
Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 85–89,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Character Sequence-to-Sequence Model with Global Attention for
Universal Morphological Reinflection

Qile Zhu, Yanjun Li, Xiaolin Li
Large-scale Intelligent Systems Laboratory

NSF Center for Big Learning
University of Florida

{valder, yanjun.li}@ufl.edu, andyli@ece.ufl.edu

Abstract

This paper presents a neural network
based approach for the CoNLL-
SIGMORPHON-2017 Shared Task 1
on morphological reinflection. We pro-
pose an encoder-decoder architecture to
model this morphological reinflection
problem. For an input word, every char-
acter is encoded through a Bi-directional
Gated Recurrent Unit (GRU) network.
Another GRU network is deployed as a
decoder to generate the inflection. We
participate in Task 1, which includes
52 languages without using external
resources. In each language, three training
sets are provided (high, medium, and
low respectively represent the amount of
training data; Scottish Gaelic only has
medium and low), totally 155 training
sets. Due to time constraints, we only
search for optimized parameters of our
model based on the Albanian dataset. The
source code of our model is available at
https://github.com/valdersoul/conll2017.

1 Introduction

A linguistic paradigm is the complete set of re-
lated word forms associated with a given lexeme.
Within the paradigm, inflected word forms of lex-
emes are defined by the requirements of syntactic
rules. A word’s form reflects syntactic and seman-
tic features that are expressed by the word, such
as the conjugations of verbs, and the declensions
of nouns (Cotterell et al., 2017). For example,
every English count noun has both singular and
plural forms, known as the inflected forms of the
noun. Different languages have various degrees of
inflection. Some can be highly inflected, such as
Latin, Greek, Spanish, Biblical Hebrew, and San-
skrit, and some can be weakly inflected, such as
English. An example is shown in table 1.

inflection tags
release release V;NFIN
release releases V;3;SG;PRS
release releasing V;V.PTCP;PRS
release released V;PST
release released V;V.PTCP;PST

Table 1: An example of an inflection table from
word “release”.

The issue of analyzing and generating differ-
ent morphological forms has received consider-
able critical attention. Errors in the understand-
ing of morphological forms can seriously harm
performance in the machine translation and ques-
tion answering systems. On the other hand, apply-
ing inflection generation as a post-processing step
has been shown to be beneficial to reducing the
data sparsity when translating morphologically-
rich languages (Minkov et al., 2007).

For the CoNLL-SIGMORPHON-2017 Shared
Task 1 (Cotterell et al., 2017) on morphological
reinflection, given a lemma (the dictionary form
of a word) and target morphosyntactic descrip-
tions, a target inflected form is required to be gen-
erated across 52 different languages. In each of
these languages, there are three training sets (high,
medium, and low) representing different amount
of training data (Scottish Gaelic only has medium
and low).

2 Related Work

Inflection generation can be modeled as string
transduction and consists of three major compo-
nents: (1) Aligning characters forms; (2) Extract-
ing string transformation rules; (3) Applying rules
to new root forms (Faruqui et al., 2016).

Recently, end-to-end deep learning approaches
achieve state-of-the-art performance across many
different datasets. LMU system ranked first in
SIGMORPHON shared task (Kann and Schütze,

85



2016). It used an encoder-decoder structure with
attention mechanism to do translation from root
word to its inflection. At the same time, convo-
lutional neural networks have been leveraged to
extract features from root words (Ostling, 2016).
Faruqui et al. (2016) added language model in-
terpolation into the encoder-decoder structure and
trained the neural network in both supervised and
semi-supervised settings, and achieved state-of-
the-art performance in Spanish verb and Finnish
noun and adjective datasets.

Our system leverages a sequence-to-sequence
model similar to Faruqui et al. (2016). For each
language and training set, we train a separate
model using a character-level bidirectional GRU
encoder and a single layer GRU decoder with a
global attention model (Luong et al., 2015).

3 Model

Our system for this Shared Task 1 is based on
an encoder-decoder model proposed by Bahdanau
et al. (2014) for neural machine translation. The
RNN unit we use in our system is GRU (Cho et al.,
2014). Fig. 1 shows our overall architecture.

The GRU reads an input sequence and encodes
each input as a fixed length vector hi, which is
computed by

zt = σg(Wzxt + Uzht−1 + bz) (1)

rt = σg(Wrxt + Urht−1 + br) (2)

ĥt = tanh(rt ◦ Uht−1 +Whxt) (3)

ht = (1− zt) ◦ ĥt + zt ◦ ht−1 (4)

To obtain global information of each input, we use
a bidirectional GRU and concatenate each hidden
state as one vector, hi = [

−→
h i;
←−
h i] to be the out-

put of encoder’s hidden state. For the decoder, we
use a single layer GRU. Our model has two in-
put streams, one is the characters and the other is
the morphological tags. We only encode the input
characters, and make the morphological tags as
another input feature to contribute to the outputs.
We pad the morphological tagging sequences to
the length of the longest tags in the training sets,
and feed them into a fully connected network to
produce the feature.

In neural machine translation, the input and out-
put sequences are semantically equivalent. How-
ever, morphological inflection of a word has differ-
ent semantics (Faruqui et al., 2016). So we make
the encoded input sequence as a part of the input of

decoder together with the morphological tags (in-
cluding part-of-speech; POS). To get the hidden
state of decoder at time step t, we use the previ-
ous hidden state ht−1, the decoder input yt−1, the
encoder state of the root word e, and the represen-
tation of morphological tagging sequence of target
form p to compute:

ht = g(ht−1, {yt−1, e, p}) (5)

where g is the GRU decoder function.
Another difference from machine translation is

that our input and output sequence characters may
be very similar except the inflections. Take the
words release, releasing, and released from En-
glish as an example, these three words only dif-
fer in the ending characters. To make full use of
this similarity, we also add the corresponding in-
put character as a part of the decoder’s input, so ht
is computed as

ht = g(ht−1, {yt−1, xt, e, p}) (6)

To solve the variable length of input and output
sequences, we add paddings as xt indicating null
input.

In the decoding phase, we use a global attention
model based on the hidden state of decoder and all
the hidden states from the encoder (Luong et al.,
2015) to calculate the context vector ct at time step
t as:

ct =

Tx∑

j=1

αtjhj (7)

where αtj is the attention weights, hj is the out-
put of each hidden state from the encoder. The
weights are computed as

scoretj = tanh((Waht + ba)
T · hj) (8)

αtj =
exp(scoretj)∑
i exp(scoreti)

(9)

This context vector can be treated as a fixed rep-
resentation of what has been read from the source
for this time step. We concatenate it with the de-
coder state ht and feed it through another fully
connected network to produce the output distribu-
tion (Fig. 2):

Py = softmax(W [ct;ht] + b) (10)

The loss for time step t is the negative log likeli-
hood of the target wt:

losst = −log(P (wt)) (11)

86



Figure 1: The overall architecture of our approach (without the global attention model and ε is the
padding character).

Figure 2: The attention model.

and the overall loss for the whole sequence is com-
puted by:

loss =
1

T

T∑

t=0

losst (12)

When decoding, we use beam search of size 4 to
generate possible output character sequences and
rank them by the average probability of characters.

4 Experimental Evaluation

4.1 Data Format
The data provided by Task 1 is the root word and
its target morphological tags. We add some spe-
cial symbols to the character set for every lan-
guage: “UNK” represents the unknown character,
“PAD” is the padding character, “START” denotes
the starting of a sequence and “END” represents
the ending of a sequence. We only add “START”
and “END” to the output sequences. Because the
input is fixed, and it is not necessary to make the
encoder aware of when the sequence will finish.
Although the starting character is not considered
in the loss, the ending character is taken into ac-
count.

4.2 Training Setting
Due to time limits, we only use the Albanian
dataset to do parameter searching. As shown in
table 2, we leverage three different groups of pa-
rameters based on the variety of the training sets
(high/medium/low) for Task 1. We use the same
embedding size for characters and morphological
tags. The length of morphological tags of a train-
ing sample differs from each other, so we pad them
to the longest one in each training corpus. We also
use a dropout layer after the embedding layer to
prevent overfitting.

87



Embedding Size Hidden Size
High 100 200
Medium 100 50
Low 50 20

Table 2: The embedding size and hidden size for
three different settings.

Dropout Rate
High [0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85]

Medium [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7]
Low [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6]

Table 3: The dropout rates used for three different
settings.

For training, we use Adam algorithm (Kingma
and Ba, 2014) and set different minibatch
sizes according to various training settings
(high/medium/low). Compared to high setting,
there are much less training samples in the
medium and low. Thus it will take more time to
converge if we set the minibatch size too large.
We also use early stopping (Caruana et al., 2000)
based on the performance of development sets.

4.3 Ensemble
We use different dropout rates to train multiple
models in the same training set. Table 3 shows
our dropout rates for different models. To select
the best result, we use the voting strategy from dif-
ferent models and pick up the answer that appears
most likely.

4.4 Results
All the results in this section are evaluated in ac-
curacy for different languages, computed over the
official test data. Tables 4, 5, and 6 show the re-
sults of our model in different settings.

High
Top 10 Bottom 10

Urdu 99.4 French 79.1
Hindi 99.1 Hungarian 78.7
Welsh 98 Serbo Croatian 78.6

Quechua 97.1 Icelandic 78
Haida 97 Romanian 77.3

Khaling 96.6 Faroese 77
Persian 96.3 Finnish 74.4
Basque 96 Irish 73.1
Bengali 96 Navajo 68.5
Estonian 94.8 Latin 54.7

Table 4: Top 10 and bottom 10 performance in the
high setting of Task 1.

Medium
Top 10 Bottom 10

Bengali 93 Icelandic 57.9
Urdu 90.8 Romanian 57.5

Quechua 90.7 Arabic 55.8
English 88.3 Faroese 52
Hindi 86.8 Northern Sami 50.4

Kurmanji 86.3 Lithuanian 49.2
Portuguese 84.3 Finnish 37.3

Turkish 83.2 Irish 35.4
Haida 81 Latin 30.9

Catalan 80.6 Navajo 28.9

Table 5: Top 10 and bottom 10 performance in the
medium setting of Task 1.

Low
Top 10 Bottom 10

English 74.7 Finnish 7.6
Norwegian Bokmal 73.6 Latin 7.4

Kurmanji 71.1 Haida 7
Danish 59.7 Northern Sami 4.9

Wwedish 51.7 Albanian 4.5
Urdu 46.9 Khaling 3.2

French 46.2 Arabic 1.5
Norwegian Nynorsk 45.8 Basque 1

Portuguese 44.5 Navajo 0.3
Scottish Gaelic 44 Sorani 0.1

Table 6: Top 10 and bottom 10 performance in the
low setting of Task 1.

In each training setting (high/medium/low), we
use the same parameters for all languages, instead
of optimizing parameters based on different lan-
guage. It means that our model may not be optimal
for some languages, which is the reason why the
performance differed a lot from each other. The
top languages may have some related properties
with Albanian. However, languages like French,
Romanian and Latin may not be correctly modeled
by our model.

In the low setting of Task 1, we only get 100
training samples for each language. Deep learn-
ing may easily overfit and can not generate good
results when testing. That is why Haida performs
well in high and medium settings while staying at
the bottom 10 in the low setting.

5 Conclusion

In this paper, we proposed a character sequence-
to-sequence model with global attention to do
morphological reinflection and achieved good re-
sults in some languages. Due to the time con-
straint, we only searched for the optimized model
based on the Albanian dataset, which may not be
suitable for other languages. It might be interest-

88



ing to add some linguistic features to improve the
performance and the generalization of our system.

Acknowledgements

The work presented in this paper is sup-
ported in part by National Science Foundation
(CNS-1624782) and National Institutes of Health
(R01GM110240). The content is solely the re-
sponsibility of the authors and does not necessarily
represent the official views of the granting agen-
cies.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Rich Caruana, Steve Lawrence, and Lee Giles. 2000.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In NIPS. pages
402–408.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014).

Ryan Cotterell, Christo Kirov, John Walther Géraldine
Sylak-Glassman, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017. The CoNLL-
SIGMORPHON 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Proceed-
ings of the CoNLL-SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection. Asso-
ciation for Computational Linguistics, Vancouver,
Canada.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proceedings of NAACL.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the sigmorphon 2016 shared task
on morphological reinflection. ACL 2016 page 62.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025 .

Einat Minkov, Kristina Toutanova, and Hisami Suzuki.
2007. Generating complex morphology for machine
translation. In ACL. volume 7, pages 128–135.

Robert Ostling. 2016. Morphological reinflection with
convolutional neural networks. ACL 2016 page 23.

89


