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Abstract

The task of entity linking aims to identify con-
cepts mentioned in a text fragments and link
them to a reference knowledge base. Entity
linking in long text has been well studied in
previous work. However, short text entity link-
ing is more challenging since the texts are
noisy and less coherent. To better utilize the
local information provided in short texts, we
propose a novel neural network framework,
Aggregated Semantic Matching (ASM), in
which two different aspects of semantic infor-
mation between the local context and the can-
didate entity are captured via representation-
based and interaction-based neural semantic
matching models, and then two matching sig-
nals work jointly for disambiguation with a
rank aggregation mechanism. Our evaluation
shows that the proposed model outperforms
the state-of-the-arts on public tweet datasets.

1 Introduction

The task of entity linking aims to link a men-
tion that appears in a piece of text to an entry
(i.e. entity) in a knowledge base. For example,
as shown in Table 1, given a mention Trump in
a tweet, it should be linked to the entity Donald
Trump1 in Wikipedia. Recent research has shown
that entity linking can help better understand the
text of a document (Schuhmacher and Ponzetto,
2014) and benefits several tasks, including named
entity recognition (Luo et al.) and information re-
trieval (Xiong et al., 2017b). The research of entity
linking mainly considers two types of documents:
long text (e.g. news articles and web documents)
and short text (e.g. tweets). In this paper, we focus
on short text, particularly tweet entity linking.

∗Correspondence author is Rong Pan. This work was
done when the first and second author were interns and the
third author was an employee at Microsoft Research Asia.

1https://en.wikipedia.org/wiki/Donald Trump

Tweet
The vile #Trump humanity raises its gentle face
in Canada ... chapeau to #Trudeau
Candidates
Donald Trump, Trump (card games), ...

Table 1: An illustration of short text entity linking,
with mention Trump underlined.

One of the major challenges in entity link-
ing task is ambiguity, where an entity mention
could denote to multiple entities in a knowledge
base. As shown in Table 1, the mention Trump
can refer to U.S. president Donald Trump and
also the card name Trump (card games). Many
of recent approaches for long text entity linking
take the advantage of global context which cap-
tures the coherence among the mapped entities
for a set of related mentions in a single docu-
ment (Cucerzan, 2007; Han et al., 2011; Glober-
son et al., 2016; Heinzerling et al., 2017). How-
ever, short texts like tweets are often concise and
less coherent, which lack the necessary informa-
tion for the global methods. In the NEEL dataset
(Weller et al., 2016), there are only 3.4 mentions in
each tweet on average. Several studies (Liu et al.,
2013; Huang et al., 2014) investigate collective
tweet entity linking by pre-collecting and consid-
ering multiple tweets simultaneously. However,
multiple texts are not always available for collec-
tion and the process is time-consuming. Thus, we
argue that an efficient entity disambiguation which
requires only a single short text (e.g., a tweet) and
can well utilize local contexts is better suited in
real word applications.

In this paper, we investigate entity disambigua-
tion in a setting where only local information is
available. Recent neural approaches have shown
their superiority in capturing rich semantic sim-
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ilarities from mention contexts and entity con-
tents. Sun et al. (2015); Francis-Landau et al.
(2016) proposed using convolutional neural net-
works (CNN) with Siamese (symmetric) archi-
tecture to capture the similarity between texts.
These approaches can be viewed as represen-
tation-focused semantic matching models. The
representation-focused model first builds a rep-
resentation for a single text (e.g., a context or
an entity description) with a neural network, and
then conducts matching between the abstract rep-
resentation of two pieces of text. Even though
such models capture distinguishable information
from both mention and entity side, some con-
crete matching signals are lost (e.g., exact match),
since the matching between two texts happens af-
ter their individual abstract representations have
been obtained. To enhance the representation-
focused models, inspired by recent advances in in-
formation retrieval (Lu and Li, 2013; Guo et al.,
2016; Xiong et al., 2017a), we propose using in-
teraction-focused approach to capture the con-
crete matching signals. The interaction-focused
method tries to build local interactions (e.g., co-
sine similarity) between two pieces of text, and
then uses neural networks to learn the final match-
ing score based on the local interactions.

The representation- and interaction-focused ap-
proach capture abstract- and concrete-level match-
ing signal respectively, they would be comple-
ment each other if designed appropriately. One
straightforward way to combine multiple seman-
tic matching signals is to apply a linear regres-
sion layer to learn a static weight for each match-
ing signal(Francis-Landau et al., 2016). However,
we observe that the importance of different sig-
nals can be different case by case. For example,
as shown in Table 1, the context word Canada
is the most important word for the disambiguation
of Trudeau. In this case, the concrete-level match-
ing signal is required. While for the tweet “#Star-
Wars #theForceAwakens #StarWarsForceAwakens
@StarWars”, @StarWars is linked to the entity
Star Wars2. In this case, the whole tweet describes
the same topic “Star Wars”, thus the abstract-level
semantics matching signal is helpful. To address
this issue, we propose using a rank aggregation
method to dynamically combine multiple seman-
tic matching signals for disambiguation.

In summary, we focus on entity disambiguation

2https://en.wikipedia.org/wiki/Star Wars

by leveraging only the local information. Specif-
ically, we propose using both representation-
focused model and interaction-focused model for
semantic matching and view them as complemen-
tary to each other. To overcome the issue of the
static weights in linear regression, we apply rank
aggregation to combine multiple semantic match-
ing signals captured by two neural models on mul-
tiple text pairs. We conduct extensive experiments
to examine the effectiveness of our proposed ap-
proach, ASM, on both NEEL dataset and MSR
tweet entity linking (MSR-TEL for short) dataset.

2 Background

2.1 Notations
Given a tweet t, it contains a set of identified
queries Q = (q1, ..., qn). Each query q in a tweet t
consists of m and ctx, where m denotes an entity
mention and ctx denotes the context of the men-
tion, i.e., a piece of text surroundingm in the tweet
t. An entity is an unambiguous page (e.g., Donald
Trump) in a referent Knowledge Base (KB). Each
entity e consists of ttl and desc, where ttl denotes
the title of e and desc denotes the description of e
(e.g., the article defining e).

2.2 An Overview of the Linking System
Typically, an entity linking system consists of
three components: mention detection, candidate
generation and entity disambiguation. In this sec-
tion, we will briefly presents the existing solutions
for the first two components. In next section, we
will introduce our proposed aggregated semantic
matching for entity disambiguation.

2.2.1 Mention Detection
Given a tweet t with a sequence of words
w1, ..., wn, our goal is to identify the possible en-
tity mentions in the tweet t. Specifically, every
word wi in tweet t requires a label to indicate
that whether it is an entity mention word or not.
Therefore, we view it as a traditional named entity
recognition (NER) problem and use BIO tagging
schema. Given the tweet t, we aim to assign labels
y = (y1, ..., yn) for each word in the tweet t.

yi =


B wi is a begin word of a mention,
I wi is a non-begin word of a mention,
O wi is not a mention word.

In our implementation, we apply an LSTM-CRF
based NER tagging model which automatically
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Figure 1: An overview of aggregated semantic
matching for entity disambiguation.

learns contextual features for sequence tagging via
recurrent neural networks (Lample et al., 2016).

2.2.2 Candidate Generation
Given a mention m, we use several heuristic rules
to generate candidate entities similar to (Bunescu
and Pasca, 2006; Huang et al., 2014; Sun et al.,
2015). Specifically, given a mention m, we re-
trieve an entity as a candidate from KB, if it
matches one of the following conditions: (a) the
entity title exactly matches the mention, (b) the
anchor text of the entity exactly matches the men-
tion, (c) the title of the entity’s redirected page ex-
actly matches the mention Additionally, we add
a special candidate NIL for each mention, which
refers to a new entity out of KB. Given a mention,
multiple candidates can be retrieved. Hence, we
need to do entity disambiguation.

3 Aggregated Semantic Matching Model

We investigate entity disambiguation using only
local information provided in short texts in this
paper. Here, the local information includes a men-
tion and its context in a tweet. Similar to (Francis-
Landau et al., 2016), given a query q and an en-
tity e, we consider semantic matching on the four
text pairs for disambiguation: (1) the similarity
sim(m, ttl) between the mention and entity ti-
tle, (2) the similarity sim(m, desc) between the
mention and entity description, (3) the similarity
sim(ctx, desc) between the context and entity de-
scription, (4) the similarity sim(ctx, ttl) between
the context and entity description. Fig. 1 illustrates
an overview of our proposed Aggregated Semantic
Matching for entity disambiguation. First, we use
a representation-focused model and an interaction-
focused neural model for semantic matching on
four text pairs. Then, we introduce a pairwise rank
aggregation to combine multiple semantic match-

ing signals captured by the two neural models on
four text pairs.

3.1 Semantic Matching

Formally, given two texts T1 and T2, the semantic
similarity of the two texts is measured as a score
produced by a matching function based on the rep-
resentation of each text:

match(T1, T2) = F (Φ(T1),Φ(T2)) (1)

where Φ is a function to learn the text representa-
tion, and F is the matching function based on the
interaction between the representations.

Existing neural semantic matching models
can be categorized into two types: (a) the
representation-focused model which takes a com-
plex representation learning function and uses
a relatively simple matching function, (b) the
interaction-focused model which usually takes a
simple representation learning function and uses
a complex matching function. In the remaining
of this section, we will present the details of a
representation-focused model (M-CNN) and an
interaction-focused model (K-NRM). We will also
discuss the advantages of these two models in the
entity linking task.

3.1.1 Convolution Neural Matching with
Max Pooling (M-CNN)

Given two pieces of text T1 = {w1
1, ..., w

1
n} and

T2 = {w2
1, ..., w

2
m}, M-CNN aims to learn com-

positional and abstract representations (Φ) for T1
and T2 using a convolution neural network with a
max pooling layer(Francis-Landau et al., 2016).

Figure 2a illustrates the architecture of M-CNN
model. Given a sequence of words w1, ..., wn,
we embed each word into a d dimensional vector,
which yields a set of word vectors v1, ..., vn. We
then map those word vectors into a fixed-size vec-
tor using a convolution network with a filter bank
M ∈ Ru×d, where window size is l and u is the
number of filters. The convolution feature matrix
H ∈ Rk×(n−l+1) is obtained by concatenating the
convolution outputs

−→
h i:

−→
hj = max{0,Mvj:(j+l)}

H = [
−→
h 1, ...,

−→
h n−l+1]

(2)

where vj:j+l is a concatenation of the given word
vectors and the max is element-wise. In this way,
we extract word-level n-gram features of T1 and
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Figure 2: The Architecture of models.

T2 respectively. To capture the distinguishable in-
formation of T1 and T2, a max-pooling layer is ap-
plied and yields a fixed-length vector −→z1 and −→z2
for T1 and T2. The semantic similarity between
T1 and T2 is measured using a cosine similarity
match(T1, T2) = cosine(−→z1 ,−→z2 ).

In summary, M-CNN extracts distinguishable
information representing the overall semantics
(i.e. representations) of a string text by using
a convolution neural network with max-pooling.
However, the concrete matching signals (e.g., ex-
act match) are lost, as the matching happens after
their individual representation. We therefore intro-
duce an interaction-focused model to better cap-
ture the concrete matching in the next section.

3.1.2 Neural Relevance Model with Kernel
Pooling (K-NRM)

As shown in Fig. 2b, K-NRM captures the local
interactions between T1 and T2 , and then uses a
kernel-pooling layer (Xiong et al., 2017a) to softly
count the frequencies of the local patterns. The fi-
nal matching score is conducted based on the pat-
terns. Therefore, the concrete matching informa-
tion is captured.

Different from M-CNN, K-NRM builds the lo-
cal interactions between T1 and T2 based on the
word-level n-gram feature matrix calculated in
Eq. 2. Formally, we construct a translation matrix
M , where each element in M is the cosine simi-
larity between an n-gram feature vector

−→
h

q

i in T1
and an n-gram feature vector

−→
h

e

j in T2, calculated

as Mij = cosine(
−→
h

q

i ,
−→
h

e

j).
Then, a scoring feature vector φ(M) is gener-

ated by a kernel-pooling technique.

φ(M) =
n−l+1∑
i=1

√−→
K (Mi)

−→
K (Mi) = {K1(Mi), ...,KK(Mi)}

(3)

where
−→
K (Mi) applies K kernels to the i-th

row of the translation matrix, and generates a
K−dimensional scoring feature vector for the i-
th n-gram feature in the query. The sqrt-sum of
the scoring feature vectors of all n-gram features
in query forms the scoring feature vector φ for the
whole query, where the sqrt reduces the range of
the value in each kernel vector. Note that the effect
of
−→
K depends on the kernel used. We use the RBF

kernel in this paper.

Kk(Mi) =
∑
j

exp(
−(Mij − µk)2

2σ2
) (4)

The RBF kernel Kk calculates how pairwise sim-
ilarities between n-gram feature vectors are dis-
tributed around its mean µk: the more similarities
closed to its mean µk, the higher the output value
is. The kernel functions act as ‘soft-TF’ bins,
where µ defines the similarity level that ‘soft-TF’
focuses on and σ defines the range of its ‘soft-TF’
count. Then the semantic similarity is captured
with a linear layermatch(T1, T2) = wTφ(M)+b,
where φ(M) is the scoring feature vector.

In summary, K-NRM captures the concrete
matching signals based on word-level n-gram fea-
ture interactions between T1 and T2. In contrast,
M-CNN captures the compositional and abstract
meaning of a whole text. Thus, we produce the
semantic matching signals using both models to
capture different aspect of semantics that are use-
ful for entity linking.

3.2 Normalization Scoring Layer

We compute 4 types of semantic similarities be-
tween the query q and the candidate entity e
(e.g., sim(m, tit), sim(m, desc), sim(ctx, tit),
sim(ctx, desc)) with the above two semantic
matching models. We obtain 8 semantic match-
ing signals, denoted as f1(q, e), ..., f8(q, e) in to-
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tal. The normalized ranking score for each seman-
tic matching signals fi(q, e) is calculated as

si(q, e, f) =
exp(fi(q, e))∑
e′ exp(fi(q, e

′))
(5)

where e
′
stands for any of the candidate entities for

the given mention m. We then produce 8 semantic
matching scores for each candidate entity of m,
denoted as Sq,e = {s1, ..., s8}.

3.3 Rank Aggregation

Given a query q, we obtain multiple semantic
matching signals for each entity candidate after
the last step. To take advantage of different se-
mantic matching models on different text pairs, a
straightforward approach is using a linear regres-
sion layer to combine multiple semantic matching
signals (Francis-Landau et al., 2016). The linear
combination learns a static weight for each match-
ing signal. However, as we pointed out previously,
the importance of different signals varies for dif-
ferent queries. In some cases, the abstract-level
signals are important. While the concrete-level
signals are more important in other cases. To ad-
dress this issue, we introduce a pairwise rank ag-
gregation method to aggregate multiple semantic
matching signals.

In the area of information retrieval, rank ag-
gregation is combining rankings from multiple re-
trieval systems and producing a better new rank-
ing (Carterette and Petkova, 2006). In our prob-
lem, given a query q, we have one ranking of the
entity candidates for each semantic matching sig-
nal. We aim to find the final ranking by aggregat-
ing multiple rankings. Specifically, given a rank-
ing of entities for one semantic matching signal,
e1 � e2 � e3 . . . , where i � j means entity i is
ranked above j, we extract all entity pairs (ei, ej)
from the ranking and assume that if ei � ej , then
ei is preferred to ej . We union all pairwise prefer-
ences generated from multiple rankings as a single
set, from which the final ranking is learned. In this
paper, we apply TrueSkill (Herbrich et al., 2006)
which is a Bayesian skill rating model. We present
a two-layer version of TrueSkill with no-draw.

TrueSkill assumes that the practical perfor-
mance of each player in a game follows a nor-
mal distribution N(µ, σ2), where µ means the
skill level of the player and σ stands for the un-
certainty of the estimated skill level. Basically,
TrueSkill learns the skill levels of players by lever-

aging Bayes’ theorem. Given the current esti-
mated skill levels of two players (prior probabil-
ity) and the outcome of a new game between them
(likelihood), TrueSkill model updates its estima-
tion of player skill levels (posterior probability).
TrueSkill updates the skill level µ and the un-
certainty σ intuitively: (a) if the outcome of a
new competition is expected, i.e., the player with
higher skill level wins the game, it will cause small
updates in skill level µ and uncertainty σ; (b) if the
outcome of a new competition is unexpected, i.e.,
the player with lower skill level wins the game, it
will cause large updates in skill level µ and uncer-
tainty σ. According to these intuitions, the equa-
tions to update the skill level µ and uncertainty σ
are as follows:

µwinner = µwinner +
σ2winner

c
∗ v(

t

c
,
ε

c
)

µloser = µloser −
σ2loser
c
∗ v(

t

c
,
ε

c
)

σ2winner = σ2winner ∗ [1− σ2winner

c2
∗ w(

t

c
,
ε

c
)]

σ2loser = σ2loser ∗ [1−
σ2loser
c2
∗ w(

t

c
,
ε

c
)]

(6)
where t = µwinner − µloser and c2 = 2β2 +
σ2winner + σ2loser. Here, ε is a parameter repre-
senting the probability of a draw in one game, and
v(t, ε) and w(t, ε) are weighting factors for skill
level µ and standard deviation σ respectively. β
is a parameter representing the range of skills. In
this paper, we set the initial values of the skill level
µ and the standard deviation σ of each player the
same as the default values used in (Herbrich et al.,
2006). We use µ − 3β to rank entities following
(Herbrich et al., 2006).

4 Experiments

In this section, we describe our experimental re-
sults on tweet entity linking. Particularly, we
investigate the difference between two semantic
matching models and the effectiveness of jointly
combining these two semantic matching signals.

4.1 Datasets & Evaluation Metric
In our experiments, we evaluate our proposed
model ASM on the following two datasets.

NEEL Weller et al. (2016). We use the dataset
of Named Entity Extraction & Linking Challenge
2016. The training dataset consists of 6,025 tweets
and includes 6,374 non-NIL queries and 2,291
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NIL queries. The validation dataset consists of
100 tweets and includes 253 non-NIL queries and
85 NIL queries. The testing dataset consists of 300
tweets and includes 738 non-NIL queries and 284
NIL queries.

MSR-TEL Guo et al. (2013)3. This dataset
consists of 428 tweets and 770 non-NIL queries.
Since the NEEL test dataset has distribution bias
problem, we add MSR-TEL as another dataset for
the evaluation. In the NEEL testing dataset, 384
out of 1022 queries refer to three entities: ‘Don-
ald Trump’, ‘Star Wars’ and ‘Star Wars (The Force
Awakens)’.

In this paper, we use accuracy as the major eval-
uation metric for entity disambiguation. Formally,
we denote N as the number of queries and M as
the number of correctly linked mentions given the
gold mention (the top-ranked entity is the golden
entity), accuracy = M

N . Besides, we use preci-
sion, recall and F1 measure to evaluate the end-to-
end system. Formally, we denote N

′
as the num-

ber of mentions identified by a system and M
′

as
the correctly linked mentions. Thus, precision =
M
′

N ′
, recall = M

′

N and F1 = 2 ∗ precision∗recall
precision+recall .

4.2 Data Preprocessing
Tweet data All tweets are normalized in the
following way. First, we use the Twitter-aware
tokenizer in NLTK4 to tokenize words in a tweet.
We convert each hyperlink in tweets to a special
token URL. Since hashtags usually does not
contain any space between words, we use a web
service5 to break hastags into tokens (e.g., the
service will break ‘#TheForceAwakens’ into ‘the
force awakens’) by following (Guo et al., 2013).
Regarding to usernames (@) in tweets, we replace
them with their screen name (e.g., the screen name
of the user ‘@jimmyfallon’ is ‘jimmy fallon’).
Wikipedia data We use the Wikipedia Dump on
December 2015 as the reference knowledge base.
Since the most important information of an entity
is usually at the beginning of its Wikipedia article,
we utilize only the first 200 words in the article as
its entity description. We use the default English
word tokenizer in NLTK to do the tokenization
for each Wikipedia article.
Word embedding We use the word2vec
toolkit (Mikolov et al., 2013) to pre-train word

3Guo et al. (2013) only used a subset of this dataset for
evaluation. Instead, we test on the full dataset.

4Natural Language Toolkit. http://www.nltk.org
5http://web-ngram.research.microsoft.com/info/break.html

embeddings on the whole English Wikipedia
Dump. The dimensionality of the word embed-
dings is set to 400. Note that we do not update the
word embeddings during training.

4.3 Experimental Setup
In our main experiment, we compare our proposed
approaches with the following baselines: (a) The
officially ranked 1st and 2nd systems in NEEL
2016 challenge. We denote these two systems as
Rank1 and Rank2. (b) TagMe. Ferragina and
Scaiella (2010) is an end-to-end linking system,
which jointly performs mention detection and en-
tity disambiguation. It focuses on short texts, in-
cluding tweets. (c) Cucerzan. (Cucerzan, 2007)
is a supervised entity disambiguation system that
won TAC KBP competition in 2010. (d) M-CNN.
To the best of our knowledge, (Francis-Landau
et al., 2016) is the state-of-the-art neural disam-
biguation model. (e) Ensemble. The rank ag-
gregated combination of two M-CNN models with
different random seeds.

To fairly compare with the baselines of
Cucerzan and M-CNN, we use the same mention
detection and candidate generation for them and
our approaches. We train an LSTM-CRF based
tagger (Lample et al., 2016) for mention detection
by using the NEEL training dataset. The preci-
sion, recall, and F1 of mention detection on NEEL
testing dataset are 96.1%, 89.2%, 92.6% respec-
tively. The precision, recall, and F1 of mention
detection on MSR-TEL dataset are 80.3% 83.8%
and 82% respectively. As we described in the pre-
vious section, we use the heuristic rules for can-
didate generation. The recall of candidate gen-
eration on NEEL and MSR-TEL is 88.7% and
92.5%.

When training our model, we use the stochastic
gradient descent algorithm and the AdaDelta opti-
mizer (Zeiler, 2012). The gradients are computed
via back-propagation. The dimensionality of the
hidden units in convolution neural network is set
to 300. All the parameters are initialized with a
uniform distribution U(−0.01, 0.01). Since there
is NIL entity in the dataset, we tune a NIL thresh-
old for the prediction of NIL entities according to
the validation dataset.

4.4 Main Results
The end-to-end performance of various ap-
proaches on the two datasets is shown in Table 2.
Since there are no publicly available codes of
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Methods
NEEL MSR-TEL6

Precision Recall F1 Precision Recall F1
Rank 1 - - 50.1 - - -
Rank 2 - - 39.6 - - -
TagMe 25.3 62.9 36.2 14.5 69.2 23.8
Cucerzan 65.4 57.9 61.4 62.6 63.3 62.9
M-CNN 69.5 64.9 67.1 61.6 62.3 62.1

+pre-train 69.7 65.1 67.3 64.5 65.2 64.8
Ensemble 69.7 65.1 67.3 63.5 64.2 63.8

+pre-train 70.2 65.5 67.8 64.9 65.6 65.2
ASM 70.6 65.9 68.2 64.2 64.9 64.5

+pre-train 72.2 67.4 69.7 66.2 66.9 66.5

Table 2: End-to-end performance of the systems on the two datasets

Methods NEEL MSR-TEL
Cucerzan 65.4 75.5
M-CNN 72.8 74.7

+pre-train 72.9 77.6
Ensemble 72.9 76.4

+pre-train 73.5 78.1
ASM 73.9 77.4

+pre-train 75.5 79.4

Table 3: The accuracy of entity disambiguation
with golden mentions on the two datasets.

Rank1 and Rank2, we give only the F1 scores of
these two systems on NEEL dataset according to
Weller et al. (2016). Note that the baseline systems
Rank1, Rank2 and TagMe use different mention
detection.

The systems of Rank1, Rank2, TagMe and
Cucerzan are feature engineering based ap-
proaches. The systems of M-CNN and ASM are
neural based approaches. From Table 2, we
can observe that neural based approaches are
superior to the feature engineering based ap-
proaches. Table 2 also shows that ASM out-
performs the neural based method M-CNN. Our
proposed method ASM also shows improvements
over Ensemble, which indicates the neces-
sity of combining representation- and interaction-
focused models in entity disambiguation.

Moreover, we pre-train both M-CNN,
Ensemble and ASM by using 0.5 million
anchors in Wikipedia, and fine-tune the model pa-
rameters using non-NIL queries in NEEL training
dataset. From Table 2, we can observe that the
performance of neural models will be improved
by using pre-training. The results in Table 2 show

(m, ttl) (ctx, desc) All Pairs
M-CNN 64.8 66.7 72.8
K-NRM 64.1 66.8 72.7

ASM 65.1 69.7 73.9

Table 4: The performance of two semantic match-
ing models and their combinations on NEEL
dataset.

that our proposed ASM is still superior to M-CNN
and Ensemble in the setting of pre-training.

Since entity disambiguation is our focus, we
also give the disambiguation accuracy of differ-
ent approaches by using the golden mentions in
Table 3. Similarly, we observe that our proposed
ASM outperforms baseline systems.

4.5 Model Analysis

In this section, we discuss several key observa-
tions based on the experimental results, and we
mainly report the entity disambiguation accuracy
when given the golden mentions.

4.5.1 Effect of Different Semantic Matching
Methods

We empirically analyze the difference between
the two semantic matching models (M-CNN and
K-NRM) and show the benefits when combing the
semantic matching signals from these two models.

6Note that the performance of all systems on MSR-TEL
dataset might be under estimated, since not all mentions in
each tweet were manually annotated. For example, a cor-
rectly identified mention given by a system, which was not
manually annotated, will be judged as wrong. But we still
give the comparisons of different approaches on MSR-TEL
dataset.
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M-CNN win M-CNN loss
K-NRM win 58.3% 6.3%
K-NRM loss 5.8% 29.6%

Table 5: The win-loss analysis of M-CNN and K-
NRM on the pair (ctx, desc).

Query: the vile #Trump humanity raises its
gentle face in Canada ... chapeau to
#Trudeau,URL

M-CNN: Kevin Trudeau
K-NRM: Justin Trudeau
Query: RT @ MingNa : What is my plan to

avoid spoiler about #theForceAwak-
ens ? No Internet except to post my
@StarWars

M-CNN: Star Wars
K-NRM: Comparison of Star Trek and Star

Wars

Table 6: The top-1 results of M-CNN and K-NRM
using (ctx,desc) pair for two queries. Mention is
in bold and the golden answer is underlined.

We first compare the performance of two se-
mantic matching models over the two text pairs:
(a) (m, ttl) and (b) (ctx, desc). These two pairs
presents two extreme of the information used in
the systems: (m, ttl) consumes the minimum
amount of information from a query and an entity,
while (ctx, desc) consumes the maximum amount
of information from a query and an entity. From
the first two columns in Table 4, we can observe
that M-CNN performs comparably with K-NRM on
the two text pairs. ASM that combines the two
models obtains performance gains on the two indi-
vidual text pairs. The third column in Table 4 also
shows that ASM gives performance gains when
using all text pairs. This indicates that M-CNN
and K-NRM capture complementary information
for entity disambiguation.

Moreover, we observe that the performance
gains are different on the two pairs (m, ttl) and
(ctx, desc). The gain on (ctx, desc) is relatively
larger. This indicates that M-CNN and K-NRM cap-
ture more different information when the text is
long. Additionally, we show the win-loss analy-
sis of the two semantic matching model for non-
NIL queries on (ctx, desc) in Table 5. The 12.1%
(=6.3% + 5.8%) difference between these two
models confirms the necessity of combination.

Method
Without Pre-Train With Pre-Train
NEEL MSR-TEL NEEL MSR-TEL

Linear 73.1 75.7 73.8 78.1
ASM 73.9 77.4 75.5 79.4

Table 7: Comparison of rank aggregation and lin-
ear combination on two datasets.

To further investigate the difference between
the two semantic matching models on short text,
we did case study. Table 6 gives two examples.
In the first example, the correct answer is ‘Justin
Trudeau’ which contains the words of ‘Canada’
and ‘trump’ in its entity description. However,
M-CNN fails to capture this concrete matching in-
formation, since the concrete information of text
might be lost after the convolution layer and max-
pooling layer. In contrast, K-NRM builds the n-
gram level local interactions between texts, and
thus successfully captures the concrete matching
information (e.g. exact match) that results in a cor-
rect linking result. In the second example, both
candidate entities ‘Star Wars’ and ‘Comparison of
Star Trek and Star Wars’ contains the phrase ‘Star
Wars’ for multiple times in their entity descrip-
tions. In this case, K-NRM fails to distinguish the
correct entity ‘Star Wars’ from the wrong entity
‘Comparision of Star Trek and Star Wars’, because
it relies too much on the soft-TF information for
matching. However, the soft-TF information in
the descriptions of the two entities is similar. In
contrast, M-CNN captures the whole meaning of
the text and links the mention to the correct entity.
A detailed analysis of n-grams extracted from the
M-CNN is provided in the Appendix.

4.6 Effect of Rank Aggregation

Table 4 shows that the combination of multiple
semantic matching signals yields the best perfor-
mance. Table 7 compares two different combi-
nation of M-CNN and K-NRM models, the result
shows that the rank aggregation method outper-
forms the linear combination. The rank aggrega-
tion method dynamically summarizes win-loss re-
sults for each signal and generates the final overall
ranking by considering all win-loss results. The
improvement of our method over the linear com-
bination confirms that the importance of different
semantic signals varies for different queries, and
our method is more suitable for combining multi-
ple semantic signals.



484

5 Related Work

Existing entity linking methods can roughly fall
into two categories. Early work focus on local ap-
proaches, which identifies one mention each time,
and each mention is disambiguated separately us-
ing hand-crafted features (Bunescu and Pasca,
2006; Ji and Grishman, 2008; Milne and Witten,
2008; Zheng et al., 2010). While recent work on
entity linking has largely focus on global methods,
which takes the mentions in the document as in-
puts and find their corresponding entities simul-
taneously by considering the coherency of entity
assignments within a document. (Cucerzan, 2007;
Hoffart et al., 2011; Globerson et al., 2016; Ganea
and Hofmann, 2017).

Global models can tap into highly discrimina-
tive semantic signals (e.g. coreference and en-
tity relatedness) that are unavailable to local meth-
ods, and have significantly outperformed the lo-
cal approach on standard datasets(Globerson et al.,
2016). However, global approaches are difficult to
apply in domains where only short and noisy text
is available (e.g. tweets). Many techniques have
been proposed to short texts including tweets. Liu
et al. (2013) and Huang et al. (2014) investigate
the collective tweet entity linking by considering
multiple tweets simultaneously. Meij et al. (2012)
and Guo et al. (2013) perform joint detection and
disambiguation of mentions for tweet entity link-
ing using feature based learning methods.

Recently, some neural network methods have
been applied to entity linking to model the local
contextual information. He et al. (2013) inves-
tigate Stacked Denoising Auto-encoders to learn
entity representation. Sun et al. (2015); Francis-
Landau et al. (2016) apply convolutional neural
networks for entity linking. Eshel et al. (2017)
use recurrent neural networks to model the men-
tion contexts. Nie et al. (2018) uses a co-attention
mechanism to select informative contexts and en-
tity description for entity disambiguation. How-
ever, none of these methods consider combining
representation- and interaction-focused semantic
matching methods to capture the semantic simi-
larity for entity linking, and use rank aggregation
method to combine multiple semantic signals.

6 Conclusion

We propose an aggregated semantic matching
framework, ASM, for short text entity linking.
The combination of the representation-focused

semantic matching method and the interaction-
focused semantic matching method capture both
compositional and concrete matching signals (e.g.
exact match). Moreover, the pairwise rank aggre-
gation is applied to better combine multiple se-
mantic signals. We have shown the effectiveness
of ASM over two datasets through comprehensive
experiments. In the future, we will try our model
for long text entity linking.
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