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A fundamental concern for nearly all data-driven ap
proaches to language processing is the sparsity of |
beled training data. The sparsity of syntactically anno-
tated corpora is widely remarked upon, and some recefl
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Abstract

This paper investigates adapting a lexicalized
probabilistic context-free grammar (PCFG) to
a novel domain, using maximura posteriori
(MAP) estimation. The MAP framework is gen-
eral enough to include some previous model
adaptation approaches, such as corpus mixing in
Gildea (2001), for example. Other approaches
falling within this framework are more effec-
tive. In contrast to the results in Gildea (2001),
we show F-measure parsing accuracy gains of as
much as 2.5% for high accuracy lexicalized pars-
ing through the use of out-of-domain treebanks,
with the largest gains when the amount of in-
domain data is small. MAP adaptation can also be
based on either supervised or unsupervised adap-
tation data. Even when no in-domain treebank is
available, unsupervised techniques provide a sub-
stantial accuracy gain over unadapted grammars,
as much as nearly 5% F-measure improvement.

Introduction

}@research.att.com

in Pereira and Schabes (1992) to exploit a partially labeled
out-of-domain treebank, and found an advantage to adapta-
tion over direct grammar induction. Gildea (2001) simply
added the out-of-domain treebank to his in-domain training
data, and derived a very small benefit for his high accuracy,
lexicalized parser, concluding that even a large amount of
out-of-domain data is of little use for lexicalized parsing.

Statistical model adaptation based on sparse in-domain
data, however, is neither a new problem nor unique to pars-
ing. It has been studied extensively by researchers work-
ing on acoustic modeling for automatic speech recognition
(ASR) (Legetter and Woodland, 1995; Gauvain and Lee,
1994; Gales, 1998; Lamel et al., 2002). One of the meth-
ods that has received much attention in the ASR literature is
maximuma posteriori(MAP) estimation (Gauvain and Lee,
1994). In MAP estimation, the parameters of the model are
considered to be random variables themselves with a known
distribution (the prior). The prior distribution and the max-
imum likelihood distribution based on the in-domain obser-
vations then give a posterior distribution over the parame-
ters, from which the mode is selected. If the amount of in-
domain (adaptation) data is large, the mode of the posterior
distribution is mostly defined by the adaptation sample; if
the amount of adaptation data is small, the mode will nearly
39incide with the mode of the prior distribution. The intu-
ition behind MAP estimation is that once there are sufficient
Pservations, the prior model need no longer be relied upon.

papers present approaches to improving performance inBacchiani and Roark (2003) investigated MAP adapta-
the absence of large amounts of annotated training datan of n-gram language models, in a way that is straight-
Johnson and Riezler (2000) looked at adding features tofarwardly applicable to probabilistic context-free grammars

maximum entropy model for stochastic unification-base@PCFGs). Indeed, this approach can be used for any gen-
grammars (SUBG), from corpora that are not annotategrative probabilistic model, such as part-of-speech taggers.
with the SUBG, but rather with simpler treebank annotak their language modeling approach, in-domain counts are
tions for which there are much larger treebanks. Hwa (200hpixed with the out-of-domain model, so that, if the num-
demonstrated how active learning techniques can reduber of observations within the domain is small, the out-
the amount of annotated data required to converge on tlkédomain model is relied upon, whereas if the number of
best performance, by selecting from among the candidatdservations in the domain is high, the model will move
strings to be annotated in ways which promote more intoward a Maximum Likelihood (ML) estimate on the in-
formative examples for earlier annotation. Hwa (1999) andomain data alone. The case of a parsing model trained via
Gildea (2001) looked at adapting parsing models trained arlative frequency estimation is identical: in-domain counts
large amounts of annotated data from outside of the domagan be combined with the out-of-domain model in just such
of interest (out-of-domain), through the use of a relativelya way. We will show below that weighted count merging
small amount of in-domain annotated data. Hwa (1999% a special case of MAP adaptation; hence the approach
used a variant of the inside-outside algorithm presentesf Gildea (2001) cited above is also a special case of MAP



adaptation, with a particular parameterization of the priora set of rule production® of the form: A — ~, where

This parameterization is not necessarily the one that optd € V andy € (V U T)*. A probabilistic context-free

mizes performance. grammar (PCFG) is a CFG with a probability assigned to
In the next section, MAP estimation for PCFGs is preeach rule, such that the probabilities of all rules expanding a

sented. This is followed by a brief presentation of the PCF@iven non-terminal sum to one; specifically, each right-hand

model that is being learned, and the parser that is ussitlie has a probability given the left-hand side of the*rule

for the empirical trials. We will present empirical results Let A denote the left-hand side of a production, gnthe

for multiple MAP adaptation schema, both starting fromi-th possible expansion of. Let the probability estimate

the Penn Wall St. Journal treebank and adapting to tHer the productionA — ~; according to the out-of-domain

Brown corpus, and vice versa. We will compare our sumodel be denoted d&X~y; | A) and let the expected adapta-

pervised adaptation performance with the results presentédn counts be denoted aéA — ;). Then the parameters

in Gildea (2001). In addition to supervised adaptation, i.eof the prior distribution for left-hand sidg are chosen as

with a manually annotated treebank, we will present results B

for unsupervised adaptation, i.e. with an automatically an- vA =Py | A)+1 1<i<K. (4)

notated treebank. We investigate a number of unsupervis

approaches, including multiple iterations, increased samp?g

sizes, and self-adaptation.

ereT is the left-hand side dependent prior weighting pa-
meter. This choice of prior parameters defines the MAP
estimate of the probability of expansien from the left-

2 MAP estimation hand sided as
In the maximuma posteriori estimation framework de- Ply; | A) = TaP(yi | A) + (4 = )
scribed in detail in Gauvain and Lee (1994), the model pa- * " T+ Y (A — )

rametery) are assumed to be a random vector in the space - ) ) o

tained as the mode of the posterior distributior dienoted  duce to the out-of-domain model parameters in the absence
asg(. | x) of adaptation data.

Each left-hand sidel has its own prior distribution, pa-
rameterized withra. This presents an over-parameterization
problem. We follow Gauvain and Lee (1994) in adopt-
ing a parameter tying approach. As pointed out in
In the case of n-gram model adaptation, as discussed gixcchiani and Roark (2003), two methods of parameter ty-
Bacchiani and Roark (2003), the objective is to estimatgg, in fact, correspond to two well known model mixing
probabilities for a discrete distribution across words, engpproaches, namely count merging and model interpolation.
tirely analogous to the distribution across mixture compo- | et P and¢ denote the probabilities and counts from the
nents within a mixture density, which is a common use fopyt-of-domain model, and I& andc denote the probabili-

MAP estimation in ASR. A practical candidate for the priortjes and counts from the adaptation model (i.e. in-domain).
distribution of the weights,, ws, - - -, wg, IS its conjugate

1<i<K. (5

IMAP = argrenaxg(ﬂ | x) = arggnax f(x1]0)g(0) (1)

prior, the Dirichlet density, 2.1 Count Merging
If the left-hand side dependent prior weighting parameter is
A chosen as
g(w17w2>"';wK‘V15V27"'7VK)O(HwiZ (2) TA:E(A)%, (6)
=1

the MAP adaptation reduces to count merging, scaling the
out-of-domain counts with a factax and the in-domain
counts with a factop:

wherey; > 0 are the parameters of the Dirichlet distribu-
tion. With such a prior, if the expected counts for thth
component is denoted ag the mode of the posterior distri-

bution is obtained as . E(A)%'ﬁ(% | A) + (4 = 7)
Plvi | 4) = E(A)% Iy
= 1<i<K. 3 ~ -
T me D - R o

1An additional condition for well-formedness is that the PCFG

. vi—1)+¢

%

We can use this formulation to estimate the posterior, but

must still choose the parameters of the Dirichlet. First, let \ ; ; . > .
introduce some notation. A context-free grammar (CFG: consistent or tight, ie. there is no probability mass Iost_ to in-

usin : 9 itely large trees. Chi and Geman (1998) proved that this con-

G = (V, T, P, S"), consists of a set of non-terminal symbolsgition is met if the rule probabilities are estimated using relative
V, a set of terminal symbol, a start symbob' € V, and  frequency estimation from a corpus.



2.2 Model Interpolation times a look-ahead statistic, which is an estimate of how
If the left-hand side dependent prior weighting parameter jauch probability mass it will take to connect the parse with

chosen as the next word. It_is a generative parser_that does n(_)t require
B N o any pre-processing, such as POS tagging or chunking. It has
o — { C(A) 25,0 <A <1 ifT(4) >0 g) been demonstrated in the above papers to perform compet-
1 otherwise itively on standard statistical parsing tasks with full cover-
the MAP adaptation reduces to model interpolation usin§9€- Baseline results below will provide a comparison with
interpolation parameter: other well known statistical parsers. _
_ The PCFG is avarkov grammar (Collins, 1997; Char-
~ C(A) 2Py | A) +TS(A — ) niak, 2000), i.e. the production probabilities are estimated
P(vi | A) = o(A) 2 +¢(A) by decomposing the joint probability of the categories on the
= A right-hand side into a product of conditionals via the chain
55 POi | A)+P(vi | A) rule, and making a Markov assumption. Thus, for example,
o ﬁ +1 a first order Markov grammar conditions the probability of

~ - the category of thé-th child of the left-hand side on the cat-
= AP(yi | A)+ (A= NPy [4) () egory of the left-hand side and the category of thé)th

2.3 Other Tying Candidates child of the left-hand side. The benefits of Markov gram-
mars for a top-down parser of the sort we are using is de-

While we will not be presenting empirical results for other,_."~ " .
: 2 tailed in Roark (2003). Further, as in Roark (2001a; 2003),
parameter tying approaches in this paper, we should poi he production probabilities are conditioned on the label of

out that the MAP framework is general enough to allo . ;
for other schema, which could potentially improve perfo\:—{he left-hand side of the production, as well as on features

mance over simple count merging and model interpolatiof om the_left—contgxt. The quel IS _sr_noothed using stapdard
eleted interpolation, wherein a mixing parametés esti-

approaches. For example, one may choose a more co . -
plicated left-hand side dependent prior weighting parameté?ated using EMon a held out corpus, such that probability
such as of a productionA — ~, conditioned oty features from the

left context,X{ = X, ... X, is defined recursively as
- { C(A) 25,0 <A <1 ifE(4) >c(A) >0
A =

5 otherwise P(A— v X{) =P(y| 4, X{) (11)

(10) _ 5 j -1
for some threshold. Such a schema may do a better job = (1= MP(y [ A, X7) +AP(y [ 4, X570)

of managing how quickly the model moves away from thg,perep js the maximum likelihood estimate of the condi-

prior, particularly if there is a large difference in the reSPEChional probability. These conditional probabilities decom-
tive sizes of the in-domain and out-of domain corpora. W

| hei - ¢ h h ¢ ose via the chain rule as mentioned above, and a Markov
eave the mvegﬂgaﬂon ot such approaches tofuture resear sumption limits the number of previous children already
Before providing empirical results on the count mergin

) . O Emitted from the left-hand side that are conditioned upon.
and model mterpolaﬂon approaches, we will introduce th%hese previous children are treated exactly as other con-
parser and parsing models that were used. ditioning features from the left context. Table 1 gives the
conditioning features that were used for all empirical trials
in this paper. There are different conditioning features for
For the empirical trials, we used a top-down, left-to-righparts-of-speech (POS) and non-POS non-terminals. Deleted
(incremental) statistical beam-search parser (Roark, 200Iaterpolation leaves out one feature at a time, in the reverse
Roark, 2003). We refer readers to the cited papers for derder as they are presented in the table 1.

tails on this parsing algorithm. Briefly, the parser maintains The grammar that is used for these trials is a PCFG that
a set of candidate analyses, each of which is extended itinduced using relative frequency estimation from a trans-
attempt to incorporate the next word into a fully connectedbrmed treebank. The trees are transformed with a selec-
partial parse. As soon as “enough” candidate parses haiee left-corner transformation (Johnson and Roark, 2000)
been extended to the next word, all parses that have ribat has been flattened as presented in Roark (2001b). This
yet attached the word are discarded, and the parser mowesnsform is only applied to left-recursive productions, i.e.
on to the next word. This beam search is parameterizgatoductions of the forrA — A~. The transformed trees
with a base beam parametgr which controls how many look as in figure 1. The transform has the benefit for a top-
or how few parses constitute “enough”. Candidate parse®wn incremental parser of this sort of delaying many of
are ranked by a figure-of-merit, which promotes better carthe parsing decisions until later in the string, without un-
didates, so that they are worked on earlier. The figure-oftuly disrupting the immediate dominance relationships that
merit consists of the probability of the parse to that poinprovide conditioning features for the probabilistic model.

3 Grammar and parser



(@) (b) ()

NP NP NP
NP PP NNP  POS NP/NP NNP POS NP/NP NP/NP
| | | | | |
NP NN IN NP Jim 'S NN NP/NP Jim 'S NN PP
| | | |
NNP POS dog with... dog PP dog IN NP
Jim 'S IN NP with . ..
|
with ...

Figure 1. Three representations of NP modifications: (a) the original treebank representation; (b) Selective left-corner

representation; and (c) a flat structure that is unambiguously equivalent to (b)

Features for non-POS left-hand sides 4 Empirical trials
0 Left—hand side (LHS) The parsing models were trained and tested on treebanks
1 Lastchild of LHS :
. from the Penn Treebank Il. For the Wall St. Journal portion,
2 2nd last child of LHS i :
3 3rd last child of LHS we used the standard breakdown: sections 2-21 were kept
training data; section 24 was held-out development data; and
4 Parent of LHS (PAR) . ;
5 Last child of PAR section 23 was for evaluation. For the Brown corpus por-
6 P tion, we obtained the training and evaluation sections used
arent of PAR (GPAR) in Gildea (2001). In that paper, no held-out section was used
7 Last child of GPAR p - b pf . ot e tra
8  First child of conjoined category or pa_lrameter tuning so we further partltlc_)ne the training
. . data into kept and held-out data. The sizes of the corpora
9 Lexical head of current constituent . .
i are given in table 2, as well as labels that are used to refer to
Features for POS left-hand sides the corpora in subsequent tables.
0 Left-hand side (LHS)
1 Parentof LHS (PAR) 4.1 Baseline performance
2 Lastchild of PAR The first results are for parsing the Brown corpus. Table
3 Parent of PAR (GPAR) 3 presents our baseline performance, compared with the
4 POS of C-Commanding head Gildea (2001) results. Our system is labeled as ‘MAP’. All
5 C-Commanding lexical head parsing results are presented as labeled precision and recall.
6 Next C-Commanding lexical head Whereas Gildea (2001) reported parsing results just for sen-

Table 1: Conditioning features for the probabilistic CFGtences of length less than or equal t_o 40, our results_are for
. hy . all sentences. The goal is not to improve upon Gildea’s
used in the reported empirical trials

parsing performance, but rather to try to get more benefit
from the out-of-domain data. While our performance is 0.5-
.5 percent better than Gildea’s, the same trends hold — low
The parse trees that are returned by the parser are then ae- o L
b y b eighties in accuracy when using the Wall St. Journal (out-of-

transformed to the original form of the grammar for evalua- . L L :
tion? g 9 domain) training; mid eighties when using the Brown corpus

For the trial ted in th ¢ tion. the b b training. Notice that using the Brown held out data with the
or te .”astrepfr 160 'In 3 netx Segdlobn,_ € ased €aMall st. Journal training improved precision substantially.
parameter is set t= 10. In order to avoid being pruned, aTuning the parameters on in-domain data can make a big

parse must be _within a probability range of the best SCOrmé’ifference in parser performance. Choosing the smoothing
parse that has incorporated the next word. e the num- arameters as Gildea did, based on the distribution within

ber of parses that have incorporated the next word, ar le he corpus itself, may be effective when parsing within the

be the best probability from among that set. Then the prOt%’ame distribution, but appears less so when using the tree-

ability of a parse must be abo@ég to avoid being pruned. pank for parsing outside of the domain.

2See Johnson (1998) for a presentation of the transform/de- 3According to the author, smoothing parameters for his parser
transform paradigm in parsing. were based on the formula from Collins (1999).



Corpus;Sect| Used for | Sentenced Words System Training Heldout | LR LP
WSJ;2-21 Training 39,832 | 950,028 MAP Brown; T Brown;H | 76.0 | 75.4
WSJ;24 Held out 1,346 | 32,853 MAP Brown;T | WSJ;24 | 76.9 | 77.1
WSJ;23 Eval 2,416 | 56,684 Gildea WSJ;2-21 86.1 | 86.6
Brown;T Training 19,740| 373,152 MAP WSJ;2-21| WSJ;24 | 86.9| 87.1
Brown;H Held out 2,078 | 40,046 Charniak (1997) | WSJ;2-21] WSJ;24 | 86.7 | 86.6
Brown;E Eval 2,425| 45,950 Ratnaparkhi (1999) WSJ;2-21 86.3| 87.5
. Collins (1999) WSJ;2-21 88.1| 88.3
Table 2: Corpus sizes Charniak (2000) | WSJ;2-21| WSJ;24 | 89.6 | 89.5
Collins (2000) WSJ;2-21 89.6 | 89.9
System| Training Heldout | LR LP
Gildea | WSJ;2-21 80.3 | 81.0 Table 4: Parser performance on WSJ;23, baselines. Note
MAP WSJ;2-21 | WSJ;24 | 81.3 | 80.9 that the Gildea results are for sentences40 words in
MAP WSJ;2-21 | Brown;H | 81.6 | 82.3 length. All others include all sentences.
Gildea | Brown;T,H 83.6 | 84.6
MAP Brown;T Brown;H | 84.4| 85.0

Table 3: Parser performance on Brown;E, baselines. Noferms nearly identically to count merging.
that the Gildea results are for sentences40 words in

length Adaptation to the Brown corpus, however, does not ad-

equately represent what is likely to be the most common
adaptation scenario, i.e. adaptation to a consistent domain

with limited in-domain training data. The Brown corpus is

Table 4 gives the baseline performance on section 23 g really a domain:; it was built as a balanced corpus, and
the WSJ Treebank. Note, again, that the Gildea results &g ce is the aggregation of multiple domains. The reverse
for sentences< 40 words in length, while all others are for ¢canario — Brown corpus as out-of-domain parsing model

all sentences in the test set. Also, Gildea did not report pe&nq wall St. Journal as novel domain — is perhaps a more
formance of a Brown corpus trained parser on the WSJ. OWbyral one. In this direction, Gildea (2001) also reported
performance under that condition is not particularly gooo\,ery small improvements when adding in the out-of-domain
but again using an in-domain held out set for parameter tUgraehank. This may be because of the same issue as with the
ing provided a substantial increase in accuracy, SOMewhgfown corpus, namely that the optimal ratio of in-domain to
more in terms of precision than recall. Our baseline result§;i_of-domain is not 1 and the smoothing parameters need
fora WSJ section 2-21 trained parser are slightly better thag pe tuned to the new domain; or it may be because the new
the Gildea parser, at more-or-less the same level of perfQfpmain has a million words of training data, and hence has
mance as Charniak (1997) and Ratnaparkhi (1999), but sqzs se for out-of-domain data. To tease these apart, we par-
eral points below the best reported results on this task.  itioned the WSJ training data (sections 2-21) into smaller
treebanks, and looked at the gain provided by adaptation as

. _ the in-domain observations grow. These smaller treebanks
Table 5 presents parsing results on the Brown;E test set fgfoyide a more realistic scenario: rapid adaptation to a novel

models using both in-domain and out-of-domain trainingjomain will likely occur with far less manual annotation of

data. The table gives the adaptation (in-domain) treebafees within the new domain than can be had in the full Penn
that was used, and tite that was used to combine the adap-Treepank.

tation counts with the model built from the out-of-domain
treebank. Recall thatc(A) times the out-of-domain model
yields count merging, withn the ratio of out-of-domain
to in-domain counts; andc(A) times the out-of-domain

4.2 Supervised adaptation

Table 6 gives the baseline performance on WSJ;23, with
models trained on fractions of the entire 2-21 test set. Sec-
tions 2-21 contain approximately 40,000 sentences, and we
model yields model interpolation, withthe ratio of out-of- partitioned them by percentage of total sentences. Frqm ta-
domain to in-domain probabilities. Gildea (2001) merged!€ 6 We can see that parser performance degrades quite dra-

fnatically when there is less than 20,000 sentences in the

the two corpora, which just adds the counts from the out-otf-'"" 2
domain treebank to the in-domain treebank. ie. — 1. training set, but that even with just 2000 sentences, the sys-

This resulted in a 0.25 improvement in the F-measure. jfpm outperforms one trained on the Brown corpus.

our case, combining the counts in this way yielded a half Table 7 presents parsing accuracy when a model trained
a point, perhaps because of the in-domain tuning of then the Brown corpus is adapted with part or all of the WSJ
smoothing parameters. However, when we optinaizem-  training corpus. From this point forward, we only present
pirically on the held-out corpus, we can get nearly a fultesults for count merging, since model interpolation con-
point improvement. Model interpolation in this case persistently performed 0.2-0.5 points below the count merging



System| Training Heldout | Adapt Ta Baseline Adapted AF
LR LP F LR LP F
) | 83.6| 84.6| 84.1| 83.9| 84.8| 84.35| 0.25
) | 84.4| 85.0| 84.7 || 849 | 85.6 | 85.25 || 0.55
) | 84.4| 85.0| 84.7 || 85.4| 85.9| 85.65| 0.95
)

Gildea | WSJ;2-21 Brown;T,H
MAP WSJ;2-21| Brown;H | Brown;T <
MAP WSJ;2-21| Brown;H | Brown;T 0.25
MAP WSJ;2-21| Brown;H | Brown;T 0.2

o
B EEE

84.4| 85.0| 84.7 || 85.3 | 85.9| 85.60| 0.90

(
(
(
(

Table 5: Parser performance on Brown;E, supervised adaptation

System| Training | % | Heldout| LR | LP performing parameter from the supervised trials, namely
MAP | WSJ;2-21| 100 | WSJ;24 | 86.9 | 87.1 0.2@&(A). Since we are no longer limited to manually anno-
MAP | WSJi2-21] 75 | WSJ;24| 86.6 | 86.8 tated data, the amount of in-domain WSJ data that we can
MAP | WSJ2-21| 50 | WSJ;24| 86.3 | 86.4 include is essentially unlimited. Hence the trials reported go
MAP | WSJi2-21] 25| WSJ);24| 84.8 | 850 beyond the 40,000 sentences in the Penn WSJ Treebank, to
MAP WSJ;2-21] 10 | WSJ;24| 826 | 82.6 include up to 5 times that number of sentences from other
MAP WSJ;2-21 5| WSJ;24 | 80.4 | 80.6 years of the WSJ.

Table 8 shows the results of unsupervised adaptation as
we have described it. Note that these improvements are had
without seeing any manually annotated Wall St. Journal
approach. The7, mixing parameter was empirically opti- treebank data. Using the approximately 40,000 sentences
mized on the held out set when the in-domain training wais f2-21, we derived a 3.8 percent F-measure improvement
just 10% of the total; this optimization makes over a poingver using just the out of domain data. Going beyond the
difference in accuracy. Like Gildea, with large amounts o§jze of the Penn Treebank, we continued to gain in accuracy,
in-domain data, adaptation improved our performance bieaching a total F-measure improvement of 4.2 percent with
half a point or less. When the amount of in-domain dat200 thousand sentences, approximately 5 million words. A
is small, however, the impact of adaptation is much greategecond iteration with this best model, i.e. re-parsing the 200

) ) thousand sentences with the adapted model and re-training,
4.3 Unsupervised adaptation yielded an additional 0.65 percent F-measure improvement,
Bacchiani and Roark (2003) presented unsupervised MABr a total F-measure improvement of 4.85 percent over the
adaptation results for n-gram models, which use the sanbaseline model.
methods outlined above, but rather than using a manually A final unsupervised adaptation scenario that we inves-
annotated corpus as input to adaptation, instead use an autgated is self-adaptation, i.e. adaptation on the test set it-
matically annotated corpus. Their automatically annotatesklf. Because this adaptation is completely unsupervised,
corpus was the output of a speech recognizer which used titreis does not involve looking at the manual annotations at
out-of-domain n-gram model. In our case, we use the parall, it can be equally well applied using the test set as the un-
ing model trained on out-of-domain data, and output a seupervised adaptation set. Using the same adaptation proce-
of candidate parse trees for the strings in the in-domain codure presented above on the test set itself, i.e. producing the
pus, with their normalized scores. These normalized scoresp 20 candidates from WSJ;23 with normalized posterior
(posterior probabilities) are then used to give weights to therobabilities and re-estimating, we produced a self-adapted
features extracted from each candidate parse, in just the wagrsing model. This yielded an F-measure accuracy of 76.8,
that they provide expected counts for an expectation maxivhich is a 1.1 percent improvement over the baseline.
mization algorithm.

For the unsupervised trials that we report, we collecteB Conclusion

up to 20 candidate parses per stfing/e were interested in o ] .
investigating the effects of adaptation, not in optimizing perVhat we have demonstrated in this paper is that maximum

formance, hence we did not empirically optimize the mixing?©Steriori(MAP) estimation can make out-of-domain train-
parameter for the new trials, so as to avoid obscuring thé"d data beneficial for statistical parsing. In the most likely

effects due to adaptation alone. Rather, we used the b&§gnario —porting a parser to a novel domain for which there
is little or no annotated data — the improvements can be quite

“This is consistent with the results presented inarge. Like active learning, model adaptation can reduce the
Bacchiani and Roark (2003), which found a small but cong,q,q,nt of annotation required to converge to a best level

sistent improvement in performance with count merging versus . . .
model inteepolation for nf)gram modeling. ging of performance. In fact, MAP coupled with active learning

SBecause of the left-to-right, heuristic beam-search, the parsBtdy reduce the required amount of annotation further.
does not produce a chart, rather a set of completed parses. There are a couple of interesting future directions for this

Table 6: Parser performance on WSJ;23, baselines



System % of Ta Baseline Adapted AF
WSJ;2-21 LR LP F LR LP F

Gildea 100 c(A) | 86.1| 86.6 | 86.35| 86.3 | 86.9 | 86.60| 0.25
MAP 100 | 0.2¢(A) | 86.9 | 87.1| 87.00|| 87.2 | 87.5| 87.35| 0.35
MAP 75 | 0.2(E(A) | 86.6 | 86.8 | 86.70 || 87.1 | 87.3 | 87.20 || 0.50
MAP 50 | 0.2(E(A) | 86.3 | 86.4| 86.35|| 86.7 | 86.9 | 86.80 || 0.45
MAP 25 | 0.2(@¢(A) | 84.8 | 85.0 | 84.90|| 85.3 | 85.5| 85.40| 0.50
MAP 10 | 0.2(¢(A) | 82.6 | 82.6 | 82.60| 84.3 | 84.4| 84.35| 1.75
MAP 10 C(A) | 82.6 | 82.6 | 82.60| 83.2| 83.4| 83.30| 0.70
MAP 5| 0.2(@¢(A) | 80.4| 80.6 | 80.50 || 83.0 | 83.1 | 83.05 | 2.55

Table 7: Parser performance on WSJ;23, supervised adaptation. All models use Brown;T,H as the out-of-domain treebank.
Baseline models are built from the fractions of WSJ;2-21, with no out-of-domain treebank.

Adaptation | Iter- | LR LP F- AF References
Sentenceg ation measure
0 0 76.0| 75.4| 75.70 Michiel Bacchiani and Brian Roark. 2003. Unsupervised
2000 1 7861 7791 7825 | 2.55 Ianguage model adaptation. I?ro_ceedings of the In-
10000 1 7891 7801 78.45 | 2.75 ternat|or_1al Conference on Acoustics, Speech, and Signal
20000 1 | 79.3| 785| 78.90 | 3.20 Processing (ICASSP)

30000) 1 | 79.7| /89| 79.30 | 3.60 Eugene Charniak. 1997. Statistical parsing with a context-
39832 1 | 799]791] 7950 | 3.80 free grammar and word statistics. PRroceedings of
100000| 1 79.7| 79.2| 79.45 | 3.75 the Fourteenth National Conference on Atrtificial Intelli-
200000 1 80.2 | 79.6 79.90 | 4.20 gence pages 598-603.

200000 2 80.6 | 80.5| 80.55 | 4.85

Eugene Charniak. 2000. A maximum-entropy-inspired
Table 8: Parser performance on WSJ;23, unsupervisedParser. IrProceedings of the 1st Conference of the North
adaptation. For all trials, the base training is Brown;T, the American Chapter of the Association for Computational
held out is Brown;H plus the parser output for WSJ;24, and Linguistics pages 132-139.

the mixing parameter, is 0.2@E(A). Zhiyi Chi and Stuart Geman. 1998. Estimation of proba-
bilistic context-free grammarsComputational Linguis-
tics, 24(2):299-305.

research. First, a question that is not addressed in this paper ) ) o

is how to best combine both supervised and unsupervisdichael J. Collins. 1997. Three generative, lexicalised

adaptation data. Since each in-domain resource is likely to M0dels for statistical parsing. Proceedings of the 35th

have a different optimal mixing parameter, since the super- Grr:rétljj?sltil(\:ﬂsesgggsoffsgcasAssomauon for Computational

vised data is more reliable than the unsupervised data, this '

becomes a more difficult, multi-dimensional parameter opvichael J. Collins. 1999 Head-Driven Statistical Models

timization problem. Hence, we would like to investigate au- for Natural Language ParsingPh.D. thesis, University

tomatic methods for choosing mixing parameters, such asof Pennsylvania.

EM. Also, an interesting question has to do with choosin

which treebank to use for out-of-domain data. For a ne

domain, is it better to choose as prior the balanced Brown

corpus, or rather the more robust Wall St. Journal treebank?

Perhaps one could use several out-of-domain treebanksMsJ. F. Gales. 1998. Maximum likelihood linear transfor-

priors. Most generally, one can imagine usintyeebanks,  mations for hmm-based speech recogniticBomputer

some in-domain, some out-of-domain, and trying to find the Speech and Languageages 75-98.

best mixture to suit the particular task.

ichael J. Collins. 2000. Discriminative reranking for nat-
ural language parsing. Ifhe Proceedings of the 17th
International Conference on Machine Learning

Jean-Luc Gauvain and Chin-Hui Lee. 1994. Maximum
The conclusion in Gildea (2001), that out-of-domain tree- a posteriori estimation for multivariate gaussian mixture

banks are not particularly useful in novel domains, was pre- observations of markov chainslEEE Transactions on

mature. Instead, we can conclude that, just as in other sta-Speech and Audio Processjrit(2):291-298.

tistical estimation problems,_there are gengralizations to tIf?aniel Gildea. 2001. Corpus variation and parser perfor-

had from these out-of-domain trees, providing more robust .o -a IrProceedings of the Sixth Conference on Empir-

estimates, especially in the face of sparse training data.  jca| Methods in Natural Language Processing (EMNLP-
01).
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