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Abstract
In this paper, we study the problem of auto-
matic enrichment of a morphologically under-
specified treebank for Arabic, a morpholog-
ically rich language. We show that we can
map from a tagset of size six to one with 485
tags at an accuracy rate of 94%-95%. We
can also identify the unspecified lemmas in
the treebank with an accuracy over 97%. Fur-
thermore, we demonstrate that using our au-
tomatic annotations improves the performance
of a state-of-the-art Arabic morphological tag-
ger. Our approach combines a variety of tech-
niques from corpus-based statistical models to
linguistic rules that target specific phenomena.
These results suggest that the cost of treebank-
ing can be reduced by designing underspec-
ified treebanks that can be subsequently en-
riched automatically.

1 Introduction
Collections of manually-annotated morphological
and syntactic analyses of sentences, or treebanks,
are an important resource for building statistical
parsing models or for syntax-aware approaches to
applications such as machine translation. Rich tree-
bank annotations have also been used for a variety
of natural language processing (NLP) applications
such as tokenization, diacritization, part-of-speech
(POS) tagging, morphological disambiguation, base
phrase chunking, and semantic role labeling.

The development of a treebank with rich annota-
tions is demanding in time and money, especially for
morphologically complex languages. Consequently,
the richer the annotation, the slower the annotation
process and the smaller the size of the treebank. As
such, a tradeoff is usually made between the size of
the treebank and the richness of its annotations.

In this paper, we investigate the possibility of
automatically enriching the morphologically un-
derspecified Columbia Arabic Treebank (CATiB)

(Habash and Roth, 2009; Habash et al., 2009) with
the more complex POS tags and lemmas used in
the Penn Arabic Treebank (PATB) (Maamouri et al.,
2004). We employ a variety of techniques that range
from corpus-based statistical models to handwrit-
ten rules based on linguistic observations. Our best
method reaches accuracy rates of 94%-95% on full
POS tag identification. We can also identify the un-
specified lemmas in CATiB with an accuracy over
97%. 37% of our POS tag errors are due to gold tree
or gold POS errors. A learning curve experiment to
evaluate the dependence of our method on annotated
data shows that while the quality of some compo-
nents may reduce sharply with less data (12% abso-
lute reduction in accuracy when using 1

32 of the data
or some 10K annotated words), the overall effect is
a lot smaller (2% absolute drop). These results sug-
gest that the cost of treebanking can be reduced by
designing underspecified treebanks that can be sub-
sequently enriched automatically.

The rest of this paper is structured as follows:
Section 2 presents related work; Section 3 details
various language background facts about Arabic and
its treebanking; Section 4 explains our approach;
and Section 5 presents and discusses our results.

2 Related Work

Arabic Treebanking There has been a lot work
on building treebanks for different languages. In
the case of Modern Standard Arabic (MSA), there
are three efforts that vary in terms of richness and
representation choice. The Penn Arabic Treebank
(PATB) (Maamouri et al., 2004; Maamouri et al.,
2009b; Maamouri et al., 2009a), the Prague Ara-
bic Dependency Treebank (PADT) (Smrž and Ha-
jič, 2006; Smrž et al., 2008) and the Columbia
Arabic Treebank (CATiB) (Habash and Roth, 2009;
Habash et al., 2009) . The PATB uses phrase struc-
ture representation, while the other two use two
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different dependency representations. The PATB
and PADT representations are quite detailed. The
PATB not only provides tokenization, complex POS
tags (485 tags in our data set), and syntactic struc-
ture; it also provides empty categories, diacritiza-
tion, lemma choices, glosses and some semantic
tags. In comparison CATiB only provides tokeniza-
tion, six POS tags and eight dependency relations.
The tradeoff is speed: CATiB’s complete POS and
syntax annotation rate is 540 tokens/hour (and an-
notator training takes two months), a much higher
speed than reported for complete (POS and syntax)
annotation in PATB (around 250-300 tokens/hour
and 6-12 months for annotator training) and PADT
(around 75 tokens/hour) (Habash and Roth, 2009).
An important recent addition to the family of Arabic
treebanks is the Quran Treebank, which targets the
Classical Arabic language of the Quran, not MSA
(Dukes and Buckwalter, 2010).

Treebank Enrichment There has been a number
of efforts on developing treebanks with rich rep-
resentations and on treebank enrichment for many
languages, such Danish, English, German, Italian
and Spanish (Oepen et al., 2002; Hinrichs et al.,
2004; Müller, 2010). Additionally, there has been
some work on Arabic treebank enrichment that built
on the PATB by manually extending its already
rich annotations or automatically converting them
to new formalisms. The Arabic Propbank (Proposi-
tional Bank) (Palmer et al., 2008) and the OntoNotes
project (Hovy et al., 2006) both annotate for Ara-
bic semantic information. Alkuhlani and Habash
(2011) add annotations marking functional gender
and number, and rationality; and Abdul-Mageed and
Diab (2012) annotate the sentence level with sen-
timent labels. Tounsi et al. (2009) automatically
converted the PATB to a lexical functional gram-
mar (LFG) representation. Similarly, Habash and
Roth (2009) used a similar technique to build an
initial version of CATiB. We use this CATiB ver-
sion of PATB to evaluate our approach in this pa-
per. Also related to this is the work on automatic
enrichment of specific features, e.g., Habash et al.
(2007a) demonstrated that nominal case, can be de-
termined for gold syntactic analyses at high accu-
racy. We replicate their results and improve upon
them. And unlike them, we handle all the morpho-
logical features in the PATB, not just case.

Morphological Disambiguation There has been
a lot of work on Arabic POS tagging and morpho-
logical disambiguation (Diab et al., 2004; Habash
and Rambow, 2005; Smith et al., 2005; Hajič et al.,
2005; Roth et al., 2008; Habash et al., 2013). These
approaches are intended to apply to raw text and
determine the appropriate in-context morphological
reading for each word. In contrast, in this paper,
we are starting from a partially disambiguated and
relatively rich representation: we have tokenization,
general POS tags and syntactic dependency infor-
mation.

Finally, morphological information (beyond tok-
enization) has been shown to be useful for many
NLP applications. Marton et al. (2011) demon-
strated that morphology helps Arabic parsing. Us-
ing morphological features such as case has also
improved parsing for Russian, Turkish and Hindi
(Nivre et al., 2008; Eryigit et al., 2008; Nivre, 2009).
Other work has shown value for morphology in the
context of Arabic named entity recognition (Bena-
jiba et al., 2009). These results support the value of
our goal of enriching resources with morphological
information, which then can be used to improve dif-
ferent NLP applications.

3 Linguistic Background

In this section, we present some relevant general
linguistic facts about Arabic and then discuss the
specifics of the tagsets we work with in this paper.

Arabic Linguistic Facts The Arabic language
poses many challenges for NLP. Arabic is a mor-
phologically complex language which includes rich
inflectional and cliticizational morphology, e.g., the
word Aî 	EñJ. �JºJ
�ð w+s+y-ktb-wn+hA1 ‘and they will
write it’ has two proclitics, one prefix, one suffix and
one pronominal enclitic. Additionally, Arabic has a
high degree of ambigiouty due to the absence of the
diacritics and inconsistent spelling of letters such as
Alif,


@ Â and Ya ø
 y. The Buckwalter Arabic Mor-

phological Analyzer (BAMA) (Buckwalter, 2004),
which is used in the PATB, produces an average of
12 analyses per word.

In this paper, we work with gold tokenized Ara-
bic as it appears in the PATB and CATiB treebanks.

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007b): (in alphabetical or-
der) AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional sym-
bols: ’ Z, Â


@, Ǎ @, Ā

�
@, ŵ ð', ŷ Zø', h̄ �è, ý ø.
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As such, the words are partially disambiguated with
regards to possible tokenizable clitics and Alif/Ya
spelling forms. That said, there is still a lot of am-
biguity remaining especially because diacritics are
not marked. Words in the treebank may be ambigu-
ous in terms of their POS, lemmas and inflectional
features. The inflectional features include gender,
number, person, case, state, mood, voice, aspect and
the presence of the determiner +È@ Al+ ‘the’, which
is not tokenized off in the treebanks.

Arabic has a well known discrepancy in form and
function that appears most commonly in the form
of irregular plurals, called Broken Plurals, which
although functionally are plural, have singular suf-
fixes. We will not discuss form and function dis-
crepancy in this paper except as needed. For more
on this see Habash (2010).

The Buckwalter Tagset The Buckwalter POS
tagset is perhaps one of the most commonly used
tagsets for Arabic NLP research. The tagset’s pop-
ularity is in part due to its use in the PATB. Buck-
walter tags can be used for tokenized and untok-
enized text. The untokenized tags are produced by
BAMA (Buckwalter, 2004) and consist of 485 tags.
The tokenized tags, which are used in the PATB,
are derived from the untokenized tags and can reach
thousands of tags. Both variants use the same ba-
sic 70 or so sub-tag symbols (such as DET ‘deter-
miner’, NSUFF ‘nominal suffix’, ADJ ‘adjective’
and ACC ‘accusative’) (Maamouri et al., 2009a).
These sub-tags are combined to form around 170
morpheme tags such as NSUFF_FEM_SG ‘femi-
nine singular nominal suffix’ and CASE_DEF_ACC
‘accusative definite’. The word tags are con-
structed out of one or more morpheme tags,
e.g. DET+NOUN_PROP+CASE_DEF_NOM for
the word 	á�
�Ë@ Al+Siyn+u ‘China’.

CATiB Trees and POS Tags CATiB uses the
same basic tokenization scheme used by PATB and
PADT. However, the CATiB POS tagset is much
smaller. Whereas in practice PATB uses 485 Buck-
walter tags specifying every aspect of Arabic word
morphology such as definiteness, gender, number,
person, mood, voice and case, CATiB uses 6 POS
tags: NOM (non-proper nominals including nouns,
pronouns, adjectives and adverbs), PROP (proper
nouns), VRB (verbs), VRB-PASS (passive-voice
verbs), PRT (particles such as prepositions or con-

VRB
����� trsl
———

IV3FS+IV+IVSUFF_MOOD:I
���

�
� >arsal

‘send’

MOD

PRT
+� s+
———

FUT_PART
+� sa+

‘will’

SBJ

PROP������� AlSyn
———

DET+NOUN_PROP
+CASE_DEF_NOM����� Siyn

‘China’

OBJ

NOM
����� qmrA
———
NOUN

+CASE_INDEF_ACC
���� qamar

‘moon’

MOD

NOM
����� ������ <STnAEyA

———
ADJ

+CASE_INDEF_ACC
���� ������ <iSTinAEy∼

‘artificial’

MOD

PRT
���� <lY
———

PREP
���� <lY

‘to’

OBJ

PROP
������� � Almryx

———
DET+NOUN_PROP
+CASE_DEF_GEN

������ mar∼iyx
‘Mars’

Figure 1: An example dependency tree for the sentence ������� � ���� ����� ������ ����� � ���� � ������ s+trsl Alhnd qmrA
<STnAEyA <lY Almryx ‘India will send a satellite to Mars [in 2013]’. In every tree node, the terms above the line are
part of the CATiB annotations: the word, POS (VRB = verb, PRT = particle, PROP = proper noun, NOM = nominal)
and relation (MOD = modifier, SBJ = subject, OBJ = object). The terms under the line are the Buckwalter POS tag, the
lemma and the gloss, respectively.

analyses as a constraint on the space from which we
will select the appropriate in context tag. The ap-
proach is quite similar to how MADA (morphologi-
cal analysis and disambiguation for Arabic) (Habash
and Rambow, 2005) works except that we are using
the CATiB tree as the context in which we disam-
biguate. Given the degree of richness of the tree, we
expect to outperform basic disambiguation on text.

In the rest of this section, we discuss our general
strategy, followed by a detailed presentation of our
approach: morphological disambiguation and mor-
phological filtering.

4.1 From CATiB to Buckwalter: Devising a
Strategy

In CATiB trees, different pieces of information can
be relevant to different disambiguation tasks. We an-
alyzed the data we have and obtained the following

observations which we use to devise our strategy for
how to address different types of ambiguity:

• Words in CATiB treebank are tokenized. This
resolves many ambiguous cases: analyses in-
volving cliticized prepositions or conjunctions
are dismissed. Further more, separated clitics
are marked, which restricts their reading.

• The CATiB POS tag, although two orders of
magnitude smaller than the Buckwalter tag set,
provides a lot of information. It resolves ambi-
guity amongst verbs (active or passive), nomi-
nals, particles, proper nouns and punctuation.

• The CATiB tags NOM or PRT are the most am-
biguous. They are challenging because there
are both lexical and morphosyntactic features
at play. We rely on our training data to learn
models of how to disambiguate them.

Figure 1: An example dependency tree for the sentence
t�'
QÖÏ @ úÍ@ AJ
«A 	J¢�@ @QÔ�̄ 	á�
�Ë@ É�Q��� s+trsl AlSyn qmrA

ǍSTnAςyA Ǎlý Almryx ‘China will send a satellite to
Mars’. In every tree node, the terms above the line are
part of the CATiB annotations: the word, POS (VRB,
PRT, PROP, NOM) and relation (MOD, SBJ, OBJ). The
terms under the line are the Buckwalter POS tag, the
lemma and the gloss, respectively.

junctions) and PNX (punctuation). CATiB uses a
dependency representation that models predicate-
argument structure (subject, object, etc.) and Ara-
bic nominal structure (idafa, tamyiz, modification).
The eight CATiB relation labels are: SBJ (sub-
ject of verb or topic of simple nominal sentence),
OBJ (object of verb, preposition, or deverbal noun),
TPC (topic in complex nominal sentences contain-
ing an explicit pronominal referent), PRD (pred-
icate marking the complement in some copular
constructions), IDF (relation between the posses-
sor [dependent] and the possessed [head] in the
idafa/possessive nominal construction), TMZ (re-
lation of the specifier [dependent] to the specified
[head] in the tamyiz/specification nominal construc-
tions), MOD (general modifier of verbs or nouns),
and — (marking flatness inside constructions such
as first-last proper name sequences). This relation
label set is much smaller than the twenty or so dash-
tags used in PATB to mark syntactic and semantic
functions. Furthermore, no empty categories, coref-
erence, or semantic relations (e.g., TMP or LOC) are
provided (Habash and Roth, 2009). A detailed dis-
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cussion of CATiB guidelines and further comparison
with PATB appears in (Habash et al., 2009).

In this paper, we target the enrichment of CATiB
with the morphological information used in the
PATB: Buckwalter POS tags and lemmas. We do
not address other kinds of rich information. Figure 1
presents an example of a CATiB tree with the exten-
sions we predict automatically for each word.

4 Approach

We define our task as assigning a Buckwalter POS
tag and lemma to each word in a CATiB syntac-
tic tree, i.e., disambiguating the CATiB POS tag in
terms of the finer grained Buckwalter tag in context.
Our approach utilizes a variety of corpus-based and
rule-based techniques. We use corpus-based tech-
niques that exploit available training data in the form
of portions of the PATB that are automatically con-
verted to CATiB style trees. We also use rule-based
solutions that allow us to apply linguistic knowl-
edge and insights. An important tool that we use
is a morphological analyzer which generates for ev-
ery word all possible out-of-context analyses. We
use these analyses as a constraint on the space from
which we will select the appropriate in-context tag.
The approach is quite similar to how MADA (Mor-
phological Analysis and Disambiguation for Arabic)
(Habash and Rambow, 2005) works except that we
are using the CATiB tree as the context in which we
disambiguate. Given the degree of richness of the
tree, we expect to outperform basic disambiguation
on text.

In the rest of this section, we discuss our general
strategy, followed by a detailed presentation of our
approach: morphological disambiguation and mor-
phological filtering.

4.1 From CATiB to Buckwalter: Devising a
Strategy

In CATiB trees, different pieces of information can
be relevant to different disambiguation tasks. We an-
alyzed a sample of the data we have and obtained the
following observations which we use to devise our
strategy for how to address different types of ambi-
guity:

• Words in the CATiB treebank are tokenized.
This resolves many ambiguous cases: anal-
yses involving cliticized prepositions or con-
junctions are dismissed. Further more, sepa-

rated clitics are marked, which restricts their
reading. The ambiguity in terms of the number
of lemmas per word reduces from 2.7 for unto-
kenized words to just 1.1 for tokenized words.

• The CATiB POS tagset, although two orders of
magnitude smaller than the Buckwalter tagset,
provides a lot of information. It resolves ambi-
guity amongst verbs (active or passive), nomi-
nals, particles, proper nouns and punctuation.

• The CATiB tags NOM and PRT are the most
ambiguous. They are challenging because there
are both lexical and morphosyntactic features
at play. We rely on our training data to learn
models of how to disambiguate them. The
CATiB treebank annotation does not determin-
istically allow us to identify the finer grained
tag using the POS and relations alone: e.g., the
NOM child of an NOM parent (with the rela-
tion MOD) can be an ADJ (67% probability)
or a NOUN (21%).

• Case, state, mood and to a lesser degree aspect
are syntactically dependent features, for which
we use the CATiB tree and linguistic rules to
disambiguate the correct value in context.

• Gender, number and person are expressed using
affixes that highly limit the feature-value possi-
bilities, e.g., the suffix �è+ +h̄ deterministically
selects for +NSUFF_FEM_SG suffix tag.

4.2 Morphological Analysis & Disambiguation

We use the morphological analyzer BAMA to get a
list of all possible analyses for a word. BAMA re-
turns unranked analyses for untokenized text only.
Since we know that the input is already tokenized,
we built an extension to BAMA that handles clitics
and accepts analyses that are consistent with the tok-
enization of the input, discarding all other analyses.

We use both the morphological analyzer BAMA
and a training set from the PATB to predict the Buck-
walter tag for a given word. We use BAMA to get a
list of all possible Buckwalter tag and lemma pairs
for each word. We then rank these choices using one
of the following two methods: a maximum likeli-
hood estimate model (MLE) conditioned on specific
features in the CATiB tree or a MADA-like suite of
classifiers that select for specific POS tag features
such as gender or number.

463



4.2.1 Maximum Likelihood Model
The MLE model ranks the set of choices from

BAMA returning the most probable analysis. We
consider two models:

• MLE Baseline 1 selects the Buckwalter tag
with the highest unconditioned probability in
the training data, P(BW), among the set of
BAMA choices for the word whose tag we
want to determine.

• MLE Baseline 2 selects the Buckwalter tag
with the highest probability conditioned on
the word and CATiB tag: P(BW|word,CATiB).
This model backs off to the Buckwalter tag
with the highest probability conditioned on the
CATiB tag, i.e., P(BW|CATiB), and then backs
off to MLE Baseline 1.

4.2.2 Analysis and Disambiguation of
Tokenized Arabic

We retrained the MADA system (Habash and
Rambow, 2005) using a tokenized version of the
PATB. We call the new version TADA: Tokenized
Analysis and Disambiguation of Arabic. TADA
takes tokenized text, and returns a ranked list of
analyses for each tokenized word and clitic. Just
like MADA, TADA uses BAMA to identify possible
analyses of the word. It then uses a suite of classi-
fiers to predict inflectional and lexical features that
are used to rank the possible analyses.

As expected, TADA outperforms the simple MLE
models described earlier; however, its performance
is not high enough since it makes no use of tree fea-
tures. The results are presented in Section 5. How-
ever, we will present here a preliminary error analy-
sis of TADA’s output to motivate the morphological
filters presented next (Section 4.3).

TADA Preliminary Error Analysis We consid-
ered the first 100 errors in the Buckwalter tags in our
development set. About half of the errors involved a
problem in case (42%), state (13%) or mood (3%).
Case and state errors had many overlaps. All of
these errors are syntactically determinable using the
tree representation in a manner similar to Habash
et al. (2007a). In 17% of the cases, a POS error
can be resolved using the CATiB tag, (e.g., proper
noun vs adjective or verb). In 2% of the cases, the
error involved an orthographic normalization (Alif-
form) that led to an undesirable solution (e.g., �é 	J�Ë


@

Âlsnh̄ ‘tongues’ vs �é 	J�Ë@ Alsnh̄ ‘the-year’). These
cases should be resolved by enforcing the CATiB
tree word form. Ambiguity in CATiB tags was a
problem for nominal forms 15% of the time (e.g.,
NOUN vs ADJ), particles 10% of the time (e.g., +ð
w+ ‘and’ can be CONJ or SUB_CONJ), and pro-
nouns 5% of the time (e.g., Ñë+ +hm ‘them’ can be
IVSUFF_DO:3MP or PVSUFF_DO:3MP [attached
to an imperfective or perfective verb]).2 In 1% of
the cases, there was an error involving ambiguity
in number (dual/plural). And finally, in 3% of the
cases, we determined that the gold POS tag was ac-
tually incorrect. Within the same set of sentences
studied, we found 18 lemma choice errors. Almost
all, except for three cases, involve a nominal form
ambiguity resulting from diacrtic absence, e.g., XYêÓ
muhad∼id ‘threatening’ or muhad∼ad ‘threatened’.
Eight of the 18 cases (or 44%) happened without an
accompanying POS error. Overall, the accuracy of
lemma choice is highly dependent on the correct-
ness of the chosen core Buckwalter tag; lemma ac-
curacy when the tag is correct is 97.9%, but it drops
to 71.3% when the tag is wrong.

4.3 Morphological Filters

We implemented a set of filters that take the list of
ranked analyses produced by TADA and discard any
analyses that are inconsistent with the filters’ deci-
sions in the tree context. TADA ranking is preserved
among the remaining analyses.

4.3.1 CATiB Filter
TADA returns all analyses for word, including

different forms of the word (i.e., different Alif/Ya
forms as part of BAMA’s back-off mode). For ex-
ample, when given the word úÎ« ςlý, TADA returns
analyses for both the words úÎ« ςlý ‘on’ and ú
Î« ςly
‘Ali’. Since the input to our system is the gold word
form from CATiB trees, the CATiB filter will discard
analyses that do not match the given word form.

The CATiB filter also resolves some POS ambigu-
ity given information in the CATiB POS tag. For ex-
ample, the CATiB POS tags NOM or VRB can eas-
ily decide whether the ambiguous word I. �KA¿ kAtb
is a noun (kAtib ‘writer’) or a verb (kAtab ‘to corre-
spond’).

2This is a peculiarity of the tagset used in PATB. The dis-
tinction does not seem to be necessary to our knowledge, but
we still consider it the gold goal.
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4.3.2 Pronominal Filter
The pronominal filter (PRON) selects the pro-

nouns that are consistent with the verbs they are at-
tached to. A pronoun attached to a verb could either
be IVSUFF_DO, PVSUFF_DO or CVSUFF_DO
depending on whether the verb is imperfective (IV),
perfective (PV), or imperative (CV).

4.3.3 Noun/Adjective Filter
The noun/adjective (NOUN/ADJ) filter is ap-

plied to words with the CATiB tag NOM.
It uses a nominal classifier, which classifies
CATiB NOM words into one of the follow-
ing Buckwalter noun/adjective classes: NOUN,
NOUN.VN, NOUN_QUANT, NOUN_NUM, ADJ,
ADJ.VN, ADV_COMP, ADV_NUM. The NA (not-
applicable) tag is assigned to all other words. For ex-
ample, the classifier will decide whether �èQ�
J.» kbyrh̄
is a noun ‘abomination’ or an adjective ‘great [fem-
inine singular]’ based on the context.

To build the nominal classifier, we use Yam-
cha (Kudo and Matsumoto, 2003), a support-vector-
machine-based sequence tagger trained on our PATB
training data. We use the following set of fea-
tures: the word form, CATiB POS tag, parent fea-
tures (word form, CATiB POS tag), dependency re-
lation, order of appearance (the word comes before
or after its parent), the distance between the word
and its parent, and different types of relation-child
POS (REL-CTB) features. The REL-CTB features
state whether a word has a child with a CATiB POS
(CTB) under a dependency relation (REL). A word
can have 0 or more children. We have six CATiB
POS tags and eight dependency relations and thus up
to 48 different REL-CTB binary learning features.
An example of this feature is a PRT that has a child
NOM under a dependency relation OBJ. In this case,
the value of the feature OBJ-NOM is 1. We also add
a window of two words before and two words after
the word being tagged as static features, and the tag
of the previous two words as dynamic features. The
nominal classifier predicts the correct nominal class
with an accuracy of 97.70%.

4.3.4 Particle Filter
The particle filter (PRT) selects the specific Buck-

walter POS for a particle. For example, the particle
AÓ mA can be the negative particle ‘not’, the relative
pronoun ‘that’ or the interrogative pronoun ‘what?’.
The PRT filter uses a particle classifier that uses the

same learning features and training data as the nomi-
nal classifier. The particle classifier predicts the cor-
rect particle class with an accuracy of 99.54%.

4.3.5 Verbal Mood and Aspect Filter
The Buckwalter POS tags for verbs have three

markers for aspect: imperfective (IV), perfective
(PV), and imperative (CV); and three markers for
mood: jussive (J), subjunctive (S) and indicative
(I). We apply our rule-based mood-and-aspect fil-
ter (MOOD/ASPECT) to words that have the CATiB
tag VRB or VRB-PASS.

If the verb is preceded by a jussive, subjunctive or
future particle then it is imperfective in aspect and
its mood is determined by the particle. The mood is
indicative if the verb is preceded by a future particle
such as 	¬ñ� swf ‘will’; it is jussive if the verb is pre-
ceded by a jussive particle such as ÕË lm ‘not+past’,
+È l+ ‘for’; and it is subjunctive if the verb is pre-
ceded by a subjunctive particle such as 	à


@ Ân ‘that’,

	áË ln ‘not+future’, ú
» ky ‘so as to’, and ú �æk Htý ‘un-
til’. This is also valid when a negating B lA inter-
venes between the subjunctive particle and the verb.
If the verb is proceeded with the particle Y�®Ë lqd ‘al-
ready’, then the verb is perfective. Otherwise, the
verb could be either imperfective (with an indicative
mood), perfective or imperative (all allowed through
the filter).

4.3.6 Nominal State Filter
The Buckwalter POS tags have three nominal

state markers: INDEF, DEF and POSS.3 The nomi-
nal state filter (STATE) applies the following rules:
If the word is head of an idafa (IDF), then we ex-
clude the INDEF analyses. Otherwise, we exclude
the POSS and the non-Al/DET determined DEF
analysis (which are only used for IDF heads).

4.3.7 Nominal Case Filter
The nominal case filter (CASE) assigns the val-

ues nom (nominative), acc (accusative) or gen (gen-
itive) to each NOM/PROP word primarily based on
the CATiB dependency relation label that describes
the type of relation between the word and its parent.
The nominal case filter extends the case predictor in
Habash et al. (2007a). The following four rules are
applied in sequence.

3These values do not exactly match the functional values for
state in Arabic (Smrž, 2007).
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• RULE 1: Assign acc to all NOM/PROP words
as a default.

• RULE 2: Assign nom to NOM/PROP words
that (a) head the tree, (b) have the label TPC,
(c) have the label SBJ but are not headed by a
particle from the closed class of Inna and its
sisters (Habash et al., 2007a), or (d) have the
label PRD but is not headed by a verb or dever-
bal noun. Exempt words in the closed class of
adverb-like nouns such as ��ñ 	̄ fwq ‘over’, ÉJ. �̄
qbl ‘before’, and Èñk Hwl ‘around’.

• RULE 3: Assign gen to NOM/PROP words that
have the label OBJ under a preposition, or that
have the label IDF.

• RULE 4: All children of NOM/PROP parents
whose label is MOD, and NOM/PROP chil-
dren of conjunctions whose label is OBJ, copy
the case of their parent. Conjunctions carry the
case temporarily to pass on agreement.

4.3.8 MLE Override

We added an MLE-based component to override
answers that are provided by our final system. We
used a no-BAMA version of the MLE Baseline 2.
The difference between the MLE override compo-
nent and MLE Baseline 2 is that it takes into account
all possible Buckwalter POS tags that appear in the
training set for a specific word regardless of whether
they are provided by BAMA or not. This MLE over-
ride component is trained on the same training set
and returns the most common Buckwalter tag and
lemma pair for a given word form and CATiB POS
tag pair. BAMA is not used here since the reason
behind this additional step is to overcome any limi-
tation caused by using BAMA to start with. These
limitations include primarily cases of BAMA failure
to produce analyses (OOV) or minor version differ-
ences between BAMA and the PATB. If a Buckwal-
ter tag and lemma pair appear above a threshold of
n times and always with the same word-lemma pair,
then we override our answer with the new answer
from the MLE. When we override, we only override
the core part of the Buckwalter tag. We do not over-
ride the state, case, and mood features since they are
syntactic features. We tried different values for the
threshold and got the best results when n = 4.

4.4 Putting it All Together
TADA provides an initial list of ranked analyses.
Then, the morphological filters discard analyses that
are not consistent with the CATiB tree information.
The analysis with the highest TADA rank among the
remaining analyses is selected as the answer.

We apply our filters in the following order. We
first apply the CATiB filter. After that, we apply
the pronominal, noun/adjective and particle filters.
These three filters can be applied in any order since
they are applied on disjoint sets of words. The next
filter is the mood/aspect filter which has to be ap-
plied after the particle filter since it depends on the
particle choice in predicting the mood of the follow-
ing verb. At this point, we freeze the lemma choice
for the word. The next two filters, state and case,
look at syntactic features and should not affect the
choice of the lemma.

We use two back-off mechanisms. The first one
is with the application of each filter. If the effect of
applying a filter results in an empty set (no match
found) then we undo the effect of the filter and pass
the list of analyses as is to the next filter. The sec-
ond mechanism is using the MLE override at the end
of the pipeline. TADA, the noun/adjective and par-
ticle filters, and the MLE override use corpus-based
components while all other filters are rule-based.

5 Evaluation

5.1 Experimental Settings
We use a CATiB version of the PATB part 3v3.1 and
part 2v3.0 released by the Linguistic Data Consor-
tium (LDC) (Maamouri et al., 2004). We use the
train/development/test (80/10/10) splits of Marton et
al. (2010) for PATB part 3v3.1 (16.6K sentences;
400K tokens): we use their train as our training data,
their development as the tuning data for TADA and
their test as our development set. For our blind test,
we use the first 1000 sentences in PATB part 2v3.0
(38K tokens).

We report all results in terms of token accuracy
on the full Buckwalter tag, reduced Buckwalter tag
and the lemma. The reduced Buckwalter tag is the
Buckwalter tag without case, state, and mood. The
number of tags is reduced to 220 tags (compared to
485 tags for the full Buckwalter tagset).

In cases of gold full Buckwalter tags that are un-
derspecified for case, state or mood, we do not pe-
nalize our systems if our more specific predicted
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Full Reduced
BW BW Diff Lemma

MLE Baseline 1 57.19 73.44 16.25 90.87
MLE Baseline 2 77.69 93.27 15.58 94.31
TADA 86.15 94.04 7.89 96.97
++ CATiB 87.33 95.50 8.17 97.72
++ PRON 88.16 96.32 8.16 97.72
++ NOUN/ADJ 88.93 97.26 8.33 97.72
++ PRT 89.24 97.57 8.33 97.72
++ MOOD/ASPECT 89.46 97.60 8.14 97.74
++ STATE 89.92 97.61 7.69 97.74
++ CASE 94.90 97.61 2.71 97.74
++ MLE override 95.27 98.00 2.73 97.81

Table 1: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas on the development set.
Reduced Buckwalter is similar to Buckwalter, but ignores
case, mood and state. The Difference between the two
metrics highlights the errors from case, mood and state.

tag otherwise matches the gold tag. Words whose
lemmas are unknown (nolemma, TBupdate) or has
the lemma DEFAULT (including digits and punc-
tuation) are excluded from the evaluation, but not
training: in the development set, 4,498 out of 25,446
words were excluded (∼18%).

5.2 Results
Table 1 shows the results of our experiments on

the development set. Considering the baseline sys-
tems, we see that using both the CATiB POS tag
and the word form in MLE Baseline 2 gives us a
20.5% absolute increase above MLE Baseline 1. Us-
ing TADA improves the performance significantly
(adding 8.46% absolute over MLE Baseline 2). Ev-
ery additional morphological filter has a positive im-
pact and the improvement of the accuracy for full
Buckwalter with each new filter ranged between
0.22% and 1.18% absolute except for the case filter,
which adds almost 5%. Adding the MLE override
has a positive impact on the accuracy of the full and
reduced Buckwalter tags and the lemma.

We apply our baselines, TADA, TADA+filters and
TADA+filters+MLE to the blind test set (see Ta-
ble 2). The test set is a bit harder than the devel-
opment set, but the results are consistent with those
seen for the development set.

5.3 Error Analysis
We conducted an analysis of the errors in the output
of the final system TADA+filters+MLE on the devel-
opment set. We considered 100 randomly selected
error cases and examined them in the CATiB trees

Full Reduced
BW BW Diff Lemma

MLE Baseline 1 55.96 71.88 15.92 90.77
MLE Baseline 2 77.15 92.88 15.73 94.03
TADA 86.49 94.42 7.93 96.63
++ All filters 93.44 97.25 3.81 97.13
++ MLE override 93.61 97.43 3.82 97.17

Table 2: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas on the blind test set.

to assess the source of the error. About 37% of all
errors are due to gold treebank errors: 21% are gold
tree structure/relation errors and 16% are gold POS
errors. The rest of the errors result from failures in
our system. The most common error is in NOM dis-
ambiguation: NOUN/NOUN_NUM, NOUN/ADJ,
NOUN/NOUN_QUANT, etc. The NOM errors ac-
counted for 33% of all errors. Case comes sec-
ond with 12% errors, then PRT and gender-number-
person errors with 5% each. State errors contribute
to 3% of total errors.

5.4 Learning Curve Study

The non-rule-based components of our approach,
namely TADA, NOUN/ADJ and PRT filters, and
MLE override depend on the existence of an anno-
tated treebank in rich format. To understand the de-
gree of dependence, we ran a series of experiments
on different sizes of the training data: 1

2 , 1
4 , 1

8 , 1
16 ,

and 1
32 of the full training set (341.1K words). These

data sets were used to train new versions of TADA,
the NOUN/ADJ and PRT filters, and the MLE over-
ride. The results of running TADA and the final sys-
tem on the development set using the different data
sets are summarized in Tables 3 and 4, respectively.
As expected, when the training data size goes down
the accuracy goes down. Our final system, which
adds filters on top of TADA, had a significant ef-
fect on the performance as shown in Table 4. Using
only 10.6K of annotated words, the quality of TADA
reduces sharply (12.12% absolute reduction in accu-
racy) while the overall effect on our full system is
a lot smaller (2.03% absolute drop). Similarly, the
performance of the nominal and particle classifiers
degrade when trained on less data. When we use
1
32 of the training data, the correct nominal class is
predicted at an accuracy of 90.49% (7.21% absolute
drop), while the correct particle class is predicted at
an accuracy of 96.59% (2.95% absolute drop). We
used the MLE override threshold determined based
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Size Full BW Reduced BW Diff Lemma
1/32 10.6K 74.03 88.78 14.75 93.41
1/16 21.3K 77.16 90.30 13.14 94.37
1/8 42.6K 79.76 91.63 11.87 95.56
1/4 85.3K 81.91 92.80 10.89 96.22
1/2 170.7K 84.12 93.62 9.50 96.74
1 341.1K 86.15 94.04 7.89 96.97

Table 3: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas using TADA only for dif-
ferent training sizes on the development set.

Size Full BW Reduced BW Diff Lemma
1/32 10.6K 93.24 95.81 2.57 95.68
1/16 21.3K 93.67 96.28 2.61 96.27
1/8 42.6K 94.14 96.79 2.65 96.94
1/4 85.3K 94.56 97.26 2.70 97.22
1/2 170.7K 94.96 97.66 2.70 97.61
1 341.1K 95.27 98.00 2.73 97.81

Table 4: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas using our best performing
system for different training sizes on the development set.

on the full training data, which may not be optimal
for smaller data sets.

The contribution of our full system over TADA
when using 1

32 of the full training data is over
19% absolute (on full Buckwalter tag determination)
compared to 9% when using the full training data.
The morph analysis (out of context) is the same for
all experiments and that this provides a lot of stabil-
ity to the results. The high lemma accuracy overall
is a result of disambiguating tokenized words, where
the average numbers of lemmas per word is only 1.1
as mentioned above. These results suggest that our
approach is usable even in the early stages of devel-
oping new richly annotated treebanks.

5.5 Extrinsic Evaluation
We applied our automatic enrichment to the under-
specified CATiB treebank (as opposed to the parts of
PATB, which we used throughout the paper to sim-
ulate CATiB). We evaluate the added value of these
annotations by using them to extend the training data
for the morphological tagger MADA (Habash and
Rambow, 2005), which is used on untokenized text.
We train a new set of MADA classifier models using
a combination of the original MADA (v 3.2) train-
ing data (578K words taken from PATBs 1, 2 and 3)
and the enriched CATiB data (218K words). We ap-
ply the new MADA system to our development set
and evaluate on several metrics. As a baseline, we

process the same development set using MADA (v
3.2). Other than the training data used to construct
the classifier models, there are no differences be-
tween the two systems. The CATiB-enriched system
results in a Buckwalter POS tag accuracy of 85.6%
(a 2.2% error reduction over the baseline). When
evaluating on the set of 14 MADA morphological
features, the new system results in a 85.7% accuracy
(2.4% error reduction). The new system also im-
proves PATB segmentation accuracy (99.2%, a 5.4%
error reduction). In the future, we will evaluate the
contribution of the additional annotations in the con-
text of other applications, such as syntactic parsing.

6 Conclusion and Future Work

We have demonstrated that an underspecified ver-
sion of an Arabic treebank can be fully specified for
Arabic’s rich morphology automatically at an accu-
racy rate of 94%-95% for POS tags and 97% for
lemmas. Our approach combines a variety of tech-
niques from corpus-based statistical models (which
require some rich annotations) to linguistic rules that
target specific phenomena. Since the underspecified
treebank is much faster to manually annotate than its
fully specified version, these results suggest that the
cost of treebanking can be reduced by designing un-
derspecified treebanks that can be subsequently en-
riched automatically.

In the future, we plan to extend the automatic
enrichment effort to include more complex features
such as empty nodes and semantic labels. We also
plan to take the insights from this effort and apply
them to treebanks of other languages. A small por-
tion of a treebank that is fully annotated in rich for-
mat will of course be needed before we can apply
these insights to other languages.
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Otakar Smrž and Jan Hajič. 2006. The Other Arabic
Treebank: Prague Dependencies and Functions. In
Ali Farghaly, editor, Arabic Computational Linguis-
tics: Current Implementations. CSLI Publications.

Otakar Smrž, Viktor Bielický, Iveta Kouřilová, Jakub
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