
AutoExtend: Combining Word Embeddings
with Semantic Resources

Sascha Rothe∗
LMU Munich

Hinrich Schütze∗
LMU Munich

We present AutoExtend, a system that combines word embeddings with semantic resources
by learning embeddings for non-word objects like synsets and entities and learning word
embeddings that incorporate the semantic information from the resource. The method is based
on encoding and decoding the word embeddings and is flexible in that it can take any word
embeddings as input and does not need an additional training corpus. The obtained embeddings
live in the same vector space as the input word embeddings. A sparse tensor formalization guar-
antees efficiency and parallelizability. We use WordNet, GermaNet, and Freebase as semantic
resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and
Word Sense Disambiguation tasks.

1. Introduction

Unsupervised methods for learning word embeddings are widely used in natural lan-
guage processing (NLP). The only data these methods need as input are very large
corpora. However, in addition to corpora, there are many other resources that are
undoubtedly useful in NLP, including lexical resources like WordNet and Wiktionary
and knowledge bases like Wikipedia and Freebase. We will simply refer to these as
resources. In this article, we present AutoExtend, a method for enriching these valuable
resources with embeddings for non-word objects they describe; for example, Auto-
Extend enriches WordNet with embeddings for synsets. The word embeddings and the
new non-word embeddings live in the same vector space.

Many NLP applications benefit if non-word objects described by resources—such
as synsets in WordNet—are also available as embeddings. For example, in sentiment
analysis, Balamurali, Joshi, and Bhattacharyya (2011) showed the superiority of sense-
based features over word-based features. Generally, the arguments for the utility of
embeddings for words carry over to the utility of embeddings for non-word objects
like synsets in WordNet. We demonstrate this by improved performance thanks to
AutoExtend embeddings for non-word objects in experiments on Word-in-Context
Similarity, Word Sense Disambiguation (WSD), and several other tasks.

∗ Center for Information and Language Processing. E-mail: rothe@google.com.

Submission received: 11 January 2016; revised version received: 2 December 2016; accepted for publication:
13 March, 2017.

doi:10.1162/COLI a 00294

© 2017 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

Computational Linguistics Volume 43, Number 3

To extend a resource with AutoExtend, we first formalize it as a graph in which (i)
objects of the resource (both word objects and non-word objects) are nodes and (ii) edges
describe relations between nodes. These relations can be of an additive or a similarity
nature. Additive relations capture the basic intuition of the offset calculus (Mikolov
et al. 2013a) as we will discuss in detail in Section 2. Similarity relations simply define
similar nodes. We then define various constraints based on these relations. For example,
one of our constraints states that the embeddings of two synsets related by the similarity
relation should be close. Finally, we select the set of embeddings that minimizes the
learning objective.

The advantage of our approach is that it decouples (i) the learning of word embed-
dings on the one hand and (ii) the extension of these word embeddings to non-word
objects in a resource on the other hand. If someone identifies a better way of learning
word embeddings, AutoExtend immediately can extend these embeddings to similarly
improved embeddings for non-word objects. We do not rely on any specific properties
of word embeddings that make them usable in some resources but not in others.

The main contributions of this article are as follows. We present AutoExtend, a
flexible method that extends word embeddings to embeddings of non-word objects.
We demonstrate the generality and flexibility of AutoExtend by running experiments
on three different resources: WordNet (Fellbaum 1998), Freebase (Bollacker et al. 2008),
and GermaNet (Hamp, Feldweg et al. 1997). AutoExtend does not require manually
labeled corpora. In fact, it does not require any corpora. All we need as input is a set of
word embeddings and a resource that can be formally modeled as a graph in the way
described above. We show that AutoExtend achieves state-of-the-art performance on
several tasks including WSD.

This article is structured as follows. In Section 2, we introduce the AutoExtend
model. In Section 3, we describe the three resources we use in our experiments and how
we model them. We evaluate the embeddings of word and non-word objects in Section 4
using the tasks of WSD, Entity Linking, Word Similarity, Word-in-Context Similarity,
and Synset Alignment. Finally, we give an overview of related work in Section 5 and
present our conclusions in Section 6.

2. Model

The graph formalization that underlies AutoExtend is based on the offset calculus intro-
duced by Mikolov et al. (2013a). We interpret this calculus as a group theory formal-
ization of word relations: We have a set of elements (the word embeddings) and an
operation (vector addition) satisfying the axioms of a commutative group, in particular,
commutativity, closure,1 associativity, and invertibility.

The easiest way to see that the original formulation by Mikolov et al. (2013a)
corresponds to a commutative group is to conceptualize word embeddings as sums of
property embeddings. For example, let ~gf and ~gm be the embeddings for the properties
feminine gender and masculine gender and let ~r and ~p be the properties of being a ruler

1 Closure does not hold literally for the set of words of a language represented in a finite corpus: There can
be no bijection between the countable set of words and the uncountable set of real-valued vectors. When
the sum ~x + ~y of the embeddings of two words x and y is not attested as the embedding of a word, then
we can see it as the embedding of a longer description. A simple example is that for many animals x,
there are special words for the sum of x and young (calf, cub, chick), but for others, a phrase must be used
(baby koala in non-Australian varieties of English, infant baboon).

594

Rothe and Schütze AutoExtend

and a person. Then we can formalize the semantics of queen, king, man, and woman and
their additive relations as follows:

~v(queen) = ~r + ~gf (1)

~v(king) = ~r + ~gm (2)

~v(woman) = ~p + ~gf (3)

~v(man) = ~p + ~gm (4)

~v(queen)− ~v(king) = ~gf − ~gm (5)

~v(woman)− ~v(man) = ~gf − ~gm (6)

~v(king) = ~v(queen)− ~v(woman) + ~v(man) (7)

Equations (5) and (6) motivate the name offset calculus: The differences of pairs of embed-
dings that only differ on the same property and have the same relative value settings on
those properties (e.g., masculine vs. feminine for the gender property) are modeled as
fixed offsets. Equation (7) is an example of how offsets are used for computing analogies,
the application of the offset calculus that has received a lot of attention. Equations (1)–
(4) are examples of what we take as the underlying assumption of the offset calculus
about how embeddings of words are formed: as sums of property vectors.

In addition to semantic properties like gender, the offset calculus has been applied
to morphological properties (e.g., running− walking + walked = ran) and even to proper-
ties of regional varieties of English (e.g., bonnet− aubergine + eggplant = hood). We take an
expansive view of what a property is and include complex properties that are captured
by resources. The most important instance of this expansive view in this article is that we
model a word’s embedding as the sum of the embeddings of its senses. For example, the vector
of the word suit is modeled as the sum of a vector representing lawsuit and a vector
representing business suit. Apart from the offset calculus, this can also be motivated by
the additivity that underlies many embedding learning algorithms. This is most obvious
for the counts in vector space models. They are clearly additive and thus support the
view of a word as the sum of its senses. To be more precise, a word is a weighted sum of its
senses, where the weights represent the probability of a sense. Our model incorporates
this by simply learning shorter or longer vectors.

The basic idea behind AutoExtend is that it takes the embedding of an object that
is a bundle of properties as input and “decodes” or “unravels” this embedding to the
embeddings of these properties. For example, AutoExtend unravels the embedding of
a word to the embeddings of its senses. These senses are not directly observable, so we
can view them as hidden variables.

2.1 General Framework

The basic input to AutoExtend is a semantic resource represented as a graph and an
embedding space given as a set of vectors. Each node in the graph is associated with a
vector in a high-dimensional vector space. Nodes in the graph can have different types;
for example, in WordNet, the types are word, lexeme, and synset (see Figure 1). One
type is the input type. Embeddings of nodes for this type are known. Embeddings of the
other types are unknown and will be learned by AutoExtend.

595

Computational Linguistics Volume 43, Number 3

n00691

n65537

n76543

a39657

a01728

suit(law)

case(law)

lawsuit

suit(clothes)

suit of clothes

countersuit small
little

large big

suit

antonym

hypernym

suit of clothes

Figure 1
A small subset of the resource WordNet represented as a graph with three different types of
nodes. Words (blue) are connected to lexemes (orange) by additive relations (gray). Lexemes are
connected to synsets (green) and words. Synsets are connected to lexemes and also to other
synsets by (dis)similarity relations (red).

Concretely, to extend a resource with AutoExtend, we (i) formalize it as a graph
based on the offset calculus, (ii) assign known objects an input embedding, (iii) define a
learning objective on the graph, and, finally, find the set of embeddings that optimizes
the learning objective.

(i) Graph formalization of resource. In our formalization of the resource as a graph, objects
of the resource—both word objects and non-word objects—are nodes; some edges of
the resource describe additive relations between nodes. These additive relations are the
basic relations of the offset calculus between embeddings of words, on the one hand,
and embeddings of constituents derived from the resource (e.g., semantic properties,
morphological properties, or senses), on the other hand. More precisely, the embedding
of a node x is the sum of the embeddings of all nodes yi that are connected via an edge
(yi, x). Other edges of the resource describe similarity relations. One example of this is
that the embeddings of two synsets related by the hyponymy relation should be close.
An example of such a graph can be seen in Figure 1.

(ii) Connecting resource and word embeddings. Each node is associated with a vector. The
vectors of some nodes are known and the vectors of other nodes (e.g., senses) are not
known. Throughout this article a known object is a word; note that a word can also be
a short phrase. An example for the embedding space we want to learn can be seen in
Figure 2.

(iii) Learning objective. We define the learning objective based on various constraints.
The additive relations define the topology of an autoencoder, which will result in auto-
encoding constraints that apply if a resource object participates in different additive
relations (see next section). We also use similarity relations that are specified in the
resource. Finally, we select the set of embeddings for non-word objects that minimizes
the learning objective. We will assign them to those nodes in the graph (e.g., senses)
that do not occur in corpora and do not have corpus-based embeddings.

596

Rothe and Schütze AutoExtend

suit
n00691

case(law) lawsuit

suit(law)

suit(law)

n65537

suit(clothes)

suit(clothes)

suit of clothes

n76543

Figure 2
The embedding space we want to learn. The embeddings for words (blue) are given (input
type). The embeddings for lexemes (orange) and synsets (green) have to be learned (unknown
types). The additive edges define either that lexemes sum up to words or that they sum up to
synsets. The similarity edges define which embeddings are similar (e.g., n65537 and n76543).

We present AutoExtend in more detail in the following sections. Although we could
couch the discussion in terms of generic resources, the presentation is easier to follow
if a specific resource is used as an example. We will therefore use WordNet as an
example resource where appropriate. We now give a brief description of those aspects
of WordNet that we make use of in this article.

Words in WordNet are lemmata where a lemma is defined as a particular spelling
of the base form of an inflected word form; i.e., a lemma is a sequence of letters with
a particular part of speech. A lexeme pairs such a spelling with a particular meaning. A
synset is a set of lexemes with the same meaning in the sense that they are interchange-
able for each other in context. Thus, we can also define a lexeme as the conjunction
of a word and a synset. Additive relations between lexemes and words and between
lexemes and synsets correspond to a graph in which each lexeme node is connected
to exactly one word node and to exactly one synset node. Additionally, two synset
nodes can be connected to indicate a (dis)similarity relation holding between them,
for example, hyponymy or antonymy.

In the context of this article, word nodes are “known” in the sense that we have
learned their vectors from a large corpus. Embeddings for inflected forms are not used
in this paper.2 Lexeme and synset nodes are unknown because they are not directly
observable in a corpus and vectors cannot be learned from them using standard embed-
ding learning algorithms.

2.2 Additive Edges

As already mentioned, we will use WordNet as an example resource to simplify the
presentation of our model. We will use the additive edges to formulate two basic

2 We also tried (i) lemmatizing the corpus, (ii) using an averaged embedding of all inflected forms and (iii)
using only the embeddings of the most frequent inflected form. These three methods yielded worse
performance.

597

Computational Linguistics Volume 43, Number 3

premises of our model: (i) words are sums of their lexemes and (ii) synsets are sums of
their lexemes. For example, the embedding of the word suit is a sum of the embeddings
of its two lexemes suit(textile) and suit(law); and the embedding of the synset lawsuit-
case-suit(law) is a sum of the embeddings of its three lexemes lawsuit, case(law), and
suit(law) (see Figure 3). This is equivalent to saying words split up into their lexemes
and lexemes sum up to their synsets. We will formulate this in this subsection.

We denote word vectors as w(i) ∈ Rn, synset vectors as s(j) ∈ Rn, and lexeme vectors
as l(i,j) ∈ Rn, where l(i,j) is that lexeme of word w(i) that is a member of synset s(j). We
set lexeme vectors l(i,j) that do not exist to zero. For example, the non-existing lexeme
flower(truck) is set to zero. We can then formalize our premise that (i) and (ii) hold as
follows:

w(i) =
∑

j

l(i,j) (8)

s(j) =
∑

i

l(i,j) (9)

These two equations are underspecified. We therefore introduce the matrix E(i,j) ∈ Rn×n:

l(i,j) = E(i,j)w(i) (10)

We make the assumption that the dimensions in Equation (10) are independent of
each other, that is, E(i,j) is a diagonal matrix. Our motivation for this assumption
is: (i) This makes the computation technically feasible by significantly reducing the
number of parameters and by supporting parallelism. (ii) Treating word embeddings
on a per-dimension basis is a frequent design choice (e.g., Kalchbrenner, Grefensette,
and Blunsom 2014). (iii) When vectors are treated as elements of a group, the addition
is dimension-wise.

Note that we allow E(i,j) < 0 and in general the distribution weights for each di-
mension (diagonal entries of E(i,j)) will be different. Our assumption can be interpreted
as word w(i) distributing its embedding activations to its lexemes on each dimension
separately.

suit

case

lawsuit

case(law)

lawsuit

suit(textil)

suit(law)

n65537

n00691

Figure 3
A subgraph of Figure 1 with additive edges only. Words are sums of their lexemes and synsets
are sums of their lexemes. The circles are intended to show four different embedding
dimensions.

598

Rothe and Schütze AutoExtend

Equations (8) and (9) can then be written as follows:

w(i) =
∑

j

E(i,j)w(i) (11)

s(j) =
∑

i

E(i,j)w(i) (12)

From Equation (11) it directly follows that:

∑
j

E(i,j) = In ∀i (13)

with In being the identity matrix.
Let W be a |V| × n matrix where n is the dimensionality of the embedding space, |V|

is the number of words and each row w(i) is a word embedding; and let S be a |S| × n
matrix where |S| is the number of synsets and each row s(j) is a synset embedding.
W and S can be interpreted as linear maps and a mapping between them is given by
the rank 4 tensor E ∈ R|S|×n×|V|×n. We can then write Equation (12) as a tensor matrix
product:

S = E×W (14)

and Equation (13) states, that

∑
j

Ei,d1
j,d2

= 1 ∀i, d1, d2 (15)

Additionally, there is no interaction between different dimensions, so Ei,d1
j,d2

= 0 if d1 6= d2.

In other words, we are creating the tensor by stacking the diagonal matrices E(i,j) over
i and j. Another sparsity arises from the fact that many lexemes do not exist: Ei,d1

j,d2
= 0

if l(i,j) = 0; i.e., l(i,j) 6= 0 only if word i has a lexeme that is a member of synset j. To
summarize the sparsity:

Ei,d1
j,d2

= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (16)

2.3 Learning Through Autoencoding

We adopt an autoencoding framework to learn embeddings for lexemes and synsets.
To this end, we view the tensor equation S = E×W as the encoding part of the auto-
encoder: The synsets are the encoding of the words. For the decoding part, we will
take another copy of Figure 3, flip it horizontally, and concatenate it to the encoding
part (see Figure 4). This time the offset calculus relationships—words are sums of their
lexemes and synsets are sums of their lexemes—translate into synsets splitting up into

599

Computational Linguistics Volume 43, Number 3

suit

case

lawsuit

case(law)

lawsuit

suit(textil)

suit(law)

n65537

n00691

case(law)

lawsuit

suit(textil)

suit(law)
suit

case

lawsuit

Figure 4
Encode and decode part of AutoExtend. The circles are intended to show four different
embedding dimensions. These dimensions are treated as independent. The word constraint
aligns the input and the output layer (blue columns), that is, the difference between encoding
input and decoding output is minimized. The lexeme constraint aligns the second and fourth
layers (orange columns).

their lexemes and lexemes summing up to their words. We formulate the corresponding
decoding part as follows:

s(j) =
∑

i

l2
(i,j) (17)

w2
(i) =

∑
j

l2
(i,j) (18)

In analogy to E(i,j), we introduce the diagonal matrix D(j,i):

l2
(i,j) = D(j,i)s(j) (19)

In this case, it is the synset that distributes itself to its lexemes. We can then rewrite
Equations (17) and (18) as:

s(j) =
∑

i

D(j,i)s(j) (20)

w2
(i) =

∑
j

D(j,i)s(j) (21)

and we also obtain the equivalent of Equation (13) for D(j,i):∑
i

D(j,i) = In ∀j (22)

and in tensor notation:

W2 = D× S (23)

600

Rothe and Schütze AutoExtend

Normalization and sparseness properties for the decoding part are analogous to the
encoding part:

∑
i

D j,d2
i,d1

= 1 ∀j, d1, d2 (24)

D j,d2
i,d1

= 0⇐ d1 6= d2 ∨ l(i,j) = 0 (25)

We can state the learning objective of the autoencoder as follows:

argmin
E,D

‖D× E×W −W‖ (26)

under the conditions of Equations (15), (16), (24), and (25).
Now we have an autoencoder where input and output layers are the word em-

beddings. Aligning these two layers (i.e., minimizing the difference between them)
will give us the word constraint. The hidden layer represents the synset vectors. The
tensors E and D have to be learned. They are rank 4 tensors of size ≈1015. However, we
already discussed that they are very sparse, for two reasons: (i) We make the assumption
that there is no interaction between dimensions. (ii) There are only a few interactions
between words and synsets (only when a lexeme exists). In practice, there are only
≈107 elements to learn, which is technically feasible.

2.4 Matrix Formalization

Based on the assumption that each dimension is fully independent of other dimensions,
a separate autoencoder for each dimension can be created and trained in parallel. Let
W ∈ R|V|×n be a matrix where each row is a word embedding and w(d) = W·,d, the d-th
column of W, i.e., a vector that holds the d-th dimension of each word vector. In the same
way, s(d) = S·,d holds the d-th dimension of each synset vector and E(d) = E·,d·,d ∈ R|S|×|V|.
We can write S = E×W as:

s(d) = E(d)w(d) ∀d (27)

with E(d)
i,j = 0 if l(i,j) = 0. The decoding equation W2 = D× S takes this form:

w2
(d) = D(d)s(d) ∀d (28)

where D(d) = D·,d·,d ∈ R|V|×|S| and D(d)
j,i = 0 if l(i,j) = 0. So E and D are symmetric in terms

of non-zero elements. The learning objective becomes:

argmin
E(d),D(d)

‖D(d)E(d)w(d) − w(d)‖ ∀d (29)

601

Computational Linguistics Volume 43, Number 3

2.5 Lexeme Embeddings

The hidden layer S of the autoencoder gives us synset embeddings. The lexeme embed-
dings are defined when transitioning from W to S, or more explicitly by:

l(i,j) = E(i,j)w(i) (30)

However, there is also a second lexeme embedding in AutoExtend when transitioning
from S to W2:

l2
(i,j) = D(j,i)s(j) (31)

Aligning these two representations (i.e., minimizing the difference between them)
seems natural, so we impose the following lexeme constraint:

argmin
E(i,j),D(j,i)

∥∥E(i,j)w(i) −D(j,i)s(j)
∥∥ ∀i, j (32)

This can also be expressed dimension-wise. The matrix formulation is given by:

argmin
E(d),D(d)

∥∥∥∥E(d) diag(w(d))−
(

D(d) diag(s(d))
)T
∥∥∥∥∀d (33)

with diag(x) being a square matrix having x on the main diagonal, w(d) = W·,d is again
the d-th column of W, and vector s(d) is defined by Equation (27). Although the lexeme
constraint encourages the two embeddings of a lexeme (l(i,j) and l2

(i,j)) to be similar,
they are still two different lexeme embeddings. In all experiments reported in Section 4
we will use the average of both embeddings and in Section 4.6 we will analyze the
weighting in more detail.

2.6 Similarity Edges

Some WordNet synsets contain only a single word (lexeme). The autoencoder learns
based on the word constraint—that is, lexemes being shared by different synsets (and
also words); thus, it is difficult to learn good embeddings for single-lexeme synsets.
To remedy this problem, we use the similarity edges to impose the constraint that
synsets related by WordNet relations should have similar embeddings. Table 1 shows the

Table 1
Number of similarity relations by part-of-speech.

noun verb adj adv

hypernymy 84,505 13,256 0 0
antonymy 2,154 1,093 4,024 712
similarity 0 0 21,434 0
verb group 0 1,744 0 0

602

Rothe and Schütze AutoExtend

relations that we used. Note that we also used the antonym relation, as antonyms are
often replaceable in context and thus have similar word embeddings in standard word
embedding models. Similarity relations are entered in a new matrix R ∈ Rr×|S|, where r
is the number of relation tuples. For each relation tuple, i.e., row in R, we set the columns
corresponding to the first and second synset to 1 and −1, respectively. The values of R
are not updated during training. We use a squared error function and 0 as target value.
This forces the system to find similar values for related synsets. Formally, the similarity
constraint is:

argmin
E(d)

‖RE(d)w(d)‖ ∀d (34)

2.7 Column Normalization

Our model is based on the premise that a word is the sum of its lexemes (Equation (8)).
From the definition of E(i,j), we derived that E ∈ R|S|×n×|V|×n should be normalized
over the first dimension (Equation (15)). So E(d) ∈ R|S|×|V| should also be normalized
over the first dimension. In other words, E(d) should be a column normalized matrix.
Another premise of the model is that a synset is the sum of its lexemes. Therefore, D(d)

should also be column normalized. We call this the column normalization constraint
and formalize it as follows:

argmin
E(d)

‖([1, . . . , 1] E(d))− [1, . . . , 1] ‖ ∀d (35)

argmin
D(d)

‖([1, . . . , 1] D(d))− [1, . . . , 1] ‖ ∀d (36)

2.8 Implementation

Our training objective is the minimization of the sum of all constraints normalized by
their output size, namely, the word constraint (Equation (29)) divided by the number of
words, the lexeme constraint (Equation (33)) divided by the number of lexemes, and the
similarity constraint (Equation (34)) divided by the number of similarities. Our training
objective is minimization of the sum of these three normalized constraints, weighted
by α (Equation (29)), β (Equation (33)), and 1− α− β (Equation (34)). The parameters
α and β are tuned on development sets using a grid search with step size 0.1. To
save computational cost we explore a “lazy” approach for the column normalization
constraint (Equations (35) and (36)): We start the computation with column normalized
matrices and normalize them again after each iteration (doing a gradient descent on
the other three constraints) as long as the error function still decreases. When the error
function starts increasing, we stop normalizing the matrices and continue with a normal
gradient descent. This respects the fact that whereas E(d) and D(d) should be column
normalized in theory, there are many practical issues that prevent this (e.g., out-of-
vocabulary words).

The overall training objective cannot be solved analytically because it is subject to
Equation (16) and Equation (25). We therefore use backpropagation. It turned out to
be unnecessary to use regularization: All learned weights in the experiments presented
below are in [−2, 2].

603

Computational Linguistics Volume 43, Number 3

Table 2
Number of items in different resources and after the intersection with word2vec vectors (w2v).
The analogs of synsets in Freebase are entities (“e:”) and types (“t:”).

WordNet 2.1 ∩ w2v GermaNet 9.0 ∩ w2v Freebase ∩ w2v

words 147,478 54,570 109,683 89,160 ≈ 23,000 17,165

synsets 117,791 73,844 93,246 82,027 e: ≈ 50,000,000 12,362
t: ≈ 26,000 3,516

lexemes 207,272 106,167 124,996 103,926 ≈ 47,000,000 27,478

3. Data

We test our framework in three different problem settings that cover three resources and
two languages.

3.1 WordNet

We use publicly available 300-dimensional embeddings3 for 3,000,000 words and
phrases trained on Google News, a corpus of ≈1011 tokens, using word2vec contin-
uous bag-of-words (CBOW), with a window size of 5 (Mikolov et al. 2013b). Un-
less stated otherwise we use WordNet 2.1, as the SensEval tasks are based on this
version. Many words in the word2vec vocabulary are not in WordNet, for exam-
ple, inflected forms (cars) and proper nouns (Tony Blair). Conversely, many WordNet
lemmata are not in the word2vec vocabulary, for example, 42 (digits were converted
to 0). This results in a number of empty synsets (see Table 2). Note, however, that
AutoExtend can produce embeddings for empty synsets because we also use similarity
relations, not just additive relations.

We run AutoExtend on the word2vec vectors. Our main goal is to produce compati-
ble embeddings for lexemes and synsets. In this way, we can compute nearest neighbors
across all three types, as shown in Figure 5.

3.2 GermaNet

For this set-up, we train word2vec embeddings for German using settings similar to
those that were used to train the English word2vec embeddings. We use the German
Wikipedia with 5× 108 tokens and preprocess them with the word2phrase tool included
in word2vec twice, first with a threshold of 200 and then with a threshold of 100. After
that, we run word2vec with identical settings as the downloaded word embeddings
(i.e., CBOW, window size 5, minimal count 5, negative sampling 3, and hierarchical
softmax off). We run 10 iterations to compensate for the smaller corpus. After that, we
intersect them with words found in GermaNet 9.0. As GermaNet has the same structure
as WordNet, we can directly apply AutoExtend to it. For similarity relations, we only use
hypernymy and antonymy. In GermaNet, antonymy is a relationship between lexemes.
To match our model, we extend it to synsets by viewing any pair of synsets as antonyms
if they contain lexemes that are antonyms.

3 http://code.google.com/p/word2vec/.

604

Rothe and Schütze AutoExtend

nearest neighbors of W/suit
S/suit (businessman), L/suit (businessman), L/accommodate, S/suit (be acceptable),
L/suit (be acceptable), L/lawsuit, W/lawsuit, S/suit (playing card), L/suit (playing
card), S/suit (petition), S/lawsuit, W/countersuit, W/complaint, W/counterclaim

nearest neighbors of W/become
L/become, S/become/suit, L/become/turn, L/become/get, S/become (into exist.),
L/become (into exist.), W/becoming, S/become/turn, S/make, L/make, S/turn (into),
W/increasingly, W/be, W/emerge

nearest neighbors of W/lawsuit
L/lawsuit, S/lawsuit, S/countersuit, L/countersuit, W/countersuit, W/suit,
W/counterclaim, S/counterclaim (n), L/counterclaim (n), S/counterclaim (v),
L/counterclaim (v), W/sue, S/sue (n), L/sue (n)

nearest neighbors of S/suit-of-clothes
L/suit-of-clothes, S/zoot-suit, L/zoot-suit, W/zoot-suit, S/garment, L/garment,
S/dress, S/trousers, L/pinstripe, L/shirt, W/tuxedo, W/gabardine, W/tux,
W/pinstripe

Figure 5
Five nearest word (W/), lexeme (L/), and synset (S/) neighbors for four items, ordered by
cosine.

3.3 Freebase

Freebase contains word nodes4 (whose embeddings are known) and alias nodes and
entity nodes (whose embeddings are unknown). Each entity also has one or more types
(e.g., director). As we will explain subsequently, we also create type nodes and learn
embeddings for them. An alias node is connected to exactly one word node and exactly
one entity node. An entity node is connected to one or more type nodes.

We use the same English word embeddings as for WordNet and intersect them with
words found in Freebase. A Freebase entity has one or more aliases (e.g., the entity
Barack Obama has the aliases Barack Obama, President Obama, and Barack Hussein Obama).
Aliases are available in different languages, but we only use English aliases. The role of
synsets in WordNet corresponds to the role of entities in Freebase; the role of lexemes
in WordNet corresponds to the role of aliases in Freebase (i.e., they connect words and
entities). An overview is shown in Table 3. Freebase contains a large number of entities
with a single alias; we exclude these because they are usually not completely modeled
and contain little information.

Freebase also contains a great diversity of relations, but most of them do not fulfill
the requirement of connecting similar entities. For example, the relation born-in connects
a person and a city, and we do not want to align these embeddings. We therefore
only use the relation same-type. There are about 26,000 types in Freebase, with different
granularity, and well-modeled entities usually have several types. For example, Barack
Obama has the types President-of-the-US, person, and author as well as several other

4 Recall that our definition of words also includes phrases. Just as we subsume both suit and red tape under
the concept of word in WordNet, we also refer to both Clinton and George Miller in Freebase as words.
Entities also have one notable type, e.g., President-of-the-US for Barack Obama, but we do not distinguish
notable types from other types.

605

Computational Linguistics Volume 43, Number 3

Table 3
Overview of input and output data of AutoExtend for different resources. The improved
word embedding matrices W1 and W2 emerge when summing up all corresponding lexeme
embeddings in L1 and L2, respectively. The lexeme matrices L1 and L2 emerge from the lexemes l
in Equation (30) and l2 in Equation (31), respectively.

WordNet 2.1 and GermaNet Freebase

input types Words W Words W

unknown types Lexemes L1, L2 Aliases L1, L2
Synsets S Entities S, Types T
Improved Words W1, W2 Improved Words W1, W2

input edges W∗ × L∗, L∗ × S, S× S W∗ × L∗, L∗ × S, S× T
word constraint (W, W2) (W, W2)
lexeme constraint (L1, L2) (L1, L2)
similarity constraint (S, S) (S, T)

types.5 For a type with n members, this would give us n2 relations. This would result
in a huge relation matrix that would slow down the AutoExtend computation. To
address this, we add type nodes to the graph. The similarity relation same-type is only
constructed between type nodes and entity nodes, but not between entity nodes and
entity nodes. An added benefit is that AutoExtend also produces type embeddings;
these may be useful for several tasks, for example, for entity typing (Yaghoobzadeh and
Schütze 2015).

4. Experiments and Evaluation

We evaluate AutoExtend embeddings on the following tasks: WSD, Entity Linking,
Word-in-Context Similarity, Word Similarity, and Synset Alignment. Our results depend
directly on the quality of the underlying word embeddings. We would expect even
better evaluation results as word representation learning methods improve. Using a
new and improved set of underlying embeddings in AutoExtend is simple: It is a
simple switch of the input file that contains the word embeddings.

4.1 Word Sense Disambiguation

We use IMS (It Makes Sense) for our WSD evaluation (Zhong and Ng 2010). As in the
original paper, preprocessing consists of sentence splitting, tokenization, POS tagging,
and lemmatization; the classifier is a linear SVM. In our experiments (Table 4), we run
IMS with each feature set by itself to assess the relative strengths of individual feature
sets (lines 1–7) and on feature set combinations to determine which combination is best
for WSD (lines 8, 12–15). We use SensEval-2 as development set for SensEval-3 and vice
versa. This gives us a weighting of α = β = 0.4 for both sets.

IMS implements three standard WSD feature sets: part of speech (POS), surround-
ing word, and local collocation (lines 1–3).

5 Entities also have one notable type, e.g., President-of-the-US for Barack Obama, but we do not distinguish
notable types from other types.

606

Rothe and Schütze AutoExtend

Table 4
WSD and Entity Linking accuracy for different feature sets and systems. Best result in each
column in bold. Results of development sets are italic. Results significantly worse than the best
(bold) result in each column are marked † for α = 0.05 and ‡ for α = 0.10 (one-tailed Z-test).

WSD Entity Linking
SensEval-2 SensEval-3 FACC dev FACC test

size 4,328 3,944 10,000 10,000

in
di

vi
du

al
fe

at
ur

e
se

ts

1 POS 53.6† 58.0† 44.3† 45.2†

2 surrounding word 57.6† 65.3† 62.3† 60.3†

3 local collocation 58.7† 64.7† 53.7† 53.8†

4 Snaive-product 56.5† 62.2† 57.7† 58.2†

5 S-cosine 55.6† 61.0† 39.3† 39.8†

6 S-product 56.9† 62.6† 58.4† 59.2†

7 S-raw 57.2† 63.3† 56.1† 56.1†

sy
st

em
co

m
pa

ri
so

n

8 MFS 47.6† 55.2† 33.6† 33.4†

9 Rank 1 system 64.2† 72.9†

10 Rank 2 system 63.8† 72.6‡

11 IMS 65.2† 72.3† 62.2† 61.7†

12 IMS + Snaive-prod. 62.6† 69.4† 65.0† 64.9†

13 IMS + S-cosine 65.3‡ 72.2† 62.1† 61.6†

14 IMS + S-product 66.8† 73.6† 65.8† 65.4†

15 IMS + S-raw 62.4† 66.8† 63.5† 63.3†

Let w be an ambiguous word with k senses. The three feature sets on lines 5–
7 are based on the AutoExtend embeddings s(j), 1 ≤ j ≤ k, of the k synsets of w and
the centroid c of the sentence in which w occurs. The centroid is simply the sum of all
word2vec vectors of the words in the sentence, excluding stop words.

The S-cosine feature set consists of the k cosines of centroid and synset vectors:

< cos(c, s(1)), cos(c, s(2)), . . . , cos(c, s(k)) >

The S-product feature set consists of the nk element-wise products of centroid and
synset vectors:

< c1s(1)
1 , . . . , cns(1)

n , . . . , c1s(k)
1 , . . . , cns(k)

n >

where ci (respectively, s(j)
i) is element i of c (respectively, s(j)). The idea is that we let the

SVM estimate how important each dimension is for WSD instead of giving all equal
weight as in S-cosine.

The S-raw feature set simply consists of the n(k + 1) elements of centroid and synset
vectors:

< c1, . . . , cn, s(1)
1 , . . . , s(1)

n , . . . , s(k)
1 , . . . , s(k)

n >

Based on the experiment, we would like to determine whether AutoExtend features
improve WSD performance when added to standard WSD features. To make sure
that improvements we obtain are not solely due to the power of word2vec, we also
investigate a simple word2vec baseline. For S-product (the AutoExtend feature set that
performs best in the experiment, see line 14), we test the alternative word2vec-based
Snaive-product feature set. It has the same definition as S-product except that we replace
the synset vectors s(j) with naive synset vectors z(j), defined as the sum of the word2vec
vectors of the words that are members of synset j.

607

Computational Linguistics Volume 43, Number 3

Lines 1–7 in Table 4 show the performance of each feature set by itself. We see that
the synset feature sets (lines 5–7) have a comparable performance to standard feature
sets. S-product is the strongest of the synset feature sets.

Lines 9–16 show the performance of different feature set combinations. MFS (line 8)
is the most frequent sense baseline. Lines 9 and 10 are the winners of SensEval.
The standard configuration of IMS (line 11) uses the three feature sets on lines 1–3
(POS, surrounding word, local collocation) and achieves an accuracy of 65.2% on the
English lexical sample task of SensEval-2 (Kilgarriff 2001) and 72.3% on SensEval-3
(Mihalcea, Chklovski, and Kilgarriff 2004).6 Lines 12–16 add one additional feature set to
the IMS system on line 11; e.g., the system on line 14 uses POS, surrounding word, local
collocation, and S-product feature sets. The system on line 14 outperforms all previous
systems, most of them significantly. Although S-raw performs quite reasonably as a
feature set alone, it hurts the performance when used as an additional feature set.
Because this is the feature set that contains the largest number of features (n(k + 1)),
overfitting is the likely reason. Conversely, S-cosine only adds k features and therefore
may suffer from underfitting.

The main result of this experiment is that we achieve an improvement of more than
1% in WSD performance when using AutoExtend.

4.2 Entity Linking

We use the same IMS system for Entity Linking. The train, development, and test sets
are created as follows. We start with the annotated FACC (Gabrilovich, Ringgaard, and
Subramanya 2013) corpus and extract all entity annotated words and their surrounding
words—ten to the left and ten to the right. Recall that throughout this article, a word can
also be a phrase. We remove aliases that occur fewer than 0.1 times as the correspond-
ing word and words that have a character length of one or two. We extract at most
400 examples for each entity–word combination. This procedure selects entities that
are ambiguous and that are frequent enough to give us a sufficient number of train-
ing examples. We randomly select 50 words with 1,000 examples each and split each
word into 700 train, 100 development, and 200 test instances. This results in a test
set of 10,000 instances.7 We optimize the constraint weights on the development set;
the optimal values are α = 0.7 and β = 0.0. We incorporate the embeddings in three
different ways as described in Section 4.1. The results can be seen in Table 4. Again
the element-wise product (line 14) performs better than cosine and raw (lines 13 and
15). The new feature set achieves an accuracy of 65.4%—significantly better than the
baseline IMS system (line 11, 61.7%).

4.3 Word-in-Context Similarity

The third evaluation uses SCWS (Huang et al. 2012). SCWS is a Word Similarity test set
that does not only provide isolated words and corresponding similarity scores, but also
a context for each word. The similarity score is an average score of 10 human ratings.
See Table 5 for examples. In contrast to normal Word Similarity test sets, this data set
also contains pairs of two instances of the same word. SCWS is based on WordNet,
but the information as to which synset a Word-in-Context came from is not available.

6 Zhong and Ng (2010) report accuracies of 65.3% / 72.6% for this configuration.
7 This set is publicly available at http://cistern.cis.lmu.de/.

608

Rothe and Schütze AutoExtend

Table 5
Examples of the SCWS test set. The score indicates the similarity of the words in bold.

word 1 similarity word 2
... Crew members advised passengers
to sit quietly in order to increase their
chances of survival ...

7.1 ... the Rome Statute stipulates that the
court may inform the Assembly of
States Parties or Security Council ...

... and Andy’s getting ready to pack
his bags and head up to Los Angeles
tomorrow to get ready to fly back home
on Thursday

2.1 ... she encounters Ben (Duane Jones),
who arrives in a pickup truck and de-
fends the house against another pack
of zombies ...

However, the data set is the closest we could find for sense similarity. Synset and lexeme
embeddings are obtained by running AutoExtend. We set α = 0.2 and β = 0.2 based on
Section 4.4. Lexeme embeddings are the natural choice for this task as human subjects
are provided with two words and a context for each and then have to assign a similarity
score. For completeness, we also run experiments for synsets.

For each word, we compute a context vector c by adding all word vectors of the
context, excluding the test word itself. Following Reisinger and Mooney (2010), we com-
pute the lexeme (respectively, synset) vector l either as the simple average of the lexeme
(respectively, synset) vectors l(ij) (respectively, s(j)) (method AvgSim, no dependence on
c in this case) or as the average of the lexeme (respectively, synset) vectors weighted by
cosine similarity to c (method AvgSimC). The latter method is supposed to give higher
weights to lexemes that better fit the context.

Table 6 shows that AutoExtend lexeme embeddings (line 7) perform better than
previous work, including Huang et al. (2012) and Tian et al. (2014). Lexeme embeddings
perform better than synset embeddings (lines 7 vs. 6), presumably because using a
representation that is specific to the actual word being judged is more precise than using
a representation that also includes synonyms.

A simple baseline is to use the underlying word2vec embeddings directly (line 5).
In this case, there is only one embedding, so there is no difference between AvgSim and
AvgSimC. It is interesting to note that even if we do not take the context into account
(method AvgSim) the lexeme embeddings outperform the original word embeddings.
As AvgSim simply adds up all lexemes of a word, this is equivalent to the motivation

Table 6
Spearman correlation (ρ× 100) on SCWS. Best result per column in bold. Results significantly
worse than the best (bold) result are marked † for α = 0.05 and ‡ for α = 0.10 (one-tailed Z-test).

AvgSim AvgSimC

1 Huang et al. (2012) 62.8† 65.7†

2 Tian et al. (2014) – 65.4†

3 Neelakantan et al. (2014) 67.2† 69.3†

4 Chen, Liu, and Sun (2014) 66.2‡ 68.9†

5 words (word2vec) 66.7† 66.7†

6 synsets 63.2† 63.5†

7 lexemes 68.3† 70.2†

609

Computational Linguistics Volume 43, Number 3

we proposed in the beginning of the article (Equation (8)). Thus, replacing a word’s
embedding by the sum of the embeddings of its senses could generally improve the
quality of embeddings—see Huang et al. (2012) for a similar argument. We will provide
a deeper evaluation of this in Section 4.4.

4.4 Word Similarity

The results of the previous experiments motivate us to test the new embeddings also
on Word Similarity test sets, namely, MC (Miller and Charles 1991), MEN (Bruni, Tran,
and Baroni 2014), RG (Rubenstein and Goodenough 1965), SIMLEX (Hill, Reichart, and
Korhonen 2014), RW (Luong, Socher, and Manning 2013), and WordSim-353 (Finkelstein
et al. 2001) for English (using embeddings autoextended based on WordNet) and GUR-
65, GUR-350 (Gurevych 2005) and ZG-222 (Zesch and Gurevych 2006) for German
(using embeddings autoextended based on GermaNet). Because the simple sum of the
lexeme vectors (method AvgSim, line 7, Table 6) ignores the context and outperforms the
underlying word embeddings (line 5), we expect a similar performance improvement
on other Word Similarity test sets. Note that AutoExtend makes available three different
word embeddings:

1. the original word embeddings W0 = W, i.e., the input to AutoExtend

2. the word embeddings W1 that we obtain when we add lexeme vectors of
the encoding part (see Equation (30))

3. the word embeddings W2 that we obtain when we add lexeme vectors of
the decoding part (see Equations 31 or 22)

We observe that each pair (Wi, Wj), i 6= j of word embedding sets corresponds to a
constraint of AutoExtend. (i) The column normalization constraint (Equation (35)) will
align W0 and W1, as we just split the original word embeddings and add them up again.
(ii) The word constraint (Equation (29)) will align W0 and W2. This was the initial idea
of our system. (iii) The lexeme constraint (Equation (33)) will align W1 and W2.

As in the previous section, we use the cosine similarity of word embeddings to
predict a similarity score and report the Spearman correlation. We use W (Table 7,
line 1) as our baseline. Lines 2 and 3 are the word embeddings described above. The
SIMLEX and GUR-65 test sets are used as development sets to obtain the parameters
α = 0.2 and β = 0.2 for both models by optimizing max(W1, W2) (i.e., the best result of
line 2 and 3). Although we observe a significant performance drop from W to W1, we
also observe a small improvement in W2 for English. The improvement is significant
for German, but not for English. This is most likely because of the very strong baseline
of the Google News word embeddings, which are used for the English test sets. The
German embeddings are trained on the smaller Wikipedia corpus. This suggests that
our method is especially suited to improve lower quality embeddings.

4.5 Synset Alignment

In this evaluation, we try to predict whether a German synset corresponds to an English
synset or not. This is a useful task when creating multilingual resources. We use the
synset embeddings from GermaNet 9.0 and WordNet 3.0. As these embeddings were
trained on different corpora we first have to calculate a linear map that transfers the

610

Rothe and Schütze AutoExtend

Table 7
Spearman correlation (ρ× 100). Best result per column in bold. Results of development sets are
italic. Results significantly worse or better than the baseline (line 1) in each column are marked †
for α = 0.05 and ‡ for α = 0.10 (one-tailed Z-test).

MC MEN RG SIMLEX RW WORDSIM GUR GUR ZG

size 30 3,000 65 999 2,034 353 65 350 222
coverage 30 2,922 65 999 1,246 332 47 213 108

1 W 78.9† 77.0† 76.1† 44.2† 54.2† 69.9† 41.0† 39.1† 23.0†

2 W1 70.9† 67.5† 67.8‡ 37.6† 49.3† 61.0† 25.1† 40.4† 28.4‡

3 W2 85.2† 77.5† 82.5† 47.4† 54.8† 69.0† 63.3† 57.1† 34.3†

English embedding space to the German one.8 For this, we extract the most frequent
30,000 English words and translate them to German using Google Translate. The result-
ing pairs are intersected with the most frequent 30,000 German words, leaving 10,684
translation pairs. We hold out 1,000 of them for testing. The remaining 9,684 translation
pairs are used to train a linear map. Following Mikolov, Le, and Sutskever (2013), let W
be the matrix containing the German embeddings as rows and V the matrix containing
the corresponding English embeddings as rows. The linear map L is given by:

L = (WTW)−1WTV (37)

The linear map L solves the following optimization problem:

argmin
L
‖WL− V‖ (38)

We create two test sets, one for words and one for synsets. The 1,000 translation
pairs we held back are concatenated with 1,000 random German–English word pairs.
The task is to predict whether a pair is a translation (positive) or not (negative); the test
set contains 1,000 positive and 1,000 negative instances. We construct similar develop-
ment and test sets for synsets by using the interlingual index provided in GermaNet.
The interlingual index allows a mapping of concepts (e.g., synsets) of different lan-
guages. We randomly collect 1,000 correct German–English synset pairs and 1,000 false
synset pairs for development and test each. The development set is used to optimize
the parameters α and β of German and English models. The best performance is found
for α = 0.9 and β = 0.1 for both German and English. Note that we do not need a
development set for words as there are no parameters to tune. Errors in the word test set
are probably due to insufficient word embedding models or errors caused by the linear
mapping L. As we already mentioned, our synset embeddings can only be as good as
the underlying word embeddings. Thus both cases, insufficient word embeddings and
insufficient linear map, also affect the performance of the synset embeddings. Because
of this, the accuracy of the word test set (line 1 in Table 8) can be seen as an upper bound.

8 We could also transfer the German embedding space to the English one, but the performance is lower for
this setting. The most likely reason is that the English embeddings are learned on a bigger corpus and
thus contain more information. For the linear map, it is easy to drop information, but it is difficult to infer
new information.

611

Computational Linguistics Volume 43, Number 3

Table 8
Accuracy of development and test set on the Synset Alignment task. Best result per column in
bold. Results of development set are italic. Results significantly worse than the best result are
marked † for α = 0.05 (one-tailed Z-test) and ‡ for α = 0.10 (one-tailed Z-test).

Words Synsets
dev test

size 2,000 2,000 2,000

1 word 0.943
2 synset 0.872† 0.870†

3 synsetnaive 0.852‡ 0.826†

Line 2 shows the performance of our synset embeddings on the development and test
sets. Line 3 shows the performance of naive synset embeddings, defined as the sum of
the vectors of the words that are members of a synset.

The main result of this experiment is that the synset vectors obtained by Auto-
Extend perform better in bilingual synsets alignment than a naive sum of words.

4.6 Analysis

The most important parameter of AutoExtend is the weighting α and β given to the
objectives. Table 9 shows a summary of all weightings used in this article. We observe
that although all constraints are important, the optimal weighting is different for dif-
ferent applications. These differences are due to different corpora and resources. For
example, aligning types in Freebase has a different effect than aligning antonyms in
WordNet. More important, however, is the actual task for which the embeddings are
used. For example, when we compute embedding similarities, we want similar words
to have similar embeddings, resulting in a big weighting for the similarity constraint
(lines 4 and 5). For Synset Alignment we want similar embeddings to have different
embeddings in order to better distinguish them, resulting in no weight for the similarity
constraint (lines 6 and 7).

We found that some applications are not sensitive to the weighting; for example,
for Entity Linking (line 2), the differences between weightings that result in non-zero
weights to all three constraints are negligible (less than 0.3).

Table 9
Optimal weighting of the three constraints (word, lexeme, similarity) for different tasks.

α β 1− α− β
task corpus resource word c. lexeme c. similarity c.

1 WSD Google News WordNet 2.1 0.4 0.4 0.2
2 Entity Linking Google News Freebase 0.7 0.0 0.3
3 SCWS Google News WordNet 2.1 0.2 0.2 0.6
4 Word Similarity Google News WordNet 2.1 0.2 0.2 0.6
5 Word Similarity Wikipedia GermaNet 9.0 0.2 0.2 0.6
6 Synset Alignment Google News WordNet 3.0 0.9 0.1 0.0
7 Synset Alignment Wikipedia GermaNet 9.0 0.9 0.1 0.0

612

Rothe and Schütze AutoExtend

We also analyzed the impact of the four different relations in WordNet (see Table 1)
on performance. In Tables 4 and 6, all four relations are used together. We found that
any combination of three relation types performs worse than using all four together.
A comparison of different relations must be done carefully as they differ in the POS
they affect and in quantity (see Table 1). In general, relation types with more relations
outperformed relation types with fewer relations.

5. Related Work

5.1 Word Embeddings

Among the earliest work on distributed word representations (usually called “word
embeddings” today) was Rumelhart, Hinton, and Williams (1988). Non-neural-network
techniques that create low-dimensional word representations also have been used
widely, including singular value decomposition (SVD) (Deerwester et al. 1990; Schütze
1992) and random indexing (Kanerva 1998, 2009). There has recently been a resurgence
of work on embeddings (e.g., Bengio, Ducharme, and Vincent 2003; Mnih and Hinton
2007; Collobert et al. 2011; Mikolov et al. 2013a; Pennington, Socher, and Manning 2014),
including methods that are SVD-based (Levy and Goldberg 2014; Stratos, Collins, and
Hsu 2015). All of these models differ from AutoExtend in that they produce only a single
embedding for each word, but all of them can be used as input for AutoExtend.

5.2 Sense Embeddings Not Related to Lexical Resources

There are several approaches to finding embeddings for senses, variously called mean-
ing, sense, and multiple word embeddings. Schütze (1998) created sense representations
by clustering context representations derived from co-occurrence. The centroid of its
cluster is used as a representation of a sense. Reisinger and Mooney (2010) and Huang
et al. (2012) also presented methods that learn multiple embeddings per word by
clustering the contexts. Bordes et al. (2011) created similarity measures for relations
in WordNet and Freebase to learn entity embeddings. An energy-based model was
proposed by Bordes et al. (2012) to create disambiguated meaning embeddings, and
Neelakantan et al. (2014) and Tian et al. (2014) extended the Skip-gram model (Mikolov
et al. 2013a) to learn multiple word embeddings. Another interesting approach to create
sense-specific word embeddings uses bilingual resources (Guo et al. 2014). The down-
side of this approach is that parallel data are needed. Although all these embeddings
correspond to different word senses, there is no clear mapping between them and a
resource like WordNet.

5.3 Sense Embeddings Related to Lexical Resources

Recently, Bhingardive et al. (2015) used WordNet to create sense embeddings similar
to the naive method in this article. They used these sense embeddings to extract the
most frequent synset. Chen, Liu, and Sun (2014) modified word2vec to learn sense
embeddings, each corresponding to a WordNet synset. They used glosses to initialize
sense embeddings, which in turn can be used for WSD. The sense disambiguated data
can again be used to improve sense embeddings. Although WordNet is by far the most
used resource, Iacobacci, Pilehvar, and Navigli (2015) computed sense embeddings with
BabelNet, which is a superset of WordNet. They used a state-of-the-art WSD system
to generate a large sense annotated corpus that is used to train sense embeddings. In

613

Computational Linguistics Volume 43, Number 3

contrast, our approach can be used to improve WSD without relying on input from an
existing WSD system.

5.4 Embeddings Using Lexical Resources

Other work tried to combine distributed word representations and semantic resources
to create better or specialized embeddings. These include the ADMM by Fried and Duh
(2014) and the work of Wang, Mohamed, and Hirst (2015). Liu et al. (2015) also used
WordNet to create ordinal similarity inequalities to extend the Skip-gram model into a
Semantic Word Embedding model. In the Relation Constrained Model, Yu and Dredze
(2014) used word2vec to learn embeddings that are optimized to predict a related
word in the resource, with good evaluation results. Bian, Gao, and Liu (2014) used
not only semantic but also morphological and syntactic knowledge to compute more
effective word embeddings. Cotterell, Schütze, and Eisner (2016) focus on generating
embeddings for inflected forms not observed during training based on morphological
resources. Wang et al. (2014) used Freebase to learn embeddings for entities and words.
This is done during embedding learning, in contrast to our post-processing method.
Zhong et al. (2015) improved this by requiring the embedding vector not only to fit
the structured constraints in the knowledge base but also to be equal to the embedding
vector computed from the text description.

5.5 Post-processing Embeddings

This prior work needs a training step to learn embeddings. In contrast, we can “Auto-
Extend” any set of given word embeddings—without (re)training them. There is an
increasing amount of work on taking existing word embeddings and combining them
with a lexical resource. Labutov and Lipson (2013) re-embedded existing word em-
beddings in supervised training, not to create new embeddings for senses or entities,
but to obtain better predictive performance on a task while not changing the space
of embeddings. A similar approach was chosen by Faruqui et al. (2015) and called
retrofitting. That work is also related to our work in that it uses WordNet. However,
it only uses the similarity relations in order to change embeddings for known objects
(i.e., words). They did not use additive relations nor did they compute embeddings
for non-word objects. Jauhar, Dyer, and Hovy (2015) also used the same retrofitting
technique to model sense embeddings. Their work is similar to our approach but instead
of distinguishing between additive and similarity relations all edges are treated as simi-
larity relations (see Figure 1). Their results show an improvement for word embeddings
but the sense embeddings perform worse than the embeddings on which they were
trained (0.42 on SCWS, see Table 6). We therefore believe that the additive relation is
the superior model for the relationship between words and lexemes as well as for the
relationship between synsets and lexemes. Kiela, Hill, and Clark (2015) used retrofitting
and joint-learning approaches to specialize their embeddings for either similarity or
relatedness tasks.

5.6 Other Related Work

In this work, we treated WSD and Entity Linking as the same problem and used IMS
to solve this task. Moro, Raganato, and Navigli (2014) exposed the differences of both
tasks and also presented a unified approach, called Babelfy. An overview and analysis
of the main approaches to Entity Linking was given by Shen, Wang, and Han (2015).

614

Rothe and Schütze AutoExtend

And whereas we use cosine to compute the similarity between synsets, there are also
many similarity measures that only rely on a given resource, mostly WordNet. These
measures are often functions that depend on information like glosses or on topological
properties like shortest paths. Examples include Wu and Palmer (1994) and Leacock and
Chodorow (1998); Blanchard et al. (2005) give a good overview. A purely graph-based
approach to WSD was presented by Agirre, de Lacalle, and Soroa (2014).

6. Conclusions

We presented AutoExtend, a flexible method to learn embeddings for non-word objects
in resources. AutoExtend is a general method that can be used for any set of embeddings
and for any resource that imposes constraints of a certain type on the relation between
words and other objects. Our experimental results show that AutoExtend can be ap-
plied to different tasks including Word Sense Disambiguation, Entity Linking, Word-in-
Context Similarity, Word Similarity, and Synset Alignment. It achieves state-of-the-art
performance on Word-in-Context Similarity and Word Sense Disambiguation.

Acknowledgments
This work was funded by Deutsche
Forschungsgemeinschaft (DFG SCHU
2246/2-2). We are grateful to Christiane
Fellbaum for discussions leading up to this
article and to the anonymous reviewers for
their comments.

References
Agirre, Eneko, Oier Lopez de Lacalle, and

Aitor Soroa. 2014. Random walks for
knowledge-based word sense
disambiguation. Computational Linguistics,
40(1):57–84.

Balamurali, A. R., Aditya Joshi, and Pushpak
Bhattacharyya. 2011. Harnessing Wordnet
senses for supervised sentiment
classification. In Proceedings of EMNLP,
pages 1081–1091, Edinburgh.

Bengio, Yoshua, Rejean Ducharme, and
Pascal Vincent. 2003. A neural probabilistic
language model. Journal of Machine
Learning Research, 3:1137–1155.

Bhingardive, Sudha, Dhirendra Singh, Rudra
Murthy V, Hanumant Redkar, and
Pushpak Bhattacharyya. 2015.
Unsupervised most frequent sense
detection using word embeddings. In
Proceedings of ACL, pages 1238–1243,
Denver, CO.

Bian, Jiang, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-powered deep learning for
word embedding. In Proceedings of
ECML/PKDD, pages 132–148, Nancy.

Blanchard, Emmanuel, Mounira Harzallah,
Henri Briand, and Pascale Kuntz. 2005.
A typology of ontology-based semantic

measures. In Proceedings of EMOI -
INTEROP, pages 13–14, Porto.

Bollacker, Kurt, Colin Evans, Praveen
Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A collaboratively created
graph database for structuring human
knowledge. In Proceedings of ACM
SIGMOD, pages 1247–1250, Vancouver.

Bordes, Antoine, Xavier Glorot, Jason
Weston, and Yoshua Bengio. 2012.
Joint learning of words and meaning
representations for open-text
semantic parsing. In Proceedings of
AISTATS, pages 127–135, La Palma.

Bordes, Antoine, Jason Weston, Ronan
Collobert, Yoshua Bengio, et al. 2011.
Learning structured embeddings of
knowledge bases. In Proceedings of AAAI,
pages 301–306, San Francisco, CA.

Bruni, Elia, Nam Khanh Tran, and Marco
Baroni. 2014. Multimodal distributional
semantics. Journal of Artificial Intelligence
Research, 49(1):1–47.

Chen, Xinxiong, Zhiyuan Liu, and Maosong
Sun. 2014. A unified model for word sense
representation and disambiguation.
In Proceedings of EMNLP, pages 1025–1035,
Doha.

Collobert, Ronan, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language
processing (almost) from scratch. Journal of
Machine Learning Research, 12:2493–2537.

Cotterell, Ryan, Hinrich Schütze, and Jason
Eisner. 2016. Morphological smoothing
and extrapolation of word embeddings.
In Proceedings of ACL, pages 1651–1660,
Berlin.

615

http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&system=10.1162%2FCOLI_a_00164&citationId=p_1
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1162%2F153244303322533223&citationId=p_3
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1162%2F153244303322533223&citationId=p_3

Computational Linguistics Volume 43, Number 3

Deerwester, Scott, Susan T. Dumais,
George W. Furnas, Thomas K. Landauer,
and Richard Harshman. 1990. Indexing by
latent semantic analysis. Journal of the
American Society for Information Science,
41(6):391–407.

Faruqui, Manaal, Jesse Dodge, Sujay K.
Jauhar, Chris Dyer, Eduard Hovy, and
Noah A. Smith. 2015. Retrofitting word
vectors to semantic lexicons. In Proceedings
of NAACL, pages 1606–1615, Denver,
CO.

Fellbaum, Christiane. 1998. WordNet: An
Electronic Lexical Database. Bradford Books.

Finkelstein, Lev, Evgeniy Gabrilovich, Yossi
Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. 2001. Placing
search in context: The concept revisited.
In Proceedings of WWW, pages 406–414,
Hong Kong.

Fried, Daniel and Kevin Duh. 2014.
Incorporating both distributional and
relational semantics in word
representations. arXiv preprint
arXiv:1412.4369.

Gabrilovich, E, Ringgaard, M, &
Subramanya, A. 2013. FACC1: Freebase
annotation of ClueWeb corpora.

Guo, Jiang, Wanxiang Che, Haifeng Wang,
and Ting Liu. 2014. Learning sense-specific
word embeddings by exploiting bilingual
resources. In Proceedings of COLING,
Technical Papers, pages 497–507, Dublin.

Gurevych, Iryna. 2005. Using the structure of
a conceptual network in computing
semantic relatedness. In Proceedings of
IJCNLP, pages 767–778, Jeju Island.

Hamp, Birgit, Helmut Feldweg, et al. 1997.
GermaNet - a lexical-semantic net for
German. In Proceedings of ACL, Workshops,
pages 9–15, Madrid.

Hill, Felix, Roi Reichart, and Anna
Korhonen. 2014. Simlex-999: Evaluating
semantic models with (genuine) similarity
estimation. arXiv preprint arXiv:1408.3456.

Huang, Eric H., Richard Socher,
Christopher D. Manning, and Andrew Y.
Ng. 2012. Improving word representations
via global context and multiple word
prototypes. In Proceedings of ACL,
pages 873–882, Jeju Island.

Iacobacci, Ignacio, Mohammad Taher
Pilehvar, and Roberto Navigli. 2015.
Sensembed: Learning sense embeddings
for word and relational similarity.
In Proceedings of ACL, pages 95–105,
Beijing.

Jauhar, Sujay Kumar, Chris Dyer, and
Eduard Hovy. 2015. Ontologically
grounded multi-sense representation

learning for semantic vector space models.
In Proceedings of NAACL, pages 683–693,
Denver, CO.

Kalchbrenner, Nal, Edward Grefenstette, and
Phil Blunsom. 2014. A convolutional
neural network for modelling sentences.
In Proceedings of ACL, pages 655–665,
Baltimore, MD.

Kanerva, Pentti. 1998. Sparse Distributed
Memory. MIT Press.

Kanerva, Pentti. 2009. Hyperdimensional
computing: An introduction to
computing in distributed representation
with high-dimensional random
vectors. Cognitive Computation,
1(2):139–159.

Kiela, Douwe, Felix Hill, and Stephen Clark.
2015. Specializing word embeddings for
similarity or relatedness. In Proceedings
of EMNLP, pages 2044–2048,
Lisbon.

Kilgarriff, Adam. 2001. English lexical
sample task description. In Proceedings of
SENSEVAL-2, pages 17–20, Toulouse.

Labutov, Igor and Hod Lipson. 2013.
Re-embedding words. In Proceedings of
ACL, pages 489–493, Sofia.

Leacock, Claudia and Martin Chodorow.
1998. Combining local context and
Wordnet similarity for word sense
identification. WordNet: An electronic lexical
database, 49(2):265–283.

Levy, Omer and Yoav Goldberg. 2014. Neural
word embedding as implicit matrix
factorization. In Proceedings of NIPS,
pages 2177–2185, Montreal.

Liu, Quan, Hui Jiang, Si Wei, Zhen-Hua
Ling, and Yu Hu. 2015. Learning semantic
word embeddings based on ordinal
knowledge constraints. In Proceedings
of ACL, pages 1501–1511, Beijing.

Luong, Minh-Thang, Richard Socher, and
Christopher D. Manning. 2013. Better
word representations with recursive
neural networks for morphology.
In Proceedings of CoNLL, pages 104–113,
Sofia.

Mihalcea, Rada, Timothy Chklovski, and
Adam Kilgarriff. 2004. The Senseval-3
English lexical sample task. In Proceedings
of SENSEVAL-3.

Mikolov, Tomas, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013a. Efficient
estimation of word representations in
vector space. arXiv preprint
arXiv:1301.3781.

Mikolov, Tomas, Quoc V. Le, and Ilya
Sutskever. 2013. Exploiting similarities
among languages for machine translation.
arXiv preprint arXiv:1309.4168.

616

http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1007%2Fs12559-009-9009-8&citationId=p_29
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1002%2F%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9&citationId=p_14
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1002%2F%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9&citationId=p_14

Rothe and Schütze AutoExtend

Mikolov, Tomas, Ilya Sutskever, Kai Chen,
Greg S. Corrado, and Jeff Dean. 2013b.
Distributed representations of words and
phrases and their compositionality.
In Proceedings of NIPS, pages 3111–3119,
Lake Tahoe.

Miller, George A. and Walter G. Charles.
1991. Contextual correlates of semantic
similarity. Language and Cognitive Processes,
6(1):1–28.

Mnih, Andriy and Geoffrey Hinton. 2007.
Three new graphical models for statistical
language modelling. In Proceedings of
ICML, pages 641–648.

Moro, Andrea, Alessandro Raganato, and
Roberto Navigli. 2014. Entity linking meets
word sense disambiguation: a unified
approach. Transactions of the ACL.

Neelakantan, Arvind, Jeevan Shankar,
Alexandre Passos, and Andrew
McCallum. 2014. Efficient non-parametric
estimation of multiple embeddings per
word in vector space. In Proceedings of
EMNLP, pages 1059–1069, Doha.

Pennington, Jeffrey, Richard Socher, and
Christopher D. Manning. 2014. Glove:
Global vectors for word representation.
In Proceedings of EMNLP, pages 1532–1543,
Doha.

Reisinger, Joseph and Raymond J. Mooney.
2010. Multi-prototype vector-space
models of word meaning. In Proceedings of
NAACL, pages 109–117, Los Angeles, CA.

Rubenstein, Herbert and John B.
Goodenough. 1965. Contextual correlates
of synonymy. Communications of the ACM,
8(10):627–633.

Rumelhart, David E., Geoffrey E. Hinton,
and Ronald J. Williams. 1988. Learning
representations by back-propagating
errors. Cognitive Modeling, 5:213–220.

Schütze, Hinrich. 1992. Dimensions of
meaning. In Proceedings of IEEE - SC,
pages 787–796, Raleigh, NC.

Schütze, Hinrich. 1998. Automatic word
sense discrimination. Computational
Linguistics, 24(1):97–123.

Shen, Wei, Jianyong Wang, and Jiawei Han.
2015. Entity linking with a knowledge
base: Issues, techniques, and solutions.

IEEE Transactions on Knowledge and Data
Engineering, 27(2):443–460.

Stratos, Karl, Michael Collins, and Daniel
Hsu. 2015. Model-based word embeddings
from decompositions of count matrices.
In Proceedings of ACL, pages 1282–1291,
Beijing.

Tian, Fei, Hanjun Dai, Jiang Bian, Bin Gao,
Rui Zhang, Enhong Chen, and Tie-Yan Liu.
2014. A probabilistic model for learning
multi-prototype word embeddings.
In Proceedings of COLING, Technical
Papers.

Wang, Tong, Abdel-rahman Mohamed, and
Graeme Hirst. 2015. Learning lexical
embeddings with syntactic and
lexicographic knowledge. In Proceedings of
ACL, pages 458–463, Beijing.

Wang, Zhen, Jianwen Zhang, Jianlin Feng,
and Zheng Chen. 2014. Knowledge graph
and text jointly embedding. In Proceedings
of EMNLP, pages 1591–1601, Doha.

Wu, Zhibiao and Martha Palmer. 1994. Verbs
semantics and lexical selection.
In Proceedings of ACL, pages 133–138,
Las Cruces.

Yaghoobzadeh, Yadollah and Hinrich
Schütze. 2015. Corpus-level fine-grained
entity typing using contextual
information. In Proceedings of EMNLP,
pages 715–725, Lisbon.

Yu, Mo and Mark Dredze. 2014. Improving
lexical embeddings with semantic
knowledge. In Proceedings of ACL,
pages 545–550, Baltimore, MD.

Zesch, Torsten and Iryna Gurevych. 2006.
Automatically creating datasets for
measures of semantic relatedness. In
Proceedings of the Workshop on Linguistic
Distances.

Zhong, Huaping, Jianwen Zhang, Zhen
Wang, Hai Wan, and Zheng Chen. 2015.
Aligning knowledge and text embeddings
by entity descriptions. In Proceedings of
EMNLP, pages 267–272, Lisbon.

Zhong, Zhi and Hwee Tou Ng. 2010. It
makes sense: A wide-coverage word sense
disambiguation system for free text.
In Proceedings of ACL, System
Demonstrations, pages 78–83, Uppsala.

617

http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1145%2F365628.365657&citationId=p_47
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1080%2F01690969108406936&citationId=p_41
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1109%2FTKDE.2014.2327028&citationId=p_51
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2FCOLI_a_00294&crossref=10.1109%2FTKDE.2014.2327028&citationId=p_51

