of a permitted maximum
number of decodings. For random search, param-
eters are chosen from a uniform distribution over
the ranges specified above. BO-S, grid search and
random search use a maximum budget of 125 de-
codings. BO-D is allowed a larger budget of 250
iterations, as the speed measurements can be done
quickly. This is not a bias in favour of BO-D, as the
overall objective is to find the best, fast decoder in
as little CPU time as possible.

3.4 Results

Our results using the 2000wpm speed constraint are
shown in Figure 2. The solid lines in the figure show
the tuning set BLEU score obtained from the current
best parameters θ, as suggested by BO-S, as a func-
tion of CPU time (in logarithmic scale). Given that
δ = 0.01, we have a 99% confidence under the GP
model that the speed constraint is met.

Figure 2 also shows the best BLEU scores of
fast systems found by grid and random search at
increasing budgets of 8, 27, and 125 decodings of
the tuning set4. These results are represented by
squares/circles of different sizes in the plot: the
larger the square/circle, the larger the budget. For
grid and random search we report only the single
highest BLEU score found amongst the sufficiently
fast systems; the CPU times reported are the total
time spent decoding the batch. For BO, the CPU
times include both decoding time and the time spent
evaluating the acquisition function for the next de-
coder parameters to evaluate (see Section 3.5).

In terms of CPU time, BO-S finds optimal pa-
rameters in less time than either grid search or ran-
dom search. For example, in Spanish-to-English,
BO-S takes ∼70 min (9 iterations) to achieve 36.6
BLEU score. Comparing to the baselines using a
budget of 27 decodings, random search and grid
search need ∼160 min and ∼6 hours, respectively,
to achieve 36.5 BLEU. Note that, for a given bud-
get, grid search proves always slower than random
search because it always considers parameters val-

4For grid search, these correspond to 2, 3 and 5 possible
values per parameter.
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Figure 2: BLEU scores at 2000wpm. Squares and circles with

increasing sizes correspond to searches with increasing evalu-

ation budgets (8, 27, 125). For example: in Spanish-English,

a random search with a budget of 125 evaluations required 10

CPU hours to run, and the highest BLEU score found among

the sufficiently fast (>=2000wpm) systems was 36.2. For BO-

D and BO-S, BLEU scores are plotted only if the speed is above

2000wpm and for BO-S only if the full dev set is decoded.

ues at the high end of the ranges (which are the slow-
est decoding settings).

In terms of translation quality, we find that BO-S
reaches the best BLEU scores across all language
pairs, although all approaches eventually achieve
similar scores, except in Chinese-to-English where
random search is unable to match the BO-S BLEU
score even after 125 decodings.

The dotted lines show the results obtained by the
decoupled BO-D approach. BO-D does manage to
find good BLEU scores, but it proceeds somewhat
erratically. As the figure shows, BO-D spends a
good deal of time testing systems at parameter val-
ues that are too slow. There are also negative excur-
sions in the BLEU score, which we observed were
due to updates of the posterior constraint model. For

Figure 3: BLEU scores at 5000wpm. Squares and circles with

increasing sizes correspond to baselines with increasing evalu-

ation budgets (8, 27, 125).

each new iteration, the confidence on the best pa-
rameter values may decrease, and if the confidence
drops below 1− δ, then BO suggests parameter val-
ues which are more likely to satisfy the speed con-
straint; this potentially hurts BLEU by decoding too
fast. Interestingly, this instability is not seen on the
Chinese-to-English pair. We speculate this is due to
the larger tuning set for this language pair. Because
the task time difference between BLEU and speed
measurements is higher compared to the other lan-
guage pairs, BO-D tends to query speed more in this
case, resulting in a better posterior for the constraint.

Our results using the stricter 5000 wpm speed
constraint are shown in Figure 3. As in the
2000wpm case, BO-S tends to find better parameter
values faster than any of the baselines. One excep-
tion is found in Spanish-to-English after ∼40 min,
when random search finds a better BLEU after 8 iter-
ations when compared to BO-S. However, later BO-
S catches up and finds parameters that yield the same
score. In Chinese-to-English BO is able to find pa-
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rameters that yield significantly better BLEU scores
than any of the baselines. It appears that the harsher
the speed constraint, the more difficult the optimiza-
tion task, and the more chances BO will beat the
baselines.

Interestingly, the decoupled BO-D approach is
more stable than in the less strict 2000wpm case. Af-
ter some initial oscillations in BLEU for English-to-
German, BO-D curves climb to optimal parameters
in much less CPU time than BO-S. This is clearly
seen in Spanish-to-English and Chinese-to-English.
We conclude that the harsher the speed constraint,
the more benefit in allowing BO to query for speed
separately from BLEU.

Tables 2 and 3 report the final parameters θ found
by each method after spending the maximum al-
lowed budget, and the BLEU and speed measured
(average of 3 runs) when translating the tuning
and test using θ. These show how different each
language pair behaves when optimizing for speed
and BLEU. For Spanish-to-English and English-to-
German it is possible to find fast decoding configu-
rations (well above 5K wpm) that nearly match the
BLEU score of the slow system used for MERT
tuning, i.e. θMERT = (10, 1000, 500). In con-
trast, significant degradation in BLEU is observed
at 5000wpm for Chinese-to-English, a language pair
with complicated reordering requirements – notice
that all methods consistently keep a very high dis-
tortion limit for this language pair. However, both
BO-S and BO-D strategies yield better performance
on test (at least +0.5BLEU improvement) than the
grid and random search baselines.

Only BO is able to find optimal parameters across
all tasks faster. The optimum parameters yield simi-
lar performance on the tuning and test sets, allowing
for the speed variations discussed in Section 3.2. All
the optimization procedures guarantee that the con-
straint is always satisfied over the tuning set. How-
ever, this strict guarantee does not necessarily extend
to other data in the same way that there might be
variations in BLEU score. This can be seen in the
Chinese-English experiments. Future work could
focus on improving the generalization of the con-
fidence over constraints.

Tuning Test θ
BLEU speed BLEU speed d s n

Spanish-English
MERT 36.9 93 37.9 95 10 1K 500
Grid 36.5 8.1K 37.9 8.1K 5 22 31
Random 36.6 4.1K 37.8 4.1K 4 64 27
BO-S 36.6 2.7K 37.8 2.7K 4 95 68
BO-D 36.6 2.6K 37.8 2.6K 4 110 24
English-German
MERT 21.1 72 18.0 70 10 1K 500
Grid 21.3 12.4K 18.2 12.4K 2 22 31
Random 21.4 18.4K 18.1 18.4K 2 13 43
BO-S 21.5 14.7K 18.1 14.3K 3 13 34
BO-D 21.5 14.4K 18.1 14.7K 3 13 35
Chinese-English
MERT 44.3 50 42.5 51 10 1K 500
Grid 43.7 2.3K 41.8 2.1K 10 22 100
Random 43.3 3.0K 41.4 2.9K 9 19 46
BO-S 43.8 2.0K 41.9 1.9K 10 25 100
BO-D 43.7 2.2K 41.8 2.1K 10 24 44

Table 2: Results obtained after reaching the full evaluation bud-

get (2000 words/min constraint). Speed is reported in translated

words per minute.
Tuning Test θ

BLEU speed BLEU speed d s n

Spanish-English
MERT 36.9 93 37.9 95 10 1K 500
Grid 36.5 8.1K 37.9 8.1K 5 22 31
Random 36.6 8.0K 37.8 7.9K 4 28 43
BO-S 36.6 11.9K 37.8 12.0K 4 19 24
BO-D 36.6 11.0K 37.8 10.9K 4 19 73
English-German
MERT 21.1 72 18.0 70 10 1K 500
Grid 21.3 12.4K 18.2 12.4K 2 22 31
Random 21.4 18.4K 18.1 18.4K 2 13 43
BO-S 21.5 14.7K 18.1 14.3K 3 13 34
BO-D 21.5 14.6K 18.1 14.4K 3 13 33
Chinese-English
MERT 44.3 50 42.5 51 10 1K 500
Grid 42.5 10.7K 40.9 10.1K 10 4 100
Random 42.5 10.6K 40.5 10.4K 9 7 14
BO-S 43.2 5.4K 41.4 5.3K 10 13 15
BO-D 43.2 5.8K 41.4 5.7K 10 12 15

Table 3: Results obtained after reaching the full evaluation bud-

get (5000 words/min constraint).

3.5 BO Time Analysis

The complexity of GP-based BO is O(n3), n being
the number of GP observations, or function evalua-
tions (Rasmussen and Williams, 2006). As the ob-
jective function f is expected to be expensive, this

862



Figure 4: Time spent at each iteration in decoding and in BO

(Chinese-to-English, 2000 wpm). BO-S (top), BO-D (bottom)

should not be an issue for low budgets. However, as
the number of iterations grows there might reach a
point at the time spent on the GP calculations sur-
passes the time spent evaluating the function.

This is investigated in Figure 4, where the time
spent in decoding versus BO (in logarithmic scale)
for Chinese-to-English using the 2K wpm constraint
is reported, as a function of the optimization iter-
ation. For BO-S (top), decoding time is generally
constant but can peak upwards or downwards de-
pending on the chosen parameters. For BO-D (bot-
tom), most of the decoding runs are faster (when
BO is querying for speed), and shoot up significantly
only when the full tuning set is decoded (when BO
is querying for BLEU). For both cases, BO time
increases with the number of iterations, becoming
nearly as expensive as decoding when a high maxi-
mum budget is considered. As shown in the previous
section, this was no problem for our speed-tuning
experiments because optimal parameters could be
found with few iterations, but more complex settings
(for example, with more decoder parameters) might
require more iterations to find good solutions. For
these cases the time spent in BO could be signifi-
cant.

3.6 Reoptimizing Feature Weights

We have used BO to optimize decoder parameters
for feature weights that had been tuned for BLEU
using MERT. However, there is no reason to believe

Tuning Test θ
BLEU speed BLEU speed d s n

MERT 44.3 – 42.5 51 10 1K 500
BO-S 43.8 2.0K 41.9 1.9K 10 25 100
MERT-flat 43.8 2.0K 41.4 1.9K 10 25 100
MERT-opt 44.3 2.0K 42.4 1.9K 10 25 100

Table 4: Chinese-to-English results of re-running MERT using

parameters that satisfy the 2K wpm speed constraint.

that the best feature weights for a slow setting are
also the best weights at the fast settings we desire.

To assess this we now fix the decoder parame-
ters θ and re-run MERT on Chinese-to-English with
2000 wpm using the fast settings found by BO-S:
θBO = (10, 25, 100) in Table 2. We run MERT
starting from flat weights (MERT-flat) and from the
optimal weights (MERT-opt), previously tuned for
the MERT baseline with θMERT . Table 4 reports
the results.

We find that MERT-opt is able to recover from
the BLEU drops observed during speed-constrained
tuning and close the gap with the slow baseline
(from 41.9 to 42.4 BLEU at 1.8 Kwpm, versus 42.5
for MERT at only 51wpm). Note that this perfor-
mance is not achieved using MERT-flat, so rather
than tune from flat parameters in a fixed fast setting,
we conclude that it is better to: (1) use MERT to
find feature weights in slow settings; (2) optimize
decoder parameters for speed; (3) run MERT again
with the fast decoder parameters from the feature
weights found at the slow settings. As noted earlier,
this may reduce the impact of search errors encoun-
tered in MERT when decoding at fast settings. How-
ever, this final application MERT is unconstrained
and there is no guarantee that it will yield a decoder
configuration that satisfies the constraints. This must
be verified through subsequent testing.

Ideally, one should jointly optimize decoder pa-
rameters, feature weights and all decisions involved
in building an SMT system, but this can be very
challenging to do using only BO. We note anecdo-
tally that we have attempted to replicate the feature
weight tuning procedure of Miao et al. (2014) but
obtained mixed results on our test sets. Effective
ways to combine BO with well-established feature
tuning algorithms such as MERT could be a promis-
ing research direction.
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4 Related Work

Bayesian Optimization has been previously used
for hyperparameter optimization in machine learn-
ing systems (Snoek et al., 2012; Bergstra et al.,
2011), automatic algorithm configuration (Hutter et
al., 2011) and for applications in which system tun-
ing involves human feedback (Brochu et al., 2010a).
Recently, it has also been used successfully in sev-
eral NLP applications. Wang et al. (2015) use BO to
tune sentiment analysis and question answering sys-
tems. They introduce a multi-stage approach where
hyperparameters are optimized using small datasets
and then used as starting points for subsequent BO
stages using increasing amounts of data. Yogatama
et al. (2015) employ BO to optimize text represen-
tations in a set of classification tasks. They find that
there is no representation that is optimal for all tasks,
which further justifies an automatic tuning approach.
Wang et al. (2014) use a model based on optimistic
optimization to tune parameters of a term extraction
system. In SMT, Miao et al. (2014) use BO for fea-
ture weight tuning and report better results in some
language pairs when compared to traditional tuning
algorithms.

Our approach is heavily based on the work of
Gelbart et al. (2014) and Hernández-Lobato et al.
(2015) which uses BO in the presence of unknown
constraints. They set speed and memory constraints
on neural network trainings and report better results
compared to those of naive models which explicitly
put high costs on regions that violate constraints. A
different approach based on augmented Lagrangians
is proposed by Gramacy et al. (2014). The authors
apply BO in a water decontamination setting where
the goal is to find the optimal pump positioning sub-
ject to restrictions on water and contaminant flows.
All these previous work in constrained BO use GPs
as the prior model.

Optimizing decoding parameters for speed is an
understudied problem in the MT literature. Chung
and Galley (2012) propose direct search methods
to optimize feature weights and decoder parameters
jointly but aiming at the traditional goal of maxi-
mizing translation quality. To enable search param-
eter optimization they enforce a deterministic time
penalty on BLEU scores, which is not ideal due to
the stochastic nature of time measurements shown

on Section 3.2 (this issue is also cited by the authors
in their manuscript). It would be interesting to incor-
porate their approach into BO for optimizing trans-
lation quality under speed constraints.

5 Conclusion

We have shown that Bayesian Optimisation per-
forms well for translation speed tuning experiments
and is particularly suited for low budgets and for
tight constraints. There is much room for improve-
ment. For better modeling of the speed constraint
and possibly better generalization in speed mea-
surements across tuning and test sets, one possibil-
ity would be to use randomized sets of sentences.
Warped GPs (Snelson et al., 2003) could be a more
accurate model as they can learn transformations for
heteroscedastic data without relying on a fixed trans-
formation, as we do with log speed measurements.

Modelling of the objective function could also
be improved. In our experiments we used a
GP with a Matèrn52 kernel, but this assumes
f is doubly-differentiable and exhibits Lipschitz-
continuity (Brochu et al., 2010b). Since that
does not hold for the BLEU score, using al-
ternative smoother metrics such as linear cor-
pus BLEU (Tromble et al., 2008) or expected
BLEU (Rosti et al., 2010) could yield better results.
Other recent developments in Bayesian Optimisa-
tion could be applied to our settings, like multi-task
optimization (Swersky et al., 2013) or freeze-thaw
optimization (Swersky et al., 2014).

In our application we treat Bayesian Optimisation
as a sequential model. Parallel approaches do exist
(Snoek et al., 2012; González et al., 2015), but we
find it easy enough to harness parallel computation
in decoding tuning sets and by decoupling BLEU
measurements from speed measurements. How-
ever for more complex optimisation scenarios or for
problems that require lengthy searches, paralleliza-
tion might be needed to keep the computations re-
quired for optimisation in line with what is needed
to measure translation speed and quality.
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