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Abstract

Latent semantic analysis (LSA), first ex-
ploited in indexing documents for informa-
tion retrieval, has since been used by sev-
eral researchers to demonstrate impressive
reductions in the perplexity of statistical
language models on text corpora such as
the Wall Street Journal. In this paper
we present an investigation into the use
of LSA in language modeling for conver-
sational speech recognition. We find that
previously proposed methods of combining
an LSA-based unigram model with an N-
gram model yield much smaller reductions
in perplexity on speech transcriptions than
has been reported on written text. We
next present a family of exponential mod-
els in which LSA similarity is a feature of a
word-history pair. The maximum entropy
model in this family yields a greater reduc-
tion in perplexity, and statistically signifi-
cant improvements in recognition accuracy
over a trigram model on the Switchboard
corpus. We conclude with a comparison
of this LSA-featured model with a previ-
ously proposed topic-dependent maximum
entropy model.

1 Introduction

Statistical language modeling benefits greatly from
the augmentation of standard N-gram statistics with
information from the syntactic structure of the sen-
tence and the semantic context of the segment or
story being processed, as witnessed by improved per-
formance of automatic speech recognition systems
that use such models. In highly constrained settings
such as a telephone-based interactive voice-response

system, sometimes called a dialogue system, it may
be reasonable to limit the notion of syntax to finite
state grammars, while the notion of semantics may
be adequately captured by a dialogue-state variable
representing the type of sentence that may be spoken
next by a user. In less constrained speech recogni-
tion tasks, e.g. transcription of Broadcast News or
conversational telephone speech, the incorporation of
syntactic information is usually via a statistical left-
to-right parser, while semantic information is usu-
ally brought in through some notion of topicality or
“aboutness” of the sentence being processed. It is
this latter notion of semantics in statistical language
modeling that is the subject of this paper.

Collocation or N-gram statistics prove to be one
of the best predictors of words in a sentence, and all
attempts to augment a language model (LM) with
semantic information aim to simultaneously conform
to N-gram statistics in one form or another. The
straightforward technique (Iyer and Ostendorf, 1999;
Clarkson and Robinson, 1998) is to

1. group documents or stories from a putatively
large LM training corpus into semantically cohe-
sive clusters using an information retrieval based
notion of document similarity,

2. estimate N-gram LMs for each cluster, and

3. interpolate the topic-specific N-gram model
with an N-gram model estimated from the un-
divided LM training corpus.

Alternatives to this method fall into two broad
categories, one based on latent semantic analysis
(LSA), e.g., Coccaro and Jurafsky (1998) and Bel-
legarda (2000), and another based on maximum en-
tropy, e.g., Chen and Rosenfeld (1998) and Khudan-
pur and Wu (1999). In this paper, we attempt to
find a bridge between these two techniques.

The starting point of LSA is the construction of
a matrix describing word-document co-occurrence.



By performing singular value decomposition of this
matrix, a short vector representation is derived for
each word and document. One advantage of the re-
sulting word and document representations is that
they all live in the same low-dimensional continu-
ous vector space, enabling one to quantitatively mea-
sure closeness or similarity between words and docu-
ments. The cosine of the angle between two vectors
is a standard measure of similarity in this framework.

For language modeling, a pseudo-document is con-
structed from (possibly all) the words preceding a
particular position in an utterance and the result-
ing vector is projected into the abovementioned low-
dimensional vector space, sometimes referred to as
the LSA-space. Intuition suggests that words with
vectors close to the pseudo-document vector are more
likely to follow than those far away from it. This is
used to construct a conditional probability on the
task-vocabulary. This probability, which depends on
a long span of “history” is then suitably combined
with an N-gram probability.

An alternative to first constructing a conditional
probability on the task-vocabulary independently of
the N-gram model and then seeking ways to com-
bine the two probabilities, is directly modeling the
pseudo-document as yet another conditioning event
— on par with the preceding N—1 words — and find-
ing a single probability distribution conditioned on
the entire “history.” Note that the co-occurrence
of the predicted word with, say, the immediately
preceding word in the history is a discrete event
and amenable to simple counting. By contrast, the
pseudo-document is a continuous-valued vector and
simply counting how often a word follows a partic-
ular vector in a training corpus is meaningless; we
must employ a parametric model for word-history
co-occurrence, possibly together with discretization
of the pseudo-document vector.

The remainder of the paper explores these main
themes as follows. For completeness, we briefly de-
scribe in Section 2 the standard LSA language mod-
eling techniques we implemented. We then describe
the maximum entropy alternative for combining N-
gram and latent semantic information in Section 3.
We present experimental results on the Switchboard
corpus of conversational speech in Section 4 and con-
clude in Section 5.

2 LSA-Based Language Models

LSA requires a corpus separated into semantically
coherent documents, and a vocabulary to cover
words found in these documents. It is assumed that
the co-occurrence of any two words within a docu-
ment at a rate much greater than chance is an indi-

cation of their semantic similarity. This similarity is
then used for language modeling, as explained below.
The notation and exposition in this section closely
follows that of Bellegarda (2000).

2.1 Word-Document Frequency Matrix W

The first step in LSA is to represent co-occurrence
information by a large spare matrix. Let V, |V|= M,
be the underlying task vocabulary, and 7 a text cor-
pus, with document boundaries marked, comprising
N documents relevant to some domain of interest.
Typically, M and N are of the order of 10* and 105,
respectively. 7, the language model training corpus,
may thus have hundreds of millions of words. Un-
like N-gram models, the construction of the M x N
matrix W of co-occurrences between words and doc-
uments ignores word order within the document; it is
accumulated from 7 by simply counting how many
times a word appears in a document.

In constructing the word-document co-occurrence
matrix W, the raw count ¢;; of a word w; € V in a
document d; € T is weighted by

e the “relevance” of a word in the vocabulary to
the topic of a document, function words being
given less weight than content words, and

e the size of the document, a word with a given
count in a longer document being given less
weight than in a shorter one.

To accomplish the former, pretend that a unique (un-
known) document in our collection 7 is relevant for
some task and our goal is to guess which one it is.
Let the a priori probability of a document being rel-
evant be uniform (%) on the collection and, further,
let an oracle draw a single word at random from the
relevant document and reveals it to us. The condi-
tional probability of d; being the relevant document,
given that the relevant document contains the word
w;, is clearly CC:, where ¢; = Z;VZI cij- The ratio of
the average conditional entropy of the relevant doc-
ument’s identity, given w;, and its a priori entropy
is thus a measure of the (un)informativeness of w;.
Highly informative words w; have small values of

N
_ _ 1 Cij Cij
€ = €y, = Tog N J; - log o (1)

Since 0 < ¢; < 1, the raw counts in the i-th row of
W are weighted by (1 — ¢;).
To achieve the latter effect, the counts in the j-
th column of W are weighted by the total length
M
¢j = ;4 Cij of the document d;. In summary,

Wi, =(1- )— 2)



is the resulting 7j-th matrix entry.

2.2 Singular Value Decomposition of W

Each column of the matrix W represents a document
and each row represents a word. Typically, W is very
sparse. To obtain a compact representation, singular
value decomposition (SVD) is employed (cf. Berry
et al (1993)) to yield

WaW=UxSxVT, (3)

where, for some order R <« min(M, N) of the de-
composition, U is a M x R left singular matrix with
rows u;, ¢ = 1,...,M, S is a RxR diagonal ma-
trix of singular values s; > s2 > ... > sg > 0,
and V is a N xR right singular matrix with rows v;,
j =1,...,N. For each i, the scaled R-vector u;S
may be viewed as representing w;, the i-th word in
the vocabulary, and similarly the scaled R-vector v;S
as representing d;, the j-th document in the corpus.
Note that the u;S’s and v;S’s both belong to RE,
the so called LSA-space.

The following similarity measure between the i-th
and i'-th words w; and wy is frequently used:

uiS . ’LIIz'IS
[[wiSI| X [Juz S]]
u;S*ul

= — v 4
TSl < st @

K(wi,wi:) =

Note that K (w;,w;) is nothing but the cosine of the
angle between the vectors u;S and u;S. Algorithms
such as K-means clustering have been applied to the
vocabulary using (4) as a measure of similarity.

Replacing the u;’s with v;’s in the definition above,
a corresponding measure K (d;,d;)

. ¢2,T
v; S*vj

K(d;,d: . —
@>d7) = X oy 31

(5)
of similarity between the j-th and j'-th documents is
obtained and has been used for document clustering,
filtering and topic detection.

2.3 Calculating Word-Probabilities via LSA

Given a sequence w;,ws,...,wr of words in a sen-
tence, the semantic coherence between w;, the word
in the ¢-th position, and d;—1 = {wy,...,we_1}, all
its predecessors, is used to construct a conditional
probability on the vocabulary. Specifically, for a
word w; in a training document d;, it is true by
virtue of (3) that [W];; ~ u;Sv]. However, since
the word-document similarity function

u;iSvj

K’I,Ui,d' = 1 1
(i) l[uiS3 || x |lv;S*||

(6)

by itself is not a bona fide probability mass function,
a M x1 pseudo-document vector Jt,l is constructed
by weighting the frequency of the preceding words in
accordance with (2), and its scaled R-vector repre-
sentation @;_1.S = d;L U is used in (6) to obtain

Prsa (wt|Jt—1) (7)

[K(wt, di_q) — Kmin(JtA)r

S [Kw, der) = Kmin(dir)]

where Kpin(d) = min,, K(w,d) is an offset to make
the resulting probabilities nonnegative. The coef-
ficient v > 1, as noted by Coccaro and Juraf-
sky (1998), is chosen experimentally to increase the
otherwise small dynamic range of K as w varies over
the vocabulary.

As one processes successive words in a sentence,
the pseudo-document d;_; is updated incrementally:

- t—1- 1—¢
dt: t dt_]_+ e

€w, , (8)

where e,,, is a M x1 vector with a 1 in the position
corresponding to w; and 0 elsewhere. Consequently,
the vector ;1S needed for the similarity computa-
tion of (6) towards the probability calculation of (7)
is also incrementally updated:

t—1 1 — ey,

S = A 7 (’5t715) + n Uy, (9)

where a positive “decay” coefficient A < 1 is thrown
in to accommodate dynamic shifts in topic.

2.4 Combining Prsa with N-grams

Several strategies have been proposed (Coccaro and
Jurafsky, 1998; Bellegarda, 2000) for combining the
LSA-based probability (7) with standard N-gram
probabilities, and we list those which we have in-
vestigated for conversational speech.

Linear Interpolation: For some experimentally
determined constants o, and @ =1 — q

P(wi|ws—1,ws—2,ds 1) = (10)
aPLSA(wt|Jt—1) + @Pn_gram (Wi|wi—1, w—2).

Similarity Modulated N-gram: With the simi-
larity (6) offset to be nonnegative, as done in (7),
(11)

P(wi|wi—1, wi—2,ds—1) =

K (wy, Jt—l)PN—gram (we|wg—1, ws—2)
D K(w,di 1) Pr_gram (w|wg 1, ws o)




Information Weighted Arithmetic Mean: Set-

ting Ay, = 17;“’ to account for the informative-

ness of a word w about its document, cf (1), and

Aw=1— Ay,

P(wi|wi—1, w—2,ds—1) = (12)

Mo, Prsa (welds 1) + Ao, Pn_gram (We|we—1,wi—2)
Ew )\'wPLSA (w|dt71) + )\wPN—gram (w|wt717wt72) ’

Information Weighted Geometric Mean: With
the same A, and )\, as above,

P(wi|wi—1, w—2,ds—1) = (13)

A < X
PLSK (wt|dt—1) : PN-ugram(wtlwtflawt72)

Zw PL)‘SwA (’LU|Jt_]_) ) PJ\)T‘fugram (w|wt—17wt—2)

We compute language model perplexities for the
Switchboard corpus using each of these methods and
discuss the results in Section 4.1.

3 Exponential Models with Latent
Semantic Features

The ad hoc construction of PLSA(w|Jt,1) to some-
how capture K (w,d;_1), and its combination with
N-gram statistics described above are a somewhat
unsatisfactory aspect of the LSA-based models. We
propose, following Khudanpur (2000), an alternative
family of exponential models

Pg(wtld't—lth—h wi—1) (14)

fz(wt—hwt)

f1(we)
Oy, Ay, sWe

f3 (wt—z,’wt—hwt)
awt—2awt—l,wt

Zg(JtA, W2, Ws—1)

i1,
x ofLsA(di—twe)
di—1,wt

where fi(w:), fa(wi—1,we) and f3(wi—2, wi—1,wt)
are usually, but not necessarily, {0, 1}-valued indica-
tor functions of N-gram features and a.,,, 0tw,_;,w,
and @u,_o,w;_1,w, are their corresponding feature
weights, and where the semantic coherence between
a word w; and its long-span history d;_1 has been
thrown in as a feature, on par with the standard N-
gram features. E.g., one could have

frsa(di—1,ws) = K (ws,ds—1) - (15)

We then find the maximum likelihood estimate of the
model parameters o given the training data. Recall
that the resulting model is also the mazimum entropy
(ME) model among models which satisfy constraints
on the marginal probabilities or expected values of
these features (Rosenfeld, 1996).

An important decision that needs to be made in a
model such as (14) is the parameterization a. In
a traditional ME language model, in the absence
of LSA-based features, each N-gram feature func-
tion is a {0, 1}-valued indicator function, and there
is a parameter associated with each feature: an oy,
for each unigram constraint, an o, for each bi-
gram constraint, etc. In extending this methodol-
ogy to the LSA features, we note that K (w,ds_1)
is continuous-valued. That in itself is not a prob-
lem; the ME framework does not require the f(-)’s
to be binary. What is problematic, however, is the
fact that, almost surely, no two pseudo-documents d
and dy will ever be identical. Therefore, assigning a
distinct parameter « dw for each pseudo-document —

word pair (d,w) is counterproductive, and some ty-
ing of parameters for similarly valued d is necessary.
If we tie all the LSA parameters together, i.e., set

O‘J,w = QLSA Yw eV and (ZE ]RR , (16)

then (14) becomes directly comparable to the sim-
ilarity modulated N-gram model (11), except that
the choice of apsa here is made jointly with the N-
gram a’s to maximize training data likelihood. If we
let each vocabulary item to have its own «, i.e.
vde RE, (17)

OFp = QLSAw

then (14) becomes directly comparable to the geo-
metric interpolation method (13), again except that
unlike A, the arsa,., parameters are determined
jointly with the N-gram o’s to maximize a likelihood
criterion.

Since the goal of parameter tying, however, is
to deal with the continuous nature of the pseudo-
document d, another alternative, as suggested by
Khudanpur (2000), is

Qi = Q4 Vd e &(d) c R®, (18)

7w ’w

where ®(d) represents a finite partition of R in-
dexed by d. We choose to pursue this alternative.

We use a standard K-means clustering of the rep-
resentations v;S of the training documents d;, with
(5) in the role of distance, to obtain a modest number
of clusters. We then pool documents in each cluster
together to form topic-centroids d, and the partition
®(-) of R® is defined by the Voronoi regions around
the topic-centroids:

&(d) = {J . K(d,d) < K(d,d")V centroidsd’ # d} .
We also make two approximations to the feature
function of (15). First, we approzimate the pseudo-
document d;_; in K(-) with its nearest topic-centroid



cft,l — d whenever di 1 € <I>(ci) This is motivated by
the fact that we often deal with very small pseudo-
documents d;_; in speech recognition, and d provides
a more robust estimate of semantic coherence with w;
than cit_l. Furthermore, keeping in mind the small
dynamic range of the similarity measure of (6), as
well as the interpretation (1) of €, we approzimate
the feature function of (15) with

1 if K(wy,dp 1) > 7
and €, < T,
0 otherwise.

fusa(di—1,wy) = (19)

This pragmatic approximation results in a simpli-
fied implementation, particularly for the computa-
tion of feature-expectations during parameter esti-
mation. More importantly, when there is a free
parameter o for each (d,w) pair, as is the case in
(18), fusa(d,w) =1 and frsa(d,w) = K(w,d) yield
equivalent model families. Therefore, using
K(wg,ds—1)

instead of «.

lorO
o
di—1,wt

di—1,ws

(20)

in (14) simply amounts to doing feature selection.

For all pairs (d,w) with frsa(d,w) = 1 in (19),
the model-expectation of f is constrained to be the
relative frequency of w within the cluster of training
documents whose centroid is d. By virtue of their
semantic coherence, it is usually higher than the rel-
ative frequency of w in the entire corpus.

Another interesting way of tying the LSA param-
eters, which we have not investigated here, is

aj, =05, YweT@W),Vded(d), (21)
where ¥(a) is a finite, possibly d-dependent, parti-
tion of the vocabulary. This parameterization may
be particularly beneficial when, due to a very large
vocabulary or a small training corpus, we do not have
sufficient counts to constrain the model-expectations
of frsa(d,w) for all words w bearing high semantic
similarity with a topic-centroid d. An automatically
derived or knowledge-based semantic classification of

words, e.g. from WordNet, may be used as ¥(-).
3.1 A Similar ME Model from the Past

An interesting consequence of (19) is that it makes
the model of (14) identical in form to the model de-
scribed by Khudanpur and Wu (1999). Two signifi-
cant ways in which (14) is novel are that

o clustering of documents d; to obtain topic-
centroids d during training, and assignment of
pseudo-documents d;_; to topic-centroids d;_;
during recognition, is based on similarity in
LSA-space RE, not document-space RM, and

e the set of words with active semantic features
(19) for any particular topic-centroid d is deter-
mined by a threshold n on LSA similarity, not
by a difference in within-topic v/s corpus-wide
relative frequency.

The former results in some computational savings
both during clustering and on-line topic assignment.
The latter may result in a different choice of topic-
dependent features. We present a comparison of LM
performance between these two ME models in Sec-
tion 4.5 following our main results.

4 Switchboard Experiments

We conducted experiments on the Switchboard cor-
pus of conversational telephone speech (Godfrey et
al, 1992), dividing the corpus into a LM training set
of approximately 1500 conversations (2.2M words)
and a test set of 19 conversations (20K words).
The task vocabulary was fixed to 22K words, with
an out-of-vocabulary rate under 0.5% on the test
set. Acoustic models trained on roughly 60 hours
of Switchboard speech and a bigram LM were used
to generate lattices for the test utterances, and a 100-
best list was generated by rescoring the lattice using
a trigram model. All the results in this paper are
based on rescoring this 100-best list with different
language models.

We treated each conversation-side as a separate
document and created W of (2) with M =~ 22,000
and N =~ 3000. Guided by the fact that one of
70-odd topics was prescribed to a caller when the
Switchboard corpus was collected, we computed the
SVD of (3) with R=73 singular values. We imple-
mented the LSA model of (7) with v = 20, and the
four LSA + N-gram combinations of Section 2.4.

To obtain the document clusters and topic-
centroids d required for creating the partition ®(-) of
(18), we randomly assigned the training documents
to one of 50 clusters and used a K-means algorithm
to iteratively

(i) compute the topic-centroid d of each cluster by
pooling together all the documents in the clus-
ter, and

(ii) reassigning each document d; to a cluster to
whose centroid the document bore the greatest
LSA similarity K(d;,d).

Each cluster was required to have a minimum num-
ber of 10 documents in it, and if the number of docu-
ments in a cluster fell below this threshold following
step (ii), then the cluster was eliminated and each
of its documents reassigned to the nearest of the re-
maining centroids. The iteration stopped when no



reassignments resulted in step (ii). This procedure
resulted in 25 surviving centroids, and we checked by
a cursory examination of documents that the clusters
were reasonably coherent.

For each topic-centroid ci, we chose, according to
(19), a set of words that activate an LSA feature.
We used 7 = 0.4 to first eliminate stop-words and
then set a d-specific n to yield ~800 vocabulary-
words above threshold per d. However, not all these
words actually appeared in training documents in
®(d). Only the seen words were chosen, obtaining
an average of 750 topic-dependent features for each
topic-centroid. The resulting model had 19K o,
parameters associated with the semantic features in
addition to about 22K unigram a,,’s, 300K bigram
Oy p's and 170K trigram o w's. A ME lan-
guage model was trained with these parameters us-
ing the toolkit developed by Wu (2002), and readers
interested in the computational issues pertaining to
maximum entropy model estimation are referred to
his doctoral dissertation for details.

4.1 Perplexity: LSA + N-gram Models

We used the CMU-CU LM toolkit to implement a
baseline trigram model with Good-Turing discount-
ing and Katz back-off. We then measured the per-
plexity of the reference transcription of the test con-
versations for the trigram and the four LSA + N-
gram models of Section 2.4. The pseudo-document
d; 1 was updated according to (9) with A = 0.97 for
all four models. We used a = 0.1 for the linear inter-
polation of the LSA and N-gram models. The other
three combination techniques require no additional
parameters.

| Language Model | Perplexity |
CMU-CU Standard Trigram 81.1
LSA+Trigram Linear Interpolation 81.8
Similarity Modulated Trigram 79.1
Info Weighted Arithmetic Mean 81.8
Info Weighted Geometric Mean 75.8

Table 1: Perplexities: N-gram + LSA Combination

The trends in the performance of the four schemes,
reported in Table 1, are consistent with those re-
ported by Coccaro and Jurafsky (1998), with the in-
formation weighted geometric interpolation showing
the greatest reduction in perplexity. However, the
reduction in perplexity is much smaller on this cor-
pus than, e.g., the 19% reduction reported by Bel-
legarda (2000) using similar models on a corpus of
newspaper text.

4.2 Effect of Replacing d;_; with di 1

We next describe our attempt to gain some un-
derstanding of the effect of replacing the pseudo-
document d,g 1 with the closest topic-centroid dt 1
before the similarity computation in (19). For sev-
eral of our test conversation-sides, we computed
K(wt,dt 1) and K(wt,dt 1) t = 1 T where
wy denotes the word in the ¢-th position and T de-
notes the number of words in the conversation-side.
For a typical conversation side in our test set, these
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Figure 1: K(wy,di—1) and K (wy,dy—) through a

K (wy, dt 1) (wt,dt 1) (MID-
K (wy,dy_1) (BOTTOM).

conversation (TOP),
DLE), and K (wy,dr) —

similarities are plotted as a function of ¢ in the box
at the top of Figure 1. The second box shows the
difference K (wy,d;_1)—K (wy,ds—_1). Tt is clear from
the second box that CZH bears a greater similarity
to the next word than Jt,l, confjrming the benefi-
cial effect of rpplacing Jt,l with d;_1. We also com-
puted K(w¢,dr), the similarity of w; with the topic-
centroid most similar to the entire conversation side,
and the box at the bottom of Figure 1 depicts the dif-
ference K (w¢,d1)— K (ws,d;_1). We note with some
satisfaction that as the conversation proceeds, the
dynamically computed topic-centroid d;—1 converges
to d7. Our conversation-sides are 470 words long



on average, and we observe convergence roughly 110
words into the conversation side.

4.3 Perplexity: ME Model with LSA

Features

In the process of comparing our ME model of
(14) with the one described by Khudanpur and
Wu (1999), we noticed that they built a baseline tri-
gram model using the SRI LM toolkit. Other than
this, our experimental setup — training and test set
definitions, vocabulary, etc. — matches theirs exactly.
We report the perplexity of our ME model against
their baseline in Table 2, where the figures in the
first two lines are quoted directly from Khudanpur
and Wu (1999). A single topic-centroid dr selected

Language Model Perplexity
SRI Trigram 78.8
ME Trigram 78.9
ME + LSA Features (Closest dr) 73.6
ME + LSA Features (Oracle dr) 73.0

Table 2: Perplexities: Maximum Entropy Models

for an entire test conversation-side was used in these
experiments. The last line of Table 2 shows the best
perplexity obtainable by any topic-centroid, suggest-
ing that the automatically chosen, Voronoi region
based topic-centroids are quite adequate.

A comparison of Tables 1 and 2 also shows that
the maximum entropy model is more effective in
capturing semantic information than the information
weighted geometric mean of the LSA-based unigram
model and the trigram model. The correspondence
of information weighted geometric mean with the pa-
rameterization of (17) and the corresponding richer
parameterization of (18) are perhaps adequate to ex-
plain this improvement.

4.4 'Word Error Rates for the ME Model

We rescored the 100-best hypotheses generated by
the baseline trigram model using the ME model with
LSA features. In order to assign a topic-centroid d
to a test utterance in the absence of its correct tran-
scription, we investigated using a concatenation of
the 1-best, 10-best or 100-best first-pass hypotheses
of utterances in the test set, computed d once per test
utterance, and found the performance of the 10-best
hypotheses to yield a slightly lower word error rate
(WER). This is perhaps the optimal trade-off be-
tween robustness in topic assignment resulting from
considering additional word hypotheses, and noise
introduced by considering erroneous words. We also

Language Model (d1 Assignment) WER
SRI Trigram 38.47%
ME Trigram 38.32%
ME+LSA (per utterance via 10-best) | 37.94%
ME+LSA (per conv-side via 10-best) | 37.86%

Table 3: Error Rates: Maximum Entropy Models

investigated assigning topic for the entire conversa-
tion side based on the first-pass output and found it
to yield a further reduction in WER. We report the
results in Table 3 where the top two lines are, again,
quoted directly from Khudanpur and Wu (1999).

We performed the standard NIST MAPSSWE sta-
tistical significance test (Pallett et al, 1990) and
found that

e the WER improvement of the ME trigram
model over the baseline SRI trigram model is
not significant (p=0.529),

e that of the ME model with LSA features and
utterance-level topic assignment over the ME
trigram model is significant (p=0.008), and

o that of the ME model with LSA features and
conversation-level topic assignment over the ME
trigram model is also significant (p=0.002).

The difference between the WER obtained by
utterance-level v/s conversation-level topic assign-
ment is not significant (p=0.395); nor are other WER
differences (not reported here) between using the 1-
v/s 10- v/s 100-best hypotheses for topic assignment.

4.5 Benefits of Dimensionality Reduction

It was pointed out in Section 3.1 that the model pro-
posed here differs from the model of Khudanpur and
Wu (1999) mainly in the use of the R-dimensional
LSA-space for similarity comparison rather than di-
rect comparison in M-dimensional document-space.
We present in Table 4 a summary comparison of the
two modeling techniques. While, due to the sparse
nature of the vectors, the 22K-dimensional space
does not entail a proportional growth in similarity
computation relative to the 73-dimensional space,
the LSA similarities are still expected to be faster
to compute. Furthermore, the LSA based model
yields comparable perplexity and WER performance
with considerably fewer topic-centroids, resulting in
fewer comparisons during run time for determining
the nearest centroid. Of lesser note is the observation
that the n-threshold based topic-feature selection of
(19) results in a content word being an active fea-
ture for fewer topics than it does when topic-features
are selected based on differences in within-topic and
overall relative frequencies.



Attribute

| Model A | Model B |

Similarity measure cosine
Document clustering K-means
Vector-space dimension 22K 73
Num. topic-centroids 67 25
Avg. # topics/topic-word 1.8 1.3
Total # topic-parameters 15500 19000
ME + topic perplexity 735 | 736
ME + topic WER 37.9%

Table 4: A comparison between the model (A) of
Khudanpur and Wu (1999) and our model (B).

5 Summary and Conclusion

We have presented a framework for incorporating
latent semantic information together with standard
N-gram statistics in a unified exponential model for
statistical language modeling. This framework per-
mits varying degrees of parameter tying depending
on the amount of training data available. We have
drawn parallels between some conventional ways of
combining LSA-based models with N-grams and the
parameter-tying decisions in our exponential models,
and our results suggest that incorporating seman-
tic information using maximum entropy principles is
more effective than the ad hoc techniques.

We have presented perplexity and speech recog-
nition accuracy results on the Switchboard corpus
which suggest that LSA-based features, while not as
effective on conversational speech as on newspaper
text, produce modest but statistically significant im-
provements in speech recognition performance.

Finally, we have shown that the maximum entropy
model presented here performs as well as a previously
proposed maximum entropy model for incorporating
topic-dependencies, but it is computationally more
economical.
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