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Abstract

Various Seq2Seq learning models designed
for machine translation were applied for ab-
stractive summarization task recently. Despite
these models provide high ROUGE scores,
they are limited to generate comprehensive
summaries with a high level of abstraction
due to its degenerated attention distribution.
We introduce Diverse Convolutional Seq2Seq
Model(DivCNN Seq2Seq) using Determinan-
tal Point Processes methods(Micro DPPs and
Macro DPPs) to produce attention distribution
considering both quality and diversity. With-
out breaking the end to end architecture, Di-
vCNN Seq2Seq achieves a higher level of
comprehensiveness compared to vanilla mod-
els and strong baselines. All the reproducible
codes and datasets are available online1.

1 Introduction

Given an article, abstractive summarization aims
at generating one or several short sentences that
cover the main idea of original article, which
is a combination of Natural Language Under-
standing(NLU) and Natural Language Genera-
tion(NLG).

Abstractive summarization uses Seq2Seq mod-
els (Sutskever et al., 2014) which consist of an en-
coder, a decoder and attention mechanism (Mnih
et al., 2014). With attention mechanism the de-
coder can choose a weighted context representa-
tion at each generation step so it can focus on
different parts of encoded information. Seq2Seq
with attention achieved remarkable results on ma-
chine translation (Bahdanau et al., 2014) and other
text generation tasks such as abstractive summa-
rizaiton (Rush et al., 2015).

Unlike machine translation that emphasizes at-
tention mechanism as a method of learning word
level alignments between source text and target

1available at https://github.com/thinkwee/DPP CNN Sum
marization

Article: marseille , france the french prosecutor lead-
ing an investigation into the crash of germanwings flight
9525 insisted wednesday that he was not aware of any
video footage from on board the plane . marseille pros-
ecutor brice robin told cnn that so far no videos were
used in the crash investigation ...... of a cell phone video
showing the harrowing final seconds from on board ger-
manwings flight 9525 as it crashed into the french alps .
......paris match and bild reported that the video was re-
covered from a phone at the wreckage site . ...... cnn ’s
frederik pleitgen , pamela boykoff , antonia mortensen ,
sandrine amiel and anna-maja rappard contributed to this
report .
CNN Seq2Seq: french prosecutor UNK robin says he
was not aware of any video .
DivCNN Seq2Seq with Micro DPPs: new french pros-
ecutor leading an investigation into the crash of UNK
wings flight UNK 25 which crashed into french alps . the
video was recovered from a phone at the wreckage site .
DivCNN Seq2Seq with Macro DPPs: french prosecutor
says he was not aware of any video footage from on board
UNK wings flight UNK 25 as it crashed into french alps .

Table 1: Article-summary sample from CNN-DM
dataset. Colored spans are attentive parts. Micro DPPs
model puts wider attention on article than vanilla does
and Macro DPPs puts the widest attention, including
former two models’ attentive parts.

text, attention in summarization should be soft
and diverse. Many works noticed that attention
may be over concentrated for summarization and
hence cause problems like generating duplicate
words or duplicate sentences. Researchers try to
solve these problems by introducing various at-
tention structures, including local attention (Lu-
ong et al., 2015), hierarchical attention (Nallap-
ati et al., 2016), distraction attention (Chen et al.,
2016) and coverage mechanism (See et al., 2017)
etc. But all these works ignore another repeat
problem, as we call it, ”Original Text Repetition”.
We define and explain this problem in section 3.

In this paper we propose a novel Diverse Convo-
lutional Seq2Seq Model(DivCNN Seq2Seq) based
on Micro Determinantal Point Processes(Micro
DPPs) and Macro Determinantal Point Pro-
cesses(Macro DPPs). Our contributions are as fol-
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lows:

• We define and describe the Original Text
Repetition problem in abstractive summa-
rization and identify the cause behind it,
which are degenerated attention distributions.
We have also introduced three article-related
metrics for the Original Text Repetition esti-
mation and applied them in our experiments.

• We suggest a solution to this problem in
the form of introducing DPPs into deep neu-
ral network (DNN) attention adjustment and
propose DivCNN Seq2Seq. In order to adapt
DPPs to large scale computing, we propose
two kinds of methods: Micro DPPs and
Macro DPPs. To the best of our knowledge,
this is the first attempt to adjust attention dis-
tributions considering both quality and diver-
sity.

• We evaluate our models on six open datasets
and show its superiority on improving the
comprehensiveness of generated summaries
without losing much training and inference
speed.

2 Convolutional Seq2Seq Learning

Usually encoder and decoder in Seq2Seq ar-
chitecture are recurrent neural network(RNN)
or its variants like Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Chung et al., 2014)
network. Recently, a Seq2Seq architecture based
entirely on convolutional neural networks (CNN
Seq2Seq) (Gehring et al., 2017) was proposed.
It has better hierarchical representation of natu-
ral language and can be computed in parallel. In
this paper we choose CNN Seq2Seq as our base-
line system because it performs better on captur-
ing long-term dependency, which is important for
summarization.

Both encoder and decoder in CNN Seq2Seq
consist of convolutional blocks. Each block con-
tains a one dimensional convolution (Conv1d), a
gated linear unit (GLU) (Dauphin et al., 2017) and
several fully connected layers for dimension trans-
formation. Residual connection (He et al., 2016)
and batch normalization (Ioffe and Szegedy, 2015)
are used in each block. Each block receives an in-
put I of size RB∗T∗C , where B, T , and C are re-
spectively batch size, length of text and number of

channels (the same as embedding size). Conv1d
pads the sentence first and then generates a ten-
sor [O1, O2] of size RB∗T∗2C , doubling the chan-
nel. The extra channels are used in a simple non-
linearity gated mechanism:

O1, O2 = Conv1d(I) (1)

GLU([O1, O2]) = O1 ⊗ σ(O2) (2)

Multi-step attention (Gehring et al., 2017) are
used in CNN Seq2Seq. Each convolutional block
in decoder has its own attentive context. Followed
on query-key-value definition of attention, queries
Q ∈ RB∗Tg∗C are different decoder block out-
puts, where Tg stands for summary length; keys
K ∈ RB∗Ts∗C are encoder last block outputs,
where Ts stands for article length; values are sum
of encoder input embeddings E ∈ RB∗Ts∗C and
K. Because of the parallel architecture, atten-
tion for all decoder time steps can be calculated at
once. Such architecture can speed up training and
give convenience for our DPPs calculation. Using
the simplest dot product attention, all the calcula-
tions can be done with an efficient batch matrix
multiplication (BMM).

scoreattn = BMM(Q,K) (3)

weightattn = Softmax(scoreattn) (4)

context = BMM(weightattn,K + E) (5)

3 Original Text Repetition

Original Text Repetition(OTR) problem means
that each sentence in generated summaries are rep-
etitions of article sentences. The abstractive sum-
marization hence degenerates to extractive sum-
marization. The ROUGE metric can not detect this
problem since it only measures the n-grams con-
currence between generated summaries and gold
summaries without taking articles into considera-
tion. The word repeat problem (See et al., 2017) or
the lack of abstraction problem (Kryściński et al.,
2018) can be seen as extreme condition or alterna-
tive description of OTR. Behind this phenomenon
is the degenerated attention distribution learned by
model which we define as:

• Narrow Word Attention for each summary
word, the attention distribution narrows to
one word position in article.

• Adjacent Sentence Attention for all words
in each summary sentence, their positions of
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Figure 1: Degenerated attention distribution behind
OTR problem. The generated summary repeats the first
sentence in article. We select the first 16 words of sum-
mary and show their attention over first 50 words of
article.

attention peaks are adjacent or semantically
adjacent, which means that attended article
parts have similar features.

As shown in the Figure 1, sentence attention
degenerates to several adjacent peaks on the re-
peated article positions. Usually each sentence
in gold summaries considers multiple article sen-
tences and induct to one, not simply copying one
article sentence. The gap between generated sum-
maries(copy) and gold summaries(induce) means
that model just learned to find article sentences
that has the maximum similarity to gold sum-
maries not the relation between article facts and
summaries. Degenerated attention mechanism
misleads the model.

4 Diverse Convolutional Seq2Seq Model

To prevent Seq2Seq model from attention degen-
eration, we introduce DPPs as a method of regu-
larization in CNN Seq2Seq and propose DivCNN
Seq2Seq.

4.1 Quality and Diversity Decomposition of
Determinantal Point Processes

DPPs have been widely used in recommender sys-
tems, information retrieval and extractive summa-
rization systems. It can generate subsets with
both high quality and high diversity (Kulesza and
Taskar, 2011).

Given a discrete, finite point process P and a
ground set D, if for every A ∈ D and a random
subset Y drawn according to P, there is:

P (A ∈ Y ) = det(KA) (6)

where K is a real symmetric matrix that indexed
by the elements of D, then P is a determinan-
tal point process and K is the marginal kernel

of DPPs. Marginal kernel merely gives marginal
probability of one certain item to be selected in
one particular sampling process, hence we use L-
ensemble (Kulesza and Taskar, 2011) to model
atomic probabilities for every possible instantia-
tion of Y:

K = L(L+ I)−1 = I − (L+ I)−1 (7)

PL(Y = Y ) ∝ det(LY ) (8)

PL(Y = Y ) =
det(LY )

det(L+ I)
(9)

L-ensemble is also one kind of DPPs and can
be constructed directly using the quality(q) and
similarity(sim) of point set:

Li,j = q(i) ∗ sim(i, j) ∗ q(j) (10)

Equation 9 is a probability that subset Y being
chosen, which is actually a quantitative indica-
tor for the score of the subset considering both
its quality and diversity(QD-score). Summariza-
tion follows the same principle: a good summary
should consider both information significance and
redundancy. In extractive summarization set of
sentences with high score (quality) and diversity
is chosen to a summary, using DPPs sampling al-
gorithm (Li et al., 2017).

In Figure 2 we show the difference between
quality-only sampling and DPPs sampling. We
first generate a simulated attention distribution for
testing. Then we use word position distance as
similarity measure and attention as quality to con-
struct the L matrix(L-ensemble) for DPPs. Point
subset is sampled based on quality (green) or
DPPs (blue), then a gaussian mixture distribution
was generated around these points to soften and
reweight the attention. Both samplings approxi-
mate the distribution of original attention distribu-
tion (orange), but DPPs approximate it better and
have more scattering peaks. Sampling only con-
sidering attention weight (quality) generates less
peaks, which means many adjacent points with
low diversity are sampled.

In actual experiments we choose attention
weight as quality. The model learns attention dis-
tribution to score different parts of article and ob-
viously higher attention means higher quality. In
original CNN Seq2Seq the sum of encoder out-
put and encoder input embeddings are encoded
feature vectors. We follow this setting and use
the feature vectors to calculate cosine similarity.
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Figure 2: Comparison of different reweighting methods
on a simulated distribution. DPPs sampling reweight-
ing approximates original distribution better since it
catches the high attention area around position 160. It
also samples less adjacent points around position 110.
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Figure 3: Construction of L matrix

Specifically, the encoder output are tree-like se-
mantic features extracted by CNN encoder while
the encoder input embedding provides point infor-
mation about a specific input element before en-
coding (Gehring et al., 2017). Hence feature vec-
tors contain both highly abstract semantic features
and specific grammatical features when calculat-
ing diversity. Compared to extractive summariza-
tion, DPPs in abstractive summarization use status
of DNN as quality and diversity which can be op-
timized dynamically during training.

The computation of Lmatrix is shown in Figure
3. For each sample in a batch(128 in our experi-
ments), the encoder input embeddings E ∈ RTs∗C
multiply its transpose to produce similarity matrix
S ∈ RTs∗Ts . The weight vectors of Multi-step
Attention average over decoder layers and sum-

mary length, then do the same operation to gen-
erate quality matrix Q ∈ RTs∗Ts . Then we use the
hadamard product of Q and S as L ∈ RTs∗Ts .

4.2 Macro DPPs

L Matrix
Sample submatrix with large 

attention weight 

Sample Submatrix with 
equidistant sampling

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 

Random Choose 
One In Each Batch

Fix Quality
Optimize 
Diversity

Fix Diversity
Optimize 
Quality

Figure 4: Conditional sampling in Macro DPPs

The idea of Macro DPPs is to pick subsets under
some restriction and evaluate QD-score of subset
using equation 9. The ideal attention distribution
should have subsets with high QD-score.

We do not use DPPs sampling since the purpose
of Macro DPPs is to evaluate subsets not to sam-
ple subsets with high QD-score. The attention dis-
tribute over the ground set so we introduce con-
ditional sampling to sample a subset that has high
quality or high diversity, then improve the other
metric as follows:

• Improve Diversity in High Quality Subset
Select points with high attention weight to
construct subset and require no gradient for
quality matrix, just optimize diversity.

• Improve Quality in High Diversity Sub-
set Sampling point subset with high diversity
is hard to realize, so we just make equidis-
tant(equidistant on word positions) sampling
to approximate it. Contrary to the previous
method, we require no gradient for similarity
matrix and just optimize quality.

We randomly choose one condition in each
batch. After the point subset was chosen, the sub-
matrix LY can be built by selecting elements in
L indexed by point subset. Then we calculate the
QD-score of the submatrix and add it into model
loss as a regularization. We calculate the logarith-
mic summation of eigenvalues to prevent numeri-
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cal underflow.

lossQD =
∑

log λLY
−
∑

log λL+I (11)

∝ det(LY )

det(L+ I)
(12)

lossmodel = γlossMLE + (1− γ)lossQD (13)

4.3 Micro DPPs

The idea of Micro DPPs is to sample a subset
Y with large QD-score from all article positions
and to use these sampled points as adjusted at-
tention focus points. Then a Gaussian Mixture
(GM) distribution around these points is generated
as ideal attention distribution(weightideal). The
whole process can be seen as a selection and soft-
ening on attention. The Kullback-Leibler diver-
gence of the ideal distribution and attention distri-
bution (weight) then is added into the loss func-
tion as regularization.

P = BFGMInference(L, t) (14)

weightideal = GMµ∈P (µ, σ, π) (15)

lossKL = KLdiv(weightideal, weightattn)
(16)

lossmodel = γlossMLE + (1− γ)lossKL (17)

Classic sampling algorithm for DPPs (Kulesza
and Taskar, 2011) runs slow when the size of L
matrix is large and it can not be computed in batch.
In the DivCNN Seq2Seq model we need to con-
struct an L matrix for every sample and every
layer in the decoder, which is ultimately large. To
optimize DPPs runtime for this large-scale com-
putation, we introduce a Batch computation ver-
sion of Fast Greedy Maximum A Posteriori Infer-
ence (Chen et al., 2018)(BFGMInference) to sam-
ple a subset with high QD-score.

BFGMInference uses a greedy method
to approximate the MAP result Ymap =
argmaxY ∈D det(LY ): each time we select
j that has maximum QD-score improvements and
add it to Y .

f(Y ) = log det(LY ) (18)

j = argmax
i∈D\Y

f(Y ∪ {i})− f(Y ) (19)

Algorithm 1 BFGMInference

Input: matrix L ∈ RB∗Ts∗Ts , size of sampled subset
t

Output: Sampled subset Y ∈ RB∗t

1: Initialize Di = Lii; mask = 1B∗Ts ; J =
argmax(log(D ∗mask)); C ∈ 0B∗Ts∗1

2: maskj∈J = 0
3: count = 1
4: while count < t do
5: candidate = {i|maski = 1}
6: ctemp = 0B∗Ts∗1, dtemp = 0B∗Ts

7: for idx = 0; idx < Ts− count; idx++ do
8: i = candidate[:, idx], j = J
9: ei = (Lj,i − 〈cj , ci〉)/dj

10: ctempi = ei, dtempi = ei
2

11: end for
12: C = [C, ctemp], D = D − dtemp
13: J = argmax(log(D ∗mask))
14: maskj∈J = 0
15: count = count+ 1
16: end while
17: Y = {i|maski = 0}
18: return Y

By using Cholesky decomposition we have:

LY = V V T (20)

LY ∪{i} =

[
V 0
ci di

] [
V 0
ci di

]T
(21)

V cTi = LY,i (22)

d2i = Lii − ||ci||22 (23)

Then we can transform equation 19 into:

j = argmax
i∈D\Y

log(d2i ) (24)

The c and d can be updated incrementally accord-
ing to equation 22 and 23. The complete algo-
rithm is described in Algorithm 1. BFGMInfer-
ence algorithm gains significant speed improve-
ments when the size of L matrix is large as shown
in Figure 5.

5 Experimental Setup

Datasets We test DivCNN Seq2Seq model
on the widely used CNN-DM dataset (Her-
mann et al., 2015) and give detailed analy-
sis on diversity and quality. Also we tried
our model on other five abstractive summa-
rization datasets which are NEWSROOM cor-
pus (Grusky et al., 2018), TLDR (Völske et al.,
2017), BIGPATENT (Sharma et al., 2019), WIK-
IHOW (Koupaee and Wang, 2018) and RED-
DIT (Kim et al., 2018). For CNN-DM corpus we
truncate articles to 600 words and summaries to
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Dataset # Docs Type Average Document
Words

Average Summary
Words

CNN-DM 287227/13368/11490 News 789/777/768 55/59/62
NEWSROOM 995041/108862/108837 News 659/654/652 26/26/26

REDDIT 34000/4000/4000 Social Media 418/445/451 20/23/25
BIGPATENT 1207222/67068/67072 Documentation 699/699/699 116/116/116

TLDR 960000/20000/20000 Social Media 197/195/204 19/19/19
WIKIHOW 180000/10000/20000 Knowledge Base 475/488/418 62/60/74

Table 2: Dataset overview(train/valid/test).

Figure 5: Speed comparison of classical DPPs sam-
pling (blue), FGMInference (red) and BFGMInference
(gray) with a batch size of 100.

70 words. For other corpus we only keep articles
and summaries that have length around its aver-
age length. Specially we only use the TIFU-long
version of REDDIT and non-anonymized version
of CNN-DM dataset. If the raw datasets were not
divided into train/dev/test then we divide the shuf-
fled datasets manually. Details of all six datasets
are shown in Table 2.

Hyperparameters and Optimization All the
CNN models use a 50000 words article dictio-
nary and 20000 words summary dictionary with
byte pair encoding (BPE) (Sennrich et al., 2015).
Word embeddings are pretrained on training cor-
pus using Fasttext (Bojanowski et al., 2017; Joulin
et al., 2016). We do not train models with large
parameters to increase ROUGE results since what
we try to improve is the comprehensiveness of
each sentence in summary. The total parameters
of whole CNN seq2seq Model are about 3800w
and the DivCNN Seq2Seq does not change the pa-
rameters amount. All the models set embedding
dimensionality and CNN channels to 256. The en-
coder has 20 blocks with kernel size 5 and the de-
coder has 4 blocks with kernel size 3. Such scale
of model parameters are enough for the model to
generate fluent summaries. The γ is 0.6 for Macro

DPPs and 0.7 for Micro DPPs. In Macro DPPs
we choose top 30 points when optimizing diversity
and a stride of 20 for equidistant. In Micro DPPs
for each summary we sample 20 points to generate
gaussian mixture distributions. We train the model
with Nesterov’s accelerated gradient method us-
ing a momentum of 0.99 and renormalized gradi-
ents when the norm exceeded 0.1 (Sutskever et al.,
2013). The beam search size is 5 and we apply a
dropout of 0.1 to the embeddings and linear trans-
form layers. We did not fix training epoches. The
model was trained until the average epoch loss can
not be lower anymore. The DPPs regularization
only works when training and does not bring ex-
tra parameters into model. During test the model
has learned proper attention so the generation is
the same as vanilla CNN Seq2Seq Model.

Article-Related Metrics It is hard to evaluate
a summary since summarization itself is very sub-
jective. ROUGE compares generated summaries
and gold summaries in checking concurrence of
n-grams that results in a very limited evaluation in
a word level. We set three article-related metrics
to evaluate the comprehensiveness of summaries:

• Jaccard Similarity Upper Bound (JS) For
each summary sentence, we compute its jac-
card similarity with every article sentence.
The largest jaccard similarity for each sum-
mary sentence is selected as JS. It measures
the extent to which summaries copy articles.
The worst situation is 1.

• Sentence Coverage (SC) We define those ar-
ticle sentences that have a jaccard similarity
higher than the gold summaries JS value as
covered sentence. Then the average counts of
covered article sentences for each summary
sentence is a ratio that can be used to measure
the coverage of the article by the summaries.
The worst situation is less than or equal to 1.

• Novel Bigram Proportion (NOVEL) The
percentage of bigrams in summaries that did
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not appear in the article. It reflects the ab-
straction of summaries. The worst situation
is 0.

Strong Baseline We chose four strong base-
lines which reported high ROUGE scores. Bot-
tomUp (Gehrmann et al., 2018), sumGAN (Liu
et al., 2018) and RL Rerank (Chen and Bansal,
2018) are complicate systems that have additional
modules or post-processings and partially relieved
the OTR problem. The Pointer Generator (See
et al., 2017) reaches best ROUGE result in single
end to end model but suffers greatly from repeti-
tion problem.

Various Possible Causes of the OTR problem
We had supposed several other reasons for the rep-
etition problems besides attention degeneration in-
cluding overfitting, bad usage of translation-style
attention mechanism, lack of decoding ability and
high variance attention distribution. Respectively,
we designed comparative experiments as follows:

• Overfitting We set dropout ratio to 0.1
(SMALL) and 0.5 (LARGE) for testing over-
fitting.

• Direct Attention Remove the encoder input
embedding in attention value so the decoder
looks at highly abstract features directly (DI-
RECT).

• Lack of Decoding Ability We double (DOU-
BLE) or half (HALF) the vanilla (VANILLA)
decoder layers to adjust the decoding ability.

• High Variance Attention We scale down the
attention distribution manually when train-
ning (SCALE), lowering the variance of the
distribution.

6 Results

Various Possibilities As shown in Table 4, scaled
attention has the lowest jaccard similarity up-
per bound, which confirms our idea that over-
concentrated attention makes model to copy arti-
cle sentences. As for sentence coverage, small de-
coder with large drop out ratio performs the best,
proving that large and overfitted models may have
degenerated attention. Although the scaled atten-
tion has the best JS score, its SC score is the worst
(SC less than 1.0 means duplicate sentences are
generated). So, we may conclude that directly

scaling down attention breaks the value of atten-
tion. The ideal attention is not about erasing the
peak or the variance of attention but to have mul-
tiple peaks in sentence attention and have high di-
versity at the same time. Neither aggregative nor
scattering attention distributions do good to sum-
mary generation. Direct attention model has the
maximum NOVEL score which means point in-
formation about a specific input element makes
model prefer copying article words instead of gen-
erating new words.

CNN-DM Results With large model parame-
ters and dictionaries, four models in strong base-
lines reach nearly 40 points in ROUGE-1 but they
perform poorly on article-related metrics. Single
end to end systems like Pointer Generator per-
forms poorly on JS value and NOVEL proportion
which means most of its summaries are copied
from articles. As for three models with mul-
tiple modules or post-processing, the BottomUp
model has relatively good jaccard similarity upper
bound and the best ROUGE result but its article-
related metrics are still far away from gold sum-
maries level. RL Rerank model has better score
on JS and sumGAN has better NOVEL score but
none of these model reached a balanced good per-
formance on three article-related metrics. Com-
pared to vanilla CNN Seq2Seq, DivCNN Seq2Seq
improves the JS and NOVEL points and raises
the ROUGE score at the same time, proving
that proper attention distribution can help reach-
ing a better local optima. Compared with strong
baselines, DivCNN Seq2Seq achieves the best in
NOVEL, second and third in JS and SC, respec-
tively. Empirically we suggest that γ for both Mi-
cro and Macro DPPs should be set to make aver-
age loss change less than 10% compared to vanilla
models. We also observed that Micro DPPs is
more sensitive to γ compared to Macro DPPs and
is easier to converge but may degenerate to vanilla
CNN Seq2Seq. Macro DPPs usually can reach
better results but it needs more time to train since
eigenvalue calculation is expensive and can not be
accelerated through fp16 tensor computing.

Novel Bigram NOVEL is a tricky metric which
is used in many researches about abstractive sum-
marization. There are many possibilities on ex-
plaining a high NOVEL score: first, the sum-
mary get a high Novel Bigram ratio because it has
many Novel unigrams, which may be good or bad;
second, the model may be underfitting and can
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Model JS SC NOVEL R1 R2 RL
gold 0.326 – 0.575 – – –

(Liu et al., 2018) sumGAN 0.709 1.136 0.118 39.92 17.65 27.25
(Gehrmann et al., 2018) BottomUp 0.541 1.015 0.098 41.53 18.76 27.92

(Chen and Bansal, 2018) RL Rerank 0.585 1.181 0.105 39.38 16.03 24.95
(See et al., 2017) Pointer Generator 0.774 1.317 0.079 39.53 17.28 26.89

CNN Seq2Seq Vanilla 0.616 1.137 0.167 30.4 11.7 23.09
DivCNN Seq2Seq with Micro DPPs 0.568 1.214 0.183 30.61 11.82 23.19
DivCNN Seq2Seq with Macro DPPs 0.587 1.265 0.177 32.28 12.75 24.32

Extract with Attention – – – 35.48 13.67 22.85
Extract with DPPs Diversified Attention – – – 35.35 13.69 23.07

Table 3: Results on CNN-DM datasets.

Model JS SC NOVEL
SCALE 0.382 0.79 0.199
DIRECT 0.567 1.14 0.207

LARGE
DOUBLE 0.591 1.201 0.192
VANILLA 0.639 1.261 0.162

HALF 0.639 1.281 0.153

SMALL
DOUBLE 0.631 1.259 0.167
VANILLA 0.616 1.137 0.167

HALF 0.625 1.29 0.161

Table 4: Explore various possible causes of OTR.

not generate fluent sentences; third, the generated
summary use novel bigrams to conclude the orig-
inal text and generate readable sentences, which
is the best condition. From the table 3 we can see
that Bottom Up has the best ROUGE and JS results
but worst NOVEL score. Our DivCNN Models
have just the opposite metric scores. These three
metrics shouldn’t be ambivalent since gold sum-
maries can reach high NOVEL and low JS at the
same time. Base on these facts we make the fol-
lowing conjectures:

• Good summaries model learned have styles
differ from human-write summaries. Model
tend to copy bigrams from original article
and reorganize them into short summary sen-
tences. Human tend to use brand new bi-
grams to paraphrase facts contained in origi-
nal article. The model use a rewrite(compress
and extract) way while human-write is over-
write style.

• Though we use human-write summaries as
gold summaries for model to learn and the
MLE loss is steadily descending during train-
ing but it learned summaries with different
style. It implicates that model may not have
a ”NLU+NLG” process like human do but be

restrained in a sentence-level rewrite frame-
work. For Bottom Up and RL Rerank it is
not a problem because these two systems are
designed to rewrite. They only send parts of
article into Seq2Seq. Such design can gain
high ROUGE score but it is not the way in
which human write gold summaries.

Figure 6: Actual attention distribution learned by
vanilla model and DPPs models.

Extractive Summarization based on Learned
Attention We also extract article sentences based
on sentence attention learned by DPPs models to
generate summaries. The attention of a sentence
is the sum of the attention weights of the words
in the sentence. Table 3 shows that extractive
summarization reaches better ROUGE values, im-
plicating that both vanilla and DivCNN models
learned appropriate sentence attention. Extractive
summarization uses accumulated sentence atten-
tion instead of specific distribution, so the results
of vanilla models are almost the same as DivCNN.

Sample Visualization We randomly choose
one sample in the test set of CNN-DM corpus to
visualize and analyze. As shown in Table 1 we
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Datasets Baseline Baseline Micro DPPs Macro DPPs
NEWSROOM LEAD-3 Baseline 30.63/21.41/28.57 38.33/25.01/35.3 40.10/26.71/37.24

TLDR - - 65.94/56.97/64.65 66.93/57.84/65.71
BIGPATENT (Chen and Bansal, 2018) 37.12/11.87/32.45 33.21/10.47/24.86 34.55/11.65/25.96
WIKIHOW (See et al., 2017) 28.53/9.23/26.54 24.52/6.49/20.56 27.58/8.01/22.61

REDDIT (Kim et al., 2018) 19/3.7/15.1 21.39/4.24/17.11 21.57/4.48/17.29

Table 5: ROUGE F1 results(R1/R2/RL) on different datasets

highlighted attentive parts in the article for differ-
ent models. The vanilla model just generates one
sentence which only focuses on one part of article.
The Micro DPPs model generates two sentences
considering three parts of the article. Macro DPPs
considered article spans that both vanilla model
and Micro DPPs model paid attention to. We also
checked the attention distribution of this sample.
As shown in Figure 6, vanilla model (red) learned
only several peaks over article position 70 to 90,
which suggests that it only focuses on one sen-
tence and repeats this sentence in a summary. At-
tention learned by Micro DPPs model (green) still
narrows to several peaks but explores more posi-
tions compared to vanilla. Macro DPPs (blue) has
more natural design of loss function and it opti-
mize quality and diversity directly so it has a more
scattering attention distribution.

More Datasets We test our model on other five
newly-released abstractive summarization datasets
which have various compression ratio, different
professional field and more flexible human-write
summaries. Only ROUGE results are collected
since no baseline generated summaries are pro-
vided for us to calculate article-related metrics.
Table 5 shows that DivCNN performs better than
best baselines on NEWSROOM, REDDIT and
reaches incredible ROUGE scores more than 60
(but no baseline is reported in the dataset paper so
the result is not comparable). The compression ra-
tio and article length have little impact on the per-
formance of DivCNN. The results show that Di-
vCNN prefers short summaries.

Attention & Representation Degeneration In
order to solve attention degeneration we introduce
DPPs to improve the diversity of features where
model paid high attention to. This solution is con-
sistent with the Presentation Degeneration Prob-
lem in NLG (Gao et al., 2018). As shown in Figure
7, Macro DPPs have more diverse embedding pre-
sentation compared to vanilla model. (Gao et al.,
2018) directly add a regularization loss of diver-
sity to increase the representation power of word
embeddings while we aim at generating attention

Figure 7: Presentation Degeneration Problem in NLG.
We use tSNE (Maaten and Hinton, 2008) to reduce the
dimension of word embeddings learned in the model.

distribution considering both quality and diversity,
resulting in learning word embeddings with rich
representation power.

7 Conclusions and Future Works

We have defined the ”OTR” problem that leads to
incomplete summaries and revealed the cause be-
hind it, which is attention degeneration. We also
introduce three article-related metrics to evaluate
this problem. DPPs are applied directly on atten-
tion generation and we propose Macro and Mi-
cro DPPs versions of DivCNN Seq2Seq model to
adjust attention considering both quality and di-
versity. Results on CNN-DM and other five open
datasets show that DivCNN Seq2Seq can improve
the comprehensiveness of summaries.

Due to the hardware limitation we only train
a small-parameters version of DivCNN. Also we
lost some precision when approximating L ma-
trix and accelerating sampling. These drawbacks
lead to limited performance improvements. In
the future we hope to explore further on fol-
lowing directions: Quantifiable and controllable
quality/diversity in DPPs; better approximation in
conditional sampling, such as dynamic sampling
stride adjustment; try to apply DPPs-optimized at-
tention on another student model to improve gen-
eration.
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