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Preface

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP). IICNLP
was initiated in 2004 by the Asian Federation of Natural Language Processing (AFNLP) with the major
goal to provide a platform for researchers and professionals around the world to share their experiences
related to natural language processing and computational linguistics. In the past years, ICNLPs were
held in 7 different places: Hainan Island (2004), Jeju Island (2005), Hyderabad (2008), Singapore (2009),
Chiang Mai (2011), Nagoya (2013) and Beijing (2015). This year the 8th IJCNLP is held in Taipei
Nangang Exhibition Hall on November 27-December 1, 2017.

We are confident that you will find IJICNLP 2017 to be technically stimulating. The conference covers a
broad spectrum of technical areas related to natural language processing and computation. Besides main
conference, the program includes 3 keynote speeches, 6 tutorials, 17 demonstrations, 5 workshops, and
5 shared tasks (new event).

Before closing this brief welcome, we would like to thank the entire organizing committee for their
long efforts to create and event that we hope will be memorable for you. Program chairs Greg Kondrak
and Taro Watanabe coordinate the review process allowing for top quality papers to be presented at
the conference. Workshop chairs Min Zhang and Yue Zhang organize 5 nice pre-conference and post-
conference workshops. Tutorial chairs Sadao Kurohashi and Michael Strube select 6 very good tutorials.
Demo chairs Seong-Bae Park and Thepchai Supnithi recommend 17 demonstrations. Shared Task chairs
Chao-Hong Liu, Preslav Nakov and Nianwen Xue choose 5 interesting shared tasks. Sponsorship chairs
Youngkil Kim, Tong Xiao, Kazuhide Yamamoto and Jui-Feng Yeh design sponsor packages and find
financial supports. We thank all the sponsors. Publicity chairs Pushpak Bhattacharya, Xuanjing Huang,
Gina-Anne Levow, Chi Mai Loung and Sebastian Stiiker help circulate the conference information and
promote the conference. We would like to express our special thanks to publication chairs Lung-Hao
Lee and Derek F. Wong. After the hard work, they deliver an excellent proceeding to the participants.

Finally, we would like to thank all authors for submitting high quality research this year. We hope all of
you enjoy the conference program, and your stay at this beautiful city of Taipei.

General Chair

Chengqing Zong, Institute of Automation, Chinese Academy of Sciences, China

Organization Co-Chairs

Hsin-Hsi Chen, National Taiwan University, Taiwan
Yuen-Hsien Tseng, National Taiwan Normal University, Taiwan
Chung-Hsien Wu, National Cheng Kung University, Taiwan
Liang-Chih Yu, Yuan Ze University, Taiwan



Message from the Program Co-Chairs

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)
organized by National Taiwan Normal University and the Association for Computational Linguistics
and Chinese Language Processing (ACLCLP) and hosted by The Asian Federation of Natural Language
Processing (AFNLP).

Since the first meeting in 2004, IICNLP has established itself as a major NLP conference. This year, we
received 580 submissions (337 long and 243 short), which is by far the largest number ever for a stand-
alone IJCNLP conference. From these, 179 papers (103 long and 76 short) were accepted to appear at
the conference, which represents an acceptance rate of 31%. In particular, approximately 46% of the
accepted papers are from Asia Pacific, 30% from North America, and 20% from Europe.

Our objective is to keep the conference to three parallel sessions at any one time. 86 long papers and
21 short papers are scheduled as oral presentations, while 17 long papers and 55 short papers will be
presented as posters.

We are also very pleased to announce three exciting keynote talks by the renowned NLP researchers:
Rada Mihalcea (University of Michigan), Trevor Cohn (University of Melbourne) and Jason Eisner
(Johns Hopkins University).

The conference will conclude with the award presentation ceremony. The Best Paper Award goes
to Nikolaos Pappas and Andrei Popescu-Belis for their paper “Multilingual Hierarchical Attention
Networks for Document Classification.” The Best Student Paper award goes to “Roles and Success in
Wikipedia Talk Pages: Identifying Latent Patterns of Behavior” by Keith Maki, Michael Yoder, Yohan
Jo and Carolyn Rosé.

We would like to thank everyone who has helped make IJCNLP 2017 a success. In particular, the area
chairs (who are listed in the Program Committee section) worked hard on recruiting reviewers, managing
reviews, leading discussions, and making recommendations. The quality of the technical program reflects
the expertise of our 536 reviewers. All submissions were reviewed by at least three reviewers. The
review process for the conference was double-blind, and included an author response period, as well as
subsequent discussions.

We would like to acknowledge the help and advice from the General Chair Chengqing Zong, and the
Local Arrangements Committee headed by Liang-Chih Yu. We thank the Publication Chairs Lung-Hao
Lee and Derek F. Wong for putting together the conference proceedings and handbook, and all the other
committee chairs for their great work.

We hope you will enjoy IICNLP 2017!

LJCNLP 2017 Program Co-Chairs

Greg Kondrak, University of Alberta
Taro Watanabe, Google

vi



Organizing Committee

Conference Chair

Chengqing Zong, Institute of Automation, Chinese Academy of Sciences

Program Committee Co-Chairs

Greg Kondrak, University of Alberta
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Min Zhang, Soochow University
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Invited Talk: Words and People
Rada Mihalcea

University of Michigan

Abstract

What do the words we use say about us and about how we view the world surrounding us? And
what do we - as speakers of those words with our own defining attributes, imply about the words
we utter? In this talk, I will explore the relation between words and people and show how we can
develop cross-cultural word models to identify words with cultural bias — i.e., words that are used
in significantly different ways by speakers from different cultures. Further, I will also show how
we can effectively use information about the speakers of a word (i.e., their gender, culture) to build
better word models.

Biography

Rada Mihalcea is a Professor in the Computer Science and Engineering department at the Uni-
versity of Michigan. Her research interests are in computational linguistics, with a focus on
lexical semantics, multilingual natural language processing, and computational social sciences.
She serves or has served on the editorial boards of the Journals of Computational Linguistics,
Language Resources and Evaluations, Natural Language Engineering, Research in Language in
Computation, IEEE Transactions on Affective Computing, and Transactions of the Association for
Computational Linguistics. She was a program co-chair for the Conference of the Association for
Computational Linguistics (2011) and the Conference on Empirical Methods in Natural Language
Processing (2009), and a general chair for the Conference of the North American Chapter of the
Association for Computational Linguistics (2015). She is the recipient of a National Science Foun-
dation CAREER award (2008) and a Presidential Early Career Award for Scientists and Engineers
awarded by President Obama (2009). In 2013, she was made an honorary citizen of her hometown
of Cluj-Napoca, Romania.
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Invited Talk: Learning Large and Small: How to Transfer NLP Successes to
Low-resource Languages

Trevor Cohn

University of Melbourne

Abstract

Recent advances in NLP have predominantly been based upon supervised learning over large cor-
pora, where rich expressive models, such as deep learning methods, can perform exceptionally
well. However, these state of the art approaches tend to be very data hungry, and consequently do
not elegantly scale down to smaller corpora, which are more typical in many NLP applications.

In this talk, I will describe the importance of small data in our field, drawing particular attention to
so-called “low-" or “under-resourced” languages, for which corpora are scarce, and linguistic an-
notations scarcer yet. One of the key problems for our field is how to translate successes on the few
high-resource languages to practical technologies for the remaining majority of the world’s lan-
guages. I will cover several research problems in this space, including transfer learning between
high- and low-resource languages, active learning for selecting text for annotation, and speech pro-
cessing in a low-resource setting, namely learning to translate audio inputs without transcriptions.
I will finish by discussing open problems in natural language processing that will be critical in
porting highly successful NLP work to the myriad of less-well-studied languages.

Biography

Trevor Cohn is an Associate Professor and ARC Future Fellow at the University of Melbourne,
in the School of Computing and Information Systems. He received Bachelor degrees in Software
Engineering and Commerce, and a PhD degree in Engineering from the University of Melbourne.
He was previously based at the University of Sheffield, and before this worked as a Research
Fellow at the University of Edinburgh. His research interests focus on probabilistic and statistical
machine learning for natural language processing, with applications in several areas including
machine translation, parsing and grammar induction. Current projects include translating diverse
and noisy text sources, deep learning of semantics in translation, rumour diffusion over social
media, and algorithmic approaches for scaling to massive corpora. Dr. Cohn’s research has been
recognised by several best paper awards, including best short paper at EMNLP in 2016. He will
be jointly organising ACL 2018 in Melbourne.
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Invited Talk: Strategies for Discovering Underlying Linguistic Structure
Jason Eisner

Johns Hopkins University

Abstract

A goal of computational linguistics is to automate the kind of reasoning that linguists do. Given
text in a new language, can we determine the underlying morphemes and the grammar rules that
arrange and modify them?

The Bayesian strategy is to devise a joint probabilistic model that is capable of generating the
descriptions of new languages. Given data from a particular new language, we can then seek
explanatory descriptions that have high prior probability. This strategy leads to fascinating and
successful algorithms in the case of morphology.

Yet the Bayesian approach has been less successful for syntax. It is limited in practice by our ability
to (1) design accurate models and (2) solve the computational problem of posterior inference. I
will demonstrate some remedies: build only a partial (conditional) model, and use synthetic data
to train a neural network that simulates correct posterior inference.

Biography

Jason Eisner is Professor of Computer Science at Johns Hopkins University, where he is also af-
filiated with the Center for Language and Speech Processing, the Machine Learning Group, the
Cognitive Science Department, and the national Center of Excellence in Human Language Tech-
nology. His goal is to develop the probabilistic modeling, inference, and learning techniques
needed for a unified model of all kinds of linguistic structure. His 100+ papers have presented
various algorithms for parsing, machine translation, and weighted finite-state machines; formaliza-
tions, algorithms, theorems, and empirical results in computational phonology; and unsupervised
or semi-supervised learning methods for syntax, morphology, and word-sense disambiguation. He
is also the lead designer of Dyna, a new declarative programming language that provides an in-
frastructure for Al research. He has received two school-wide awards for excellence in teaching.
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Abstract

While neural machine translation (NMT)
models provide improved translation qual-
ity in an elegant framework, it is less
clear what they learn about language. Re-
cent work has started evaluating the qual-
ity of vector representations learned by
NMT models on morphological and syn-
tactic tasks. In this paper, we investigate
the representations learned at different lay-
ers of NMT encoders. We train NMT sys-
tems on parallel data and use the mod-
els to extract features for training a clas-
sifier on two tasks: part-of-speech and se-
mantic tagging. We then measure the per-
formance of the classifier as a proxy to
the quality of the original NMT model for
the given task. Our quantitative analysis
yields interesting insights regarding repre-
sentation learning in NMT models. For in-
stance, we find that higher layers are bet-
ter at learning semantics while lower lay-
ers tend to be better for part-of-speech tag-
ging. We also observe little effect of the
target language on source-side representa-
tions, especially in higher quality models.'

1 Introduction

Neural machine translation (NMT) offers an el-
egant end-to-end architecture, while at the same
time improving translation quality. However, little
is known about the inner workings of these models
and their interpretability is limited. Recent work
has started exploring what kind of linguistic infor-
mation such models learn on morphological (Vy-
lomova et al., 2016; Belinkov et al., 2017; Dalvi
et al., 2017) and syntactic levels (Shi et al., 2016;
Sennrich, 2017).

'Our code is available at http://github.com/
boknilev/nmt-repr-analysis.
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One observation that has been made is that
lower layers in the neural MT network learn
different kinds of information than higher lay-
ers. For example, Shi et al. (2016) and Belinkov
etal. (2017) found that representations from lower
layers of the NMT encoder are more predictive
of word-level linguistic properties like part-of-
speech (POS) and morphological tags, whereas
higher layer representations are more predictive of
more global syntactic information. In this work,
we take a first step towards understanding what
NMT models learn about semantics. We evaluate
NMT representations from different layers on a se-
mantic tagging task and compare to the results on
a POS tagging task. We believe that understand-
ing the semantics learned in NMT can facilitate
using semantic information for improving NMT
systems, as previously shown for non-neural MT
(Chan et al., 2007; Liu and Gildea, 2010; Gao and
Vogel, 2011; Wu et al., 2011; Jones et al., 2012;
Bazrafshan and Gildea, 2013, 2014).

For the semantic (SEM) tagging task, we use
the dataset recently introduced by Bjerva et al.
(2016). This is a lexical semantics task: given a
sentence, the goal is to assign to each word a tag
representing a semantic class. The classes cap-
ture nuanced meanings that are ignored in most
POS tag schemes. For instance, proximal and dis-
tal demonstratives (e.g., this and that) are typi-
cally assigned the same POS tag (DT) but receive
different SEM tags (PRX and DST, respectively),
and proper nouns are assigned different SEM tags
depending on their type (e.g., geopolitical entity,
organization, person, and location). As another
example, consider pronouns like myself, yourself,
and herself. They may have reflexive or emphasiz-
ing functions, as in (1) and (2), respectively:

(1) Sarah bought herself a book
(2) Sarah herself bought a book
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Figure 1: Illustration of our approach, after (Belinkov et al., 2017): (i) NMT system trained on parallel
data; (ii) features extracted from pre-trained model; (iii) classifier trained using the extracted features.
We train classifiers on either SEM or POS tagging using features from different layers (here: layer 2).

In these examples, herself has the same POS tag
(PRP) but different SEM tags: REF for a reflexive
function and EMP for an emphasizing function.

Capturing semantic distinctions of this sort can
be important for producing accurate translations.
For instance, example (1) would be translated to
Spanish with the reflexive pronoun se, whereas
(2) would be translated with the intensifier misma.
Thus, a translation system needs to learn different
representations of herself in the two sentences.

In order to assess the quality of the representa-
tions learned by NMT models, we adopt the fol-
lowing methodology from Shi et al. (2016) and
Belinkov et al. (2017). We first train an NMT sys-
tem on parallel data. Given a sentence, we extract
representations from the pre-trained NMT model
and train a word-level classifier to predict a tag
for each word. Our assumption is that the perfor-
mance of the classifier reflects the quality of the
representation for the given task.

We compare POS and SEM tagging quality with
representations from different layers or from mod-
els trained on different target languages, while
keeping the English source fixed. Our results yield
useful insights on representation learning in NMT:

o Consistent with previous work, we find that
lower layer representations are usually better
for POS tagging. However, we also find that
representations from higher layers are better
at capturing semantics, even though these are
word-level labels. This is especially true with
tags that are more semantic in nature such as
discourse functions or noun concepts.

o In contrast to previous work, we observe little
effect of the target language on source-side
representation. We find that the effect of tar-
get language diminishes as the size of data
used to train the NMT model increases.

2 Methodology

Given a parallel corpus of source and target sen-
tence pairs, we train an NMT system with a stan-
dard sequence-to-sequence model with attention
(Bahdanau et al., 2014; Sutskever et al., 2014). Af-
ter training the NMT system, we fix its parameters
and treat it as a feature generator for our classifi-
cation task. Let hé? denote the output of the k-th
layer of the encoder at the j-th word. Given an-
other corpus of sentences, where each word is an-
notated with a label, we train a classifier that takes
h? as input features and maps words to labels. We
then measure the performance of the classifier as a
way to evaluate the quality of the representations
generated by the NMT system. By extracting dif-
ferent NMT features we can obtain a quantitative
comparison of representation learning quality in
the NMT model for the given task. For instance,
we may vary k in order to evaluate representations
learned at different encoding layers.

In our case, we first train NMT systems on par-
allel corpora of an English source and several tar-
get languages. Then we train separate classifiers
for predicting POS and SEM tags using the fea-
tures hf that are obtained from the English en-
coder and evaluate their accuracies. Figure 1 il-
lustrates the process.



3 Data and Experimental Setup

3.1 Data

MT We use the fully-aligned United Nations
corpus (Ziemski et al., 2016) for training NMT
models, which includes 11 million multi-parallel
sentences in six languages: Arabic (Ar), Chinese
(Zh), English (En), French (Fr), Spanish (Es), and
Russian (Ru). We train En-to-* models on the first
2 million sentences of the train set, using the offi-
cial train/dev/test split. This dataset has the benefit
of multiple alignment of the six languages, which
allows for comparable cross-linguistic analysis.
Note that the parallel dataset is only used for
training the NMT model. The classifier is then
trained on the supervised data (described next) and
all accuracies are reported on the English test sets.

Semantic tagging Bjerva et al. (2016) intro-
duced a new sequence labeling task, for tagging
words with semantic (SEM) tags in context. This
is a good task to use as a starting point for inves-
tigating semantics because: i) tagging words with
semantic labels is very simple, compared to build-
ing complex relational semantic structures; ii) it
provides a large supervised dataset to train on, in
contrast to most available datasets on word sense
disambiguation, lexical substitution, and lexical
similarity; and iii) the proposed SEM tagging task
is an abstraction over POS tagging aimed at being
language-neutral, and oriented to multi-lingual se-
mantic parsing, all relevant aspects to MT. We pro-
vide here a brief overview of the task and its as-
sociated dataset, and refer to (Bjerva et al., 2016;
Abzianidze et al., 2017) for more details.

The semantic classes abstract over redundant
POS distinctions and disambiguate useful cases
inside a given POS tag. Examples (1-2) above
illustrate how fine-grained semantic distinctions
may be important for generating accurate trans-
lations. Other examples of SEM tag distinctions
include determiners like every, no, and some that
are typically assigned a single POS tag (e.g., DT in
the Penn Treebank), but have different SEM tags,
reflecting universal quantification (AND), negation
(NOT), and existential quantification (DIS), re-
spectively. The comma, whose POS tag is a punc-
tuation mark, is assigned different SEM tags rep-
resenting conjunction, disjunction, or apposition,
according to its discourse function. Proximal and
distant demonstratives (this vs. that) have different
SEM tags but the same POS tag. Named-entities,

‘ ‘ Train Dev Test

POS Sentences 38K 1.7K 2.3K
Tokens 908K 40K 54K

SEM Sentences | 42.5K 6.1K 12.2K
Tokens 937K 132K 266K

Table 1: Statistics of the part-of-speech and se-
mantic tagging datasets.

whose POS tag is usually a single tag for proper
nouns, are disambiguated into several classes such
as geo-political entity, location, organization, per-
son, and artifact. Other nouns are divided into
“role” entities (e.g., boxer) and “concepts” (e.g.,
wheel), a distinction reflecting existential consis-
tency: an entity can have multiple roles but cannot
be two different concepts.

The dataset annotation scheme includes 66 fine-
grained tags grouped in 13 coarse categories. We
use the silver part of the dataset; see Table 1 for
some statistics.

Part-of-speech tagging For POS tagging, we
simply use the Penn Treebank with the standard
split (parts 2-21/22/23 for train/dev/test); see Ta-
ble 1 for statistics. There are 34 POS tags.

3.2 Experimental Setup

Neural MT We use the seg2seg-attn
toolkit (Kim, 2016) to train 4-layered long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) attentional encoder-decoder NMT sys-
tems with 500 dimensions for both word embed-
dings and LSTM states. We compare both uni-
directional and bidirectional encoders and experi-
ment with different numbers of layers. Each sys-
tem is trained with SGD for 20 epochs and the
model with the best loss on the development set
is used for generating features for the classifier.

Classifier The classifier is modeled as a feed-
forward neural network with one hidden layer,
dropout (ratio of 0.5), a ReLU activation func-
tion, and a softmax layer onto the label set size.?
The hidden layer is of the same size as the in-
put coming from the NMT system (i.e., 500 di-
mensions). The classifier has no explicit access to
context other than the hidden representation gen-

2We use a non-linear classifier because previous work
found that it outperforms a linear classifier, while showing
very similar trends (Qian et al., 2016b; Belinkov et al., 2017).



| MFT  UnsupEmb ~ Word2Tag

k| Ar Es Fr Ru Zh En

POS
SEM

91.95 87.06 95.55
82.00 81.11 91.41

Table 2: POS and SEM tagging accuracy with
baselines and an upper bound. MFT: most fre-
quent tag; UnsupEmb: classifier using unsuper-
vised word embeddings; Word2Tag: upper bound
encoder-decoder.

erated by the NMT system, which allows us to fo-
cus on the quality of the representation. We chose
this simple formulation as our goal is not to im-
prove the state-of-the-art on the supervised task,
but rather to analyze the quality of the NMT rep-
resentation for the task. We train the classifier for
30 epochs by minimizing the cross-entropy loss
using Adam (Kingma and Ba, 2014) with default
settings. Again, we use the model with the best
loss on the development set for evaluation.

Baselines and an upper bound we consider
two baselines: assigning to each word the most
frequent tag (MFT) according to the training set
(with the global majority tag for unseen words);
and training with unsupervised word embeddings
(UnsupEmb) as features for the classifier, which
shows what a simple task-independent distributed
representation can achieve. For the unsupervised
word embeddings, we train a Skip-gram nega-
tive sampling model (Mikolov et al., 2013) with
500 dimensional vectors on the English side of
the parallel data, to mirror the NMT word em-
bedding size. We also report an upper bound of
directly training an encoder-decoder on word-tag
sequences (Word2Tag), simulating what an NMT-
style model can achieve by directly optimizing for
the tagging tasks.

4 Results

Table 2 shows baseline and upper bound results.
The UnsupEmb baseline performs rather poorly
on both POS and SEM tagging. In comparison,
NMT word embeddings (Table 3, rows with k =
0) perform slightly better, suggesting that word
embeddings learned as part of the NMT model
are better syntactic and semantic representations.
However, the results are still below the most fre-
quent tag baseline (MFT), indicating that non-
contextual word embeddings are poor representa-
tions for POS and SEM tags.

POS Tagging Accuracy

87.9* 87.9* 87.8* 87.7*
919 921 921 915
91.8 91.8 91.8* 913
92.3* 92.1 91.6* 91.2*
92.4* 92.5% 920 90.5*

88.0*
92.4

91.9%
92.0*
92.1*

87.4*
89.4
88.3
87.9*
86.9*

A WO = O

SEM Tagging Accuracy

81.9* 81.8* 81.8* 81.8*
87.7 87.8 879 877
87.5* 87.4* 87.3* 87.2*
87.9* 87.9** 87.3* 87.3*
88.6" 88.4* 88.1* 87.7*

BLEU
38,5 342 321

81.9%
87.9
87.4%
87.8
88.3*

81.2%
84.5

83.2*
82.9*
82.1*

A WO = O

327 49.1 96.6

Table 3: SEM and POS tagging accuracy using
features from the k-th encoding layer of 4-layered
NMT models trained with different target lan-
guages. “En” column is an English autoencoder.
BLEU scores are given for reference. Statistically
significant differences from layer 1 are shown at
p < 0.001™ and p < 0.01%). See text for de-
tails.

4.1 Effect of network depth

Table 3 summarizes the results of training clas-
sifiers to predict POS and SEM tags using fea-
tures extracted from different encoding layers of 4-
layered NMT systems.? In the POS tagging results
(first block), as the representations move above
layer 0, performance jumps to around 91-92%.
This is above the UnsupEmb baseline but only on
par with the MFT baseline (Table 2). We note that
previous work reported performance above a ma-
jority baseline for POS tagging (Shi et al., 2016;
Belinkov et al., 2017), but used a weak global ma-
jority baseline (all words are assigned a single tag)
whereas here we compare with a stronger baseline
that assigns to each word the most frequent tag ac-
cording to the training data. The results are also
far below the Word2Tag upper bound (Table 2).
Comparing layers 1 through 4, we see that in
3/5 target languages (Ar, Ru, Zh), POS tagging
accuracy peaks at layer 1 and does not improve

3The results given are with a unidirectional encoder; in
section 4.5 we compare with a bidirectional encoder and ob-
serve similar trends.



at higher layers, with some drops at layers 2 and
3. In 2/5 cases (Es, Fr) the performance is higher
at layer 4. This result is partially consistent with
previous findings regarding the quality of lower
layer representations for the POS tagging task (Shi
et al., 2016; Belinkov et al., 2017). One possible
explanation for the discrepancy when using dif-
ferent target languages is that French and Span-
ish are typologically closer to English compared
to the other languages. It is possible that when the
source and target languages are more similar, they
share similar POS characteristics, leading to more
benefit in using upper layers for POS tagging.

Turning to SEM tagging (Table 3, second
block), representations from layers 1 through 4
boost the performance to around 87-88%, far
above the UnsupEmb and MFT baselines. While
these results are below the Word2Tag upper bound
(Table 2), they indicate that NMT representations
contain useful information for SEM tagging.

Going beyond the 1st encoding layer, represen-
tations from the 2nd and 3rd layers do not con-
sistently improve semantic tagging performance.
However, representations from the 4th layer lead
to significant improvement with all target lan-
guages except for Chinese. Note that there is a
statistically significant difference (p < 0.001) be-
tween layers O and 1 for all target languages, and
between layers 1 and 4 for all languages except for
Chinese, according to the approximate randomiza-
tion test (Pado, 20006).

Intuitively, higher layers have a more global
perspective because they have access to higher
representations of the word and its context, while
lower layers have a more local perspective. Layer
1 has access to context but only through one hid-
den layer which may not be sufficient for capturing
semantics. It appears that higher representations
are necessary for learning even relatively simple
lexical semantics.

Finally, we found that En-En encoder-decoders
(that is, English autoencoders) produce poor rep-
resentations for POS and SEM tagging (last col-
umn in Table 3). This is especially true with
higher layer representations (e.g., around 5% be-
low the MT models using representations from
layer 4). In contrast, the autoencoder has excellent
sentence recreation capabilities (96.6 BLEU). This
indicates that learning to translate (to any foreign
language) is important for obtaining useful repre-
sentations for both tagging tasks.

| Ar  Es Fr Ru Zh | En
POS | 88.7 90.0 89.6 88.6 874|852
SEM| 853 86.1 858 852 85.0 | 80.7

Table 4: SEM and POS tagging accuracy using
features extracted from the 4th NMT encoding
layer, trained with different target languages on a
smaller parallel corpus (200K sentences).

4.2 Effect of target language

Does translating into different languages make the
NMT system learn different source-side represen-
tations? In previous work (Belinkov et al., 2017),
we found a fairly consistent effect of the target lan-
guage on the quality of encoder representations for
POS and morphological tagging, with differences
of ~2-3% in accuracy. Here we examine if such
an effect exists in both POS and SEM tagging.

Table 3 also shows results using features ob-
tained by training NMT systems on different tar-
get languages (the English source remains fixed).
In both POS and SEM tagging, there are very
small differences with different target languages
(~0.5%), except for Chinese which leads to
slightly worse representations. While the differ-
ences are small, they are mostly statistically sig-
nificant. For example, at layer 4, all the pairwise
comparisons with different target languages are
statistically significant (p < 0.001) in SEM tag-
ging, and all except for two comparisons (Ar vs.
Ru and Es vs. Fr) are significant in POS tagging.

The effect of target language is much smaller
than that reported in (Belinkov et al., 2017) for
POS and morphological tagging. This discrepancy
can be attributed to the fact that our NMT systems
in the present work are trained on much larger cor-
pora (10x), so it is possible that some of the differ-
ences disappear when the NMT model is of better
quality. To verify this, we trained systems using
a smaller data size (200K sentences), comparable
to the size used in (Belinkov et al., 2017). The re-
sults are shown in Table 4. In this case, we observe
a variance in classifier accuracy of 1-2%, based on
target language, which is consistent with our ear-
lier findings. This is true for both POS and SEM
tagging. The differences in POS tagging accuracy
are statistically significant (p < 0.001) for all pair-
wise comparisons except for Ar vs. Ru; the differ-
ences in SEM tagging accuracy are significant for
all comparisons except for Ru vs. Zh.
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Figure 2: SEM tagging accuracy with fine/coarse-
grained tags using features extracted from differ-
ent encoding layers of 4-layered NMT models
trained with different target languages.

Finally, we note that training an English autoen-
coder on the smaller dataset results in much worse
representations compared to MT models, for both
POS and SEM tagging (Table 4, last column), con-
sistent with the behavior we observed on the larger
data (Table 3, last column).

4.3 Analysis at the semantic tag level

The SEM tags are grouped in coarse-grained cat-
egories such as events, names, time, and logical
expressions (Bjerva et al.,, 2016). In Figure 2
(top lines), we show the results of training and
testing classifiers on coarse tags. Similar trends
to the fine-grained case arise, with higher abso-
lute scores: significant improvement using the 1st
encoding layer and some additional improvement
using the 4th layer, both statistically significant
(p < 0.001). Again, there is a small effect of the
target language.

Figure 3 shows the change in F; score (averaged
over target languages) when moving from layer 1
to layer 4 representations. The blue bars describe
the differences per coarse tag when directly pre-
dicting coarse tags. The red bars show the same
differences when predicting fine-grained tags and
micro-averaging inside each coarse tag. The for-
mer shows the differences between the two lay-
ers at distinguishing among coarse tags. The latter
gives an idea of the differences when distinguish-
ing between fine-grained tags within a coarse cat-
egory. The first observation is that in the majority
of cases there is an advantage for classifiers trained
with layer 4 representations, i.e., higher layer rep-
resentations are better suited for learning the SEM
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Figure 3: Difference in F; when using represen-
tations from layer 4 compared to layer 1, showing
F; when directly predicting coarse tags (blue) and
when predicting fine-grained tags and averaging
inside each coarse tag (red).

tags, at both coarse and fine-grained levels.

Considering specific tags, higher layers of the
NMT model are especially better at capturing se-
mantic information such as discourse relations
(DIS tag: subordinate vs. coordinate vs. apposi-
tion relations), semantic properties of nouns (roles
vs. concepts, within the ENT tag), events and pred-
icate tense (EVE and TNS tags), logic relations
and quantifiers (LOG tag: disjunction, conjunc-
tion, implication, existential, universal, etc.), and
comparative constructions (COM tag: equatives,
comparatives, and superlatives). These examples
represent semantic concepts and relations that re-
quire a level of abstraction going beyond the lex-
eme or word form, and thus might be better repre-
sented in higher layers in the deep network.

One negative example that stands out in Fig-
ure 3 is the prediction of the MOD tag, correspond-
ing to modality (necessity, possibility, and nega-
tion). It seems that such semantic concepts should
be better represented in higher layers following
our previous hypothesis. Still, layer 1 is better than
layer 4 in this case. One possible explanation is
that words tagged as MOD form a closed class, with
only a few and mostly unambiguous words (“no”,
“not”, “should”, “must”, “may”, “can”, “might”,
etc.). It is enough for the classifier to memo-
rize these words in order to predict this class with
high Fy, and this is something that occurs better in
lower layers. One final case worth mentioning is
the NAM category, which stands for different types
of named entities (person, location, organization,
artifact, etc.). In principle, this seems a clear case
of semantic abstractions suited for higher layers,



| L1

L4

1 REL  SUB | Zimbabwe ’s President Robert Mugabe has freed three men who were jailed for murder and sab-
otage as they battled South Africa ’s anti-apartheid African National Congress in 1988 .

2 REL  SUB | The military says the battle erupted after gunmen fired on U.S. troops and Afghan police investi-
gating a reported beating of a villager .

3 IST SUB | Election authorities had previously told Haitian-born Dumarsais Simeus that he was not eligible
to run because he holds U.S. citizenship .

4 AND COO | Fifty people representing 26 countries took the Oath of Allegiance this week ( Thursday ) and
became U.S. citizens in a special ceremony at the Newseum in Washington , D.C.

5 AND COO | Butrebel groups said on Sunday they would not sign and insisted on changes .

6 AND COO | A Fox asked him , “ How can you pretend to prescribe for others , when you are unable to heal
your own lame gait and wrinkled skin ? ”

7 NIL  APP | But Syria’s president, Bashar al-Assad , has already rejected the commission ’s request [...]

8 NIL  APP | Hassan Halemi, head of the pathology department at Kabul University where the autopsies were
carried out , said hours of testing Saturday confirmed [...]

9 NIL  APP | Mr. Hu made the comments Tuesday during a meeting with Ichiro Ozawa, the leader of Japan ’s
main opposition party .

10 | AND COO | [...] abortion opponents will march past the U.S. Capitol and end outside the Supreme Court .

11 | AND COO | Van Schalkwyk said no new coal-fired power stations would be approved unless they use technol-
ogy that captures and stores carbon emissions .

12 | AND COO | A MEMBER of the Kansas Legislature meeting a Cake of Soap was passing it by without recog-
nition , but the Cake of Soap insisted on stopping and shaking hands .

Figure 4: Examples of cases of disagreement between layer 1 (L1) and layer 4 (L.4) representations when
predicting SEM tags. The correct tag is italicized and the relevant word is underlined.

but the results from layer 4 are not significantly
better than those from layer 1. This might be sig-
naling a limitation of the NMT system at learning
this type of semantic classes. Another factor might
be the fact that many named entities are out of vo-
cabulary words for the NMT system.

4.4 Analyzing discourse relations

In this section, we analyze specific cases of dis-
agreement between predictions using representa-
tions from layer 1 and layer 4. We focus on dis-
course relations, as they show the largest improve-
ment when going from layer 1 to layer 4 repre-
sentations (DIS category in Figure 3). Intuitively,
identifying discourse relations requires a relatively
large context so it is expected that higher layers
would perform better in this case.

There are three discourse relations in the SEM
tags annotation scheme: subordinate (SUB), coor-
dinate (COO), and apposition (APP) relations. For
each of those, Figure 4 (examples 1-9) shows the
first three cases in the test set where layer 4 rep-
resentations correctly predicted the tag but layer 1
representations were wrong. Examples 1-3 have
subordinate conjunctions (as, after, because) con-
necting a main and an embedded clause, which
layer 4 is able to correctly predict. Layer 1 mis-
takes these as attribute tags (REL, IST) that are
usually used for prepositions. In examples 4-5,

the coordinate conjunction and is used to connect
sentences/clauses, which layer 4 correctly tags as
COO0. Layer 1 wrongly predicts the tag AND, which
is used for conjunctions connecting shorter ex-
pressions like words (e.g., “murder and sabotage”
in example 1). Example 6 is probably an annota-
tion error, as and connects the phrases “lame gait”
and “wrinkled skin” and should be tagged as AND.
In this case, layer 1 is actually correct. In exam-
ples 7-9, layer 4 correctly identifies the comma as
introducing an apposition, while layer 1 predicts
NIL, a tag for punctuation marks without seman-
tic content (e.g., end-of-sentence period). As ex-
pected, in most of these cases identifying the dis-
course function requires a fairly large context.

Finally, we show in examples 10-12 the first
three occurrences of AND in the test set, where
layer 1 was correct and layer 4 was wrong. In-
terestingly, two of these (10-11) are clear cases of
and connecting clauses or sentences, which should
have been annotated as COO, and the last (12) is a
conjunction of two gerunds. The predictions from
layer 4 in these cases thus appear justifiable.

4.5 Other architectural variants

Here we consider two architectural variants that
have been shown to benefit NMT systems: bidi-
rectional encoder and residual connections. We
also experiment with NMT systems trained with



different depths. Our motivation in this section is
to see if the patterns we observed thus far hold in
different NMT architectures.

Bidirectional encoder Bidirectional LSTMs
have become ubiquitous in NLP and also give
some improvement as NMT encoders (Britz et al.,
2017). We confirm these results and note im-
provements in both translation (+1-2 BLEU) and
SEM tagging quality (+3-4% accuracy), across
the board, when using a bidirectional encoder.
Some of our bidirectional models obtain 92-93%
accuracy, which is close to the state-of-the-art on
this task (Bjerva et al., 2016). We observed similar
improvements on POS tagging. Comparing POS
and SEM tagging (Table 5), we note that higher
layer representations improve SEM tagging, while
POS tagging peaks at layer 1, in line with our
previous observations.

Residual connections Deep networks can
sometimes be trained better if residual con-
nections are introduced between layers. Such
connections were also found useful for SEM
tagging (Bjerva et al., 2016). Indeed, we noticed
small but consistent improvements in both trans-
lation (+0.9 BLEU) and POS and SEM tagging
(up to +0.6% accuracy) when using features ex-
tracted from an NMT model trained with residual
connections (Table 5). We also observe similar
trends as before: POS tagging does not benefit
from features from the upper layers, while SEM
tagging improves with layer 4 representations.

Shallower MT models In comparing network
depth in NMT, Britz et al. (2017) found that en-
coders with 2 to 4 layers performed the best. For
completeness, we report here results using features
extracted from models trained originally with 2
and 3 layers, in addition to our basic setting of 4
layers. Table 6 shows consistent trends with our
previous observations: POS tagging does not ben-
efit from upper layers, while SEM tagging does,
although the improvement is rather small in the
shallower models.

5 Related Work

Techniques for analyzing neural network mod-
els include visualization of hidden units (Elman,
1991; Karpathy et al., 2015; Kadér et al., 2016;
Qian et al., 2016a), which provide illuminating,
but often anecdotal information on how the net-
work works. A number of studies aim to ob-

| o 1 2 3 4

Uni POS | 879 920 91.7 91.8 91.9
SEM | 81.8 87.8 874 87.6 832

Bi POS | 879 933 929 932 9238
SEM | 81.9 91.3 90.8 919 91.9

R POS | 879 925 919 920 924
“ | SEM | 819 882 875 87.6 88.5
Table 5: POS and SEM tagging accuracy

with features from different layers of 4-layer
Uni/Bidirectional/Residual NMT encoders, aver-
aged over all non-English target languages.

| o 1 2 3 4

4 POS | 879 920 917 91.8 919
SEM | 81.8 87.8 87.4 87.6 88.2
3 POS | 879 925 923 924 -
SEM | 81.9 88.2 88.0 884 -
) POS | 879 927 927 - -
SEM | 82.0 885 88.7 - -

Table 6: POS and SEM tagging accuracy with fea-
tures from different layers of 2/3/4-layer encoders,
averaged over all non-English target languages.

tain quantitative correlations between parts of the
neural network and linguistic properties, in both
speech (Wu and King, 2016; Alishahi et al., 2017;
Belinkov and Glass, 2017; Wang et al., 2017) and
language processing models (Kohn, 2015; Qian
et al., 2016a; Adi et al., 2016; Linzen et al., 2016;
Qian et al., 2016b). Methodologically, our work is
most similar to Shi et al. (2016) and Belinkov et al.
(2017), who also used hidden vectors from neural
MT models to predict linguistic properties. How-
ever, they focused on relatively low-level tasks
(syntax and morphology, respectively), while we
apply the approach to a semantic task and com-
pare the results with a POS tagging task.

Our methodology is reminiscent of the ap-
proach taken by Pérez-Ortiz and Forcada (2001),
who trained a recurrent neural network POS tagger
in two steps. However, their goal was to improve
POS tagging while we use it as a task to evaluate
neural MT models.



6 Conclusion

While neural network models have improved the
state-of-the-art in machine translation, it is diffi-
cult to interpret what they learn about language.
In this work, we explore what kind of linguistic
information such models learn at different layers.
Our experimental evaluation leads to interesting
insights about the hidden representations in NMT
models such as the effect of layer depth and target
language on part-of-speech and semantic tagging.

In the future, we would like to extend this work
to other syntactic and semantic tasks that require
building relations such as dependency relations
and predicate-argument structure or to evaluate se-
mantic representations of multi-word expressions.
We believe that understanding how semantic prop-
erties are learned in NMT is a key step for creating
better machine translation systems.

Acknowledgments

This research was carried out in collaboration be-
tween the HBKU Qatar Computing Research In-
stitute (QCRI) and the MIT Computer Science and
Artificial Intelligence Laboratory (CSAIL).

References

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The Par-
allel Meaning Bank: Towards a Multilingual Cor-
pus of Translations Annotated with Compositional
Meaning Representations. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 242-247. Association for Com-
putational Linguistics.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained Anal-
ysis of Sentence Embeddings Using Auxiliary Pre-
diction Tasks. arXiv preprint arXiv:1608.04207.

Afra Alishahi, Marie Barking, and Grzegorz Chrupata.
2017. Encoding of phonology in a recurrent neu-
ral model of grounded speech. In Proceedings of
the SIGNLL Conference on Computational Natural
Language Learning, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint
arXiv:1409.0473.

Marzieh Bazrafshan and Daniel Gildea. 2013. Seman-
tic Roles for String to Tree Machine Translation. In

Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 419-423, Sofia, Bulgaria. As-
sociation for Computational Linguistics.

Marzieh Bazrafshan and Daniel Gildea. 2014. Com-
paring Representations of Semantic Roles for
String-To-Tree Decoding. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1786—-1791,
Doha, Qatar. Association for Computational Lin-
guistics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do Neural
Machine Translation Models Learn about Morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 861-872. Association
for Computational Linguistics.

Yonatan Belinkov and James Glass. 2017. Analyzing
Hidden Representations in End-to-End Automatic
Speech Recognition Systems. In Advances in Neu-
ral Information Processing Systems (NIPS).

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016.
Semantic Tagging with Deep Residual Networks.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 3531-3541, Osaka, Japan.
The COLING 2016 Organizing Committee.

Denny Britz, Anna Goldie, Thang Luong, and Quoc
Le. 2017. Massive Exploration of Neural Machine
Translation Architectures. ArXiv e-prints.

Seng Yee Chan, Tou Hwee Ng, and David Chiang.
2007. Word Sense Disambiguation Improves Sta-
tistical Machine Translation. In Proceedings of the
45th Annual Meeting of the Association of Compu-
tational Linguistics, pages 33-40. Association for
Computational Linguistics.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, and Stephan Vogel. 2017. Understanding
and Improving Morphological Learning in the Neu-
ral Machine Translation Decoder. In Proceedings
of the 8th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
Taipei, Taiwan. Association for Computational Lin-
guistics.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine learning, 7(2-3):195-225.

Qin Gao and Stephan Vogel. 2011. Utilizing Target-
Side Semantic Role Labels to Assist Hierarchical
Phrase-based Machine Translation. In Proceedings
of Fifth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, pages 107-115. As-
sociation for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.



Bevan Jones, Jacob Andreas, Daniel Bauer,
Moritz Karl Hermann, and Kevin Knight. 2012.
Semantics-Based Machine Translation with Hyper-
edge Replacement Grammars. In Proceedings of
COLING 2012, pages 1359-1376. The COLING
2012 Organizing Committee.

Akos Kadar, Grzegorz Chrupata, and Afra Alishahi.
2016. Representation of linguistic form and func-
tion in recurrent neural networks. arXiv preprint
arXiv:1602.08952.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and Understanding Recurrent Networks.
arXiv preprint arXiv:1506.02078.

Yoon Kim. 2016. Seq2seq-attn. https://
github.com/harvardnlp/seqg2seg-attn.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

Arne Kohn. 2015. What’s in an Embedding? Analyz-
ing Word Embeddings through Multilingual Evalu-
ation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2067-2073, Lisbon, Portugal. Associa-
tion for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the Ability of LSTMs to Learn
Syntax-Sensitive Dependencies. Transactions of the
Association for Computational Linguistics, 4:521—
53s.

Ding Liu and Daniel Gildea. 2010. Semantic Role
Features for Machine Translation. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 716-724.
Coling 2010 Organizing Committee.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems, pages 3111-3119.

Sebastian Padd. 2006. User’s guide to sigf: Sig-
nificance testing by approximate randomisation.
https://www.nlpado.de/~sebastian/
software/sigf.shtml.

Juan Antonio Pérez-Ortiz and Mikel L. Forcada. 2001.
Part-of-Speech Tagging with Recurrent Neural Net-
works. In Neural Networks, 2001. Proceedings.
IJCNN °01. International Joint Conference on, vol-
ume 3, pages 1588-1592.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016a.
Analyzing Linguistic Knowledge in Sequential
Model of Sentence. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 826835, Austin, Texas. Associa-
tion for Computational Linguistics.

10

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016b.
Investigating Language Universal and Specific Prop-
erties in Word Embeddings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1478-1488, Berlin, Germany. Association for Com-
putational Linguistics.

Rico Sennrich. 2017. How Grammatical is Character-
level Neural Machine Translation? Assessing MT
Quality with Contrastive Translation Pairs. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 376-382.
Association for Computational Linguistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
String-Based Neural MT Learn Source Syntax? In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1526-1534, Austin, Texas. Association for Compu-
tational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104-3112.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and
Gholamreza Haffari. 2016.  Word Representa-
tion Models for Morphologically Rich Languages
in Neural Machine Translation. arXiv preprint
arXiv:1606.04217.

Yu-Hsuan Wang, Cheng-Tao Chung, and Hung-yi
Lee. 2017. Gate Activation Signal Analysis for
Gated Recurrent Neural Networks and Its Corre-
lation with Phoneme Boundaries. arXiv preprint
arXiv:1703.07588.

Dekai Wu, Pascale N Fung, Marine Carpuat, Chi-kiu
Lo, Yongsheng Yang, and Zhaojun Wu. 2011. Lex-
ical Semantics for Statistical Machine Translation.
In Handbook of Natural Language Processing and
Machine Translation: DARPA Global Autonomous
Language Exploitation.

Zhizheng Wu and Simon King. 2016. Investigat-
ing Gated Recurrent Networks for Speech Synthe-
sis. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on,
pages 5140-5144. IEEE.

Micha Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations Parallel Cor-
pus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), Paris, France. European Language
Resources Association (ELRA).



Context-Aware Smoothing for Neural Machine Translation

Kehai Chen'; Rui Wang?] Masao Utiyama?, Eiichiro Sumita® and Tiejun Zhao'
Machine Intelligence & Translation Laboratory, Harbin Institute of Technology
2ASTREC, National Institute of Information and Communications Technology (NICT)
{khchen and tjzhao}@hit.edu.cn
{wangrui, mutiyama and eiichiro.sumita}l@nict.go.jp

Abstract

In Neural Machine Translation (NMT),
each word is represented as a low-
dimension, real-value vector for encoding
its syntax and semantic information. This
means that even if the word is in a different
sentence context, it is represented as the
fixed vector to learn source representation.
Moreover, a large number of Out-Of-
Vocabulary (OOV) words, which have
different syntax and semantic information,
are represented as the same vector
representation of unk. To alleviate this
problem, we propose a novel context-
aware smoothing method to dynamically
learn a sentence-specific vector for each
word (including OOV words) depending
on its local context words in a sentence.
The learned context-aware representation
is integrated into the NMT to improve the
translation performance. Empirical results
on NIST Chinese-to-English translation
task show that the proposed approach
achieves 1.78 BLEU improvements on
average over a strong attentional NMT,
and outperforms some existing systems.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014,
Bahdanau et al., 2015), has shown prominent
performances in comparison with the conventional
Phrase Based Statistical Machine Translation
(PBSMT) (Koehn et al., 2003). In NMT, a source
sentence is converted into a vector representation
by an RNN called encoder, then another RNN

*Kehai Chen was an internship research fellow at NICT
when conducting this work.
t Corresponding author.
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called decoder generates target sentence word by
word based on the source representation with
attention information and target history.

One advantage of NMT systems is that each
word is represented as a low-dimension, real-
valued vector, instead of storing statistical rules
as in PBSMT. This means that even if the word
is in a different sentence context, it is represented
as the fixed vector to learn source representation.
Figure 1 (a) shows two pair of Chinese-to-English
parallel sentences in which two Chinese sentences
contain the same word “da”. Intuitively, the “da”
denotes “beating” in the first Chinese sentence
while the “da” denotes “playing” in the second
Chinese sentence. It is obvious that the “da”
which denotes different meanings in a specific
sentence is represented as the same word vector
in the encoder of NMT, as show in Figure 1 (b).
Although the RNN-based encoder can capture the
sentence context for each word, we believe that
offering better word vector with context-aware
representation might help improve translation
quality of NMT.

Moreover, a large number of Out-Of-
Vocabulary (OOV) words which have different
syntax and semantic information are represented
as the same vector representation of unk. Actually,
this kind of simple approach may cause ambiguity
of the sentences since the single unk breaks the
structure of sentences, thus hurts representation
learning of source sentence and translation
prediction of the target word. For example, the
unk firstly affects source representation learning in
encoder; then the negative effect would be further
transformed to the decoder, which generates the
poverty context vector and hidden layer state for
translation prediction, as shown in the gray parts
of Figure 1 (c). Besides, when the generated
target word may also be unk, the negative effect
of unk will become more severe.

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 11-20,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP
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Figure 1: (a) Two parallel Chinese-to-English sentence pair; (b) The encoder of NMT; (c) The NMT
with OOV, these gray parts indicate the parameters of NMT which are affected by the OOV z,,.

In this paper, we propose a novel context-
aware smoothing method to dynamically learn a
Context-Aware Representation (CAR) for each
word (including OOV words) depending on its
local context words in a sentence. We then
use the learned CAR to extend word vector in
a sentence, thus enhancing source representation
for improving the translation performance of
NMT. First, compared with the single unk vector,
we encode the context words of each OOV as
a Context-Aware Representation (CAR), which
has the potential to capture the OOV’s semantic
information. Second, we also extend the context-
aware smoothing method to in-vocabulary words,
which enhances encoder and decoder of NMT
by more effectively utilizing context information
by the learned CAR. To this end, we proposed
two unique neural networks to learn the context-
aware representation for each word depending on
its context words in a fixed-size window. We then
design four NMT models with CAR to improve
translation performance by smoothing the encoder
and decoder.

The remainder of the paper is organized as
follows. Section 2 introduces the related work
in the NMT. Section 3 presents two novel
neural models to learn the CAR for each word.
Section 4 integrates the CAR into the NMT by
using smoothing strategies. Section 5 reports
the experimental results obtained in the Chinese-
to-English task. Finally, we conclude the
contributions of the paper and discuss the further
work in Section 6.
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2 Related Work

In traditional SMT, there are many research works
to improve the translations of OOVs. Fung and
Cheung (2004) and Shao and Ng (2004) adopte
comparable corpora and web resources to extract
translations for each unknown word. Marton et al.
(2009) and Mirkin et al. (2009) applied paraphrase
model and entailment rules to replace unknown
words with in-vocabulary synonyms before trans-
lation. A series of works (Knight and Graehl,
1997; Jiang et al., 2007; Al-Onaizan and Knight,
2002) utilized transliteration and web mining
techniques with external monolingual/bilingual
corpora, comparable data and the web resource to
find the translation of the unknown words. Nearly
most of the related PBSMT researches focused
on finding the correct translation of the unknown
words with external resources and ignored the
negative effect for other words.

Compared with PBSMT, due to high computa-
tional cost, NMT has a more limited vocabulary
size and severe OOV phenomenon. The existing
PBSMT methods that used external resources
to translate unknown words for SMT are hard
to be directly introduced into NMT, because
of NMT’s soft-alignment mechanism (Bahdanau
et al., 2015). To relieve the negative effect
of unknown words for NMT, Luong et al.
(2015) proposed a word alignment algorithm,
allowing the NMT system to emit, for each OOV
word in the target sentence, the position of its
corresponding word in the source sentence, and
to translate every OOV in a post-processing step
using a external bilingual dictionary. Although



these methods improved the translation of OOV,
they must learn external bilingual dictionary
information in advance.

From the point of vocabulary size, many works
tried to use a large vocabulary size, thus covering
more words. Jean et al. (2015) proposed a method
based on importance sampling that allowed NMT
model to use a very large target vocabulary for
relieving the OOV phenomenon in NMT, which
are only designed to reduce the computational
complexity in training, not for decoding. Arthur
et al. (2016) introduced discrete translation
lexicons into NMT to imrpove the translations
of these low-frequency words. Mi et al. (2016)
proposed a vocabulary manipulation approach by
limiting the number of vocabulary being predicted
by each batch or sentence, to reduce both the
training and the decoding complexity. These
methods focused on the translation of OOV itself
and ignored the other negative effect caused by the
OOV, such as the translations of the words around
the OOV.

Recently, many works exploited the granularity
translation unit from words to smaller subwords
or characters. Sennrich et al. (2016) introduced
a simpler and more effective approach to encode
rare and unknown words as sequences of subword
units by Byte Pair Encoding (Gage, 1994). This
is based on the intuition that various word
classes are translatable via smaller units than
words. Luong and Manning (2016) segmented the
known words into character sequence, and learned
the unknown word representation by character-
level recurrent neural networks, thus achieving
open vocabulary NMT. Li et al. (2016) replaced
OOVs with in-vocabulary words by semantic
similarity to reduce the negative effect for words
around the OOVs. Costa-jussa and Fonollosa
(2016) presented a character-based NMT, in which
character-level embeddings were in combination
with convolutional and highway layers to replace
the standard lookup-based word representations.
These methods extended the vocabulary to a
larger or unlimited vocabulary and improved the
performance of NMT tasks, especially in the
morphological rich language pairs.

Instead of utilizing larger vocabulary or sub-
unit information, we exploit to relieve more
translation performance for NMT from the
negative effect of OOVs by learning context-
aware representations for OOVs. As a result, the
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proposed method can smooth the representation
of word and reduce the unk’s negative effect in
attention model, context annotations and decoding
hidden states, thus improving the performance of
NMT.

3 Context-Aware Representation

Intuitively, when one understands natural lan-
guage sentence, especially including polysemy
words or OOVs, one often inferences the meaning
of these words depending on its context words.
Context plays an important role in learning
distributed representation of word (Mikolov et al.,
2013a,b). Motivated by this, we propose two
neural network methods, including Feedforward
Context-of-Word Model (FCWM) and Convo-
lutional Context-of-Words Model (CCWM), to
learn a Context-Aware Representation (CAR) for
each word.

3.1 Feedforward Context-of-Words Model

Inspired by the representation learning of
word (Bengio et al., 2003), the proposed FCWM
includes an input layer, a projection layer, and a
non-linear output layer, as shown in Figure 2 (a).
Specifically, suppose there is a source language
sentence, {Z1,Z2,. .., ,...,x }. If the context
window is set as 2n (n = 2), the context of each
word z; is defined as its historical n words and
future n words:
Lj = J)j,n,.. (1)

s Lj—1,Lj41s -+ s Tjtn.

In the input layer, each word in L; is transformed
into one-hot representation. ! The projection layer
concatenates one-hot representations in L; to a
(2nm)-dimension vector L;,>

Li=1[vj_p:...,0j-1:0j41:  :Vjqn], (2)
where “:” denotes the concatenation operation of
word vectors.

We then approximate to learn its semantic
representation Vi, € R™ by a non-linear output
layer instead of softmax layer:

3)

'If the L;j includes OOV, we use original unk vector to
represent it. Besides, we also try the average vector of the
current sentence word to represent it, but gain the similar
translation performance.

In this paper, the bold variable denotes a continuous
space vector.

Vi, =o(WiL; +b1)",
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Figure 2: (a) Feedforward Context-of-Word Model; (b) Convolution Context-of-Word Model.

where o is a non-linear activation function (e.g.,
Tanh), T represents matrix transpose, and Wy is a
weight matrix and b; is a bias term.

Finally, we extend each word with the learned
CAR vector Vi, thus feeding into the NMT
to enhance source representation for improving
target word prediction. Therefore, the proposed
FCWM plays the role of the function ¢
parameterized by ¢, which maps the context L;
of each word into vector Vi, as follows:

Vi, = p(Lj;01). “4)

3.2 Convolutional Context-of-Words Model

Compared with the FCWM, the proposed CCWM
indirectly encodes the context words of each
word as a compositional semantic representation
to represent the OOV. Specifically, the proposed
CCWM is a novel variant of the standard
convolutional neural network (Collobert et al.,
2011), including an input layer, a convolution
layer, a pooling layer and a non-linear output layer,
as shown in Figure 2 (b).

Input Layer: When the dimension of word
vector is m and the context window is set to
2n, the input layer is denoted as one vector
matrix M € R™*?" In M, each column
denotes context words of word x;, that is, M is
[Vi—n, =+ Vj—1,Vj4+1,- - ,Vj+n] for the context
{l’jfn, X1, T4, ,l’jJrn} of Zj.

Convolutional Layer: In the convolutional
layer, let the filter window sizebe m x k (2 < k <
2n), where the k is set to 3 in our experiments,
thus generating feature map L; as follows:

Lj=pWalvj:vjpr - vjpi] +b2), (5)
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where ) is a non-linear activation function,’ W, €
R™ k™ g the weight matrix and by € R™ is
a bias term. After the filter traverses the input
matrix, the output of the feature map L is:

L=[Ly,..., Loy pt1] (6)

Pooling Layer: The pooling operation (e.g.,
max, average) is commonly used to extract robust
features from convolution. For the output feature
map of the convolution layers, a column-wise
max is performed over the consecutive columns of
window size 2 as follows:

P = maz[Ly-1, Lo, (7
where 1 <[ < Q”_Tk“ After the max pooling,
the output of the feature map P is:

'P:['Pl,...,'Pzn;ﬁ]. (8)

Non-linear Output Layer: The output layer
is typically a fully connected layer multiplied by
a matrix. In this paper, first row-wise averaging
from the pooling layers is performed without any
parameters, and gain CAR of each word by non-
linear active function o (e.g., Tanh); hence, the
CAR V¢, of word z; is obtained by

2n—k+1

Vi, = o(Ws(average( Z P)) +b3). O
=1

Therefore, the above CCWM plays the role of
the function ¢ parameterized by 62, which maps

3We used a ReLU activation function.



the context £; of word z; into vector V¢, as
follows:

Ve, = p(Lj;02)

In this case, the word z; is represented as a CAR
\

J

(10)

4 NMT with Context-Aware Smoothing

4.1 NMT Background

An NMT model consists of an encoder process
and a decoder process, and hence it is often
called encoder-decoder model (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015), as shown in Figure 1. Typically,
each unit of source input (z1,...,27) is firstly
embedded as a vector v;;, and then represented as
annotation vector k; by
hj = fenc(vxjahj—l)a (11)
where f.,. is a bidirectional Recurrent Neural
Network (RNN) (Bahdanau et al., 2015). These
annotation vectors {hy,...,h;} are used to
generate target word in decoder.
An RNN decoder is used to compute the target
word y; probability by a softmax layer g:
P(yi‘y<i>$) = g(Vyi,l,Si,Ci), (12)
where v,, , is vector representation of the
previously emitted word y;_1, s; is an RNN hidden

state for the current time step and the ¢; is the
current context vector.

4.2 Smoothing Strategy

In this subsection, we will introduce NMT with the
learned CAR. This would relieve the translation
performance of NMT from source representation.
To this end, we use OOV as an example to
integrate FCWM or CCWM into NMT; and then
extend them to in-vocabulary words.

To learn the representation of source sentence,
the proposed FCWM or CCWM are integrated
into the encoder of NMT. If the source word x; is
in-vocabulary, its annotation vector h; is learned
by the traditional encoder; if the source word x;
is not in-vocabulary (OOV z,), the FCWM or
CCWM proposed in section 3 are used to learn its
CAR instead of single unk vector, and further learn
its annotation vector h;. According to the eq.(11),
the encoder with CAR learns the annotation vector
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h; by the eq.(13):

h: — fenc(hxﬁhjfl)a xj c ‘/s
’ fenC(‘Pe(Vsz)vhjfl)» Ly ¢ Vs,

where Vj is source-side vocabulary table in NMT,
e is the proposed FCWM or CCWM integrated
into the encoder according to eq.(4) or eq.(10),
and V,, is the learned CAR over the source-side
L; from eq.(1):

(13)

— 4
Lj =Tj—ny--y Lj—1,Tj41y-«+sTjdn- (14)

Similarly, the proposed FCWM or CCWM
are also integrated into the decoder in NMT.
Compared with the encoder with CAR, the target-
side OOV’s context words of training processing is
different from that of the decoding in which target-
side OOV’s future context is unknowable. That
is, only the historical n words of y;_1 are used to
learn the CAR of V L To be consistent with the
decoding process, the previous 2n words of OOV
are regarded as its context L;_l instead of the
previous n words and future n words. Therefore,
the decoder with CAR predicts the next target
word by the eq.(15):

P(yily<i, z) = {g(vyil’/s“cz')’ v W
9(pa(Li_1):8i,¢:), Yi-1 ¢ Vi,

(15)

where V; is target-side vocabulary table in NMT,
g denotes the proposed FCWM or CCWM
integrated into the decoder according to eq.(4) or
eq.(10), and VLQ_l is the learned CAR over the

target-side context L;_l from eq.(1):

’
— 9 . . 5
Li_y=Yi-on,- Yi—ns-- -, Yi-1.

4.3 Models

Based on the above smoothing strategy, we
design four novel NMT models: CARNMT-
Encoder, CARNMT-Decoder, CARNMT-Both
and an ALLSmooth, all of which can make use
of CAR to enhance encoder or decoder of NMT
for improving the translation performance:

o CARNMT-Encoder: Only smoothing
source-side unk to relieve the influence in the
encoder, as shown in Figure 3 (a).

(16)

*If the number of previous context or future context words
is less n, we pads a sentence start symbol BEG or sentence
end symbol EOS.

3If the number of previous context words is less 2n, we
pads L;_1 using a sentence start symbol BEG.
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Figure 3: (a) CARNMT-Encoder; (b) CARNMT-Decoder; (c) CARNMT-Both; (d) ALLSmooth, in
which the red dotted arrows obtain the context words of each word according to eq.(14) or eq.(16). The
blue dotted boxes denote FCWM or CCWM proposed in section 2.

o CARNMT-Decoder: Only smoothing target-
side unk in the decoder, as shown in Figure 3

(b).

CARNMT-Both: Both smoothing the unks
of source-side and target-side in the NMT, as
shown in Figure 3 (c).

ALLSmooth: this model smooths not only
the unk words, but also all source-and target-
side in-vocabulary words by the learned
CARs, as shown in Figure 3 (d). Meanwhile,
the vector of in-vocabularys word and its
CARs are concatenated as a novel vector
to represent the semantic information of the
word instead of replacing the word vector
with its CAR.

In our experiments, each model has two variants
according to the integrated FCWM or CCWM.
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For example, “CARNMT-encoder (CCWM)”
indicates that the CAR for OOV is learned by the
CCWM proposed in the section 3. In Figure 3,
we take FCWM to learn the CAR for each word
(including OOV). Therefore, there is easy to use
the proposed CCWM instead of the FCWM.
Moreover, the proposed NMT models with
CAR are an integrative architecture without any
external information. Especially, the NMT
and FCWM or CCWM, which are not isolated
from each other, are trained by optimizing their
parameters jointly. In other words, the 6; or 6
and the parameters of NMT are optimized jointly.

5 Experiments

5.1 Setting up

We carry out experiments on the Chinese-to-
English translation task. The training dataset



System Dev (MT02) | MTO03 MT04 MTO05 MTO06 MTO08 AVG
Moses 33.15 31.02 33.78 30.33 29.62 23.53 29.66
Bahdanau et al. (2015) 36.42 34.22 37.11 33.02 32.69 25.38 32.48
Sennrich et al. (2016) 36.89 35.39 38.24 33.73 32.74 26.22 33.26
Costa-jussa and Fonollosa (2016) | 35.98 34.93 37.56 33.24 32.32 26.02 32.81
Li et al. (2016) 36.96 35.78 38.42 34.02 33.14 26.36 33.54
CARNMT-Encoder (FCWM) 36.78 35.56%* | 38.14* 33.69 33.13 26.16%* 33.34
CARNMT-Decoder (FCWM) 36.67 34.65 37.60 33.26 33.01 26.15% 32.93
CARNMT-Both (FCWM) 37.36 35.43%*% | 38.34%* | 3343 33.47 26.86** | 33.50
ALLSmooth (FCWM) 37.71 35.73*% | 38.53** | 3391* 33.53* 27.18*%* | 33.78
CARNMT-Encoder (CCWM) 37.12 35.64%* | 38.14* 33.49 33.26* 26.57** | 33.42
CARNMT-Decoder (CCWM) 36.33 34.56 3743 33.24 32.96 25.86 32.81
CARNMT-Both (CCWM) 37.56 35.83** | 38.52%* | 33,73 33.37%* | 27.06%* | 33.70
ALLSmooth (CCWM) 37.69 36.23%* | 38.89%* | 34.69** | 33.83** | 27.94% 34.32

Table 1: Results on NIST Chinese-to-English Translation Task. “*” indicates statistically significant
better than Bahdanau et al. (2015) at p-value < 0.05 and “**” at p-value < 0.01. “{” indicate statistically
significant difference (p-value < 0.05) from the Li et al. (2016) which performed the best among
baselines and “}” at p-value < 0.01. AVG is average BLEU scores for MT03-MTO08 test sets. The
bold denotes the proposed model is superior to the Li et al. (2016) over the same test set.

consists of 1.42M sentence pairs extracted from
LDC corpora.® We choose the NIST 2002 (MT02)
and the NIST 2003-2008 (MTO03-08) datasets as
validation set and test sets, respectively. Case-
insensitive 4-gram NIST BLEU score (Papineni
et al.,, 2002) is as evaluation metric, and the
signtest (Collins et al., 2005) was as statistical
significance test.

The baseline systems included the standard PB-
SMT implemented in Moses (Koehn et al., 2007)
and the standard attentional NMT (Bahdanau
etal., 2015) . We also compared with state-of-the-
art enhanced NMT methods for OOV: subword-
based NMT (Sennrich et al., 2016), character-
based NMT (Costa-jussa and Fonollosa, 2016),
and replacing unk with similarity semantic in-
vocabulary words (Li et al.,, 2016). All of
these baselines and the proposed method are
implemented in Nematus 7 (Sennrich et al., 2017).

For all NMT systems, we limit the source and
target vocabularies to 30K, and the maximum
sentence length is 80. We shuffle training set
before training and the mini-batch size is 80. The
word embedding dimension is 620-dimensions &,
the hidden layer dimension is 1000, and the
default dropout technique (Hinton et al., 2012) in
Nematus is used on the all the layers. Training is
conducted on a single Tesla P100 GPU. All NMT
models trained for 15 epochs® using ADADELTA

SLDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06.

"https://github.com/EdinburghNLP/nematus

8For the ALLSmooth, the 360 dimensions are from V; ;
or V,, and the 260 dimensions were from the learned CAR

° All NMT models are convergent in the 15 epochs.
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optimizer (Zeiler, 2012), and our training time
is only about 10% slower than the standard
attentional NMT.

5.2 Results and Analyses

Table 1 shows the translation performances
on test sets measured in BLEU score. The
standard attentional NMT (Bahdanau et al., 2015)
outperforms Moses by 2.78 BLEU points on
average, indicating that it is a strong baseline
NMT system. All the comparison methods,
including Sennrich et al. (2016), Costa-jussa and
Fonollosa (2016), and Li et al. (2016), outperform
the standard attentional NMT.

1) Over the standard attentional NMT,
CARNMT-Encoder (FCWM/CCWM)
gain improvements of 0.86/0.94 BLEU
points on average, and CARNMT-Decoder
(FCWM/CCWM)  gain  improvements  of
0.45/0.33 BLEU points on average. CARNMT-
Both (FCWM/CCWM) gain improvements

of 1.02/1.30 BLEU points on average, which
indicates that improvement in encoder and
decoder are essentially orthogonal.

2) ALLSmooth (FCWM/CCWM) surpass
CARNMT-Both (FCWM/CCWM) by 0.28/0.62
BLEU points on average. This indicates that
the proposed context-aware smoothing method
not only helps relieve the OOV affect, but also
enhances representations of in-vocabulary words.

3) ALLSmooth (FCWM/CCWM) also outper-
forms the best performed baseline Li et al. (2016),
which replaces the unk words by using external
lexicon similarity, by 0.24/0.78 BLEU points on



SRC: JLF
(pinyin) yonghao zhege zhanlue jivuqi

EA HEE HUEN o0V), 1% BB ER, WU RE OREEA RE Em

lizheng yousuo zuowei , bixu ba fazhan kexue jishu fangzai gengjia zhongyao , gengjia tuchu de wiezhi

HE O, WM RN E

Bahdanauet al.(2015) : to make good use of this strategy , we should strive for the development of science and technology , and must put
the development of science and technology into an even more important and prominent position

This work: in making good use of this strategic plan and striving to accomplish something , it is necessary to place the development of
science and technology in a more important and more prominent position

Ref: to well use this strategic period of opportunity and strive to accomplish some achievments , the development of science and
technology should be placed in a more prior and prominent position

Figure 4: Translation sample for source sentence with one OOV. The English phrases in color indicate
they are translations from the corresponding Chinese phrase with the same color.

average.

4) The CCWM performs slightly better than
FCWM. The reason may be that the convolution
neural network can summarize the contextual
information better than the feedforward neural
network.

5.3 Translation Qualities for Sentences with
Different Numbers of OOV
4l r ~PBSMT
37 Bahdanau et al. (2015)
~Lietal. (2016)
33 ~CARNMT-Both (FCOM)
—CARNMT-Both (CCOM)
229 1 —ALLSmooth (FCOM)
25 | —ALLSmooth (CCOM)
21 +
17 ¢
13 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 >9
THE NUMBER OF OOV

Figure 5: Translation qualities for sentences with
different numbers of OOV.

To further verify our methods, we group
sentences of same number OOVs all the test sets
(MTO03-08), for example, “5” indicates that all the
source sentences include five OOV words in the
group, and compute a BLEU score per group.

1) In Figure 5, we observe that when the
number of OOVs is zero (no OOV), ALLSmooth
(FCWM/CCWM) outperform other baseline sys-
tems, and the performances of CARNMT-
Both (FCWM/CCWM) are similar to standard
attentional NMT. This means that CARNMT-Both
(FCWM/CCWM) degrade into standard attention-
al NMT because of these sentences not include
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OOV, but our context-aware smoothing method
enhances the representation of in-vocabulary
words in the ALLSmooth (FCWM/CCWM).

2) With the increasing in the number of OOV's
(especially when more than five), the gap between
our methods and other methods (except PBSMT)
become larger. This indicates that our methods
are especially good at dealing with multi-OOV
situation, in comparison with other NMT methods.

5.4 Samples Analysis

This subsection shows one translation sample
for source sentence with one OOV, as shown in
Figure 4. We compare our method ALLSmooth
(CCWM) with Bahdanau et al. (2015) on the
translation of a source sentence with the OOV
“jiyugi” (“period of opportunity” in English).

1) For both of Bahdanau et al. (2015)’s method
and the proposed method, the OOV “jiyugi” itself
is not translated.

2) For Bahdanau et al. (2015)’s method,
the phrase “lizheng yousuo zuowei’ (“strive to
accomplish some achievments” in English) after
“jiyugi” is not translated. The purple part of source
sentence are translated twice in (Bahdanau et al.,
2015)’s method. This is in consistent with our
hypothesis in Section 1: the OOV which makes the
structure of source sentence discontinuous affects
source representation learning in encoder; then the
negative effect would be further transformed to
the decoder by the source annotation vectors, thus
generating the poverty context vector and hidden
layer state for translation prediction.

3) In comparison, the proposed method
translates it into “striving to accomplish some-
thing”, which is quite close to the reference.
This indicates that our proposed context-aware
smoothing method can relieve more translation



performance for NMT from the OOV’s negative
effect shown in Section 1.

6 Conclusion

In this paper, we explored the context information
to smooth source representation with OOVs, and
integrate the learned CAR into the Encoder and
Decoder of NMT to improve the translation
performance. Especially, we extended the method
to smooth each word in-vocabulary, and further
gained improvements over the proposed models
for the NMT.

In the future, we will exploit richer context
information, such as pos-tagger and named
entity, to enhance the semantic representation of
vocabulary in NMT.
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Abstract

Sequence to Sequence Neural Machine
Translation has achieved significant per-
formance in recent years. Yet, there are
some existing issues that Neural Machine
Translation still does not solve completely.
Two of them are translation of long sen-
tences and “over-translation”. To address
these two problems, we propose an ap-
proach that utilize more grammatical in-
formation such as syntactic dependencies,
so that the output can be generated based
on more abundant information. In addi-
tion, the output of the model is presented
not as a simple sequence of tokens but as a
linearized tree construction. Experiments
on the Europarl-v7 dataset of French-to-
English translation demonstrate that our
proposed method improves BLEU scores
by 1.57 and 2.40 on datasets consisting of
sentences with up to 50 and 80 tokens,
respectively. Furthermore, the proposed
method also solved the two existing prob-
lems, ineffective translation of long sen-
tences and over-translation in Neural Ma-
chine Translation.

1 Introduction

Our task is to construct a model which learns in-
put in sequence form and decodes output as a lin-
earized dependency tree. In this work, we propose
an approach in which dependency labels are in-
corporated into the model to represent more gram-
matical information in the output sequence. As
we know, the Sequence to Sequence (Seg2Seq)
Learning model (Sutskever et al., 2014; Aha-
roni et al., 2016) is extremely effective on a va-

This author’s present affiliation is CyberAgent, Inc.,
Tokyo, Japan, yoshimoto_akifumi_xa@cyberagent.co.jp
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riety of tasks that require a mapping between a se-
quence to sequence. Therefore, it is used to solve
many tasks in natural language processing. The
Seg2Seqg model consists of an encoder-decoder
neural network which encodes a variable-length
input sequence into a vector and decodes it into
a variable-length output. Since the model uses
the information of the source representation and
the previously generated words to produce the
next-word token, this distributed representation al-
lows the Segq2Seq model to generate appropri-
ate mapping between the input and the output (Li
et al., 2016). For specific tasks, Neural Machine
Translation (NMT) model, which is based on the
Seq2Seq learning, has achieved excellent transla-
tion performance in recent years (Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015;
Firat et al., 2016). In particular, the NMT model
which is built upon an encoder-decoder frame-
work with attention mechanism (Bahdanau et al.,
2015) can also pay attention and its decoder knows
which part of the input is relevant for the word
that is currently being translated. Therefore, it
has shown competitive results and outperformed
conventional statistical methods (Bentivogli et al.,
2016). Despite of these advantages, NMT model
still has a couple particular issues to be solved
such as dealing with fixed vocabulary, not appli-
cable to small-data, additional phrases, wrong lex-
ical choice errors, long sentence translation, over
and under translation, etc. In this paper, we touch
upon the following two major problems:

e Translation of long sentences
e Over-translation

Since the decoder of the Seg2Seq model pro-
duces the target language word by word simply
based on the previous target words and the source-
side representation vector until it reaches the spe-
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cial end token, it is incapable in capturing long-
distance dependencies in history, so ineffective for
long sentences translation (Zhang et al., 2016;
Toral and Sanchez-Cartagena, 2017). Even with
an attention mechanism, the Seg2 Seq model just
pays attention to the current alignment informa-
tion between the inputs and the output at the cur-
rent position but ignores past alignments informa-
tion. Therefore, it cannot keep track of the atten-
tion history when it updates information at each
current time step, leading to the over-production
(Tu et al., 2016a,c; Mi et al., 2016; Tu et al.,
2016b).

In order to address the above two issues, it is
worth considering that using syntactic dependency
information and representing the output as a tree
structure would be effective. This approach al-
lows the next tokens to be output based on not
only the previous tokens but also the syntactic de-
pendencies so far, thereby conditioning them on
more abundant information so it has the ability to
make smarter predictions. Basically, in this paper,
we train the model with an encoder-decoder neu-
ral network and using dependencies in which the
input of the source language is in sequence form
and the output of the target language will be gen-
erated in a linearized dependency-based tree struc-
ture. That is, instead of predicting only words at
each time step, the model trains the network to
predict both words and their grammatical depen-
dencies as a dependency tree at each time step.
Therefore, it is hoped that the accuracy of output
will be improved.

The major contributions of this work are as fol-
lows:

1. To utilize the information of both “head”
words and syntactic dependencies between
them to produce better output.

To settle the problems in the NMT task.
In this paper, we desire to solve two tasks.
First is the ineffective translation for long
sentences. Second is the over-translation in
NMT task.

Empirically, to assess the performance of the
proposed method, we used Conditional Gated Re-
current Unit with Attention mechanism model of
Bahdanau (2015) on the French-English portions
of the Europarl-v7 dataset. As a result, the BLEU
score is improved by 1.57 and 2.40 points for sen-
tences of length up to 50 and 80 tokens, respec-
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tively. Also, we compare and analyze the results
of attention-based Seqg2Seq model and the pro-
posed approach.

2 Related Work

In fact, the effectiveness of using dependency in-
formation of words has been reported in some
previous NLP tasks, for example, in dependency-
based word embeddings, relation classification
and sentence classification tasks (Liu et al., 2015;
Socher et al., 2014; Levy and Goldberg, 2014;
Komnios, 2016; Ono and Hatano, 2014). It has
been shown that the combination of words and
their dependency information can boost perfor-
mance. Besides, in the work of Vinyals et al.
(Vinyals et al., 2014), they also represent output as
a linearized tree structure, but their work showed
that generic sequence-to-sequence approaches can
achieve excellent results on syntactic constituency
parsing. At a glance, our proposed method is a
little similar to the works of Dyer et al., Aharoni
et al., Eriguchi et al., Wu et al. (Dyer et al.,
2016; Aharoni and Goldberg, 2017; Eriguchi et al.,
2017; Wu et al., 2017) in use of parse tree and
generation. However, Dyer et al. and Aharoni
et al.’s works concern predicting constituent trees.
Eriguchi et al.’s model employs syntactic depen-
dency parsing but their model is hybridized the de-
coder of NMT and the Recurrent Neural Network
Grammars, and the target sentences are parsed in
transition-based parsing. Wu et al.’s model also
employs dependency parsing but their model sep-
arately predicts the target translation sequence and
parsing action sequence which maps to translation.
On the other hand, our proposed model’s decoder
directly predicts the linearized dependency tree it-
self in a single neural network in Depth-first pre-
order order so that the next-word token is gener-
ated based on syntactic relations and tree construc-
tion itself. In other words, our model is able to
learn and produce a tree of words and their depen-
dency relations by itself.

3 Sequence-to-Dependency Model

In our proposed approach, the neural network
model is trained to map the target-side output in a
linearized dependency tree construction from the
source-side input in a sequence. Thus, we call
this model Sequence-to-Dependency (Seg2Dep)
model. The problem is defined as follows: Given a
source sequence X = (x1,xo,...,xy) of length



N, we want the model to encode the input se-
quence X and decode it to a tree structure with
both words and dependency information condi-
tioned on the encoded vector. Therefore, the out-
put will be represented in the form (LY) =

(lyy,lys, ..., 1y, ). The conditional probability
p(ly|x) is decomposed as:
(e}
plylz) = [ pQy;ly ;. 2), (1)
i=1

in which (ly,,lys, ...,ly,,;) are words or depen-
dency labels.

Therefore, the hidden state s; at time step j is
computed as follows:

sj = cGRUy (Sj—h ly]'—lvcj) J 2)

and the next token ly;, which may be a word or
dependency label, will be generated as follows:

ly; =f(sjly;_1,Cj), 3)

In this paper, dependencies are defined as the
dependency labels which are achieved from the
Stanford Dependency Parser (Chen and Manning,
2014). The decoder will decode the next output
based on relations between governors and depen-
dents in a linearized tree structure. In regards to
the order of generating the dependency labels and
the words, the decoder will produce these symbols
in a manner called Depth-first pre-order traversal.
In this section, we will describe the model step-
by-step as follows:

3.1 Processing Data

Since there is no parallel corpus in which the
source-side is represented in sequence and target-
side is represented in linearized dependency tree,
we have to prepare data for training by doing de-
pendency parsing for the target-side language.

3.1.1 Dependency Parsing

In this paper, we do experiments on a French-
English language pair so we use the Stanford
Dependency Parser to obtain dependency parsing
results for English. The Stanford Dependency
Parser produces results in the form of a tree struc-
ture in which each word of the sentence is the de-
pendent of exactly one token, either another word
in the sentence or the distinguished “ROOT-0" to-
ken. The parsing result is represented in the for-
mat “abbreviated relation name(governor, depen-
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dent)” in which a governor is a head word and de-
pendency is a syntactic relation between a gover-
nor and a dependent. The governor and the depen-
dent are words in the sentence. This dependency
parsing result will be transformed in another step
for traversing the tree, which will be described in
the next section to create a dependency tree. The
dependency tree represents the target language as
an ordered tree structure which is necessary for
training. The reason we chose the Stanford Depen-
dency Parser for the parsing portion of this method
is because it can represent the order of words in
sentence. This information of the order is useful
to traverse tree in the following step.

3.1.2 Transformation and Tree Traversal

In this section, we describe the Tree Transform
and Tree Traversal process in which output in a
linearized dependency tree form is created from
the Stanford Dependency Parsing tree. For ex-
ample, given a sentence “She ate an apple today
.7, after obtaining dependency parsing tree from
the above dependency parsing phase, we move
the rooted “ate” and “apple” headwords to the
same layers of their dependents which are directly
connected to the headwords. We also concur-
rently make consideration to their positions in or-
der while shifting headwords. The headwords are
shifted in such a manner that the word order of
sentence can be preserved, so we can evaluate the
translated output afterwards. Next, the tree struc-
ture obtained in the fist step will be transformed
into another tree structure for the next tree traver-
sal step. Then we traverse this tree in a Depth-
first pre-order traversal, which is the search tree
in which tree is traversed from its left subtree
to right subtree recursively until current node is
empty, to create output with a linearized tree struc-
ture to train the model. That is, for each rooted
subtree, governors and dependency labels of the
sentence are predicted first, and their information
will be used to predict the next dependent words.
In other words, the model can capture the depen-
dency information between label-word and word-
word pairs to predict the next tokens. This means
that the model is capable of modeling grammat-
ical dependencies in the output symbols. Also,
in Segq2Dep model, we define the Nonterminal
“{DEPENDENCY LABEL”, and Node-closing “}”
tokens. Nonterminal indicates subtree (Dong and
Lapata, 2016), which means open subtree to visit
its children nodes. Node-closing indicates end-of-



Algorithm 1 Tree Transform

Algorithm 2 Tree Depth-first pre-order traversal

1: procedure TRANSFORM TREE
2: Transform(T, Labels):

3: for label in Labels do

4: if label.children.size! = 0 then

5: Recur Transform(T,Labels)

6: else

7: Compare the order of current

8: label’s parent & children

9: if (label’s children order is larger

than label’s parent order) then

10: INSERT label’s parent first
11: else
12: INSERT label’s children

subtree, that means finishing subtree traversal and
returning to the upper layer to continue the next
subtree traversal. And these defined tokens do not
appear in original source and target datasets. Al-
gorithms 1 and 2 show the definition of transfor-
mation and tree traversal in more detail respec-
tively. The purpose of using Depth-first pre-order
traversal is as follows:

1. To keep the words of the target language
sequence in order when they are generated.
With this generating order, the word order
of the sentence is preserved, thus, we do not
have to do any post-processing subsequently.

To utilize both information of the words and
the dependency labels generated in the previ-
ous rooted subtree to predict the tokens of the
next rooted subtree.

Figures 1, 2 and 3 show the Stanford dependency
parsing tree, tree structure after the positions of
“head” words are shifted and Depth-first pre-order
Tree Traversal.

3.2 Sequence-to-Dependency Model

The proposed (Seq2Dep) model consists of an en-
coder which is a bidirectional GRU layer as in
Bahdanau’s model (2015)'. The input embed-
dings of the source sentences are shared by the
forward and backward GRU, and the hidden states
of the corresponding forward and backward GRU
are added to obtain the hidden representation for
that time step. The decoder of the model will
decode the output as words and dependency la-
bels in a linearized dependency tree structure in

"https://github.com/nyu-dl/dl4mt-tutorial
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Input: Sentence
Output: Linearized Dependency Tree
1: Stanford Dependency Parsing

2: Make Tree from Dependency Parsing Result
3: Tree transform

4: procedure TRAVERSE TREE

5: Traverse(T,N):

6: N as discovered

7: for all Node not in N do

8: if Node.children.size! = 0 then

9: Recursively call Traverse(T,N)
10 in pre-order traverse
11: else

12: if Node is Nonterminal then
13: OUTPUT Node-opening
14: VISIT children
15: OUTPUT Node-closing
16: else
17: OUTPUT Node

a Depth-first pre-order traversal. Figure 4 shows
the decoder which generates both dependency la-
bels and words in the Seg2Dep model. In Figure
4, the previous token and context vector feeding
are omitted for simplicity.

4 Experiments

4.1 Dataset

In our experiment, the proposed model was trained
on the French-English parallel corpus of the
Europarl-v7 dataset. We used newstest2011 and
newstest2012 of WMT16 as development and test
data respectively. To confirm translation for long
sentences, the whole test set was used without re-
moving any sentences with a maximum length of
50 or 80. We performed experiment on the follow-
ing two datasets:

e Europarl-v7 dataset consisting of sentences
with a maximum length of 50.

e Europarl-v7 dataset consisting of sentences
with a maximum length of 80.

For preprocessing data, we filtered out sentences
which were longer than the above maximum
lengths and cleaned the special symbols or char-
acters which were not strings. We also omitted
sentences which had multiple sentences in one
line. The reason is that the parsing results obtained
from the Stanford Dependency Parser in parsing



Figure 1: Stanford Dependency Parsing Tree

step would contain multi “{ROOT” tokens for sen-
tences which have multiple sentences in one line,
while it is necessary to generate the next child
nodes starting from just one top {ROOT of a tree.
Next, we tokenize and lowercase this dataset and
perform dependency parsing. After that, we tra-
verse the tree in a Depth-first pre-order to create
the parallel corpus for the training model in which
the source language, French is in sequence form,
and the target language, English is in a linearized
dependency tree structure form. The longer sen-
tences are(particularly sentences with a maximum
length of 80 tokens), the more CPU’s memory and
time cost for this processing data step.

In addition, we built a dictionary of the target
language (English) that consists of both words and
dependency labels. In this dictionary, we define
74 dependency labels based on the current repre-
sentation of grammatical relations of the Stanford
Dependency Parser.

4.2 Settings

In order to evaluate the performance of the pro-
posed method, we set the same hyperparameters
as the attention-based cGRU model in DLAMT-
Tutorial and compare the obtained results of both
Seg2Seq and Seg2Dep models.

The recurrent transformation weights for gates
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and hidden state proposal matrices were initial-
ized as random orthogonal matrices. Weights were
optimized using the Adadelta algorithm and were
updated with a mini-batch size of 32 sentences.
The vocabulary sizes of both source and target lan-
guages were set at 30k words, the beam size was
set to 5, dropout was not applied and the gradients
were clipped at 1.0. Morever, because the gen-
erated tokens are not only words but also depen-
dency labels in Segq2Dep model, the maxlen pa-
rameter was set up so that dependency labels are
not counted, therefore long sentences will not be
removed in training.

4.3 Model Training

In the experiments, we trained the following 2
models on 1.65M sentences with a maximum
length of 50 and 1.89M sentences with a maxi-
mum length of 80 from the Europarl-v7 French-
English bitext.

Baseline Model
This model is a Seq2Seqg model with atten-
tion mechanism as in Firat (2016) that con-
sists of an encoder that encodes the source
language input in sequence form and a de-
coder that decodes target language output in
sequence form.

Seq2Dep Model The proposed method. In this
model, the model architecture is the same as
the attention-based Seq2Seq model but the
input is in sequence form and the output is
in linearized dependency tree structure.

5 Results

In the Seg2Dep model, because the output
consists of both words and dependency labels,
we evaluated the result with post-processing,
which is the process that removes the depen-
dency labels from the translated result. From
this section onwards, we will refer to the
Seg2Seqg and Seg2Dep models with sen-
tences of maximum length 50 and 80 tokens
as Seg2Seg—-50, Seg2Dep-50, Seg25Seg-80
and Seq2Dep—-80. As a result, the BLEU score
of Seq2Dep—50 with post-processing was 20.88,
which is higher than the BLEU score of 19.31
obtained by the attention-based Seqg2Seg-50
model with a gain of up to 1.57 points. Simi-
larly, the BLEU score improved by 2.40 points
for datasets with maximum sentence lengths of 80.



Figure 2: Dependency tree after shifting
the positions of “head” words

ENCODER

Elle a mangé une pomme

o

oot \
{NSUBJ ate-2 {DOBJ {NMOD:TMOD {PUNCT
A / l Y Y
She-1 } {DET apple-4 } today-5 } )
Y
an-3 }

Figure 3: Depth-first pre-order Tree Traversal

Previous tokens feeding is omitted for simplicity

DECODER

—=====-A

{NSUBJ She } ate {DOBJ {DET an }

AL A AL M A

apple }

{NMOD today } {PUNCT . b o</s>

Figure 4: Encoder and decoder of Segq2Dep model

Table 1 shows BLEU and METEOR scores and
TER error of the attention-based Seg2Seq and
Seg2Dep models. Figure 5 shows the relation be-
tween BLEU score and the length of sentence.

Moreover, when we made a trial to evaluate
the translation results without post-processing, the
BLEU scores without post-processing were 42.76
and 43.41 for both datasets. From these scores,
it is thought that the model can predict not only
word-based tokens but also dependency labels
well.

6 Additional Experiments

In order to verify the ability of the proposed ap-
proach to solve the repetition problem of NMT,
over-translation, we measured the repetition of
words in the translation results of attention-based
Seg2Seqgand Seg2Dep learnings in this section.
The repetition rate is measured by the following
formula:

4)
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in which 7; and Y; are the i** hypothesis sentence
and ‘" reference sentence respectively, and r is
the number of the repeated words and is computed
by:

r(X) =len(X) — len(set(X)) 3)

in which len(X) is the length of the sentence X
and len(set(X)) is the number of words that are
not repeated in sentence X. For example, given
the sentence X="“The big fish ate the smaller fish”,
in this case, set(X)={The, big, fish, ate, smaller},
len(X)=7, len(set(X))=5. Figure 6 shows the com-
parison of repetition rate in both models in which
the horizontal axis is the length of sentences, ver-
tical axis is the repetition rate respectively. In Fig-
ure 6, the repetition rate in both Seg2Seq and
Seqg2Dep learnings decreases as the length of the
sentences increases. From Figure 6, we can see
that the more tokens the model learns, the more
the repetition rate decreases. Also, the repetition
rate is reduced in the Segq2Dep model compared
to the attention-based Seq2Seq model.



Table 1: Translation quality as measured by different metrics.

Post-processing
Model | oy pU METEOR  TER
Seq2Seq-50 19.31 26.3 66.1
Seq2Dep-50 | 20.88 27.0 62.5
Seq2Seq 80 | 1697 | 255 785
Seq2Dep-80 | 19.37 25.6 65.6
5.0 B
25
200
En.s
o
@ 15.0
125
10.0
—&= baseline
75 +5eq2Dep
(L11} (11,21) (21, 31) (31,41} (41,51) (5L 61) (61.71) (71.81) (8L 91) (31,101

test sentences sorted by their lengths

Figure 5: Comparison of BLEU score with respect to the length of sentences

7 Analysis and Discussion

In figure 5, except the span in which the sentence
length is between 41 and 51 words, the BLEU
score of the Seg2Dep model goes up gradually
and almost overcomes that of the attention-based
Seg2Seqg model. The BLEU score falls from
19.31 to 16.97 with a 2.34 points difference for the
attention-based Seg2Seqg model while the point
difference is 1.51 in the Segq2Dep model. From
the experiments, we confirm that by using the
syntactic dependency information, the Seq2Dep
model can learn well and reduce the drop in BLEU
score compared to the baseline model even if the
sentence is very long. Besides, we can see the
BLEU score is low for short sentences which have
a length of 10 words or less. This is because of the
brevity penalty on short sentences in BLEU (Pap-
ineni et al., 2002).

With regards to the BLEU score without
post-processing, we see that the score of the
Seg2Dep—-80 model is higher than that of the
Seg2Dep—-50 model. The reason could be: The
longer the sentences are, the more syntactic de-
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pendencies the models require for generating bet-
ter outputs.

Also, in terms of the over-translation problem,
Figure 6 shows that the repetition rates of the
two models decrease gradually with respect to the
length of the sentences and the Seg2Dep model
has a lower repetition rate. When we checked the
translation results, we saw that Node-closing to-
ken “}” was almost generated after each subtree.
Moreover, we saw that there were some very long
sentences which the over-generation of “UNK’’s
occurred in the translation result of Seg2Seq
model while that did not occur in translation re-
sults of Seg2Deq model. Our assumption is that
after generating subtree, the Segq2Dep model can
learn that it should generate the Node-closing to-
ken “}” next, instead of a chain of words. In
other words, as mentioned in Kuncoro et al.’s
work (Kuncoro et al., 2016) in which modeling of
composition can achieve better performance, the
Seg2Dep model which learns about the syntac-
tic dependencies and tree structure performance is
probably able to learn the blocks of the form “Non-
terminal word }” like a phrase-structure in sen-
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Figure 6: Comparison of the repetition rate of the baseline and Segq2Dep models

tences, so it is unlikely to generate the same word
repeatedly. Therefore, it is possible to prevent the
long repeated words in long sentences. Usually,
because the block of the form “Nonterminal word
}” is seen as a phrase in sentence or a subtree in
tree structure, and it is rare for a phrase to occur
repeatedly in sentence or for a subtree to repeat in
a tree structure, so it is assumed that repetition of
the blocks of form “Nonterminal word }” are also
rare.

8 Conclusion

In this work, we proposed a method in which the
Seqg2Dep NMT model is trained by utilizing syn-
tactic dependencies to provide the model more
abundant information. In other words, Seg2Dep
model learns the potential internal relative con-
nections among tokens and their long term syn-
tactic dependencies to predict the next-word to-
kens. Furthermore, the Seg2Dep model can also
generate output as a linearized dependency tree
structure in a Depth-first pre-order tree traver-
sal over words and dependencies. The purpose
of this work is to alleviate issues of translat-
ing long sentences and repetitive translation. We
conduct experiments on the French-English par-
allel corpus of the Europarl-v7 dataset to com-
pare the performance of the proposed method with
the attention-based Seg2Seq model. The results
demonstrated that the proposed model achieved a
1.57 and 2.40 points BLEU score improvement for
sentences of length at most 50 and 80 tokens re-

28

spectively. Moreover, experiments verify that the
proposed model also reduces the over-translation,
particularly long sentences with over-generation
of “UNK’’s.

9 Future work

e Confirm how accurate the Seg2Dep model
generates the dependency labels and the
whole tree structure as well.

In this paper, to compare performance of
the proposed method with the baseline
model, we set the same hyperparameters as
the attention-based cGRU model in dl4mt-
tutorial and trained the Seg2Dep model on
only Europarl-v7 dataset. Since experiments
were done on small vocabulary size and
dataset, we plan to train the model on larger
vocabulary and datasets with subword units
segmentation.

For future work, we plan to train models on
datasets which consist of only long sentences
with more than 50 or 80 tokens to compare
the performance of long-sentences transla-
tion of the approach and baseline model.

Acknowledgments

We thank Assistant Professor Shindo Hiroyuki,
Ouchi Hiroki, Michael Wentao Li of the NAIST
Computational Linguistics Laboratory, and the re-
viewers for their valuable and constructive com-
ments. Part of this work was supported by JSPS
KAKENHI Grant Number JP17H06101.



References

Roee Aharoni and Yoav Goldberg. 2017.
string-to-tree neural machine translation.
abs/1704.04743.

Towards
CoRR,

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning
for morphological inflection generation: The biu-
mit systems for the sigmorphon 2016 shared task
for morphological reinflection. In Proceedings of
the 14th Annual SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 41-48.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR 2015.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and
Marcello Federico. 2016. Neural versus phrase-
based machine translation quality: a case study.
CoRR, abs/1608.04631.

Dangi Chen and Christoher D. Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP 2014.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. Proceedings of ACL
2016, pages 33-43.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. CoRR, abs/1602.07776.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. CoRR, abs/1702.03525.

Orhan Firat, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Multi-way, multilingual neural ma-
chine translation with a shared attention mechanism.
arXiv.orgl1601.01073.

Alexandros Komnios. 2016. Dependency based em-
beddings for sentence classification tasks. In Pro-
ceedings of NAACL-HLT 2016, pages 1490-1500.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2016. What do recurrent neural net-
work grammars learn about syntax? CoRR,
abs/1611.05774.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of ACL
2014, pages 302-308.

Xiaoqing Li, Jiajun Zhang, and Chengqing Zong. 2016.
Towards zero unknown word in neural machine
translation. In Proceedings of IJCAI 2016.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A dependency-based
neural network for relation classification. In Pro-
ceedings of ACL 2015, pages 285-290.

29

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015.  Effective approaches to attention-
based neural machine translation. In Proceedings
of EMNLP 2015, pages 1412-1421.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and
Abe Ittycheriah. 2016. Coverage embedding mod-
els for neural machine translation. In Proceedings
of EMNLP 2016, pages 955-960.

Kazuki Ono and Kenji Hatano. 2014. Dependency
parsing and its application using hierarchical struc-
ture in japanese language. International Journal on
Advances in Internet Technology, vol 7 no 3, 4.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. Proceedings of ACL
2002, pages 311-318.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. In Transactions
of the Association for Computational Linguistics,
pages 2: 207-218.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. Proceedings of NIPS 2014.

Antonio Toral and Victor M. Sdnchez-Cartagena. 2017.
A multifaceted evaluation of neural versus phrase-
based machine translation for 9 language directions.
CoRR, abs/1701.02901.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2016a. Neural machine translation
with reconstruction. In Proceedings of Association
for the Advancement of Artificial Intelligence 2016.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016b. Coverage-based neural ma-
chine translation. CoRR, abs/1601.04811.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016c. Modeling coverage for neural
machine translation. In Proceedings of ACL 2016,
pages 76-85.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav
Petrov, Ilya Sutskever, and Geoffrey E. Hinton.
2014. Grammar as a foreign language. CoRR,
abs/1412.7449.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,
and Ming Zhou. 2017. Sequence-to-dependency
neural machine translation. Proceedings of ACL
2017, pages 698-707.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2016.
Recurrent neural machine translation. CoRR,
abs/1607.08725.



What does Attention in Neural Machine Translation
Pay Attention to?
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Abstract

Attention in neural machine translation
provides the possibility to encode relevant
parts of the source sentence at each trans-
lation step. As a result, attention is con-
sidered to be an alignment model as well.
However, there is no work that specifically
studies attention and provides analysis of
what is being learned by attention mod-
els. Thus, the question still remains that
how attention is similar or different from
the traditional alignment. In this paper, we
provide detailed analysis of attention and
compare it to traditional alignment. We
answer the question of whether attention
is only capable of modelling translational
equivalent or it captures more information.
We show that attention is different from
alignment in some cases and is capturing
useful information other than alignments.

1 Introduction

Neural machine translation (NMT) has gained a
lot of attention recently due to its substantial im-
provements in machine translation quality achiev-
ing state-of-the-art performance for several lan-
guages (Luong et al., 2015b; Jean et al., 2015;
Wu et al., 2016). The core architecture of neural
machine translation models is based on the gen-
eral encoder-decoder approach (Sutskever et al.,
2014). Neural machine translation is an end-to-
end approach that learns to encode source sen-
tences into distributed representations and decode
these representations into sentences in the target
language. Among the different neural MT models,
attentional NMT (Bahdanau et al., 2015; Luong
et al., 2015a) has become popular due to its capa-
bility to use the most relevant parts of the source
sentence at each translation step. This capability
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also makes the attentional model superior in trans-
lating longer sentences (Bahdanau et al., 2015; Lu-
ong et al., 2015a).

reply
comprehensive
his

for

commissioner

Target

the
thank
04
like

would 0.2

0.0
Source

Figure 1: Visualization of the attention paid to the
relevant parts of the source sentence for each gen-
erated word of a translation example. See how
the attention is ‘smeared out’ over multiple source
words in the case of “would” and “like”.

Figure 1 shows an example of how attention
uses the most relevant source words to generate
a target word at each step of the translation. In
this paper we focus on studying the relevance of
the attended parts, especially cases where atten-
tion is ‘smeared out’ over multiple source words
where their relevance is not entirely obvious, see,
e.g., “would” and “like” in Figure 1. Here, we
ask whether these are due to errors of the attention
mechanism or are a desired behavior of the model.

Since the introduction of attention models in
neural machine translation (Bahdanau et al., 2015)
various modifications have been proposed (Lu-
ong et al., 2015a; Cohn et al., 2016; Liu et al.,
2016). However, to the best of our knowledge
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there is no study that provides an analysis of what
kind of phenomena is being captured by atten-
tion. There are some works that have looked to
attention as being similar to traditional word align-
ment (Alkhouli et al., 2016; Cohn et al., 2016;
Liu et al., 2016; Chen et al., 2016). Some of
these approaches also experimented with train-
ing the attention model using traditional align-
ments (Alkhouli et al., 2016; Liu et al., 2016; Chen
et al., 2016). Liu et al. (2016) have shown that at-
tention could be seen as a reordering model as well
as an alignment model.

In this paper, we focus on investigating the
differences between attention and alignment and
what is being captured by the attention mechanism
in general. The questions that we are aiming to
answer include: Is the attention model only capa-
ble of modelling alignment? And how similar is
attention to alignment in different syntactic phe-
nomena?

Our analysis shows that attention models tradi-
tional alignment in some cases more closely while
it captures information beyond alignment in oth-
ers. For instance, attention agrees with traditional
alignments to a high degree in the case of nouns.
However, it captures other information rather than
only the translational equivalent in the case of
verbs.

This paper makes the following contributions:
1) We provide a detailed comparison of attention
in NMT and word alignment. 2) We show that
while different attention mechanisms can lead to
different degrees of compliance with respect to
word alignments, global compliance is not always
helpful for word prediction. 3) We show that at-
tention follows different patterns depending on the
type of the word being generated. 4) We demon-
strate that attention does not always comply with
alignment. We provide evidence showing that the
difference between attention and alignment is due
to attention model capability to attend the context
words influencing the current word translation.

2 Related Work

Liu et al. (2016) investigate how training the at-
tention model in a supervised manner can bene-
fit machine translation quality. To this end they
use traditional alignments obtained by running au-
tomatic alignment tools (GIZA++ (Och and Ney,
2003) and fast_align (Dyer et al., 2013)) on the
training data and feed it as ground truth to the
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attention network. They report some improve-
ments in translation quality arguing that the atten-
tion model has learned to better align source and
target words. The approach of training attention
using traditional alignments has also been pro-
posed by others (Chen et al., 2016; Alkhouli et al.,
2016). Chen et al. (2016) show that guided atten-
tion with traditional alignment helps in the domain
of e-commerce data which includes lots of out of
vocabulary (OOV) product names and placehold-
ers, but not much in the other domains. Alkhouli
et al. (2016) have separated the alignment model
and translation model, reasoning that this avoids
propagation of errors from one model to the other
as well as providing more flexibility in the model
types and training of the models. They use a
feed-forward neural network as their alignment
model that learns to model jumps in the source
side using HMM/IBM alignments obtained by us-
ing GIZA++.

Shi et al. (2016) show that various kinds of syn-
tactic information are being learned and encoded
in the output hidden states of the encoder. The
neural system for their experimental analysis is
not an attentional model and they argue that at-
tention does not have any impact for learning syn-
tactic information. However, performing the same
analysis for morphological information, Belinkov
et al. (2017) show that attention has also some ef-
fect on the information that the encoder of neural
machine translation system encodes in its output
hidden states. As part of their analysis they show
that a neural machine translation system that has
an attention model can learn the POS tags of the
source side more efficiently than a system without
attention.

Recently, Koehn and Knowles (2017) carried
out a brief analysis of how much attention and
alignment match in different languages by mea-
suring the probability mass that attention gives to
alignments obtained from an automatic alignment
tool. They also report differences based on the
most attended words.

The mixed results reported by Chen et al.
(2016); Alkhouli et al. (2016); Liu et al. (2016)
on optimizing attention with respect to alignments
motivates a more thorough analysis of attention
models in NMT.



3 Attention Models

This section provides a short background on at-
tention and discusses two most popular attention
models which are also used in this paper. The first
model is a non-recurrent attention model which is
equivalent to the “global attention” method pro-
posed by Luong et al. (2015a). The second at-
tention model that we use in our investigation is
an input-feeding model similar to the attention
model first proposed by Bahdanau et al. (2015)
and turned to a more general one and called input-
feeding by Luong et al. (2015a). Below we de-
scribe the details of both models.

Both non-recurrent and input-feeding models
compute a context vector ¢; at each time step. Sub-
sequently, they concatenate the context vector to
the hidden state of decoder and pass it through a
non-linearity before it is fed into the softmax out-
put layer of the translation network.

hi = tanh(We[cy; hy)) (1)

The difference of the two models lays in the
way they compute the context vector. In the non-
recurrent model, the hidden state of the decoder is
compared to each hidden state of the encoder. Of-
ten, this comparison is realized as the dot product
of vectors. Then the comparison result is fed to a
softmax layer to compute the attention weight.

Ty

2)

_ exp(ei)
S expler)

Here h) is the hidden state of the decoder at time
t, h; is ith hidden state of the encoder and || is the
length of the source sentence. Then the computed
alignment weights are used to compute a weighted
sum over the encoder hidden states which results
in the context vector mentioned above:

3)

Qi

||

ci = E o iy
i—1

The input-feeding model changes the context
vector computation in a way that at each step ¢ the
context vector is aware of the previously computed
context ¢;—1. To this end, the input-feeding model
feeds back its own ﬁt,l to the network and uses
the resulting hidden state instead of the context-
independent h}, to compare to the hidden states of

“4)
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RWTH data
# of sentences 508
# of alignments 10534
% of sure alignments 91%
% of possible alignments 9%

Table 1: Statistics of manual alignments provided
by RWTH German-English data.

the encoder. This is defined in the following equa-
tions:

hy = f(Wlhi—15ye-1]) ®)

eri = hi hf (6)

Here, f is the function that the stacked LSTM
applies to the input, y;_1 is the last generated tar-
get word, and hy_1 is the output of previous time
step of the input-feeding network itself, meaning
the output of Equation 1 in the case that context
vector has been computed using e;; from Equa-
tion 6.

4 Comparing Attention with Alignment

As mentioned above, it is a commonly held as-
sumption that attention corresponds to word align-
ments. To verify this, we investigate whether
higher consistency between attention and align-
ment leads to better translations.

4.1 Measuring Attention-Alignment
Accuracy

In order to compare attentions of multiple systems
as well as to measure the difference between at-
tention and word alignment, we convert the hard
word alignments into soft ones and use cross en-
tropy between attention and soft alignment as a
loss function. For this purpose, we use manual
alignments provided by RWTH German-English
dataset as the hard alignments. The statistics of
the data are given in Table 1. We convert the hard
alignments to soft alignments using Equation 7.
For unaligned words, we first assume that they
have been aligned to all the words in the source
side and then do the conversion.

= ifz; e A
[Ay, | ¢ bt
0

(N

otherwise

Al(i, yr) = {

Here A,, is the set of source words aligned to
target word y; and |A,,| is the number of source
words in the set.



After conversion of the hard alignments to soft
ones, we compute the attention loss as follows:

||

Lar(yr) = =Y Al(wi, yr) log(At(wi,y:)) (8)
i=1

Here x is the source sentence and Al(z;,y:) is
the weight of the alignment link between source
word x; and the target word (see Equation 7).
At(z;,y;) is the attention weight o ; (see Equa-
tion 3) of the source word z;, when generating the
target word y; .

In our analysis, we also look into the relation
between translation quality and the quality of the
attention with respect to the alignments. For mea-
suring the quality of attention, we use the atten-
tion loss defined in Equation 8. As a measure of
translation quality, we choose the loss between the
output of our NMT system and the reference trans-
lation at each translation step, which we call word
prediction loss. The word prediction loss for word
y; 1s logarithm of the probability given in Equa-
tion 9.

Pamt (Yt | y<t, ) = softmaz(Wohy)  (9)

Here z is the source sentence, y; is target word
at time step ¢, y<; is the target history given by the
reference translation and /i is given by Equation 1
for either non-recurrent or input-feeding attention
models.

Spearman’s rank correlation is used to compute
the correlation between attention loss and word
prediction loss:

_ COV(‘RLAN RLWP)

URLAt URLWP

(10)

where Ry,, and Ry, are the ranks of the at-

tention losses and word prediction losses, respec-

tively, Cov is the covariance between two input

variables, and o Rp, and o, _ are the standard
t wP

deviations of Ry, ,, and R, ..

If there is a close relationship between word
prediction quality and consistency of attention ver-
sus alignment, then there should be high correla-
tion between word prediction loss and attention
loss. Figure 2 shows an example with differ-
ent levels of consistency between attention and
word alignments. For the target words “will”
and “come” the attention is not focused on the
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Figure 2: An example of inconsistent attention
and alignment. The outlined cells show the man-
ual alignments from the RWTH dataset (see Ta-
ble 1). See how attention is deviated from align-
ment points in the case of “will” and “come”.

manually aligned word but distributed between
the aligned word and other words. The focus
of this paper is examining cases where attention
does not follow alignment, answering the ques-
tions whether those cases represent errors or de-
sirable behavior of the attention model.

4.2 Measuring Attention Concentration

As another informative variable in our analysis,
we look into the attention concentration. While
most word alignments only involve one or a few
words, attention can be distributed more freely.
We measure the concentration of attention by
computing the entropy of the attention distribu-
tion:

||

Ex(ye) = — Z At(x;, yr) log(At(zi, yt))

i=1
(11)

5 Empirical Analysis of Attention
Behaviour

We conduct our analysis using the two different
attention models described in Section 3. Our first
attention model is the global model without input-
feeding as introduced by Luong et al. (2015a). The
second model is the input-feeding model (Luong
et al., 2015a), which uses recurrent attention. Our



System test2014 | test2015 | test2016 | RWTH
Non-recurrent 17.80 18.89 22.25 23.85
Input-feeding 19.93 21.41 25.83 | 27.18

Table 2: Performance of our experimental system in BLEU on different standard WMT test sets.

NMT system is a unidirectional encoder-decoder
system as described in (Luong et al., 2015a), using
4 recurrent layers.

We trained the systems with dimension size of
1,000 and batch size of 80 for 20 epochs. The vo-
cabulary for both source and target side is set to be
the 30K most common words. The learning rate
is set to be 1 and a maximum gradient norm of 5
has been used. We also use a dropout rate of 0.3
to avoid overfitting.

#of Sent | Min Len
4,240,727 1

Data
WMTI15

Max Len
100

Average Len
247

Table 3: Statistics for the parallel corpus used to
train our models. The length statistics are based
on the source side.

5.1 Impact of Attention Mechanism

We train both of the systems on the WMTI15
German-to-English training data, see Table 3 for
some statistics. Table 2 shows the BLEU scores
(Papineni et al., 2002) for both systems on differ-
ent test sets.

Since we use POS tags and dependency roles in
our analysis, both of which are based on words,
we chose not to use BPE (Sennrich et al., 2016)
which operates at the sub-word level.

GIZA++
0.31

non-recurrent
0.60

input-feeding
0.37

AER

Table 4: Alignment error rate (AER) of the hard
alignments produced from the output attentions of
the systems with input-feeding and non-recurrent
attention models. We use the most attended source
word for each target word as the aligned word. The
last column shows the AER for the alignment gen-
erated by GIZA++.

We report alignment error rate (AER) (Och and
Ney, 2000), which is commonly used to measure
alignment quality, in Table 4 to show the differ-
ence between attentions and human alignments
provided by RWTH German-English dataset. To
compute AER over attentions, we follow Luong
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non-recurrent
0.46

input-feeding
0.25

Attention loss

Table 5: Average loss between attention gener-
ated by input-feeding and non-recurrent systems
and the manual alignment over RWTH German-
English data.

et al. (2015a) to produce hard alignments from
attentions by choosing the most attended source
word for each target word. We also use GIZA++
(Och and Ney, 2003) to produce automatic align-
ments over the data set to allow for a comparison
between automatically generated alignments and
the attentions generated by our systems. GIZA++
is run in both directions and alignments are sym-
metrized using the grow-diag-final-and refined
alignment heuristic.

As shown in Table 4, the input-feeding system
not only achieves a higher BLEU score, but also
uses attentions that are closer to the human align-
ments.

Table 5 compares input-feeding and non-
recurrent attention in terms of attention loss com-
puted using Equation 8. Here the losses between
the attention produced by each system and the hu-
man alignments is reported. As expected, the dif-
ference in attention losses are in line with AER.

The difference between these comparisons is
that AER only takes the most attended word into
account while attention loss considers the entire
attention distribution.

5.2 Alignment Quality Impact on Translation

Based on the results in Section 5.1, one might be
inclined to conclude that the closer the attention is
to the word alignments the better the translation.
However, Chen et al. (2016); Liu et al. (2016);
Alkhouli et al. (2016) report mixed results by op-
timizing their NMT system with respect to word
prediction and alignment quality. These findings
warrant a more fine-grained analysis of attention.
To this end, we include POS tags in our analysis
and study the patterns of attention based on POS
tags of the target words. We choose POS tags be-
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Figure 3: Average attention losses and word prediction losses from the input-feeding system.

Tag Meaning Example
ADJ Adjective large, latest
ADP Adposition in, on, of
ADV Adverb only, whenever
CONIJ | Conjunction and, or
DET Determiner the, a
NOUN Noun market, system
NUM Numeral 2, two
PRT Particle ’s, off, up
PRON Pronoun she, they
PUNC | Punctuation -
VERB Verb come, including

Table 6: List of the universal POS tags used in our
analysis.

cause they exhibit some simple syntactic charac-
teristics. We use the coarse grained universal POS
tags (Petrov et al., 2012) given in Table 6.

To better understand how attention accuracy af-
fects translation quality, we analyse the relation-
ship between attention loss and word prediction
loss for individual part-of-speech classes. Fig-
ure 3a shows how attention loss differs when gen-
erating different POS tags. One can see that atten-
tion loss varies substantially across different POS
tags. In particular, we focus on the cases of NOUN
and VERB which are the most frequent POS tags
in the dataset. As shown, the attention of NOUN
is the closest to alignments on average. But the av-
erage attention loss for VERB is almost two times
larger than the loss for NOUN.

Considering this difference and the observations
in Section 5.1, a natural follow-up would be to fo-
cus on getting the attention of verbs to be closer

to alignments. However, Figure 3b shows that the
average word prediction loss for verbs is actually
smaller compared to the loss for nouns. In other
words, although the attention for verbs is substan-
tially more inconsistent with the word alignments
than for nouns, the NMT system translates verbs
more accurately than nouns on average.
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5
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o

Attention loss vs word prediction loss correlation

Figure 4: Correlation between word prediction
loss and attention loss for the input-feeding model.

To formalize this relationship we compute
Spearman’s rank correlation between word predic-
tion loss and attention loss, based on the POS tags
of the target side, for the input-feeding model, see
Figure 4.

The low correlation for verbs confirms that at-
tention to other parts of source sentence rather
than the aligned word is necessary for translating
verbs and that attention does not necessarily have
to follow alignments. However, the higher correla-
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Figure 5: Attention entropy and its correlation with attention loss for the input-feeding system.

tion for nouns means that consistency of attention
with alignments is more desirable. This could, in a
way, explain the mixed result reported for training
attention using alignments (Chen et al., 2016; Liu
et al., 2016; Alkhouli et al., 2016). Especially the
results by Chen et al. (2016) in which large im-
provements are achieved for the e-commerce do-
main which contains many OOV product names
and placeholders, but no or very weak improve-
ments were achieved over common domains.

5.3 Attention Concentration

In word alignment, most target words are aligned
to one source word. The average number of source
words aligned to nouns and verbs is 1.1 and 1.2 re-
spectively. To investigate to what extent this also
holds for attention we measure the attention con-
centration by computing the entropy of the atten-
tion distribution, see Equation 11.

Figure 5a shows the average entropy of atten-
tion based on POS tags. As shown, nouns have one
of the lowest entropies meaning that on average
the attention for nouns tends to be concentrated.
This also explains the closeness of the attention
to alignments for nouns. In addition, the correla-
tion between attention entropy and attention loss
in case of nouns is high as shown in Figure 5b.
This means that attention entropy can be used as a
measure of closeness of attention to alignment in
the case of nouns.

The higher attention entropy for verbs, in Fig-
ure 5a, shows that the attention is more distributed
compared to nouns. The low correlation between
attention entropy and word prediction loss (see

Figure 6) shows that attention concentration is not
required when translating into verbs. This also
confirms that the correct translation of verbs re-
quires the systems to pay attention to different
parts of the source sentence.
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Overall PRT VERB PRON NUM ADP DET PUNC ADJ ADV NOUN CONJ

Attention entropy vs word prediction loss correlation

Figure 6: Correlation of attention entropy and
word prediction loss for the input-feeding system.

Another interesting observation here is the low
correlation for pronouns (PRON) and particles
(PRT), see Figure 6. As can be seen in Figure 5a,
these tags have more distributed attention compar-
ing to nouns, for example. This could either mean
that the attention model does not know where to
focus or it deliberately pays attention to multiple,
somehow relevant, places to be able to produce a
better translation. The latter is supported by the
relatively low word prediction losses, shown in the
Figure 3b.
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POS tag | roles(attention %) description
punc(16%) Punctuations'

NOUN pn(12%) P.rep(.)sition.al c.omplements
attr(10%) Attributive adjectives or numbers
det(10%) Determiners
adv(16%) Adverbial functions including negation

punc(14%) Punctuations

VERB aux(9%) Aucxiliary verbs

0bj(9%) Objects?
subj(9%) Subjects
punc(28%) Punctuations
CONJ adv(11%) Adverbial functions including negation
conj(10%) All members in a coordination’

Table 7: The most attended dependency roles with their received attention percentage from the attention
probability mass paid to the words other than the alignment points. Here, we focus on the POS tags

discussed earlier.

5.4 Attention Distribution

To further understand under which conditions at-
tention is paid to words other than the aligned
words, we study the distribution of attention over
the source words. First, we measure how much at-
tention is paid to the aligned words for each POS
tag, on average. To this end, we compute the per-
centage of the probability mass that the attention
model has assigned to aligned words for each POS
tag, see Table 8.

POS tag ~ attention to attention to
alignment points % | other words %

NUM 73 77
NOUN 68 3
ADJ 66 34
PUNC 35 45
ADV 50 50
CONJ 50 50
VERB 49 51
ADP 47 53
DET 45 55
PRON 45 55
PRT 36 64
Overall 34 76

Table 8: Distribution of attention probability mass
(in %) over alignment points and the rest of the
words for each POS tag.

One can notice that less than half of the at-
tention is paid to alignment points for most of

"Punctuations have the role “root” in the parse generated
using ParZu. However, we use the pos tag to discriminate
them from tokens having the role “root”.

2 Attention mass for all different objects are summed up.

3Includes all different types of conjunctions and con-
joined elements.
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the POS tags. To examine how the rest of at-
tention in each case has been distributed over the
source sentence we measure the attention distri-
bution over dependency roles in the source side.
We first parse the source side of RWTH data using
the ParZu parser (Sennrich et al., 2013). Then we
compute how the attention probability mass given
to the words other than the alignment points, is
distributed over dependency roles. Table 7 gives
the most attended roles for each POS tag. Here,
we focus on POS tags discussed earlier. One can
see that the most attended roles when translating
to nouns include adjectives and determiners and in
the case of translating to verbs, it includes auxil-
iary verbs, adverbs (including negation), subjects,
and objects.

6 Conclusion

In this paper, we have studied attention in neu-
ral machine translation and provided an analysis
of the relation between attention and word align-
ment. We have shown that attention agrees with
traditional alignment to a certain extent. How-
ever, this differs substantially by attention mech-
anism and the type of the word being generated.
We have shown that attention has different pat-
terns based on the POS tag of the target word.
The concentrated pattern of attention and the rela-
tively high correlations for nouns show that train-
ing the attention with explicit alignment labels is
useful for generating nouns. However, this is not
the case for verbs, since the large portion of at-
tention being paid to words other than alignment
points, is already capturing other relevant infor-
mation. Training attention with alignments in this



case will force the attention model to forget these
useful information. This explains the mixed re-
sults reported when guiding attention to comply
with alignments (Chen et al., 2016; Liu et al.,
2016; Alkhouli et al., 2016).

Acknowledgments

This research was funded in part by the
Netherlands Organization for Scientific Research
(NWO) under project numbers 639.022.213 and
612.001.218.

References

Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Pe-
ter, Mohammed Hethnawi, Andreas Guta, and Her-
mann Ney. 2016. Alignment-based neural machine
translation. In Proceedings of the First Conference
on Machine Translation, pages 54—65, Berlin, Ger-
many. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations, San Diego,
California, USA.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017. What do neural ma-
chine translation models learn about morphology?
arXiv preprint arXiv:1704.03471.

Wenhu Chen, Evgeny Matusov, Shahram Khadivi,
and Jan-Thorsten Peter. 2016. Guided alignment
training for topic-aware neural machine translation.
AMTA 2016, Vol., page 121.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 876-885, San Diego, California. Association
for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644-648, Atlanta,
Georgia. Association for Computational Linguistics.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large
target vocabulary for neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the

38

7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1-10, Beijing, China. Association for Computa-
tional Linguistics.

Six
arXiv

Philipp Koehn and Rebecca Knowles. 2017.
challenges for neural machine translation.
preprint arXiv:1706.03872.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural machine translation
with supervised attention. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3093-3102, Osaka, Japan. The COLING 2016 Or-
ganizing Committee.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015a. Effective approaches to attention-
based neural machine translation. pages 1412-1421.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 11-19,
Beijing, China. Association for Computational Lin-
guistics.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In 38th Annual Meet-
ing of the Association for Computational Linguis-
tics, Hong Kong, China, October 1-8, 2000.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311-318.

Slav Petrov, Dipanjan Das, and Ryan Mcdonald. 2012.
A universal part-of-speech tagset. In Proceedings
of the Language Resources and Evaluation Confer-
ence.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725. Association for Computational Linguistics.

Rico Sennrich, Martin Volk, and Gerold Schneider.
2013. Exploiting synergies between open resources
for german dependency parsing, pos-tagging, and
morphological analysis. In Proceedings of the In-
ternational Conference Recent Advances in Natural
Language Processing RANLP 2013, pages 601-609,
Hissar, Bulgaria. INCOMA Ltd. Shoumen, BUL-
GARIA.



Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural mt learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1526—
1534, Austin, Texas. Association for Computational
Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems (NIPS), pages 3104-3112.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016.  Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.



Grammatical Error Detection Using Error- and Grammaticality-Specific
Word Embeddings

Masahiro Kaneko, Yuya Sakaizawa and Mamoru Komachi
Tokyo Metropolitan University

{kaneko-masahiroled, sakaizawa-yuya@ed, komachi@}.tmu

Abstract

In this study, we improve grammatical
error detection by learning word embed-
dings that consider grammaticality and er-
ror patterns. Most existing algorithms for
learning word embeddings usually model
only the syntactic context of words so
that classifiers treat erroneous and correct
words as similar inputs. We address the
problem of contextual information by con-
sidering learner errors. Specifically, we
propose two models: one model that em-
ploys grammatical error patterns and an-
other model that considers grammaticality
of the target word. We determine gram-
maticality of n-gram sequence from the
annotated error tags and extract grammat-
ical error patterns for word embeddings
from large-scale learner corpora. Exper-
imental results show that a bidirectional
long-short term memory model initialized
by our word embeddings achieved the
state-of-the-art accuracy by a large mar-
gin in an English grammatical error detec-
tion task on the First Certificate in English
dataset.

1 Introduction

Grammatical error detection that can identify the
location of errors is useful for second language
learners and teachers. It can be seen as a se-
quence labeling task, which is typically solved
by a supervised approach. For example, Rei and
Yannakoudakis (2016) achieved the state-of-the-
art accuracy in English grammatical error detec-
tion using a bidirectional long-short term memory
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Phrase pair W2V C&W EWE GWE E&GWE
in summer & on summer | 0.84 0.75  0.64 0.58 0.54
in summer & in spring 0.84 0.77 090 0.80 0.88
in summer & in English 0.40 046 036 025 0.30
on summer & on spring 0.85 0.71 0.82 0.76 0.80

Table 1: Cosine similarity of phrase pairs for each
word embedding method.

(Bi-LSTM) neural network. Their approach uses
word embeddings learned from a large-scale na-
tive corpus to address the data sparseness problem
of learner corpora.

However, most of the word embeddings, in-
cluding the one used by Rei and Yannakoudakis
(2016), model only the context of the words from a
raw corpus written by native speakers, and do not
consider specific grammatical errors of language
learners. This leads to the problem wherein the
word embeddings of correct and incorrect expres-
sions tend to be similar (Table 1, columns W2V
and C&W) so that the classifier must decide gram-
maticality of a word from contextual information
with a similar input vector.

To address this problem, we introduce two
methods: 1) error-specific word embeddings
(EWE), which employ grammatical error pat-
terns, that is to say the word pairs that learn-
ers tend to easily confuse; 2) grammaticality-
specific word embeddings (GWE), which con-
sider grammatical correctness of n-grams. In
this paper, we use the term grammaticality to re-
fer to the correct or incorrect label of the tar-
get word given its surrounding context. We also
combine these methods, which we will refer to
as error-and grammaticality-specific word embed-
dings (E&GWE).

Table 1 shows the cosine similarity of phrase

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 40—48,
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pairs using word2vec (W2V), C&W embeddings
(Collobert and Weston, 2008), EWE, GWE, and
E&GWE'. It illustrates that EWE, GWE, and
E&GWE are able to distinguish between correct
and incorrect phrase pairs while maintaining the
contextual relation.

Furthermore, we conducted experiments using
the large-scale Lang-8% English learner corpus.
The results demonstrated that representation learn-
ing is crucial for exploiting a noisy learner corpus
for grammatical error detection.

The main contributions of this study are sum-
marized as follows:

e We achieve the state-of-the-art accuracy in
grammatical error detection on the First Cer-
tificate in English dataset (FCE-public) using
a Bi-LSTM model initialized using our word
embeddings that consider grammaticality and
error patterns extracted from the FCE-public
corpora.

We demonstrate that updating word embed-
dings using error patterns extracted from the
Lang-8 (Mizumoto et al., 2011) in addition to
FCE-public corpora greatly improves gram-
matical error detection.

The proposed word embeddings can distin-
guish between correct and incorrect phrase
pairs.

We have released our code and learned word
embeddings®.

The rest of this paper is organized as follows:
in Section 2, we first give a brief overview of En-
glish grammatical error detection; Section 3 de-
scribes our grammatical error detection model us-
ing error- and grammaticality-specific word em-
beddings; Section 4 evaluates this model on the
FCE-public dataset, and Section 5 presents an
analysis of the grammatical error detection model
and learned word embeddings; and Section 6 con-
cludes this paper.

2 Related Works

Many studies on grammatical error detection try

to address specific types of grammatical errors

(Tetreault and Chodorow, 2008; Han et al., 2006;

Kochmar and Briscoe, 2014). In contrast, Rei and

Yannakoudakis (2016) target all errors using a Bi-
'The similarity of the phrase pairs was calculated based

on the similarity of the mean vector of the word vectors.
2http://lang-8.com/

3https://github.com/kanekomasahiro/grammatical-error-
detection
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LSTM, whose embedding layer is initialized with
word2vec. We also address unrestricted grammat-
ical error detection; however, we focus on learn-
ing word embeddings that consider a learner’s er-
ror pattern and grammaticality of the target word.
In this paper, subsequently, our word embeddings
give statistically significant improvements over
their method using exactly the same training data.

Several studies considering grammatical er-
ror patterns in language learning have been per-
formed. For example, Sawai et al. (2013) suggest
correction candidates for verbs using the learner
error pattern, and Liu et al. (2010) automati-
cally correct verb selection errors in English es-
says written by Chinese students learning English,
based on the error patterns created from a syn-
onym dictionary and an English-Chinese bilingual
dictionary. The main difference between these
previous studies and ours is that the previous stud-
ies focused only on verb selection errors.

As an example of research on learning word em-
beddings that consider grammaticality, Alikanio-
tis et al. (2016) proposed a model for construct-
ing word embeddings by considering the impor-
tance of each word in predicting a quality score for
an English learner’s essay. Their approach learns
word embedding from a document-level score us-
ing the mean square error whereas we learn word
embeddings from a word-level binary error infor-
mation using the hinge loss.

The use of a large-scale learner corpus on gram-
matical error correction is described in works
such as Xieetal. (2016) and Chollampatt et al.
(2016a,b). These studies used the Lang-8 corpus
as training data for phrase-based machine trans-
lation (Xie et al., 2016) and neural network joint
models (Chollampatt et al., 2016a,b). In our study,
Lang-8 was used to extract error patterns that were
then utilized to learn word embeddings. Our ex-
periments show that Lang-8 cannot be used as a re-
liable annotation for LSTM-based classifiers. In-
stead, we need to extract useful information as er-
ror patterns to improve the performance of error
detection.

3 Grammatical Error Detection Using
Error- and Grammaticality-Specific
Word Embeddings

In this section, we describe the details of the
proposed word embeddings: EWE, GWE, and
E&GWE. These models extend an existing word
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Figure 1: Architecture of our learning methods for word embeddings (a) EWE and (b) GWE. Both
models concatenate the word vectors of a sequence for window size and feed them into the hidden layer.
Then, EWE outputs a scalar value, and GWE outputs a prediction of the scalar value and the label of the

word in the middle of the sequence.

embedding learning algorithm called C&W Em-
beddings (Collobert and Weston, 2008) and learn
word embeddings that consider grammatical er-
ror patterns and grammaticality of the target word.
We first describe the well-known C&W embed-
dings, and then explain our extensions. Finally,
we introduce how we incorporate the learned word
embeddings to the grammatical error detection
task using a Bi-LSTM.

3.1 C&W Embeddings

Collobert and Weston (2008; 2011) proposed a
window-based neural network model that learns
distributed representations of target words based
on the local context.

Here, target word w; is the central word
in the window sized sequence of words S
(wi,...,wy, ..., wy,). The representation of the
target word w; is compared with the representa-
tions of other words that appear in the same se-
quence (Yw; € S|w; # w). A negative sample
S" = (w1, .oy Wey ooy wp|we ~ V) is created by
replacing the target word w; with a randomly se-
lected word from the vocabulary V' to distinguish
between the negative sample S’ and the original
word sequence S. In their method, the word se-
quence S and the negative sample S’ are converted
into vectors in the embedding layer, which are fed
as embeddings. They concatenate each converted
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vector and treat it as input vector xz € R"*D,
where D is the dimension of the embedding layer.
The input vector x is then subjected to a linear
transformation (Eq. (1)) to calculate the vector 7 of
the hidden layer. Then, the resulting vector is sub-
jected to another linear transformation (Eq. (2)) to
obtain the output f(z).

U(Whmflﬁ + bh)
Wohi + bo

i (1)
f(z) 2

Here, W}, is the weight matrix between the input
vector and the hidden layer, W, is the weight ma-
trix between the hidden layer and the output layer,
b, and by, are biases, and o is an element-wise non-
linear function tanh.

This model for word representation learns dis-
tributed representations by making the ranking of
the original word sequence S higher than that of
the negative samples S’, which includes noise due
to replaced words. The difference between the
original word sequence and the word sequence in-
cluding noise is optimized to be at least 1.

lossc(S,5") = max(0,1 — f(z) + f(x))

3)

Here, 2’ is a transformed vector at the embedding
layer obtained by converting the word w, of the
negative sample S’.

Our proposed models learn distributed repre-
sentations using the same hinge loss (Eq. (3)) so



the model could distinguish between correct and
incorrect phrase pairs.

3.2 Error-Specific Word Embeddings (EWE)

EWE learns word embeddings using the same
model as C&W embeddings. However, rather than
creating negative samples randomly, we created
them by replacing the target word w; with words
w, that learners tend to easily confuse with the tar-
get word w;. In such a case, w, is sampled by the
conditional probability:

‘wC7wt‘

ch/ "UJC/, wt|

P(we|wy) = 4

where, w; is a target word, w,/ is a set of w, re-
garding wy.

This model learns to distinguish between a cor-
rect and an incorrect word by considering error
patterns. Replacement candidates, treated as error
patterns, are extracted from a learner corpus anno-
tated with correction. Figure la represents archi-
tecture of EWE.

The bus will pick you up right at your
hotel entery/*entrance.

The above sentence is a simple example from the
test data of FCE-public corpus. In this sentence,
the word “entery” is incorrect and the “entrance”
is the correct word. In this case, w; is “entrance”
and w, is “entery”. Note that we use only one-to-
one (substitution) error patterns.

Due to the data sparseness problem, the context
of infrequent words cannot be properly learned.
This problem is solved by using a large corpus to
pre-train word2vec. By fine-tuning vectors whose
contexts have already been learned, it is possible
to learn word embeddings with no or few replace-
ment candidates in a learner corpus.

3.3 Grammaticality-Specific Word
Embeddings (GWE)

Similar to the approach of Alikaniotis et al. (2016)
for essay score prediction, we extend C&W em-
beddings to distinguish between correct words and
incorrect words by including grammaticality in
distributed representations (Figure 1b). For that
purpose, we add an additional output layer to pre-
dict grammaticality of word sequences, and extend
Equation (3) to calculate following two error func-
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tions.
fgrammar (37) Wghi + bg (5)
gy = soﬁmax(fgrammar ((L‘)) (6)
lossy(S) = = y-log(y) (7)
loss(S, §') =
oss( ) ®

a - 105s:(5,5) + (1 — @) - lossy(S)

In Equation (5), fgrammar is the predicted label of
the original word sequence S. Wy, is the weight
matrix and b, is the bias. In Equation (6), the pre-
diction probability ¢ is computed using the soft-
max function for fyrammar. The error loss), is
computed using the cross-entropy function using
the gold label’s vector y of the target word (Eq.
(7)). Finally, two errors are combined to calculate
loss (Eq. (8)). Here, « is a hyperparameter that
determines the weight of the two error functions.
We use the original tag label (0/1) of the FCE-
public data as the grammaticality of word se-
quences for learning. Note that we do not use label
information from Lang-8, because the error anno-
tation of Lang-8 error annotations are too noisy
to train an error detection model directly from the
corpus. Negative examples of GWE are created
randomly, that are similar to the case with C&W.

3.4 Error- and Grammaticality-Specific
Word Embeddings (E&GWE)

E&GWE is a model that combines EWE and
GWE. In particular, E&GWE model creates neg-
ative examples using an error pattern as in EWE
and outputs score and predicts grammaticality as
in GWE.

3.5 Bidirectional LSTM (Bi-LSTM)

We use Dbidirectional LSTM (Bi-LSTM)
(Graves and Schmidhuber, 2005) as a classifier
for all our experiments for English grammatical
error detection, because Bi-LSTM demonstrates
the state-of-the-art accuracy for this task com-
pared to other architectures such as CRF and
CNNs (Rei and Yannakoudakis, 2016).

The LSTM calculation is expressed as follows:

it =
9
o(Wicer + Wiphi—1 + Wicci—1 + by) ®

o(Wieer + Wenhi—1 + Wiecr—1 + by)

fi (10)
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Figure 2: A bidirectional LSTM network. The
word vectors e; enter the hidden layer to predict
the labels of each word.

ct =1t © g(Weeer

(11)
+Wenhi—1 +be) + fr © ci—1

O — U(Woeet + Wohht—l + Wocct + bo) (12)

hi = 0; ® h(Ct) (13)

Here, e, is the word embedding of word wy, and
Wie, Wge, Wee and W, are weight matrices. Each
bi, by, be and b, are biases. An LSTM cell block
has an input gate i;, a memory cell ¢;, a forget
gate f; and an output gate o to control information
flow. In addition, g and h are the sigmoid function
and o is the tanh. © is the pointwise multiplica-
tion.

We apply a bidirectional extension of LSTM, as
shown in Figure 2, to encode the word embedding
e; from both left-to-right and right-to-left direc-
tions.

yr = Wyn(hf @ hi') + b, (14)

The Bi-LSTM model maps each word w; to a
pair of hidden vectors h” and k[, i.e., the hidden
vector of the left-to-right LSTM and right-to-left
LSTM, respectively. @ is the concatenation. Wy,
is a weight matrix and b, is a bias. We also added
an extra hidden layer for linear transformation be-
tween each of the composition function and the
output layer, as discussed in the previous study.
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4 Experiments

4.1 Settings

We used the FCE-public dataset and the Lang-
8 English learner corpus to train classifiers and
word embeddings.  For this evaluation, we
used the test set from the FCE-public dataset
(Yannakoudakis et al., 2011) for all experiments.

FCE-public dataset. First, we compared the
proposed methods (EWE, GWE, and E&GWE)
to previous methods (W2V and C&W) relative to
training word embeddings (see Table 2a). For this
purpose, we trained our word embeddings and a
classifier, which were initialized using pre-trained
word embeddings, with the training set from the
FCE-public dataset.

This dataset is one of the most famous English
learner corpus in grammatical error correction. It
contains essays written by English learners. It is
annotated with grammatical errors along with er-
ror classification. We followed the official split
of the data: 30,953 sentences as a training set,
2,720 sentences as a test set, and 2, 222 sentences
as a development set. In the FCE-public dataset,
the number of target words of error patterns is
4,184, the number of tokens of the replacement
candidates is 9,834, and the number of types is
6,420. All manually labeled words in the FCE-
public dataset were set as the gold target to train
the GWE. For a missing word error, an error label
is assigned to the word immediately after the miss-
ing word (see Table 4 (c)). To prevent overfitting,
singleton words in the training data were taken as
unknown words.

Lang-8 corpus. Furthermore, we added the
large-scale Lang-8 English learner corpus to the
FCE-public dataset to train word embeddings
(FCE+EWE-L8 and FCE+E&GWE-LS8) to ex-
plore the effect of a large data on the proposed
methods. We used a classifier trained using only
the FCE-public dataset whose word embeddings
were initialized with the large-scale pre-trained
word embeddings to compare the results with
those of a classifier trained directly using a noisy
large-scale data whose word embeddings were ini-
tialized using word2vec (FCE&L8+W?2V, see Ta-
ble 2b).

Lang-8 learner corpus has over 1 million man-
ually annotated English sentences written by ESL
learners. Extraction of error patterns from Lang-8
in the process of creating negative samples to train
word embeddings was performed as follows:



1. Extract word pairs using the dynamic pro-
gramming from a correct sentence and an in-
correct sentence.

If the learner’s word of the extracted word
pair is included in the vocabulary created
from FCE-public, include it to the error pat-
terns.

In the Lang-8 dataset the number of types of target
words of the replacement candidates is 10,372, the
number of tokens of the replacement candidates is
272,561, and the number of types is 61,950.

Our experiments on FCE+EWE-L8 and
FCE+E&GWE-L8 were conducted by combining
error patterns from all of Lang-8 corpus and
the training part of FCE-public corpus to train
word embeddings. However, since the number
of error patterns of Lang-8 is larger than that of
FCE-public, we normalized each frequency so
that the ratio was 1:1.

We wuse Fps as the main evaluation
measure, following a  previous  study
(Rei and Yannakoudakis, 2016). This mea-

sure was also adopted in the CoNLL-14 shared
task on error correction task (Ngetal., 2014).
It combines both precision and recall, while
assigning twice as much weight to precision be-
cause accurate feedback is often more important
than coverage in error detection applications
(Nagata and Nakatani, 2010). Nagata and
Nakatani (2010) presented a precision-oriented
error detection system for articles and numbers
that demonstrated precision of 0.72 and a recall
of 0.25 and achieved a learning effect that is
comparable to that of a human tutor.

4.2 Word Embeddings

We set parameters for word embeddings accord-
ing to the previous study (Rei and Yannakoudakis,
2016). The dimension of the embedding layer of
C&W, GWE, EWE and E&GWE is 300 and the
dimension of the hidden layer is 200. We used a
publicly released word2vec vectors (Chelba et al.,
2013) trained on the News crawl from Google
news* as pre-trained word embeddings. We set
other parameters in our model by running a pre-
liminary experiment in which the window size is
3, the number of negative samples is 600, the
linear interpolation « is 0.03, and the optimizer
is the ADAM algorithm (Kingma and Ba, 2015)

*https://github.com/mmihaltz/word2vec-GoogleNews-
vectors
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with the initial learning rate of 0.001. GWE is
initialized randomly and EWE is initialized using
pre-trained word2vec.

4.3 Classifier

We use EWE, GWE, and E&GWE word em-
beddings to initialize the Bi-LSTM neural net-
work, and predict the correctness of the target
word in the input sentence. We update initialized
weights of embedding layer while training classi-
fiers, since it showed better results. The parame-
ters and settings of the network are the same as in
a previous study (Rei and Yannakoudakis, 2016).
Specifically, in Bi-LSTM the dimensions of the
embedding layer, the first hidden layer, and the
second hidden layer are 300, 200, and 50, respec-
tively. The Bi-LSTM model was optimized us-
ing the ADAM algorithm (Kingma and Ba, 2015)
with an initial learning rate of 0.001, and a batch
size of 64 sentences.

4.4 Results

Table 2a shows experimental results comparing
Bi-LSTM models trained on FCE-public dataset
initialized with two baselines (FCE+W2V and
FCE+C&W) and the proposed word embeddings
(FCE+EWE, FCE+GWE and FCE+E&GWE) in
the error detection task. We used two models
for FCE+W2V: FCE+W2V (R&Y 2016) is the
experimental result reported in a previous study
(Rei and Yannakoudakis, 2016), and FCE+W2V
(our reimplementation of (R&Y, 2016)) is the ex-
perimental result of our reimplementation of Rei
and Yannakoudakis (2016). FCE+E&GWE is a
model combining FCE+EWE and FCE+GWE. We
conducted Wilcoxon signed rank test (p < 0.05) 5
times.

Table 2b shows the result of using addi-
tional large-scale Lang-8 corpus. Compared to
FCE&L8+W2V, FCE+EWE-LS has better results
within the three evaluation metrics. From this re-
sult, it can be seen that it is better to extract and
use error patterns than simply using Lang-8 cor-
pus as a training data to train a classifier, as it con-
tains noise in the correct sentences. Furthermore,
by combining with GWE method, accuracy was
improved as in the above experiment.

In terms of precision, recall, and Fj 5, the meth-
ods in our study were ranked as FCE+E&GWE-
L8 > FCE+EWE-L8 > FCE+E&GWE >
FCE+GWE > FCE+EWE > FCE+W2V >
FCE+C&W. Error patterns and grammaticality



Bi-LSTM + embeddings P R Fys

FCE + W2V (R&Y, 2016) 46.1 28.5 41.1

FCE + W2V (our reimplementation of (R&Y, 2016)) | 45.840.1  27.840.4  40.5+0.3
FCE + C&W 45.1+0.3 26704  39.6+0.3
FCE + EWE 46.1£0.1x  28.04+0.1x 40.840.1x
FCE + GWE 46.5+0.1x 28.3+0.4x 41.24+0.2%
FCE + E&GWE 46.7+0.1x 28.6+0.1x 41.4+0.1%

(a) LSTM and word embeddings are trained only using FCE-public.

Bi-LSTM + embeddings | P R Fos
FCE&LS + W2V 123+£2.6  32.84£2.2 14.0£2.6
FCE + EWE-LS 50.5£3.4% 30.1E£1.2x 44.442.7x
FCE + E&GWE-LS8 50.8+3.6x 30.0+£1.2x 44.6+2.8x

(b) Either FCE-public and a large-scale Lang-8 corpus are used to train LSTM or word embeddings.

Table 2: Results of grammatical error detection by Bi-LSTM. Asterisks indicate that there is a significant
difference for the confidence interval 0.95 for the P, R and Fj 5 against FCE + W2V (our reimplementa-

tion of (R&Y, 2016)).

Error type Verb Missing-article Noun Noun type
@ FCE + W2V 56 48 26 9
FCE + C&W 53 46 24 7
FCE + EWE 60 37 29 12
(b) | FCE + GWE 62 43 29 11
FCE + E&GWE 64 40 31 14
© FCE + EWE-L8 66 36 37 19
FCE + E&GWE-LS8 67 40 39 18
Total number of errors | 131 112 77 32

Table 3: Numbers of correct instances for typical error types.

consistently improved the accuracy of grammat-
ical error detection, showing that the proposed
methods are effective. Also, our proposed method
has a statistically significant difference compared
with previous research even without using large-
scale Lang-8 corpus. It outperformed the pre-
ceding state-of-the-art (Rei and Yannakoudakis,
2016) in all evaluation metrics.

5 Discussion

Table 3 shows the number of correct answers of
each model for some typical errors. Error types
are taken from the gold label of the FCE-public
dataset.

First, we analyze verb errors and missing arti-
cles, which have the largest differences between
the numbers of correct answers of baselines and
the proposed methods (see Table 3 (a) and (b)).
The proposed methods gave more correct an-
swers for verb errors, whereas FCE+W2V and
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FCE+C&W gave more correct answers for miss-
ing article errors. A possible explanation is that
unigram-based error patterns are too powerful for
word embeddings to learn other errors that can be
learned from the contextual clues.

Second, we examine the difference made by
adding the error patterns extracted from Lang-
8 (see Table 3 (b) and (c¢)): FCE+EWE and
FCE+EWE-LS8 have the greatest difference in the
number of correct answers in noun and noun type
errors. FCE+EWE-LS8 has more correct answers
for noun errors such as suggestion and advice and
noun type errors such as time and times. The rea-
son is that Lang-8 includes a wide variety of lexi-
cal choice errors of nouns while FCE-public cov-
ers only a limited number of error variations.

Table 4 demonstrates the examples of error de-
tection of the baseline FCE+W2V and the best
proposed method FCE+E&GWE-LS8 on the test
data. Table 4(a) shows an example of a noun error,



Bi-LSTM + embeddings | Detection result
Gold The bus will pick you up right at your hotel entrance.
(a) | FCE + W2V The bus will pick you up right at your hotel entery.
FCE + E&GWE-LS The bus will pick you up right at your hotel entery.
Gold There are shops which sell clothes, food, and books -
(b) | FCE + W2V There are shops which sales cloths, foods, and books -
FCE + E&GWE-LS8 There are shops which sales cloths, foods, and books **
Gold All the buses and the MTR have air-condition.
(¢) | FCE + W2V All the buses and MTR have air-condition.
FCE + E&GWE-LS8 All the buses and MTR have air-condition.

Table 4: Examples of error detection by FCE+W2V and FCE+E&GWE-L8. Gold corrections in italic,

and detected errors in bold.

and as it can be seen, FCE+E&GWE-LS detected
the error in contrast to FCE+W2V. Noun type er-
rors are presented in Table 4(b). Here, FCE+W2V
did not detect any error, while FCE+E&GWE-
L8 could detect the mass noun error, frequently
found in a learner corpus. Detection of “sale”
and “cloths” was failed in both models, but they
are hard to detect since the former requires syn-
tactic information and the latter involves com-
mon knowledge. In Table 4(c), FCE+W2V suc-
ceeded in detection of a missing article error, but
FCE+E&GWE-LS did not. Even though proposed
word embeddings learn substitution errors effec-
tively, they cannot properly learn insertion and
deletion errors. It is our future work to extend
word embeddings to include these types of errors
and focus on contextual errors that are difficult to
deal with the model, for example, missing articles.

Figure 3 visualizes word embeddings
(FCE+W2V and FCE+E&GWE-L8) of fre-
quently occurring errors in learning data using
t-SNE. We plot prepositions and some typical
verbs®, where FCE+E&GWE-L8 showed better
results compared to FCE+W2V. Proportional to
the frequency of errors, the position of the word
embeddings of FCE+E&GWE-L8 changes in
comparison with that of FCE+W2V. For example,
FCE+E&GWE-LS8 learned the embeddings of
high-frequency words such as was and could
differently from FCE+W2V. On the other hand,
low-frequency words such as wunder and walk
were learned similarly. Also, almost all words
shown in this figure move to the upper right.
These visualization can be used to analyze errors
made by learners.

3This dataset includes modal verbs as verb errors.
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Figure 3: Visualization of word embeddings by
FCE+W2V and FCE+E&GWE-L8. The red color
represents the word of FCE+W2V and the blue
represents FCE+E&GWE-LS.

6 Conclusion

In this study, we proposed word embeddings that
can improve grammatical error detection accuracy
by considering grammaticality and error patterns.
We achieved the state-of-the-art accuracy on the
FCE-public dataset using a Bi-LSTM model ini-
tialized with the proposed word embeddings. The
word embeddings trained on a learner corpus can
distinguish between correct and incorrect phrase
pairs. In addition, we conducted experiments us-
ing a large-scale Lang-8 corpus. As a result, we
showed that it is better to extract error patterns
from such a corpus to train word embeddings than
simply add Lang-8 corpus as a training data to
train a classifier. We analyzed the detection results
for some typical error types and showed the char-
acteristics of learned word representations. We
hope that the learned word embeddings are gen-
eral enough to be of use to help NLP applications



to language learning.
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Abstract

This paper describes and compares two
straightforward approaches for depen-
dency parsing with partial annotations
(PA). The first approach is based on a
forest-based training objective for two
CREF parsers, i.e., a biaffine neural network
graph-based parser (Biaffine) and a tradi-
tional log-linear graph-based parser (LL-
GPar). The second approach is based on
the idea of constrained decoding for three
parsers, i.e., a traditional linear graph-
based parser (LGPar), a globally nor-
malized neural network transition-based
parser (GN3Par) and a traditional linear
transition-based parser (LTPar). For the
test phase, constrained decoding is also
used for completing partial trees. We con-
duct experiments on Penn Treebank under
three different settings for simulating PA,
i.e., random, most uncertain, and divergent
outputs from the five parsers. The results
show that LLGPar is most effective in di-
rectly learning from PA, and other parsers
can achieve best performance when PAs
are completed into full trees by LLGPar.

1 Introduction

Traditional supervised approaches for structural
classification assume full annotation (FA), mean-
ing that the training instances have complete
manually-labeled structures. In the case of depen-
dency parsing, FA means a complete parse tree is
provided for each training sentence. However, re-
cent studies suggest that it is more economic and
effective to construct labeled data with partial an-
notation (PA). A lot of research effort has been at-
tracted to obtain partially-labeled data for different

*Correspondence author
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7

$0 Iy saws Sarahs withy as telescopeg

Figure 1: An example partial tree, where only the
heads of “saw” and “with” are given.

tasks via active learning (Sassano and Kurohashi,
2010; Mirroshandel and Nasr, 2011; Li et al.,
2012; Marcheggiani and Artieres, 2014; Flannery
and Mori, 2015; Li et al., 2016), cross-lingual syn-
tax projection (Spreyer and Kuhn, 2009; Ganchev
et al., 2009; Jiang et al., 2010; Li et al., 2014),
or mining natural annotation implicitly encoded
in web pages (Jiang et al., 2013; Liu et al., 2014;
Nivre et al., 2014; Yang and Vozila, 2014). Fig-
ure 1) gives an example sentence partially an-
notated with two dependencies. However, there
still lacks systematic study on how to build de-
pendency parsers with PA. Most previous works
listed above rely on ad-hoc strategies designed
for only basic dependency parsers. One excep-
tion is that Li et al. (2014) convert partial trees
into forests and train a traditional log-linear graph-
based dependency parser (LLGPar) with PA based
on a forest-based objective, showing promising
results. Meanwhile, it is still unclear how PAs
can be used by other main-stream dependency
parsers, such as the traditional linear graph-based
parser (LGPar) and transition-based parser (LT-
Par), and the newly proposed biaffine neural net-
work graph-based parser (Biaffine) (Dozat and
Manning, 2017) and globally normalized neural
network transition-based parser (GN3Par) (Andor
etal., 2016).

This paper aims to thoroughly study this issue
and make systematic comparison on different ap-
proaches for dependency parsing with PA. In sum-

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 4958,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP



mary, we make the following contributions.

e We present a general framework for directly
training GN3Par, LGPar and LTPar with PA
based on constrained decoding. The basic
idea is to use the current feature weights to
parse the sentence under the PA-constrained
search space, and use the best parse as a
pseudo gold-standard reference for feature
weight update during perceptron training.

We also implement the forest-objective based
approach of Li et al. (2014) for the two CRF
parsers, i.e., LLGPar and Biaffine.

We have made thorough comparison among
different directly-train approaches under
three different settings for simulating PA,
i.e., random dependencies, most uncertain
dependencies, and dependencies with diver-
gent outputs from the five parsers. We have
also compared the proposed directly-train ap-
proaches with the straightforward complete-
then-train approach.

Extensive experiments lead to several inter-
esting and clear findings.

2 Dependency Parsing

Given an input sentence X = wowi...Wy, a de-
pendency tree comprises a set of dependencies,
namelyd = {i ~ j: 0 <i <n,1<j<n}
where ¢ ~ j is a dependency from a head word
1 to a modifier word j. A complete dependency
tree contains n dependencies, namely |d| = n,
whereas a partial dependency tree contains less
than n dependencies, namely |d| < n. Alterna-
tively, FA can be understood as a special form of
PA. For clarity, we denote a complete tree as d and
a partial tree as d?.

The decoding procedure aims to find an optimal
complete tree d*:

d* = arg max Score(x,d; w)

deY(x) (1)

where )(x) defines the search space containing all
legal trees for x and w is the model parameters.

2.1 Graph-based Approach

The graph-based method factorizes the score of a
dependency tree into those of small subtrees p:

Score(x,d; w) = Z Score(x, p; w)
pcd

2)
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Dynamic programming based exact search are
usually applied to find the optimal tree (McDon-
ald et al., 2005; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010).

Biaffine belongs to the first-order model and
only incorporates scores of single dependencies.
In contrast, for LLGPar and LGPar, we follow Li
et al. (2014) and adopt the second-order model of
McDonald and Pereira (2006) considering scores
of single dependencies and adjacent siblings. Bi-
affine and LLGPar both belong to CRF parser.
Please note that the original Biaffine is locally
trained on each word. In this work, we follow
Ma and Hovy (2017) and add a global CRF loss
in the projective case, in order to directly use the
proposed approach of Li et al. (2014). In other
words, we extend the original Biaffine Parser de-
scribed in Dozat and Manning (2017) by adding a
CRF layer. Under the CRF model, the conditional
probability of d given x is:

eScore(x,d;w)

p(d‘x; W) = Zd’ey( )6Score(x,d’;w)

3)

For training, w is optimized using gradient de-
scent to maximize the likelihood of the training
data.

Biaffine uses a neural network to compute the
score of each dependency. First, the input word
and POS tag sequence are fully encoded with two
BiLSTM layers. Then, two MLPs are applied to
each word position ¢ to obtain two word represen-
tations, i.e., r? (w; as head) r]" (w; as modifier).
Finally, a biaffine classifier predicts the score of an
arbitary dependency i ~ j.

score(imj):r?-W-r;n+r§‘~V 4)

where W (matrix) and V' (vector) are the biaffine
parameters.

LLGPar is a traditional discrete feature based
model, which defines the score of a tree as

Score(x,d;w) =w - f(x,d) 3)
f(x, d) is a sparse accumulated feature vector cor-
responding to d.

LGPar uses perceptron-like online training to
directly learn w. The workflow is similar to Al-
gorithm 1, except that the gold-standard reference
d™ is directly provided in the training data without
the need of constrained decoding in line 7.



Algorithm 1 Perceptron training based on constrained decoding.

1: Input: Partially labeled data D = {(x;,d} )}iZ1; Output: w;

2: Initialization: w(®) =0,k =0
3: for i = 1 to I do // iterations

4: for (x;,d}) € Ddo// traverse
5: d” =arg MaXgey () Score(x;,d; w) // Unconstrained decoding: LGPar
6: a” =argmaxX, .qcy(x,) Score(x;,a — d;w) // Unconstrained decoding: LTPar
7: dt = arg MaxXgey (x,,d?) Score(x;,d;w) // Constrained decoding: LGPar
T
8: at =arg MaX, .4ey(x,,d?) Score(x;,a — d;w) // Constrained decoding: LTPar
I
9: wWi1 = wy + f(x,d") — £f(x,d ™) // Update: LGPar
10: wit1 = wi + f(x,a") — f(x,a™) // Update: LTPar
11: k=k+1
12:  end for
13: end for

2.2 Transition-based Approach

The transition-based method builds a dependency
by applying sequence of shift/reduce actions a,
and factorizes the score of a tree into the sum
of scores of each action in a (Yamada and Mat-
sumoto, 2003; Nivre, 2003; Zhang and Nivre,
2011):

Score(x,d;w) = Score(x,a — d;w)

= Zi‘l Score(x, ¢, a;; W)
(6)
where a; is the action taken at step ¢ and ¢; is the
configuration status after taking action aj...a;—1.
Transition-based methods use inexact beam search
to find a highest-scoring action sequence.

GN3Par uses a neural network to predict scores
of different actions given a state (Chen and Man-
ning, 2014; Andor et al., 2016). First, 48 atomic
features are embeded and concatenated as the in-
put layer. Then, two hidden layers are applied
to get the scores of all feasible actions. Unlike
the traditional perceptron-like training, which only
considers the best action sequence in the beam and
the gold-standard sequence, their idea of global
normalization is to approximately compute the
probabilities of all the sequences in the beam to
obtain a global CRF-like loss.

LTPar is a traditional discrete feature based
model like LLGPar and LGPar, and adopts
global perceptron-like training to learn the fea-
ture weights w. We build an arc-eager transition-
based dependency parser and features described in
Zhang and Nivre (2011).

3 Directly training parsers with PA

As described in Li et al. (2014), CRF parsers
such as LLGPar and Biaffine can naturally learn
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from PA based on the idea of ambiguous labeling,
which allows a sentence to have multiple parse
trees (forest) as its gold-standard reference (Rie-
zler et al., 2002; Dredze et al., 2009; Tackstrom
et al., 2013). First, a partial tree d?” is converted
into a forest by adding all possible dependencies
pointing to remaining words without heads, with
the constraint that a newly added dependency does
not violate existing ones in dP. The forest can
be formally defined as F(x,d?) = {d : d €
Y(x),dP C d}, whose conditional probability is
the sum of probabilities of all trees that it contains:

p(d”lx;w) =

> pdxw) (@

deF(x,dP)

Then, we can define a forest-based training objec-
tive function to maximize the likelihood of train-
ing data as described in Li et al. (2014).

LGPar can be extended to directly learn from
PA based on the idea of constrained decoding, as
shown in Algorithm 1, which has been previously
applied to Chinese word segmentation with par-
tially labeled sequences (Jiang et al., 2010). The
idea is using the best tree d in the constrained
search space ) (x;, dg ) (line 7) as a pseudo gold-
standard reference for weight update. In tradi-
tional perceptron training, d* would be a com-
plete parse tree provided in the training data. It
is trivial to implement constrained decoding for
graph-based parsers, and we only need to disable
some illegal combination operations during dy-
namic programming.

LTPar can also directly learn from PA in a simi-
lar way, as shown in Algorithm 1. Constrained de-
coding is performed to find a pseudo gold-standard
reference (line 8). It is more complicate to design
constrained decoding for transition-based parsing



train-1K train-39K dev test
#Sentence 1,000 38,832 1,700 2,416
#Token 24,358 925,670 40,117 56,684

Table 1: Data Statistics. FA is always used for
train-1 K, whereas PA is simulated for train-39K.

than graph-based parsing. Fortunately, Nivre et al.
(2014) propose a constrained decoding procedure
for the arc-eager parsing system. We ignore the
details due to the space limitation.

GN3Par learns from PA in a similar manner
with LTPar. The difference is that for each sen-
tence, all the sequences in beam are used as nega-
tive examples in Line 6, and a™ obtained in Line
8 as gold-standard. Then, the global loss is com-
puted in the same way with the case of FA.! Mean-
while, since GN3Par uses the arc-standard transi-
tion system, we also develop a constrained decod-
ing procedure for the arc-standard system, which
will be released as supporting documents.

4 Experiments

Data. We conduct experiments on Penn Tree-
bank (PTB), and follow the standard data split-
ting (sec 2-21 as training, sec 22 as develop-
ment, and sec 23 as test). Original bracketed
structures are converted into dependency struc-
tures using Penn2Malt with default head-finding
rules. We build a CRF-based bigram part-of-
speech (POS) tagger to produce automatic POS
tags for all train/dev/test data (10-way jackknifing
on training data), with tagging accuracy 97.3% on
test data. As suggested by an earlier anonymous
reviewer, we further split the training data into two
parts. We assume that the first 1/ training sen-
tences are provided as a small-scale data with FA,
which can be obtained by a small amount of man-
ual annotation or through cross-lingual projection
methods. We simulate PA for the remaining 39K
sentences. Table 1 shows the data statistics.
Parameter settings. We implement all five
parsers from scratch using C++, which will be
released publicly in the future. For those who
are immediately interested, please contact us. We
train LLGPar with stochastic gradient descent
(Finkel et al., 2008). For LTPar and GN3Par,

! We have also tried to use all sequences in the beam in
Line 8 as gold-standard, instead of the best a™*, considering
that there may be many gold-standard references in the case
of PA. However, the accuracies become lower.
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the beam size is 64 and the standard early update
is adopted during training (Collins, 2002). For
LGPar and LTPar, averaged perceptron is adopted
(Collins, 2002).

For Biaffine, we directly adopt most hyperpa-
rameters of the released code of Dozat and Man-
ning (2017), only removing the components re-
lated with dependency labels, since we focus on
unlabeled dependency parsing in this work. The
LSTM (two forward plus two backward) layers all
use 300-dimension hidden cells. Dropout with ra-
tio of 0.75 is applied to most layers before out-
put. The two MLPs both have 100-dimension out-
puts without hidden layer. Adam optimization is
adopted with oy = a9 = 0.9.

For GN3Par, we follow Daniel et al. (2016),
and use two 1024 x 1024 hidden layers, and adopt
momentum (ratio of 0.9) Adam optimization.

For both Biaffine and GN3Par, we set the em-
bedding dimension of both word/tag to 100, and
use the GloVe pretrained word embedding for ini-
tialization?, and randomly initialize embeddings
of POS tags.

Since we have two sets of training data, we
adopt the simple corpus-weighting strategy of Li
etal. (2014). In each iteration, we merge train-1 K
and a subset of random 10K sentences from train-
39K, shuffle them, and then use them for training.
For all parsers, training terminates when the peak
parsing accuracy on dev data does not improve in
30 consecutive iterations.

For evaluation metrics, we use the standard un-
labeled attachment score (UAS) excluding punctu-
ation marks.

4.1 Three settings for simulating PA on
train-39K

In order to simulate PA for each sentence in train-
39K, we only keep a% gold-standard dependen-
cies (not considering punctuation marks), and re-
move all other dependencies. We experiment with
three simulation settings to fully investigate the ca-
pability of different approaches in learning from
PA.

Random (30% or 15%):> For each sentence
in train-39 K, we randomly select a% words, and
only keep dependencies linking to these words.

https://nlp.stanford.edu/projects/
glove/

* We choose 15% since the parsers achieve about 85%
UAS when trained on train-1K (see Table 4). Then 30% aim
to find the effect of different levels of supervision.



Biaffine LLGPar LGPar GN3Par LTPar Berkeley Turbo Mate-tool ZPar

on Dev 94.37
on Test 94.18

93.16
92.42

93.00 93.32
9243 93.26

92.77 92.84
92.01 92.85

92.63

92.86 92.58

92.48

92.42
92.12

Table 2: UAS of different parsers trained on all training data (40K)

FA(random)

PA(random)

PA(uncertain)

PA(divergence)

100% 30% 15% 30%

15%

30%

15%

21.33%

Biaffine
LLGPar
LGPar
GN3Par
LTPar

94.37 93.06 (-1.31) 92.10 (-2.27)
93.16 91.93 (-1.23) 91.15 (-2.01)
93.00 91.76 (-1.24) 90.80 (-2.20)
93.32 91.99 (-1.33) 91.17 (-2.15)
92.77 91.22 (-1.55) 90.35 (-2.42)

92.84 (-1.53)
92.39 (-0.77)
91.63 (-1.37)
91.43 (-1.89)
91.12 (-1.65)

91.92 (-2.45)
91.66 (-1.50)
90.62 (-2.38)
90.34 (-2.98)
90.12 (-2.65)

93.63 (-0.74)
93.02 (-0.14)
92.46 (-0.54)
92.40 (-0.92)
91.35(-1.42)

92.83 (-1.54)
92.44 (-0.72)
91.64 (-1.36)
91.80 (-1.52)
90.99 (-1.78)

93.58 (-0.79)
92.83 (-0.33)
92.42 (-0.58)
92.60 (-0.72)
91.04 (-1.73)

Table 3: UAS on dev data: parsers are directly trained on train-1K with FA and train-39K with PA. “FA
(random) a%” means randomly selecting % sentences with FA from train-39K for training. Numbers
in parenthesis are the accuracy gap from the second column “FA (100%)”.

With this setting, we aim to purely study the is-
sue without biasing to certain structures. This set-
ting may be best fit the scenario automatic syntax
projection based on bitext, where the projected de-
pendencies tend to be arbitrary (and noisy) due to
the errors in automatic source-language parses and
word alignments and non-isomorphism syntax be-
tween languages.

Uncertain (30% or 15%): In their work of ac-
tive learning with PA, Li et al. (2016) show that the
marginal probabilities from LLGPar is the most
effective uncertainty measurement for selecting
the most informative words to be annotated. Fol-
lowing their work, we first train LLGPar on train-
1K with FA, and then use LLGPar to parse train-
39K and select «% most uncertain words. We use
the gold-standard heads of the selected words as
PAs for model training.

Following Li et al. (2016), we measure the un-
certainty of a word w; according to the marginal
probability gap between its two most likely heads
hY and h}.

Uncertainty(x,1) = p(hY ~ i|x) — p(h} ~ i|x)

®)
This setting fits the scenario of active learning,
which aims to save annotation effort by only an-
notating the most useful structures.

Divergence (21.33%): We train all five parsers
on train-1K, and use them to parse train-39K. If
their output trees do not assign the same head to a
word, then we keep the gold-standard dependency
pointing to the word, leading to 21.33% remaining
dependencies. This setting fits to the tri-training
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scenario investigated in Li et al. (2014).

4.2 Results of different parsers trained on FA

We train the five parsers on all the training data
with FA. We also employ four publicly available
parsers with their default settings. BerkeleyParser
(v1.7) is a constituent-structure parser, whose re-
sults are converted into dependency structures
(Petrov and Klein, 2007). TurboParser (v2.1.0)
is a linear graph-based dependency parser using
linear programming for inference (Martins et al.,
2013). Mate-tool (v3.3) is a linear graph-based de-
pendency parser very similar to our implemented
LGPar (Bohnet, 2010). ZPar (v0.6) is a linear
transition-based dependency parser very similar to
our implemented LTPar (Zhang and Clark, 2011).
The results are shown in Table 2.

We can see that the five parsers that we adopt
achieve competitive parsing accuracy and serve as
strong baselines. Especially, the recently proposed
neural network Biaffine outperforms other parser
by more than 1%.

4.3 Results of the directly-train approaches

The five parsers are directly trained on train-1K
with FA and train-39K with PA based on the
methods described in Section 3. Table 3 shows
the results.

Comparing the five parsers, we have several
clear findings. (1) LLGPar is the most effective in
directly learning from PA since its accuracy drop
is the smallest over all PA settings compared with
FA (100%). (2) Although Biaffine achieves best



. No constraints PA (random) PA (uncertain) PA (divergence)
Parser for completion
0% 30% 15% 30% 15% 21.33%
Biaffine-1 K 87.08 92.10 (+5.02) 89.79 (+2.71) | 96.78 (+9.70)  93.47 (+6.39) | 96.76 (+9.68)
LLGPar-1K 86.67 92.65 (+5.98) 90.02 (+3.35) | 97.43 (+10.76) 94.43 (+7.76) | 97.07 (+10.40)
LGPar-1K 86.05 92.16 (+6.11) 89.48 (+3.43) | 97.30 (+11.25) 94.11 (+8.06) | 96.99 (+10.94)
GN3Par-1K 85.86 92.34 (+6.48) 89.54 (+3.68) | 97.02 (+11.16) 93.69 (+7.83) | 96.56 (+10.70)
LTPar-1K 85.38 91.76 (+6.38) 88.89 (+3.51)|96.90 (+11.52) 93.35 (+7.97)|96.72 (+11.34)
LLGPar-1K+39K - 95.55 93.37 98.30 96.22 97.69
Biaffine-1 K +39K - 95.77 93.52 98.27 96.17 97.73

Table 4: UAS of full trees in train-39 K completed via constrained decoding.

accuracy over all settings, thanks to its strong per-
formance under the basic FA setting, we find that
the accuracy gap between LLGPar and Biaffine
becomes much smaller with PA than with FA. This
also indicates that LL.GPar is more effective in di-
rectly learning from PA. (3) LTPar achieves the
lowest accuracy over all settings, especially on PA
under uncertain (30%, 15%) and divergence. It is
also clear that the accuracy declines the largest on
these three settings, compared with FA (100%).

FA (random) vs. PA (random):* from the re-
sults in the two major columns, we can see that
LLGPar achieves higher accuracy by about 0.5%
when trained on sentences with «% random de-
pendencies than when trained on a% random sen-
tences with FA. This is reasonable and can be
explained under the assumption that LLGPar can
make full use of PA in model training. In fact,
in both cases, the training data contains approxi-
mately the same number of annotated dependen-
cies. However, from the perspective of model
training, given some dependencies in the case of
PA, more information about the syntactic structure
can be derived.’

Taking Figure 1 as an example, “I;” can only
modify “sawy” due to the single-root and single-
head constraints; similarly, “Sarahs” can only
modify either “saws” or “withs”’; and so on. More-

* These two settings should give the clearest evidence
whether a parser can effectively learn from PAs. Under the
same a%, although containing approximately the same num-
ber of dependencies, PA certainly provide more syntactic in-
formation than FA, since 1) it is more expensive to annotate
PA than FA in the terms of annotation time per dependency;
2) in PA, partially annotated dependencies can provide strong
constraints on the remaining undecided dependencies. There-
fore, we assume that a parser is effectively in learning from
PA if it can achieve at least higher accuracy under PA.

3 Also, as suggested in the work of Li et al. (2016), an-
notating PA is more time-consuming than annotating FA in
terms of averaged time for each dependency, since dependen-
cies in the same sentence are correlated and earlier annotated
dependencies usually make later annotation easier.
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over, since LLGPar is a second-order model, the
presence of certain dependencies can directly af-
fect the choice of other dependencies through the
scores of adjacent siblings. Therefore, given the
same amount of annotated dependencies, random
PA contains more syntactic information than ran-
dom FA, which explains why LLGPar performs
better with PA than FA.

In contrast, all other four parsers achieve lower
accuracy with PA than with FA. Biaffine differs
from LLGPar in being a first-order model, and
thus cannot fully utilize PA by considering sib-
ling scores. The problem of LGPar may lie in
the perceptron training with constrained decod-
ing, which only considers a single best tree that
complies with the given PA as gold-standard (Line
7 in Algorithm 1), unlike the forest-based objec-
tive of LLGPar that consider all trees weighted
with probabilities. Both GN3Par and LTPar suffer
from the inexact search problem. In other words,
the approximate beam search can cause the cor-
rect tree drops off the beam too soon due to lower
scores for earlier actions, and thus return a bad a™
that causes the model be updated to bias to wrong
structures (Line 8 in Algorithm 1).

PA (random) vs. PA (uncertain):® we can see
that all five parsers achieve much higher accuracy
in the latter case.” The annotated dependencies
in PA (uncertain) are most uncertain ones for cur-
rent statistical parser (i.e., LLGPar), and thus are
more helpful for training the models than those in
PA (random). Another phenomenon is that, in the
case of PA (uncertain), increasing a% = 15% to

®From the idea of active learning, we know that annotat-
ing the most informative dependencies as more training data
can help models best. So, we select the most uncertain depen-
dencies and compare the result on the setting with randomly-
selected dependencies.

"The only exception is LTPar with 30% PA, the accuracy
increases by only 91.35 — 91.12 = 0.23%, which may be
caused by the ineffectiveness of LTPar in learning from PA.



30% actually doubles the number of annotated de-
pendencies, but only boost accuracy of LLGPar
by 93.02 — 92.44 = 0.58%, which indicates that
newly added 15% dependencies are much less use-
ful since the model can already well handle these
low-uncertainty dependencies.

PA (uncertain, 30%) vs. PA (divergence):®
we can see that the all five parsers achieve simi-
lar parsing accuracies under the two settings. This
indicates that the divergence strategy can find very
useful dependencies for all parsers, whereas un-
certainty measurement based on LLGPar might be
biased towards itself to a certain extent.

In summary, we can conclude from the results
that LLGPar is the most effective in directly learn-
ing from PA among all five parsers, due to both the
second-order modeling and the forest-based train-
ing objective.

4.4 Results of the complete-then-train
methods

The most straight-forward method for learning
from PA is the complete-then-learn method (Mir-
roshandel and Nasr, 2011). The idea is first us-
ing an existing parser to complete partial trees in
train-39 K into full trees based on constrained de-
coding, and then training the target parser on train-
1K with FA and train-39 K with completed FA.

Results of completing via constrained decod-
ing:  Table 4 reports UAS of the completed
trees on train-39K using two different strategies
for completion. “No constraints (0%)” means
that train-39 K has no annotated dependencies and
normal decoding without constraints is used. In
the remaining columns, each parser performs con-
strained decoding on PA where a% dependencies
are provided in each sentence.

o Coarsely-trained-self for completion: We
complete PA into FA using corresponding
parsers coarsely trained on only train-1K
with FA. We call these parsers Biaffine-
1K, LLGPar-1K, LGPar-1K, GN3Par-1K,
LTPar-1K respectively.

Fine-trained-LLGPar for completion: We
complete PA into FA using LLGPar fine
trained on both train-1K with FA and
train-39K with PA. We call this LLGPar

8Selecting uncertain dependencies according to LLGPar
may cause the resulting data to be biased to LLGPar. There-
fore, we consider the divergence among all parsers for selec-
tion.

55

as LLGPar-1K+39K. Please note that
LLGPar-1K+39K actually performs closed
test in this setting, meaning that it parses
its training data. For example, LLGPar-
1K +39K trained on random (30%) is em-
ployed to complete the same data by filling
the remaining 70% dependencies.

Fine-trained-Biaffine for completion: This
is the same with the case of “Fine-trained-
LLGPar”, except that we replace LLGParser
with Biaffine. We call the resulting parser as
Biaffine-1K +39K.

Comparing the five parsers trained on train-1/¢,
we can see that constrained decoding has similar
effects on all five parsers, and is able to return
much more accurate trees. Numbers in parenthesis
show the accuracy gap between unconstrained 0%
and constrained decoding. This suggests that con-
strained decoding itself is not responsible for the
ineffectiveness of Algorithm 1 for other parsers,
especially LTPar.

Comparing the results of LLGPar-1/K and
LLGPar-1K+39K, it is obvious that the latter pro-
duces much better full trees since the fine-trained
LLGPar can make extra use of PA in train-39K
during training.

LLGPar-1K+39K and Biaffine-1K+39K
achieve similar accuracies. We choose to use the
former for completion since LLGPar is the most
effective in both learning from PA and completing
PA, as indicated by the results in Table 3 and 4.

Results of training on completed FA: Table 5
compares performance of the five parsers trained
on train-1/K with FA and train-39K with com-
pleted FA, from which we can draw several clear
and interesting findings. First, different from the
case of directly training on PA, the accuracy gaps
among the five parsers become much more sta-
ble when trained on data with completed FA in
both completion settings. Second, using parsers
coarsely-trained on train-1K for completion leads
to very bad performance, which is even much
worse than those of the directly-train method in
Table 3 except for LTPar with uncertain (30%) and
divergence. Third, using the fine-trained LLGPar-
1K +39K for completion makes LGPar and LTPar
achieve nearly the same accuracies with LLGPar,
which may be because LLGPar provides comple-
mentary effects during completion, analogous to
the scenario of co-training.



Completed by self-1K Completed by LLGPar-1 K+39K
PA (random) | PA (uncertain) | PA (divergence) || PA (random) | PA (uncertain) | PA (divergence)
30% 15% | 30% 15% 21.33% 30%  15% | 30%  15% 21.33%
Biaffine | 90.88 89.77 | 92.91 91.55 92.83 93.13 92.46 | 93.52 93.02 93.48
LLGPar | 89.91 88.69 | 92.05 90.77 92.28 9229 91.54 | 92.86 92.33 92.76
LGPar | 89.42 88.32 | 91.85 90.66 92.07 92.17 91.59 | 92.84 9221 92.79
GN3Par | 89.77 88.38 | 92.07 90.71 92.07 9243 91.83 | 92.82 9245 92.66
LTPar | 89.17 87.72 | 91.59 90.12 91.67 92.05 91.37 | 9242 92.10 92.40

Table 5: UAS on dev data: parsers trained on train-1 K with FA and train-39 K with completed FA.

Directly train on train-39 K with PA Train-39 K with FA completed by LLGPar-1 K+39K
PA (random) | PA (uncertain) | PA (divergence) || PA (random) | PA (uncertain) PA (divergence)
30%  15% | 30% 15% 21.33% 30%  15% | 30%  15% 21.33%
Biaffine | 92.76 91.66 | 93.44 92.82 93.43 92.82 92.00 | 93.20 92.88 93.30
LLGPar | 91.73 91.02 | 92.34 91.83 92.34 91.46 90.99 | 92.20 91.59 92.18
LGPar | 91.17 90.36 | 91.99 91.28 91.74 91.55 90.96 | 91.98 91.57 92.01
GN3Par | 91.15 89.86 | 92.12 91.91 92.50 92.12 91.44 | 92.65 9227 92.56
LTPar | 90.79 89.89 | 90.47 90.37 90.75 91.48 90.78 | 91.80 91.45 91.87

Table 6: UAS on test data: comparison of the directly-train and complete-then-train methods.

4.5 Results on test data: directly-train vs.
complete-then-train

Table 6 reports UAS on the test data of parsers di-
rectly trained on train-1K with FA and train-39 K
with PA, and of those trained on train-1K with FA
and train-39K with FA completed by fine-trained
LLGPar-1K+39K. The results are consistent with
the those on dev data in Table 3 and 5. Compar-
ing the two settings, we can draw two interesting
findings. First, LLGPar performs slightly better
with the directly-train method. Second, the two
settings lead to very similar performance on Bi-
affine, without a clear trend. Third, LGPar per-
forms slightly better with the complete-then-train
method in most cases except for uncertain (30%).
Four, GN3Par and LTPar perform much better
with the complete-then-train method.

5 Related work

In parsing community, most previous works adopt
ad-hoc methods to learn from PA. Sassano and
Kurohashi (2010), Jiang et al. (2010), and Flan-
nery and Mori (2015) convert partially annotated
instances into local dependency/non-dependency
classification instances, which may suffer from the
lack of non-local correlation between dependen-
cies in a tree.

Mirroshandel and Nasr (2011) and Majidi
and Crane (2013) adopt the complete-then-learn
method. They use parsers coarsely trained on ex-
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isting data with FA for completion via constrained
decoding. However, our experiments show that
this leads to dramatic decrease in parsing accuracy.

Nivre et al. (2014) present a constrained de-
coding procedure for arc-eager transition-based
parsers. However, their work focuses on allow-
ing their parser to effectively exploit external con-
straints during the evaluation phase. In this work,
we directly employ their method and show that
constrained decoding is effective for LTPar and
thus irresponsible for its ineffectiveness in learn-
ing PA.

Directly learning from PA based on constrained
decoding is previously proposed by Jiang et al.
(2013) for Chinese word segmentation, which
is treated as a character-level sequence labeling
problem. In this work, we first apply the idea to
LGPar and LTPar for directly learning from PA.

Directly learning from PA based on a forest-
based objective in LLGPar is first proposed by
Li et al. (2014), inspired by the idea of ambigu-
ous labeling. Similar ideas have been extensively
explored recently in sequence labeling tasks (Liu
et al., 2014; Yang and Vozila, 2014; Marcheggiani
and Artieres, 2014).

Hwa (1999) pioneers the idea of exploring
PA for constituent grammar induction based on
a variant Inside-Outside re-estimation algorithm
(Pereira and Schabes, 1992). Clark and Curran
(2006) propose to train a Combinatorial Catego-
rial Grammar parser using partially labeled data



only containing predicate-argument dependencies.
Mielens et al. (2015) propose to impute missing
dependencies based on Gibbs sampling in order
to enable traditional parsers to learn from partial
trees.

6 Conclusions

This paper investigates the problem of dependency
parsing with partially labeled data. Particularly,
we focus on the realistic scenario where we have a
small-scale training dataset with FA and a large-
scale training dataset with PA. We experiment
with three settings for simulating PA and com-
pare several directly-train and complete-then-train
approaches with five mainstream parsers, i.e., Bi-
affine, LLGPar, LGPar, GN3Par and LTPar.

Based on this work, we may draw the following
conclusions.

e For the complete-then-train approach, using
parsers coarsely trained on small-scale data
with FA for completion leads to unsatisfac-
tory results.

LLGPar is the most effective in directly
learning from PA due to both its second-
order modeling and probabilistic forest-based
training objective.

All other four parsers are less effective in di-
rectly learning from PA, but can achieve their
best performance with the complete-then-
train approach where PAs are completed into
FAs by LLGPar fine-trained on all FA+PA
data.

However, as our reviewers kindly point out,
more extensive experiments and systematic anal-
ysis are needed to really understand this interest-
ing issue and provide stronger findings, which we
leave for future work.
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Abstract

In this paper, we propose a probabilistic
parsing model that defines a proper con-
ditional probability distribution over non-
projective dependency trees for a given
sentence, using neural representations as
inputs.  The neural network architec-
ture is based on bi-directional LSTM-
CNNs, which automatically benefits from
both word- and character-level represen-
tations, by using a combination of bidi-
rectional LSTMs and CNNs. On top
of the neural network, we introduce a
probabilistic structured layer, defining a
conditional log-linear model over non-
projective trees. By exploiting Kirchhoff’s
Matrix-Tree Theorem (Tutte, 1984), the
partition functions and marginals can be
computed efficiently, leading to a straight-
forward end-to-end model training pro-
cedure via back-propagation. We eval-
uate our model on 17 different datasets,
across 14 different languages. Our parser
achieves state-of-the-art parsing perfor-
mance on hine datasets.

1 Introduction

Dependency parsing is one of the first stages in
deep language understanding and has gained in-
terest in the natural language processing (NLP)
community, due to its usefulness in a wide range
of applications. Many NLP systems, such as ma-
chine translation (Xie et al., 2011), entity coref-
erence resolution (Ng, 2010; Durrett and Klein,
2013; Ma et al., 2016), low-resource languages
processing (McDonald et al., 2013; Ma and Xia,
2014), and word sense disambiguation (Fauceglia
et al., 2015), are becoming more sophisticated, in
part because of utilizing syntactic knowledge such
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as dependency parsing trees.

Dependency trees represent syntactic relation-
ships through labeled directed edges between
heads and their dependents (modifiers). In the
past few years, several dependency parsing algo-
rithms (Nivre and Scholz, 2004; McDonald et al.,
2005b; Koo and Collins, 2010; Ma and Zhao,
2012a,b) have been proposed, whose high perfor-
mance heavily rely on hand-crafted features and
task-specific resources that are costly to develop,
making dependency parsing models difficult to
adapt to new languages or new domains.

Recently, non-linear neural networks, such as
recurrent neural networks (RNNs) with long-short
term memory (LSTM) and convolution neural net-
works (CNNs), with as input distributed word
representations, also known as word embeddings,
have been broadly applied, with great success,
to NLP problems like part-of-speech (POS) tag-
ging (Collobert et al., 2011) and named entity
recognition (NER) (Chiu and Nichols, 2016).
By utilizing distributed representations as inputs,
these systems are capable of learning hidden in-
formation representations directly from data in-
stead of manually designing hand-crafted features,
yielding end-to-end models (Ma and Hovy, 2016).
Previous studies explored the applicability of neu-
ral representations to traditional graph-based pars-
ing models. Some work (Kiperwasser and Gold-
berg, 2016; Wang and Chang, 2016) replaced
the linear scoring function of each arc in tradi-
tional models with neural networks and used a
margin-based objective (McDonald et al., 2005a)
for model training. Other work (Zhang et al.,
2016; Dozat and Manning, 2016) formalized de-
pendency parsing as independently selecting the
head of each word with cross-entropy objective,
without the guarantee of a general non-projective
tree structure output. Moreover, there have yet
been no previous work on deriving a neural prob-
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abilistic parsing model to define a proper condi-
tional distribution over non-projective trees for a
given sentence.

In this paper, we propose a probabilistic neu-
ral network-based model for non-projective de-
pendency parsing.  This parsing model uses
bi-directional LSTM-CNNs (BLSTM-CNNs) as
backbone to learn neural information representa-
tions, on top of which a probabilistic structured
layer is constructed with a conditional log-linear
model, defining a conditional distribution over all
non-projective dependency trees. The architec-
ture of BLSTM-CNNss is similar to the one used
for sequence labeling tasks (Ma and Hovy, 2016),
where CNNs encode character-level information
of a word into its character-level representation
and BLSTM models context information of each
word. Due to the probabilistic structured out-
put layer, we can use negative log-likelihood as
the training objective, where the partition function
and marginals can be computed via Kirchhoft’s
Matrix-Tree Theorem (Tutte, 1984) to process the
optimization efficiently by back-propagation. At
test time, parsing trees can be decoded with the
maximum spanning tree (MST) algorithm (Mc-
Donald et al., 2005b). We evaluate our model
on 17 treebanks across 14 different languages,
achieving state-of-the-art performance on 9 tree-
banks. The contributions of this work are summa-
rized as: (i) proposing a neural probabilistic model
for non-projective dependency parsing. (ii) giving
empirical evaluations of this model on benchmark
data sets over 14 languages. (iii) achieving state-
of-the-art performance with this parser on nine dif-
ferent treebanks.

2 Neural Probabilistic Parsing Model

In this section, we describe the components (lay-
ers) of our neural parsing model. We introduce
the neural layers in our neural network one-by-one
from top to bottom.

2.1 Edge-Factored Parsing Layer

In this paper, we will use the following notation:
x = {x1,...,z,} represents a generic input sen-
tence, where x; is the ith word. y represents a
generic (possibly non-projective) dependency tree,
which represents syntactic relationships through
labeled directed edges between heads and their de-
pendents. For example, Figure 1 shows a depen-
dency tree for the sentence, “Economic news had
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Figure 1: An example labeled dependency tree.

little effect on financial markets”, with the sen-
tences root-symbol as its root. 7'(x) is used to de-
note the set of possible dependency trees for sen-
tence x.

The probabilistic model for dependency pars-
ing defines a family of conditional probability
p(y|x; ©) over all y given sentence x, with a log-
linear form:

exp( > as(:ch,xm;@))
P(yx; ) = —~

where O is the parameter of this model, s, =
&(xh, Tm; ©) is the score function of edge from
Tp 0 Ty, and

Z(x;0) = Z

yeT(x

>

(zh,xm)€EY

exp Shm
)

is the partition function.

Bi-Linear Score Function. In our model, we
adopt a bi-linear form score function:

O(xh, Tm; ©) = (1) Wo(zm)
+UTp(zh) + Vip(xm) +b

where © = {W, U, V, b}, p(z;) is the represen-
tation vector of z;, W, U,V denote the weight
matrix of the bi-linear term and the two weight
vectors of the linear terms in ¢, and b denotes the
bias vector.

As discussed in Dozat and Manning (2016), the
bi-linear form of score function is related to the bi-
linear attention mechanism (Luong et al., 2015).
The bi-linear score function differs from the tra-
ditional score function proposed in Kiperwasser
and Goldberg (2016) by adding the bi-linear term.
A similar score function is proposed in Dozat and
Manning (2016). The difference between their and
our score function is that they only used the linear
term for head words (U ¢(x,)) while use them
for both heads and modifiers.

on financial markets



Matrix-Tree Theorem. In order to train the
probabilistic parsing model, as discussed in Koo
et al. (2007), we have to compute the partition
function and the marginals, requiring summation
over the set T'(x):

2(x;0) = > [T (@nzm;©)

YET(x) (zh,xm)EY

> P(y|x; ©)

YET (X):(zh,Tm)EY

foh,m (X5 ©)

where ¢(xp, m; ©) is the potential function:

U(xh, Tim; ©) = exp (@(zh, Tm; O))

and /i, (x; ©) is the marginal for edge from hth
word to mth word for x.

Previous studies (Koo et al., 2007; Smith and
Smith, 2007) have presented how a variant of
Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984)
can be used to evaluate the partition function and
marginals efficiently. In this section, we briefly re-
visit this method.

For a sentence x with n words, we denote x =
{zo,x1,...,2,}, Where z( is the root-symbol.
We define a complete graph G on n + 1 nodes (in-
cluding the root-symbol x(), where each node cor-
responds to a word in x and each edge corresponds
to a dependency arc between two words. Then, we
assign non-negative weights to the edges of this
complete graph with n + 1 nodes, yielding the
weighted adjacency matrix A(0Q) € RrHIxn+l
forh,m =0,...,n:

Ah,m(@> = ¢($h, Tm; @)

Based on the adjacency matrix A (©), we have the
Laplacian matrix:

where D(O) is the weighted degree matrix:

>~ Ay (0) ifh=m
Dpn(©) = { =y 2 (©)

0 otherwise

Then, according to Theorem 1 in Koo et al. (2007),
the partition function is equal to the minor of L(©)
w.r.t row 0 and column 0:

Z(x;0) =LY (@)
where for a matrix A, A (™) denotes the minor of
A w.rtrow h and column m; i.e., the determinant

of the submatrix formed by deleting the hth row
and mth column.

The marginals can be computed by calculating
the matrix inversion of the matrix corresponding
to L(%0)(©). The time complexity of computing
the partition function and marginals is O(n?).

Labeled Parsing Model. Though it is originally
designed for unlabeled parsing, our probabilistic
parsing model is easily extended to include depen-
dency labels.

In labeled dependency trees, each edge is rep-
resented by a tuple (zp, (), where zj, and x,,
are the head word and modifier, respectively, and [
is the label of dependency type of this edge. Then
we can extend the original model for labeled de-
pendency parsing by extending the score function
to include dependency labels:

¢(-’L'h,l‘m,l;@) = (p(wh>TWl(p($m)
+U{ o(zn) + Vip(zm)
+b;

where W, U;, V;, b; are the weights and bias
corresponding to dependency label [. Suppose that
there are L different dependency labels, it suffices
to define the new adjacency matrix by assigning
the weight of a edge with the sum of weights over
different dependency labels:

L
Alpm(©) = t(an, T, 1; )
=1

The partition function and marginals over labeled
dependency trees are obtained by operating on the
new adjacency matrix A’(©). The time complex-
ity becomes O(n3 + Ln?). In practice, L is prob-
ably large. For English, the number of edge la-
bels in Stanford Basic Dependencies (De Marn-
effe et al., 2006) is 45, and the number in the tree-
bank of CoNLL-2008 shared task (Surdeanu et al.,
2008) is 70. While, the average length of sen-
tences in English Penn Treebank (Marcus et al.,
1993) is around 23. Thus, L is not negligible com-
paring to n.

It should be noticed that in our labeled model,
for different dependency label [ we use the same
vector representation ¢(x;) for each word x;. The
dependency labels are distinguished (only) by the
parameters (weights and bias) corresponding to
each of them. One advantage of this is that it sig-
nificantly reduces the memory requirement com-
paring to the model in Dozat and Manning (2016)
which distinguishes ;(z;) for different label /.
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Figure 2: The convolution neural network for ex-
tracting character-level representations of words.
Dashed arrows indicate a dropout layer applied be-
fore character embeddings are input to CNN.

Maximum Spanning Tree Decoding. The de-
coding problem of this parsing model can be for-
mulated as:

*

y* = argmax P(y|x; ©)
y€ET (%)
=argmax > (zh, Tm; O)

yET(X) (mhamm)ey

which can be solved by using the Maximum Span-
ning Tree (MST) algorithm described in McDon-
ald et al. (2005b).

2.2 Neural Network for Representation
Learning

Now, the remaining question is how to obtain the
vector representation of each word with a neural
network. In the following subsections, we will
describe the architecture of our neural network
model for representation learning.

2.2.1 CNNs

Previous work (Santos and Zadrozny, 2014) have
shown that CNNs are an effective approach to ex-
tract morphological information (like the prefix or
suffix of a word) from characters of words and en-
code it into neural representations, which has been
proven particularly useful on Out-of-Vocabulary
words (OOV). The CNN architecture our model
uses to extract character-level representation of a
given word is the same as the one used in Ma
and Hovy (2016). The CNN architecture is shown
in Figure 2. Following Ma and Hovy (2016), a
dropout layer (Srivastava et al., 2014) is applied
before character embeddings are input to CNN.
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2.2.2 Bi-directional LSTM

LSTM Unit. Recurrent neural networks (RNNs)
are a powerful family of connectionist models that
have been widely applied in NLP tasks, such as
language modeling (Mikolov et al., 2010), se-
quence labeling (Ma and Hovy, 2016) and ma-
chine translation (Cho et al., 2014), to capture con-
text information in languages. Though, in theory,
RNNs are able to learn long-distance dependen-
cies, in practice, they fail due to the gradient van-
ishing/exploding problems (Bengio et al., 1994;
Pascanu et al., 2013).

LSTMs (Hochreiter and Schmidhuber, 1997)
are variants of RNNs designed to cope with these
gradient vanishing problems. Basically, a LSTM
unit is composed of three multiplicative gates
which control the proportions of information to
pass and to forget on to the next time step.

BLSTM. Many linguistic structure prediction
tasks can benefit from having access to both
past (left) and future (right) contexts, while the
LSTM’s hidden state h; takes information only
from past, knowing nothing about the future.
An elegant solution whose effectiveness has been
proven by previous work (Dyer et al., 2015;
Ma and Hovy, 2016) is bi-directional LSTM
(BLSTM). The basic idea is to present each se-
quence forwards and backwards to two separate
hidden states to capture past and future informa-
tion, respectively. Then the two hidden states are
concatenated to form the final output. As dis-
cussed in Dozat and Manning (2016), there are
more than one advantages to apply a multilayer
perceptron (MLP) to the output vectors of BLSTM
before the score function, eg. reducing the dimen-
sionality and overfitting of the model. We follow
this work by using a one-layer perceptron with
elu (Clevert et al., 2015) as activation function.

2.3 BLSTM-CNNs

Finally, we construct our neural network model by
feeding the output vectors of BLSTM (after MLP)
into the parsing layer. Figure 3 illustrates the ar-
chitecture of our network in detail.

For each word, the CNN in Figure 2, with char-
acter embeddings as inputs, encodes the character-
level representation. Then the character-level rep-
resentation vector is concatenated with the word
embedding vector to feed into the BLSTM net-
work. To enrich word-level information, we also
use POS embeddings. Finally, the output vec-
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Figure 3: The main architecture of our parsing
model. The character representation for each word
is computed by the CNN in Figure 2. Then
the character representation vector is concatenated
with the word and pos embedding before feeding
into the BLSTM network. Dashed arrows indi-
cate dropout layers applied on the input, hidden
and output vectors of BLSTM.

tors of the neural netwok are fed to the parsing
layer to jointly parse the best (labeled) dependency
tree. As shown in Figure 3, dropout layers are ap-
plied on the input, hidden and output vectors of
BLSTM, using the form of recurrent dropout pro-
posed in Gal and Ghahramani (2016).

3 Network Training

In this section, we provide details about imple-
menting and training the neural parsing model, in-
cluding parameter initialization, model optimiza-
tion and hyper parameter selection.

3.1 Parameter Initialization

Word Embeddings. For all the parsing mod-
els on different languages, we initialize word vec-
tors with pretrained word embeddings. For Chi-
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Layer Hyper-parameter Value
window size 3

CNN number of filters 50
number of layers 2

state size 256

LST™M initial state 0.0
peepholes Hadamard

number of layers 1

MLP dimension 100
embeddings 0.15

Dropout | LSTM hidden states 0.25
LSTM layers 0.33

optimizer Adam

Learnin initial learning rate 0.002
£ decay rate 0.5
gradient clipping 5.0

Table 1: Hyper-parameters for all experiments.

nese, Dutch, English, German and Spanish, we use
the structured-skipgram (Ling et al., 2015) embed-
dings, and for other languages we use the Poly-
glot (Al-Rfou et al., 2013) embeddings. The di-
mensions of embeddings are 100 for English, 50
for Chinese and 64 for other languages.

Character Embeddings. Following Ma and
Hovy (2016), character embeddings are initialized

with uniform samples from [_‘/%7"’_’/(&%]’

where we set dim = 50.

POS Embedding. Our model also includes POS
embeddings. The same as character embeddings,
POS embeddings are also 50-dimensional, initial-

ized uniformly from [— \/; ,+ dlm]

Weights Matrices and Bias Vectors. Matrix
parameters are randomly initialized with uniform

samples from [—/ Ti—f—c’ +4/ riw]’ where r and ¢

are the number of of rows and columns in the
structure (Glorot and Bengio, 2010). Bias vec-
tors are initialized to zero, except the bias b for
the forget gate in LSTM , which is initialized to
1.0 (Jozefowicz et al., 2015).

3.2 Optimization Algorithm

Parameter optimization is performed with the
Adam optimizer (Kingma and Ba, 2014) with
061 = B2 = 0.9. We choose an initial learn-
ing rate of 779 = 0.002. The learning rate n was
adapted using a schedule S le1,€e2,. .., €5,
in which the learning rate 7 is annealed by



English Chinese German
Dev 1 Test Dev 1 Test Dev 1 Test
Model | UAS LAS | UAS TLAS | UAS LAS | UAS [LAS | UAS [LAS |, UAS LAS
Basic | 94.51 9223 | 94.62 92.54 | 84.33 81.65 | 84.35 81.63 | 90.46 87.77 | 90.69 88.42
+Char | 9474 9255 1 9473 9275 | 85.07 82.63 1 8524 8246 | 92.16 89.82 1 92.24 90.18
+POS | 9471 92.60 ' 9483 9296 | 88.98 87.55 ! 89.05 87.74 | 91.94 89.51 ' 92.19 90.05
Full 94.77  92.66 ‘ 9488 9298 | 88.51 87.16 ‘ 88.79 87.47 | 92.37 90.09 ‘ 92.58 90.54

Table 2: Parsing performance (UAS and LAS) of different versions of our model on both the development

and test sets for three languages.

multiplying a fixed decay rate p = 0.5 after Dev Test

. UAS LAS | UAS LAS
e; € S5 epochs respectively. We used 5 = crossentropy | 94.10 9152 1 93.77 9157
[10, 30, 50, 70,100] and trained all networks for global-likelihood | 94.77  92.66 ' 94.88 92.98

a total of 120 epochs. While the Adam opti-
mizer automatically adjusts the global learning
rate according to past gradient magnitudes, we
find that this additional decay consistently im-
proves model performance across all settings and
languages. To reduce the effects of “gradient ex-
ploding”, we use a gradient clipping of 5.0 (Pas-
canu et al., 2013). We explored other optimiza-
tion algorithms such as stochastic gradient de-
scent (SGD) with momentum, AdaDelta (Zeiler,
2012), or RMSProp (Dauphin et al., 2015), but
none of them meaningfully improve upon Adam
with learning rate annealing in our preliminary ex-
periments.

Dropout Training. To mitigate overfitting, we
apply the dropout method (Srivastava et al., 2014;
Ma et al., 2017) to regularize our model. As shown
in Figure 2 and 3, we apply dropout on character
embeddings before inputting to CNN, and on the
input, hidden and output vectors of BLSTM. We
apply dropout rate of 0.15 to all the embeddings.
For BLSTM, we use the recurrent dropout (Gal
and Ghahramani, 2016) with 0.25 dropout rate
between hidden states and 0.33 between layers.
We found that the model using the new recur-
rent dropout converged much faster than standard
dropout, while achiving similar performance.

3.3 Hyper-Parameter Selection

Table 1 summarizes the chosen hyper-parameters
for all experiments. We tune the hyper-parameters
on the development sets by random search. We
use the same hyper-parameters across the models
on different treebanks and languages, due to time
constrains. Note that we use 2-layer BLSTM fol-
lowed with 1-layer MLP. We set the state size of
LSTM to 256 and the dimension of MLP to 100.
Tuning these two parameters did not significantly
impact the performance of our model.
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Table 3: Parsing performance on PTB with differ-
ent training objective functions.

4 Experiments

4.1 Setup

We evaluate our neural probabilistic parser on
the same data setup as Kuncoro et al. (2016),
namely the English Penn Treebank (PTB version
3.0) (Marcus et al., 1993), the Penn Chinese Tree-
bank (CTB version 5.1) (Xue et al., 2002), and the
German CoNLL 2009 corpus (Haji¢ et al., 2009).
Following previous work, all experiments are eval-
uated on the metrics of unlabeled attachment score
(UAS) and Labeled attachment score (LAS).

4.2 Main Results

We first construct experiments to dissect the effec-
tiveness of each input information (embeddings)
of our neural network architecture by ablation
studies. We compare the performance of four ver-
sions of our model with different inputs — Ba-
sic, +POS, +Char and Full — where the Ba-
sic model utilizes only the pretrained word em-
beddings as inputs, while the +POS and +Char
models augments the basic one with POS embed-
ding and character information, respectively. Ac-
cording to the results shown in Table 2, +Char
model obtains better performance than the Basic
model on all the three languages, showing that
character-level representations are important for
dependency parsing. Second, on English and Ger-
man, +Char and +POS achieves comparable per-
formance, while on Chinese +POS significantly
outperforms +Char model. Finally, the Full model
achieves the best accuracy on English and Ger-
man, but on Chinese +POS obtains the best. Thus,
we guess that the POS information is more useful



English Chinese German
System UAS LAS | UAS LAS | UAS LAS
Bohnet and Nivre (2012) - - 873 859|914 894
Chen and Manning (2014) 91.8 89.6 | 839 824 - -
Ballesteros et al. (2015) 91.6 894 | 853 83.7 | 88.8 86.1
Dyer et al. (2015) 93.1 909 | 87.2 85.7 - -
Kiperwasser and Goldberg (2016): graph | 93.1 91.0 | 86.6 85.1 - -
Ballesteros et al. (2016) 93.6 914 | 877 86.2 - -
Wang and Chang (2016) 941 91.8 | 87.6 86.2 - -
Zhang et al. (2016) 941 919 | 87.8 86.2 - -
Cheng et al. (2016) 94.1 915 | 88.1 85.7 - -
Andor et al. (2016) 94.6 92.8 - - 909 89.2
Kuncoro et al. (2016) 943 921 | 889 873 | 91.6 89.2
Dozat and Manning (2016) 9577 94.1 | 89.3 88.2 | 935 914
This work: Basic 946 925 | 844 81.6 | 90.7 88.4
This work: +Char 947 92.8 | 852 825|922 90.2
This work: +POS 948 93.0 | 89.1 87.7 | 922 90.1
This work: Full 949 93.0 | 88.8 87.5 | 92.6 90.5

Table 4: UAS and LAS of four versions of our model on test sets for three languages, together with

top-performance parsing systems.

for Chinese than English and German.

Table 3 gives the performance on PTB of the
parsers trained with two different objective func-
tions — the cross-entropy objective of each word,
and our objective based on likelihood for an en-
tire tree. The parser with global likelihood ob-
jective outperforms the one with simple cross-
entropy objective, demonstrating the effectiveness
of the global structured objective.

4.3 Comparison with Previous Work

Table 4 illustrates the results of the four versions
of our model on the three languages, together
with twelve previous top-performance systems for
comparison. Our Full model significantly outper-
forms the graph-based parser proposed in Kiper-
wasser and Goldberg (2016) which used simi-
lar neural network architecture for representation
learning (detailed discussion in Section 5). More-
over, our model achieves better results than the
parser distillation method (Kuncoro et al., 2016)
on all the three languages. The results of our
parser are slightly worse than the scores reported
in Dozat and Manning (2016). One possible rea-
son is that, as mentioned in Section 2.1, for labeled
dependency parsing Dozat and Manning (2016)
used different vectors for different dependency la-
bels to represent each word, making their model
require much more memory than ours.

4.4 Experiments on CoNLL Treebanks

Datasets. To make a thorough empirical com-
parison with previous studies, we also evaluate our
system on treebanks from CoNLL shared task on
dependency parsing — the English treebank from
CoNLL-2008 shared task (Surdeanu et al., 2008)
and all 13 treebanks from CoNLL-2006 shared
task (Buchholz and Marsi, 2006). For the tree-
banks from CoNLL-2006 shared task, following
Cheng et al. (2016), we randomly select 5% of
the training data as the development set. UAS
and LAS are evaluated using the official scorer!
of CoNLL-2006 shared task.

Baselines. We compare our model with the
third-order Turbo parser (Martins et al., 2013), the
low-rank tensor based model (Tensor) (Lei et al.,
2014), the randomized greedy inference based
(RGB) model (Zhang et al., 2014), the labeled
dependency parser with inner-to-outer greedy de-
coding algorithm (In-Out) (Ma and Hovy, 2015),
and the bi-direction attention based parser (Bi-
Att) (Cheng et al., 2016). We also compare our
parser against the best published results for indi-
vidual languages. This comparison includes four
additional systems: Koo et al. (2010), Martins
et al. (2011), Zhang and McDonald (2014) and
Pitler and McDonald (2015).

"http://ilk.uvt.nl/conll/software.html
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Turbo | Tensor | RGB | In-Out | Bi-Att +POS | Full Best Published

UAS | UAS | UAS | UAS[LAS] | UAS[LAS] | UAS[LAS] | UAS[LAS] || UAS LAS
ar | 79.64 1T 79.95 1 80.24 1 79.60 [67.00] | 80.34 [68.58] | 80.05 [67.80] I 30.30 [69.40] || SL.12 —
bg | 93.10 ! 9350 ! 9372 ! 92.68[87.79] | 93.96[89.55] | 93.66 [89.79] | 94.28[90.60] | 94.02 -
zh | 89.98 | 92.68 | 93.04 | 92.58[88.51] - 93.44[90.04] | 93.40[90.10] || 93.04 -
cs | 9032 | 90.50 | 90.77 , 88.01[79.31] ; 91.16[85.14] | 91.04 [85.82] , 91.18 [85.92] || 91.16  85.14
da | 9148 1 91.39 1 91.86 | 91.44[85.55] 1 91.56 [85.53] | 91.52 [86.57] 1 91.86[87.07] || 92.00 -
nl | 86.19 ! 8641 ' 87.39 | 84.45[80.31] ! 87.15[82.41] | 87.41 [84.17] ' 87.85[84.82] || 87.39 -
en | 93.22 } 93.02 } 93.25 } 92.45 [89.43] } - 94.43 [92.31] } 94.66 [92.52] || 93.25 -
de | 9241 | 91.97 | 92.67 |, 90.79 [87.74] |, 92.71[89.80] | 93.53[91.55] |, 93.62[91.90] || 92.71  89.80
ja | 93.52 1 93.71 1 93.56 1 93.54[91.80] | 93.44[90.67] | 93.82[92.34] | 94.02[92.60] | 93.80 -
pt | 92.69 ' 91.92 1 9236 | 91.54 [87.68] | 92.77 [88.44] | 92.59 [89.12] ' 92.71[88.92] | 93.03 -
sl | 8601 | 8624 | 8672 | 84.39(73.74] | 86.01[75.90] | 85.73[76.48] | 86.73 [77.56] || 87.06 -
es | 85.59 |, 88.00 | 88.75 | 86.44[83.29] , 88.74[84.03] | 88.58[85.03] , 89.20[85.77] || 88.75  84.03
sv | 91.14 | 91.00 | 91.08 | 89.94[83.09] | 90.50 [84.05] | 90.89 [86.58] | 91.22[86.92] || 91.85 85.26
tr | 7690 | 76.84 1 76.68 | 75.32[60.39] | 78.43 [66.16] | 75.88 [61.72] | 77.71[65.81] || 7843  66.16
av | 8873 | 89.08 ' 89.44 ' 88.08 [81.84] 7 89.47 [84.24] T 89.95 [84.99] || 89.83 7

Table 5: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several state-of-the-art
parsers. “Best Published” includes the most accurate parsers in term of UAS among Koo et al. (2010),
Martins et al. (2011), Martins et al. (2013), Lei et al. (2014), Zhang et al. (2014), Zhang and McDonald
(2014), Pitler and McDonald (2015), Ma and Hovy (2015), and Cheng et al. (2016).

Results. Table 5 summarizes the results of our
model, along with the state-of-the-art baselines.
On average across 14 languages, our approach sig-
nificantly outperforms all the baseline systems. It
should be noted that the average UAS of our parser
over the 14 languages is better than that of the
“best published”, which are from different systems
that achieved best results for different languages.

For individual languages, our parser achieves
state-of-the-art performance on both UAS and
LAS on 8 languages — Bulgarian, Chinese,
Czech, Dutch, English, German, Japanese and
Spanish. On Arabic, Danish, Portuguese, Slovene
and Swedish, our parser obtains the best LAS. An-
other interesting observation is that the Full model
outperforms the +POS model on 13 languages.
The only exception is Chinese, which matches the
observation in Section 4.2.

5 Related Work

In recent years, several different neural network
based models have been proposed and success-
fully applied to dependency parsing. Among
these neural models, there are three approaches
most similar to our model — the two graph-
based parsers with BLSTM feature representa-
tion (Kiperwasser and Goldberg, 2016; Wang and
Chang, 2016), and the neural bi-affine attention
parser (Dozat and Manning, 2016).

Kiperwasser and Goldberg (2016) proposed
a graph-based dependency parser which uses
BLSTM for word-level representations. Wang and
Chang (2016) used a similar model with a way
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to learn sentence segment embedding based on
an extra forward LSTM network. Both of these
two parsers trained the parsing models by opti-
mizing margin-based objectives. There are three
main differences between their models and ours.
First, they only used linear form score function,
instead of using the bi-linear term between the
vectors of heads and modifiers. Second, They
did not employ CNNs to model character-level
information. Third, we proposed a probabilistic
model over non-projective trees on the top of neu-
ral representations, while they trained their models
with a margin-based objective. Dozat and Man-
ning (2016) proposed neural parsing model us-
ing bi-affine score function, which is similar to
the bi-linear form score function in our model.
Our model mainly differ from this model by using
CNN to model character-level information. More-
over, their model formalized dependency parsing
as independently selecting the head of each word
with cross-entropy objective, while our probabilis-
tic parsing model jointly encodes and decodes
parsing trees for given sentences.

6 Conclusion

In this paper, we proposed a neural probabilistic
model for non-projective dependency parsing, us-
ing the BLSTM-CNNSs architecture for represen-
tation learning. Experimental results on 17 tree-
banks across 14 languages show that our parser
significantly improves the accuracy of both depen-
dency structures (UAS) and edge labels (LAS),
over several previously state-of-the-art systems.
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Abstract

The research question we explore in
this study is how to obtain syntacti-
cally plausible word representations with-
out using human annotations. Our un-
derlying hypothesis is that word order-
ing tests, or linearizations, is suitable
for learning syntactic knowledge about
words. To verify this hypothesis, we de-
velop a differentiable model called Word
Ordering Network (WON) that explic-
itly learns to recover correct word order
while implicitly acquiring word embed-
dings representing syntactic knowledge.
We evaluate the word embeddings pro-
duced by the proposed method on down-
stream syntax-related tasks such as part-
of-speech tagging and dependency pars-
ing. The experimental results demonstrate
that the WON consistently outperforms
both order-insensitive and order-sensitive
baselines on these tasks.

1 Introduction

Distributed word representations have been suc-
cessfully utilized to transfer lexical knowledge
to downstream tasks in a semi-supervised man-
ner, and well known to benefit various applica-
tions (Turian et al., 2010; Collobert et al., 2011;
Socher et al., 2011). As different applications gen-
erally require different features, it is crucial to
choose representations suitable for target down-
stream tasks.

The research question we want to explore in
this study is how to obtain syntactically plausi-
ble word representations without human annota-
tions, with a focus on syntax-related tasks (pars-
ing, etc.). Whereas a variety of approaches re-
lated to semantic word embeddings have been pro-
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Figure 1: Illustration of the word ordering task.
The goal of the word ordering task is to recover an
original order given a set of shuffled tokens. The
figure shows an example where original sentence
is “this is a short sentence.” To correctly reorder
the tokens, syntactic knowledge about words (e.g.
grammatical classes of words and their possible
relations) is indispensable. In this study, we ex-
plore how well the word ordering task can be an
objective to obtain syntactic word representations.

posed (Mikolov et al., 2013a,b; Pennington et al.,
2014), it still remains unclear how we should ob-
tain syntactic word embeddings from unannotated
corpora.

Word ordering tests, or linearizations, are com-
monly used to evaluate students’ language profi-
ciency. Suppose that we are given a set of ran-
domly shuffled tokens {“a”, “is,” “sentence,”
“short,” “this,” “.’}. In this case we can easily
recover the original order: “this is a short sen-
tence.” We consider this doable thanks to our
knowledge about grammatical classes (e.g., part-
of-speech (POS) tags) of words and their possible
relations. We depict the above explanation in Fig-
ure 1. Of course, it might not be necessary for ma-
chines to mimic exactly the same reasoning pro-
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cess in humans. However, syntactic knowledge
about words is crucial for both humans and ma-
chines to solve the word ordering task.

Inspired by this observation, in this study, we
develop an end-to-end model called the Word Or-
dering Network (WON) that explicitly learns to
recover correct word orders while implicitly ac-
quiring word embeddings representing syntactic
information. Our underlying hypothesis is that the
word ordering task can be an objective for learning
syntactic knowledge about words. The WON re-
ceives a set of shuffled tokens and first transforms
them independently to low-dimensional continu-
ous vectors, which are then aggregated to produce
a single summarization vector. We formalize the
word ordering task as a sequential prediction prob-
lem of a permutation matrix. We use a recurrent
neural network (RNN) (Elman, 1990) with long
short-term memory (LSTM) units (Hochreiter and
Schmidhuber, 1997) and a soft attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015)
that constructs rows of permutation matrices se-
quentially conditioned on summarization vectors.

We evaluate the proposed word embeddings on
downstream syntax-related tasks such as POS tag-
ging and dependency parsing. The experimen-
tal results demonstrate that the WON outperforms
both order-insensitive and order-sensitive base-
lines, and successfully yields the highest perfor-
mance. In addition, we also evaluate the WON on
traditional word-level benchmarks, such as word
analogy and word similarity tasks. Combined with
semantics-oriented embeddings by a simple fine-
tuning technique, the WON gives competitive or
better performances than the other baselines. In-
terestingly, we find that the WON has a potential
to refine and improve semantic features. More-
over, we qualitatively analyze the feature space
produced by the WON and find that the WON
tends to capture not only syntactic but also seman-
tic regularities between words. The source code of
this work is available online. !

2 The Proposed Method

In this section, we formulate the WON which
implicitly acquires syntactic word embeddings
through learning to solve word ordering problems.

'https://github.com/norikinishida/won
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2.1 Embedding Layer

Given a set of shuffled tokens X = {w1,...,wx},
the WON first transforms every single symbol w,
into a low-dimensional continuous vector, i.e.,

e. = F(w.) € RP, (1)

where F' is a learnable function. Please note that
the number of tokens NV in the input X can vary in
the word ordering task.

2.2 Aggregation

To perform reordering on a set of shuffled embed-
dings {eq, ..., en}, we aggregate the embeddings
and compute a single summarization vector. The
aggregation function is a sum of word embeddings
followed by a non-linear transformation:

N
& =tanh(Wa, ) e+ b,) € R”,

c=1

2

where W, € RP*P and b, € R are a projection
matrix and bias vector, respectively.

2.3 Prediction of a Permutation Matrix

We formalize a reordering problem as a prediction
task of a permutation matrix.

A permutation matrix is a square binary ma-
trix and every row and column contains exactly
one entry of 1 and Os elsewhere. The left-
multiplication of a matrix E € RV*P by a per-
mutation matrix P € RV*¥ rearranges the rows
of the matrix F, e.g.

el
es
+| =PFE 3)
€3
el
0 1 0 0\ [ed
00 01 e/
|1 00 0] |ef @
0010/ \ej
Equation 4 gives an example where E =

(es, e, ey, €2>T, and the original sentence (cor-
rect order) is wq, wo, W3, Wy.

In the word ordering task, one of the issues in
predicting permutation matrices is that the num-
ber of tokens /N changes according to the variable
lengths of input sentences. Therefore, it is impos-
sible to define and train learning models that have
fixed-dimensional outputs such as multi-layer per-
ceptrons.
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Figure 2: Visualization of our approach to sequen-
tially predict a permutation matrix P € RV*V,
In this case, we are given N = 4 shuffled to-
kens (w1, wa, w3, ws). We first independently em-
beds each symbol to dense vectors (e1, €2, €3, €4).
Then, by using an RNN and a soft attention mech-
anism, we sequentially constructs the rows of the
permutation matrix P = (py,py, P3,py) ' for
N steps through a scoring function. The vector
h, € RP denotes the r-th hidden state of the
RNN. One can interpret p,. as a selective probabil-
ity distribution over the input tokens. For simplic-
ity, in this figure, we ignore the projection matrix
in the scoring function (Eq. 8).

Recently, Vinyals et al. (2015) proposed the
Pointer Networks (PtrNets) that were successfully
applied to geometric sorting problems. Inspired by
the PtrNet, we develop an LSTM (Hochreiter and
Schmidhuber, 1997) with a soft attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015).
The LSTM constructs rows of a permutation ma-
trix P = (p,,...,py)" conditioned on a set
of word embeddings {e1,...,e;} calculated by
Equation 1. If Zévzl pr. = 1 holds, one can in-
terpret p;. . as the probability of the token w. to be
placed at r-th position. In Figure 2, we show a
visualization of our approach to predict a permu-
tation matrix with the LSTM.

The LSTM’s r-th hidden state h, € R and
memory cells ¢, € R” are computed as follows:

hracr = {

where the function Frgry is a state-update func-
tion and i, € {1,..., N} denotes the index of
the token w;,_, that is placed at the previous posi-

é, 0

Frsrv(ei_i, hr—1,¢0-1)

(r=0)

®)
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tion, i.e.,

(6)

lp_1 = argmax. pr—1.c.
ce{1,...,N}

Subsequently, we predict a selective distribution
over the input tokens:

exp(score(h,, e.))

Son exp(score(h,, ex))’

DPr.c = (7)

where the scoring function score computes the
confidence of placing the token w, at r-th posi-

tion. We define the scoring function as a bilinear
model as follows

score(u,v) = u' W € R. (8)

where W € RP*L denotes a learnable matrix.

2.4 Objective Function

As the WON is designed to be fully differentiable,
it can be trained with any gradient descent al-
gorithms, such as RMSProp (Tieleman and Hin-
ton, 2012). Given a set of shuffled tokens X =
{wi,...,wy}, we define a loss function as the
following negative log likelihood:

N

Z - log pr,tr

r=1

L(X) ©)

where ¢, € {1,..., N} denotes the index of the
ground-truth token that appears at r-th position
in the original sentence. In other words, an or-
dered sequence wy, , Wy,, - .., Wy, forms the orig-
inal sentence.

3 Related Work

Among the most popular methods for learning
word embeddings are the skip-gram (SG) model
and the continuous bag-of-words (CBOW) of
Mikolov et al. (2013a,b), or the GloVe introduced
by Pennington et al. (2014). These are formal-
ized as simple log-bilinear models based on the
inner product between two word vectors. The
core idea is based on the distributional hypothe-
sis (Harris, 1954; Firth, 1957), stating that words

(1 < r < N)appearing in similar contexts tend to have simi-

lar meanings. For example, SG and CBOW are
trained by making predictions of bag-of-words
contexts appearing in a fixed-size window around
target words, and vice versa. Although word em-
beddings produced by these models have been



shown to give improvements in a variety of down-
stream tasks, it still remains difficult for these
models to learn syntactic word representations ow-
ing to their insensitivity to word order. As a con-
sequence, word embeddings produced by these
order-insensitive models are thus suboptimal for
syntax-related tasks such as parsing (Andreas and
Klein, 2014). In contrast, our method mainly fo-
cuses on word order information and utilize it in
the learning process.

Ling et al. (2015b) introduced the structured
skip-gram (SSG) model and the continuous win-
dow (CWindow) that extend SG and CBOW re-
spectively. Let ¢ be the window size. These
models learn 2¢ context-embedding matrices to be
aware of relative positions of context words in a
window. The recent work of Trask et al. (2015)
is also based on the same idea as SSG and CWin-
dow. Ling et al. (2015a) proposed an approach
to integrating an order-sensitive attention mech-
anism into CBOW, which allows for considera-
tion of the contexts of words, and where the con-
text words appear in a window. Bengio et al.
(2003) presented a neural network language model
(NNLM) where word embeddings are simultane-
ously learned along with a language model. One
of the major shortcomings of these window-based
approaches is that it is almost impossible to learn
longer dependencies between words than the pre-
fixed window size c. In contrast, the recurrent ar-
chitecture allows the WON to take into account
dependencies over an entire sentence.

Mikolov et al. (2010) applied an RNN for lan-
guage modeling (RNNLM), and demonstrated that
the word embeddings learned by the RNNLM cap-
ture both syntactic and semantic regularities. The
main shortcoming of the RNNLM is that it is
very slow to train unfortunately. This is a conse-
quence of having to predict the probability distri-
bution over an entire vocabulary V', which is gen-
erally very large in the real world. In contrast,
the WON predicts the probability distribution over
entire sentences, whose length NV is usually less
than 50 < |V|. In our preliminary experiments,
we found that the computation time for one itera-
tion (= forward + backward + parameter
update) of the WON is about 4 times faster than
that of the RNNLM (LSTMLM).

Levy and Goldberg (2014) introduced
dependency-based word embeddings. The
method applies the skip-gram with negative
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sampling (SGNS) model (Mikolov et al., 2013b)
to syntactic contexts derived from dependency
parse-trees.  Their method heavily relies on
pre-trained dependency parsers to produce words’
relations for each sentence in training corpora,
thus encountering error propagation problems. In
contrast, our method only requires raw corpora,
and our aim is to produce word embeddings that
improve syntax-related tasks, such as parsing,
without using any human annotations.

The WON can be interpreted as a simplifica-
tion of the recently proposed pointer network (Ptr-
Net) (Vinyals et al., 2015). The main difference
between the WON and the PtrNet is the encoder
part. The PtrNet uses an RNN to encode an un-
ordered set X = {wq,...,wy} sequentially, i.e.,

e; = RNNene(ws, €;-1). (10)

In contrast, the WON treats each symbol indepen-
dently (Eq. 1) and aggregates them with a simpler
function (Eq. 2). In the word ordering task, the or-
der of X = (wq,...,wy) is meaningless because
X is an out-of-order set. Nonetheless, according
to Equation 10, the vector e; depends on the in-
put order of wy,...,w;—1. Vinyals et al. (2015)
evaluated the PtrNet on geometric sorting tasks
(e.g., Travelling Salesman Problem) where each
input w; forms a continuous vector that represents
the cartesian coordinate of the point (e.g., a city).
However, in the word ordering task, Equation 10
suffers from the data sparseness problem, as each
input w; forms a high-dimensional discrete sym-
bol.

4 Experimental Setting

4.1 Dataset and Preprocessing

We used the English Wikipedia corpus as the train-
ing corpus. We lowercased and tokenized all to-
kens, and then replaced all digits with “7” (e.g.,
“ABC2017°—“ABC7777”). We built a vocab-
ulary of the most frequent 300K words and re-
placed out-of-vocabulary tokens with a special
“(UNK)” symbol. Subsequently, we appended
special “(EOS)” symbols to the end of each sen-
tence. The resulting corpus contains about 97 mil-
lion sentences with about 2 billion tokens. We
randomly extracted 5 K sentences as the validation
set.



4.2 Hyper Parameters

We set the dimensionality of word embeddings to
300. The dimensionality of the hidden states of
the LSTM was 512. The L2 regularization term
(called weight decay) was set to 4 x 107°. For the
stochastic gradient descent algorithm, we used the
SMORMS3 (Func, 2015), and the mini-batch size
was set to 180.

4.3 Baselines

For a fair comparison, we trained the follow-
ing order-insensitive/sensitive baselines on exactly
the same pre-processed corpus described in Sec-
tion 4.1.

e SGNS (Mikolov et al., 2013b): We used the
word2vec implementation in Gensim? to
train the Skip-Gram with Negative Sampling
(SGNS). We set the window size to 5, and the
number of negative samples to 5.

GloVe (Pennington et al., 2014): GloVe’s
embeddings are trained by using the origi-
nal implementation® provided by the authors.
We set the window size to 15. In our pre-
liminary experiments, we found that GloVe
with a window size of 15 yields higher per-
formances than that with a window size of 5.

SSG, CWindow (Ling et al., 2015b): We
built word embeddings by using the struc-
tured skip-gram (SSG) and the continuous
window (CWindow). We used the original
implementation* developed by the authors.
The window size was 5, and the number of
negative samples was 5.

LSTMLM: We also compared the proposed
method with the RNNLM (Mikolov et al.,
2010) with LSTM units (LSTMLM). The
hyper parameters were the same with that
of the WON except for the mini-batch size.
We used a mini-batch size of 100 for the
LSTMLM.

S Evaluation on Part-of-Speech Tagging

In this experiment, we evaluated the learned word
embeddings by using them as pre-trained features
in supervised POS tagging.

*https://radimrehurek.com/gensim/
3http://nlp. stanford.edu/projects/glove/
*https://github.com/wlin12/wang2vec
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Test Acc. (%)
SGNS (Mikolov et al., 2013b) 96.76
GloVe (Pennington et al., 2014) 96.31
' SSG (Ling etal.,, 2015b) | 9694
CWindow (Ling et al., 2015b) 96.78
LSTMLM | 9692
WON 97.04
Table 1: Comparison results on part-of-speech

tagging with different word embeddings. The
dataset is the Wall Street Journal (WSJ) portion of
the Penn Treebank (PTB) corpus. The evaluation
metric is accuracy (%).

5.1 Supervised POS Tagger

In POS tagging, every token in a sentence is clas-
sified into its POS tag (NN for nouns, VBD for past
tense verbs, JJ for adjectives, etc.). We first used
the learned word embeddings to project three suc-
cessive tokens (w;_1,w;, w;4+1) in an input sen-
tence to feature vectors (e;_1,e;,e;11) that are
then concatenated and fed to a two-layer percep-
tron followed by a softmax function:

P(clwi—1,w;, wi+1) = MLP([ej—1; e;; €i11]),

1D

where |- ; - ; -] denotes vector concatenation. The
classifier MLP predicts the probability distribu-
tion over POS tags of the center token w;. We put
special padding symbols at the beginning and end
of each sentence. The dimensionality of the hid-
den layer of the MLP was 300. The MLP classifier
was trained via the SMORMS3 optimizer (Func,
2015) without updating the word embedding layer.
We used the Wall Street Journal (WSJ) por-
tion of the Penn Treebank (PTB) corpus5 (Mar-
cus et al., 1993). We followed the standard section
partition, which is to use sections 0-18 for train-
ing, sections 19-21 for validation, and sections 22-
24 for testing. The dataset contains 45 tags. The
evaluation metric was the word-level accuracy.

5.2 Results & Discussion

Table 1 presents the comparison of the WON to
the other baselines on the test split. The re-
sults demonstrate that the WON gives the high-
est performance, which supports our hypothesis
that the word ordering task is effective for acquir-
ing syntactic knowledge about words. We also

SWe used the LDC99T42 Treebank release 3 version.



Dev Test

UAS | LAS | UAS | LAS

SGNS 91.56 | 90.09 | 91.11 | 89.89

GloVe 88.87 | 87.09 | 88.28 | 86.61
'SSG | 91.11 | 89.60 | 90.93 | 89.43

CWindow | 91.23 | 89.69 | 91.16 | 89.67
"LSTMLM | 91.83 | 90.34 | 91.49 | 90.08

WON 91.92 | 90.49 | 91.82 | 90.38

Table 2: Results on dependency parsing with dif-
ferent word embeddings. The dataset was the WSJ
portion of the PTB corpus. The evaluation metrics
were Unlabeled Attachment Score (UAS) and La-
beled Attachment Score (LAS).

observe that the order-sensitive methods (WON,
LSTMLM, and SSG) tend to outperform the order-
insensitive methods (SGNS and GloVe), which in-
dicates that, as we expect, word order information
is crucial for learning syntactic word embeddings.

6 Evaluation on Dependency Parsing

In this experiment, as in Section 5, we evaluated
the learned word embeddings on supervised de-
pendency parsing.

6.1 Supervised Dependency Parser

Dependency parsing aims to identify syntac-
tic relations between token pairs in a sentence.
We used Stanford’s neural network dependency
parser (Chen and Manning, 2014)°, whose word
embeddings were initialized with the learned
word embeddings. We followed all the de-
fault settings except for the word embedding size
(embeddingSize = 300) and the number of
training iterations (maxIter = 6000).

We used the WSJ portion of the PTB corpus
and followed the standard splits of sections 2-21
for training, 22 for validation, and 23 for testing.
We converted the treebank corpus to Stanford style
dependencies using the Stanford converter. The
parsing performances were evaluated in terms of
Unlabeled Attachment Score (UAS) and Labeled
Attachment Score (LAS).

6.2 Results & Discussion

Table 2 shows the results of the different word
embeddings on dependency parsing. First we
observe that the WON consistently outperforms

Shttp://nlp.stanford.edu/software/nndep.shtml
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the baselines on both UAS and LAS. Next, by
comparing the unlimited-context models (WON
and LSTMLM) with the limited-context models
(SGNS, GloVe, SSG, CWindow), we can notice
that the former give higher parsing scores than the
latter. These results are reasonable because the
former can learn arbitrary-length syntactic depen-
dencies between words without constraints from
the fixed-size window size based on which the
limited-window models are trained.

7 Fusion with Semantic Features

In various NLP tasks, both syntactic and semantic
features can benefit performances. To enrich our
syntax-oriented word embeddings with semantic
information, in this section, we adopt a simple
fine-tuning technique and verify its effectiveness.
More precisely, we first initialize the word embed-
dings W with pre-trained parameters W gy, pro-
duced by a semantics-oriented model such as the
SGNS. Subsequently we add the following penalty
term to the loss function in Equation 9:

MW — W eenl %, (12)

where A € R is a hyper parameter to control the
intensity of the penalty term in the learning pro-
cess, and || - ||% is the Frobenius norm. This term
attempts to keep the word embeddings W close
to the semantic representations W g, while min-
imizing the syntax-oriented objective on the word
ordering task. In our experiments, we used the
SGNS’s embeddings as Wy, and set A to 1. The
SGNS was trained as explained in Section 4.3.

In this section, we quantitatively evaluated the
WON with the above fine-tuning technique on two
major benchmarks: (1) word analogy task, and (2)
word similarity task.

7.1 Word Analogy

The word analogy task has been used in previous
work to evaluate the ability of word embeddings
to represent semantic and syntactic regularities. In
this experiment, we used the word analogy dataset
produced by Mikolov et al. (2013a). The dataset
consists of questions like “A is to B what C is
to 2, denoted as “A : B :: C : 2" The dataset
contains about 20K such questions, divided into a
syntactic subset and a semantic subset. The syn-
tactic subset contains nine question types, such
as adjective-to—adverb and opposite,
while the semantic subset contains five question



Question Types | SGNS  GloVe ' SSG CWindow ' LSTMLM | WON
adjective-to-adverb 24.1 233 ' 299 12.1 4.3 29.9
opposite 36.2 299 370 11.7 15.0 37.8
comparative 85.7 79.5 . 88.5 73.5 55.3 88.7
superlative 59.3 49.1 68.7 43.8 22.4 62.8
present-participle 64.9 61.0 ! 73.6 574 271 71.8
nationality-adjective | 89.4 92.2 | 89.7 873 . 305 90.8
past-tense 58.0 522 1 59.0 540 . 331 614
plural 75.2 83.0 75.2 70.4 26.4 75.4
plural-verbs 78.9 56.0 ' 84.6 64.6 61.0 82.9
capital-common 94.5 953 1925 931 . 538 95.5
captal-world 87.8 945 . 84.0 666 . 221 82.6
currency 128 87 140 37 19 10.7
city 66.0 60.7 ' 56.9 619 ' 136 67.4
family 84.2 7719 | 81.8 59.1 62.9 84.2

Total 69.9 68.3 69.7 58.2 27.0 70.6

Table 3: Results on the word analogy task (Mikolov et al., 2013a) with different word embeddings. The
first upper block presents the results on nine syntactic question types. In the lower block we show the
results on five semantic question types. The last row presents the total score. The evaluation metric is

accuracy (%).

types such as city—-in-state and family.
Suppose that a vector e,, is a representation of a
word w, and is normalized to unit norm. Follow-
ing a previous work (Mikolov et al., 2013a), we
answer an analogy question “A : B :: C: ?” by
finding a word w* that has the closest representa-
tionto (eg — e4 + ec) in terms of cosine similar-
ity, i.e.,

. (ep —ea+ec)'

argmax
weV\[A,B,c} lles —ea+ec||

€w
w

, (13)

where V' denotes the vocabulary. The evaluation
was performed using accuracy, which denotes the
percentage of words predicted correctly.

In Table 3, we report the results of the different
word embeddings on this task. As can be seen in
the Table 3, the WON outperforms the baselines
on four out of nine syntactic question types, and
tends to yield higher accuracies by a large margin
than the baselines except for the SSG. Our method
and the SSG totally give the best performances on
seven of nine syntactic question types. This ten-
dency, as in Section 5.2, indicates that word or-
der information is crucial to learn syntactic word
embeddings. In regard to semantics, the WON
achieves the best scores on three out of five seman-
tic question types. Interestingly, on two semantic
question types (capital—-common and city),
the WON outperforms the SGNS that was used to

WS-353  MC RG

SGNS 7126  81.96 78.86

GloVe 62.54  T71.57 7554
'SSG | 73.08 81.78 80.37

CWindow | 70.31 80.92 77.80
'LSTMLM | 5334 6676 6323

WON 70.97 8243 77.64

Table 4:  Results on the word similarity task

with different word embeddings. Spearman’s rank
correlation coefficents (%) are computed on three
datasets: WS-353, MC, and RG.

initialize our word embeddings. This result im-
plies that the word ordering task has the potential
to improve not only syntactic but also semantic
features. Our method achieves the highest accu-
racy on the overall score.

7.2 Word Similarity

The word similarity benchmark is commonly used
to evaluate word embeddings in terms of distri-
butional semantic similarity. The word similarity
datasets consist of triplets like (wy, ws, s), where
s € R is a human-annotated similarity score
between two words (wy,ws). In this task, we
compute cosine similarity between two word em-
beddings. The evaluation is performed with the
Spearman’s rank correlation coefficient between
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Query The 3 most similar words
he she they we

him them us me

his their our your
boy kid creature girl
boys ladies guys folks
dragon | werewolf dwarf vamp
dragons | robots giants spiders
city village library palace
cities countries kingdoms neighborhoods
drive ride walk hike
drives draws pisses causes
drove rode marched  strode
driving | traveling walking riding
driven flown propelled  shaken
happy pleased unhappy thrilled
happier | crazier prettier tougher
happiest | hottest toughest  coolest
good nice bad decent
better easier worse safer
best worst hardest biggest
in on into under

Table 5: Query words and their most similar
words. Cosine similarities are computed between
their embeddings produced by the WON.

the human-annotated similarities and the com-
puted similarities.

Table 4 presents the results on three datasets:
WordSim-353  (Finkelstein et al.,, 2001),
MC (Miller and Charles, 1991), and RG (Ruben-
stein and Goodenough, 1965). we observe that the
WON gives a slightly higher performance than
the baselines on the MC dataset. On the other
datasets, the SSG yields the best performances.
These results are interesting because the two
models rely on word order information while the
word similarity task originally focuses on topical
semantic similarities between words.

Further investigation into the interaction be-
tween syntactic and semantic representations
would be interesting and needs to be explored.

8 Qualitative Analysis

In this section, we inspect the learned vector space
by computing the similarities between word em-
beddings.

In this experiment we trained the WON on the
BookCorpus (Zhu et al., 2015) that is preprocessed
in the same way described in Section 4.1. The
BookCorpus consists of a large collection of nov-
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els, which results in a grammatically sophisticated
text corpus that would be suitable for qualitative
analysis. Note that to clearly investigate the word
embeddings produced by the WON we neither ini-
tialize our word embeddings with other models
nor use fine-tuning techniques, as in experiments
on downstream syntax-related tasks (Section 5 and
Section 6). We choose queries focusing on (1)
declension of personal pronouns, (2) singular and
plural forms of nouns, (3) verb conjugation, (4)
comparative/superlative forms of adjectives, and
(5) prepositions.

Table 5 presents some representative queries for
(1)-(5) and their respective most similar words in
the learned vector space. First we can observe that
our word embeddings produce a continuous vector
space that successfully captures syntactic regulari-
ties. In addition to the syntactic regularities, inter-
estingly, we found that the WON prefers to gather
words in terms of those meanings or semantic cat-
egories.

9 Conclusion and Future Work

The research question we explored in this study
was how to learn syntactic word embeddings with-
out using any human annotations. Our underlying
hypothesis is that the word odering task is suitable
for obtaining syntactic knowledge about words.
To verify this idea, we developed the WON, which
implicitly learns syntactic word representations
through learning to explicitly solve the word or-
dering task. The experimental results demonstrate
that the WON gives improvements over baselines
particularly on syntax-related tasks, such as part-
of-speech tagging and dependency parsing. We
can also observe that the WON, by combined with
a simple fine-tuning technique, has the potential
to refine not only syntactic but also semantic fea-
tures.

It remains unclear how well order-sensitive
models like the WON can learn syntactic knowl-
edge about words in languages other than English.
Especially, it is interesting to investigate cases on
languages with richer morphology and freer word
order. We leave this to future work.
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Abstract

We present a pointwise mutual informa-
tion (PMI) based approach for formaliz-
ing paraphrasability and propose a variant
of PMI, called mutual information based
paraphrase acquisition (MIPA), for para-
phrase acquisition. Our paraphrase acqui-
sition method first acquires lexical para-
phrase pairs by bilingual pivoting and then
reranks them by PMI and distributional
similarity. The complementary nature of
information from bilingual corpora and
from monolingual corpora renders the pro-
posed method robust. Experimental re-
sults show that the proposed method sub-
stantially outperforms bilingual pivoting
and distributional similarity themselves in
terms of metrics such as mean reciprocal
rank, mean average precision, coverage,
and Spearman’s correlation.

1 Introduction

Paraphrases are useful for flexible language
understanding in many NLP applications. For
example, the usefulness of the paraphrase
database PPDB  (Ganitkevitch et al., 2013;
Pavlick et al., 2015), a publicly available large-
scale resource for lexical paraphrasing, has
been reported for tasks such as learning word
embeddings (Yu and Dredze, 2014) and semantic
textual similarity (Sultan et al., 2015). In PPDB,
paraphrase pairs are acquired via word alignment
on a bilingual corpus by a process called bilingual
pivoting (Bannard and Callison-Burch, 2005).
Figure 1 shows an example of English language
paraphrase acquisition using the German language
as a pivot.

Although bilingual pivoting is widely used for
paraphrase acquisition, it always includes noise
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... 5 farmers were thrown into jail in Ireland ...
N N / .7 L= e
’\\____,\\_ ------ AN P - »
2 N N L, -
1 \ N S -7
... funf Landwirte = festgenommen , weil ...
... oder wurden festgenommen , gefoltert ...
’ A 1 1 \
/ 7\ 1 1 \
// ,’// \\l ; “. ‘\.
... or have been imprisoned , tortured...

Figure 1: Paraphrase acquisition via bilingual piv-
oting (Ganitkevitch et al., 2013).

due to unrelated word pairs caused by word align-
ment errors on the bilingual corpus. Distribu-
tional similarity, another well-known method for
paraphrase acquisition, is free of alignment er-
rors, but includes noise due to antonym pairs that
share the same contexts on the monolingual cor-
pus (Mohammad et al., 2013).

In this study, we formalize the paraphrasability
of paraphrase pairs acquired via bilingual pivoting
using pointwise mutual information (PMI) and re-
duce the noise by reranking the pairs using dis-
tributional similarity. The proposed method ex-
tends Local PMI (Evert, 2005), which is a vari-
ant of weighted PMI that aims to avoid low-
frequency bias in PMI, for paraphrase acquisi-
tion. Since bilingual pivoting and distributional
similarity have different advantages and disad-
vantages, we combine them to construct a com-
plementary paraphrase acquisition method, called
mutual information based paraphrase acquisition
(MIPA). Experimental results show that MIPA
outperforms bilingual pivoting and distributional
similarity themselves in terms of metrics such as
mean reciprocal rank (MRR), mean average pre-
cision (MAP), coverage, and Spearman’s correla-
tion.

The contributions of our study are as follows.
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e Bilingual pivoting-based lexical paraphrase
acquisition is generalized using PMI.

o Lexical paraphrases are acquired robustly us-
ing both bilingual and monolingual corpora.

e We release our lexical paraphrase pairs!.

2 Bilingual Pivoting

Bilingual pivoting (Bannard and Callison-Burch,
2005) is a method used to acquire large-scale lex-
ical paraphrases by two-level word alignment on
a bilingual corpus. Bilingual pivoting employs a
conditional paraphrase probability p(ez|e;) as a
paraphrasability measure, when word alignments
exist between an English phrase e; and a foreign
language phrase f, and between the foreign lan-
guage phrase f and another English phrase e on a
bilingual corpus. It calculates the probability from
an English phrase e; to another English phrase es
using word alignment probabilities p(f|e;) and
p(ez] f); here, the foreign language phrase f is
used as the pivot.

plealer) =Y s plea|f,er) p(fer)
~ Y yolea] f)p(fler)

It assumes conditional independence of e; and es
given f, so that the equation above can be es-
timated easily using phrase-based statistical ma-
chine translation models. One of its advantages is
that it requires only two translation models to ac-
quire paraphrases on a large scale. However, since
the conditional probability is asymmetric, it may
introduce irrelevant paraphrases that do not hold
the same meaning as the original one. In addi-
tion, owing to the data sparseness problem in the
bilingual corpus, paraphrase probabilities may be
overestimated for low-frequency word pairs.

To mitigate this, PPDB (Ganitkevitch et al.,
2013) defined the symmetric paraphrase score
spp(e1, e2) using bi-directional bilingual pivoting.

spp(e1,e2) = —A1log p(ez|er) — Az logp(er|e2)
(2)

Unlike Equation (1), s, enforces mutual para-
phrasability of e; and es. As discussed later,
this does not necessarily increase the performance
of paraphrase acquisition, because the symmetric
constraint may be too strict to allow the extrac-
tion of broad-coverage paraphrases. In this study,

"https://github.com/tmu-nlp/pmi-ppdb
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without loss of generality, we set? \; = Ny = —1.

3)

Although these paraphrase acquisition methods
can extract large-scale paraphrase knowledge, the
results may contain many fragments caused by
word alignment error.

spple1, e2) = logp(ez|er) + log p(er | e2)

3 MIPA: Mutual Information Based
Paraphrase Acquisition

To mitigate overestimation, we acquire lex-
ical paraphrases with the conditional para-
phrase probability by using Kneser-Ney smooth-
ing (Kneser and Ney, 1995) and reranking them
using information theoretic measure from a bilin-
gual corpus and distributional similarity calculated
from a large-scale monolingual corpus.

3.1 Smoothing of Bilingual Pivoting

Since bilingual pivoting adopts the conditional
probability p(ez|e1) as paraphrasability, we can
mitigate the problem of overestimation by apply-
ing a smoothing method.

In the hierarchical Bayesian model, the condi-
tional probability p(y|x) is expressed using the
Dirichlet distribution with parameter «,, and max-
imum likelihood estimation p, |, as follows.

2 = n(ylx) + oy

I = 5= Calyl2) + o)
Ll
EE y <1 “
) nalylo)

(@) + 3,0 nl)

@)
T @)y, P

Here, n(z) indicates the frequency of a word z
and n(y|x) indicates the co-occurrence frequency
of word y following x. As Zy vy, 18 too large to
be ignored, especially when the frequency n(x) is
small, Equation (4) shows that the maximum like-
lihood estimation p,, |, estimates the probability to
be excessively large.

Therefore, we propose using Kneser-Ney
smoothing (Kneser and Ney, 1995), which is con-
sidered to be an extension of the Dirichlet smooth-
ing above, to mitigate overestimation of para-
phrase probability in bilingual pivoting.

PPDB*: Ay = A2 =1

*http://www.cis.upenn.edu/ ccb/ppdb/



n(ezle1) — 90 Plugging Equation (8) into Equation (7), we can

prN(ezler) = n(e1) Tenprn(es) interpret PMI as a geometric mean of two models.
— N]'
0= Ny 42N, PMI(z,y) = %PMI(az,y) + %PMI(z,y) )
0
v(e1) = MN(el) (5) _ }bg py|) n 110g p(z]y)
2 7 ply) 27 plr)
(e2) = N (e2) 1 1
pn(e2) = s o {p@tw}Q,{Mww>}2
p(y) p(x)

Here, N,, indicates the number of types of word
pairs of frequency n and N (e; ) indicates the num-
ber of types of paraphrase candidates of word e;.

Bilingual pivoting in Equation (1) can be re-
garded as a mixture model that considers only the
e1 — eg direction. However, as shown in Equa-
3.2 Generalization of Bilingual Pivoting tion (9), our proposed method can be regarded

using Mutual Information as a product model (Hinton, 2002) that considers
both directions. PPDB (Pavlick et al., 2015) also
considers the paraphrase probability in both direc-
tions, but the authors did not regard it as a product
model; instead the paraphrase probability in each
direction is treated as one of the features of super-
vised learning.

The bi-directional bilingual pivoting of
PPDB (Ganitkevitch et al., 2013) constrains
paraphrase acquisition to be strictly symmetric.
However, although it is extremely effective for
extracting synonymous expressions, it tends to
give high scores to frequent but irrelevant phrases,
since bilingual pivoting itself contains noisy 3.3 Incorporating Distributional Similarity

phrase pairs because of word alignment errors. In low-frequency word pairs, it is well-known that

To address the problem of frequent phrases, we  pMT becomes unreasonably large because of co-
smooth paraphrasability by bilingual pivoting i jjcidental co-occurrence. In order to avoid this
Equation (3) using word probabilities p(e1) and problem, Evert (2005) proposed Local PMI, which
p(e2) from a monolingual corpus that is suffi- assigns weights to PMI depending on the co-
ciently larger than the bilingual corpus. occurrence frequency of word pairs.

spmi(€e1, €2) = logp(ez|e1) + log p(er |e2) LocalPMI(z,y) = n(z,y) - PMI(z,y)  (10)

6
logpler) — logples)

In this study, however, it was difficult to directly
calculate the weight corresponding to n(x,y) in
Equation (10) on the bilingual corpus. Further-
more, our aim was to calculate not the strength
of co-occurrence (relation) between words, but the
paraphrasability. Therefore, it is not appropriate to
count the co-occurrence frequency on a monolin-

Thus, we can interpret the bi-directional bilingual
pivoting as an unsmoothed version of PMI. Since
the difference in the logarithms of the numerator
and denominator is equal to the logarithm of the
quotient, we can transform Equation (6) as

plea|er) pler|es) gual corpus such as Local PMI.
spmi(e1, e2) = log W + log m Alternatively, we use as a weight the distri-
— 9PMI(er, e2) %) butional similarity, which is frequently used for

paraphrase acquisition from a monolingual cor-

since we can transform PMI into the following pus (Chan etal., 2011; Glavas and Stajner, 2015).

forms using Bayes’ theorem. Sipmi (€1, €2) = cos(e1, €2) - spmi(€1, €2)

11
p(z,y) = cos(ey, e2) - 2PMI(ey, e2) (1
PMI(z,y) = log ——— (8)

p(z)p(y) Here, cos(e1,eq) indicates cosine similarity be-

— log p(y|z)p(z) — log p(y|z) tween vector representations of word e; and word

p(z)p(y) p(y) es. Equation (11) simultaneously considers para-

p(x|y)p(y) p(z|y) phrasability based on the monolingual corpus (dis-

p(z)p(y) p(z) tributional similarity) and on the bilingual corpus
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Figure 2: Effectiveness of smoothing of bilingual
pivoting evaluated by paraphrase ranking in MRR.

(bilingual pivoting). Distributional similarity, as
opposed to bilingual pivoting, is robust against
noise associated with unrelated word pairs. Bilin-
gual pivoting is robust against noise arising from
antonym pairs, unlike distributional similarity.
Therefore, s;pmi(e1,e2) can perform paraphrase
acquisition robustly by compensating the disad-
vantages. Hereinafter, we refer to slpmi(el,eg)
as MIPA, mutual information based paraphrase ac-
quisition via bilingual pivoting.

4 Experiments

4.1 Settings

We used French-English parallel  data*
from  Europarl-v7  (Koehn, 2005) and
GIZA++ (Och and Ney, 2003) (IBM model 4) to
calculate the conditional paraphrase probability
p(ez|e1) and p(eq |e2). We also used the English
Gigaword 5th Edition> and KenLM (Heafield,
2011) to calculate the word probability p(ep)
and p(e2). For cos(ey,ea), we used the CBOW
model® of word2vec (Mikolov et al., 2013a).
Finally, we acquired paraphrase candidates of
170,682,871 word pairs, excepting the paraphrase
of itself (e1 = e9).

We employed the conditional paraphrase prob-
ability of bilingual pivoting given in Equation (1),
the symmetric paraphrase score of PPDB given
by Equation (3), and distributional similarity as
baselines, and compared them with PMI shown in
Equation (7) and the MIPA score given in Equa-
tion (11). Note that distributional similarity im-

*“http://www.statmt.org/europarl/
Shttps://catalog.ldc.upenn.edu/LDC2011T07
Shttps://code.google.com/archive/p/word2vec/
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Figure 3: Effectiveness of smoothing of bilingual
pivoting evaluated by paraphrase ranking in MAP.

plies that the paraphrase pairs acquired via bilin-
gual pivoting were reranked by distributional sim-
ilarity rather than by using the top-k distribution-
ally similar words among all the vocabularies.

4.2 Evaluation Datasets and Metrics

For evaluation, we used two datasets included
in Human Paraphrase Judgments’ published
by Pavlick et al. (2015); hereafter, we call these
datasets HPJ-Wikipedia and HPJ-PPDB, respec-
tively.

First, Human Paraphrase Judgments includes a
paraphrase list of 100 words or phrases randomly
extracted from Wikipedia and processed using a
five-step manual evaluation for each paraphrase
pair (HPJ-Wikipedia). A correct paraphrase is a
word that gained three or more evaluations in man-
ual evaluation. We used this dataset to evaluate
the acquired paraphrase pairs by MRR and MAP,
following Pavlick et al. (2015). Furthermore, we
evaluated the coverage of the top-k paraphrase
pairs. Function words such as “as” have more
than 50,000 types of paraphrase candidates, be-
cause they are sensitive to word alignment errors
in bilingual pivoting. However, since many of
these paraphrase candidates are word pairs that are
not in fact paraphrases, we evaluated the coverage
in terms of the extent to which they can reduce un-
necessary candidates while preserving the correct

paraphrases.
Second, Human Paraphrase Judgments
also includes a five-step manual evalu-

ation of 26,456 word pairs sampled from
PPDB (Ganitkevitch et al., 2013) (HPJ-PPDB)

"http://www.seas.upenn.edu/ epavlick/data.html
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Figure 6: Coverage of the top-k paraphrase pairs.

together with the paraphrase list of 100 words.
We used this dataset to evaluate the overall para-
phrase ranking based on Spearman’s correlation
coefficient, as in Pavlick et al. (2015).

4.3 Results

Figures 2 and 3 show the effectiveness of adopting
Kneser-Ney smoothing for bilingual pivoting in
terms of MRR and MAP on HPJ-Wikipedia. The
horizontal axis of each graph represents the evalu-
ation of the paraphrase up to the top-k of the para-
phrase score. The results confirm that the ranking
of paraphrases acquired via bilingual pivoting was
improved by applying Kneser-Ney smoothing. In
the rest of this study, we always applied Kneser-
Ney smoothing to conditional paraphrase proba-
bility.

Figures 4 and 5 show the comparison of para-
phrase rankings in MRR and MAP on HPJ-
Wikipedia. The evaluation by MRR, shown in
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Figure 4, demonstrates that the ranking perfor-
mance of paraphrase pairs is improved by making
bilingual pivoting symmetric. PMI slightly out-
performs the baselines of bilingual pivoting below
the top five. Furthermore, MIPA shows the highest
performance, because reranking by distributional
similarity greatly improves bilingual pivoting.

The evaluation using MAP, shown in Figure 5,
also reinforced the same result, i.e., reranking by
distribution similarity improved bilingual pivot-
ing, and MIPA showed the highest performance.

Figure 6 shows the coverage of the top-ranked
paraphrases on HPJ-Wikipedia. Despite the fact
that the symmetric paraphrase score is better than
the conditional paraphrase probability in the rank-
ing performance of the top three in MRR and
MAP, it shows a poor performance in terms of cov-
erage. Although there is not a significant differ-
ence between MIPA and the other methods, MIPA
was shown to outperform them.
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plealer)  logp(ea]er) + logp(er]|es) 2PMI(eq, e2) cos(er,e2)  cos(er, es)2PMI(eq, e2)

1. diverse culturally culturally-based historical socio-cultural
2. harvests culture culturaldevelopment culture culture
3. firstly 151 cultural-social educational multicultural
4. understand charter economic-cultural linguistic intercultural
5. flowering  monuments culture- multicultural  educational
6. trying art cultural-educational  cross-cultural intellectual
7. structure casal kulturkampf diversity culturally
8. january kahn cultural-political technological  sociocultural
9. culture 13 multiculture intellectual heritage

10.  culturally  caning culturally preservation  architectural

Table 1: Paraphrase examples of cultural. Italicized words are the correct paraphrases.

Figures 7 and 8 show the scatter plots and
Spearman’s correlation coefficient of each para-
phrase score and manual evaluation (average value
of five evaluators) on HPJ-PPDB. As in the pre-
vious experimental results, MIPA showed a high
correlation. In particular, the noise generated by
false positives at the upper left of the scatter plot
can be reduced by combining PMI and distribu-
tional similarity.

5 Discussion

5.1 Qualitative Analysis

Table 1 shows examples of the top 10 in para-
phrase rankings. In the paraphrase examples of
cultural, conditional paraphrase probability does
not score the correct paraphrase as top-ranked
words. Although the symmetric paraphrase score
ranked the correct paraphrase at the top, words
other than the top words are less reliable, as
shown by the previous experimental results. PMI
is strongly influenced by low-frequency words,
and many of the top-ranked words are singleton
words in the bilingual corpus. MIPA, in contrast,
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mitigates the problem of low-frequency bias, and
many of the top-ranked words are correct para-
phrases. Distributional similarity-based methods
include relatively numerous correct paraphrases at
the top, and the other top-ranked words are also
strongly related to cultural. From the viewpoint of
paraphrases, 3 of the top 10 words of the proposed
method are incorrect, but these words may also be
useful for applications such as learning word em-
beddings (Yu and Dredze, 2014) and semantic tex-
tual similarity (Sultan et al., 2015).

Table 2 shows correct examples of the para-
phrase rankings. In the paraphrase examples of
labourers, there were 20 correct paraphrases that
received a rating of 3 or higher in manual evalu-
ation. With respect to the conditional paraphrase
probability and PMI, it is necessary to consider up
to the 400th place to cover all correct paraphrases.
However, distributional similarity-based methods
have correct paraphrases of higher rank. In partic-
ular, MIPA was able to include 10 words of cor-
rect paraphrases in the top 20 words; that is, our
method can obtain paraphrases with high coverage
by using only the highly ranked paraphrases.



plealer) log p(ez]e1) + log p(e1|e2) 2PMI(eq, e2) cos(eq, e2) cos(e1, €2)2PMI(eq, e2)
1.  workers 9. gardeners 10.  workmen 2. workers 2. workers
2. employees 42. harvesters 11. wage-earners 8. people 4. workmen
9. farmers 62. workers 16. earners 10.  persons 5. craftsmen
13. labour 71. seafarers 19.  workers 11. farmers 6. wage-earners
16. gardeners 73. unions 21. craftsmen 15. craftsmen 9. persons
17. people 99. homeworkers 22.  workforces 26. wage-earners 12.  employees
28.  workmen 283. works 26. employed 27. workmen 13. earners
30. employed 394.  workmen 27. employees 29. harvesters 15. farmers
33.  craftsmen 395. employees 50. labour 31. seafarers 18. people
59. harvesters 412. wage-earners 55. persons 32. employees 19.  workforces
80. work 415. craftsmen 75. farmers 42. gardeners 37. harvesters
88. earners 417. earners 103. homeworkers  47. earners 42. individuals
90. wage-earners 419. labour 105. individuals 55.  workforces 53. labour
106. persons 420. employed 112.  work 57. individuals 55. seafarers
109. individuals 431. people 135. people 79. unions 65. gardeners
114. seafarers 433. farmers 187. harvesters 103. labour 88. employed
115. unions 446. workforces 273. gardeners 140. homeworkers 100. homeworkers
131.  workforces 451. work 317. seafarers 144.  work 105.  work
166. homeworkers 453. persons 456. unions 170. employed 149.  unions
401. works 474. individuals 469. works 222.  works 254. works
Table 2: Correct paraphrase examples of labourers.
plealer) logp(ealer) +logp(er|e2) 2PMl(ej,ea) cos(er,ea) cos(er,e2)2PMI(eq,e2)
STS-2012  0.539 0.466 0.383 0.363 0.442
STS-2013 0.489 0.469 0.463 0.483 0.499
STS-2014  0.464 0.460 0.471 0.453 0.475
STS-2015 0.611 0.655 0.660 0.642 0.671
STS-2016  0.444 0.518 0.550 0.518 0.542
ALL 0.536 0.543 0.534 0.523 0.555

Table 3: Evaluation by Pearson’s correlation coefficient in semantic textual similarity task.

5.2 Quantitative Analysis

Next, we applied the acquired paraphrase pairs
to the semantic textual similarity task and eval-
uvated the extent to which the acquired para-
phrases improve downstream applications. The
semantic textual similarity task deals with calcu-
lating the semantic similarity between two sen-
tences. In this study, we conducted the eval-
uation by applying Pearson’s correlation coeffi-
cient with a five-step manual evaluation using five
datasets constructed by SemEval (Agirre et al.,
2012, 2013, 2014, 2015, 2016). We applied
the acquired paraphrase pairs to the unsuper-
vised method of DLC@CU (Sultan et al., 2015),
which achieved excellent results using PPDB in
the semantic textual similarity task of SemEval-
2015 (Agirre et al., 2015). DLS@CU performs
word alignment (Sultan et al., 2014) using PPDB,
and calculates sentence similarity according to the
ratio of aligned words:

Nq(s1) + ng(s2)
n(s1) + n(s2)

sts(s1,s2) = (12)
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Here, n(s) indicates the number of words in
sentence s and n,(s) indicates the number of
aligned words. Although DLS@CU targets all the
paraphrases of PPDB, we used only the top 10
words of the paraphrase score for each target word
and compared the performance of the paraphrase
scores.

Table 3 shows the experimental results of the
semantic textual similarity task. “ALL” is the
weighted mean value of the Pearson’s correlation
coefficient over the five datasets. MIPA achieved
the highest performance on three out of the five
datasets. In other words, the proposed method ex-
tracted paraphrase pairs useful for calculating sen-
tence similarity at the top-rank.

5.3 Reranking PPDB 2.0

Finally, we reranked paraphrase pairs from
a publicly available state-of-the-art paraphrase
database.® PPDB 2.0 (Pavlick et al., 2015) scores
paraphrase pairs using supervised learning with

8http://paraphrase.org/
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Figure 9: Reranking PPDB 2.0 in MRR.

26,455 labeled data and 209 features. We sorted
the paraphrase pairs from PPDB 2.0 using the
MIPA instead of the PPDB 2.0 score and used
the same evaluation means as described in Sec-
tion 4. Surprisingly, our unsupervised approach
outperformed the paraphrase ranking performance
of PPDB 2.0’s supervised approach in terms of
MRR (Figure 9) and MAP (Figure 10).

6 Related Work

Levy and Goldberg (2014) explained a well-
known representation learning method for word
embeddings, the skip-gram with negative-
sampling (SGNS) (Mikolov etal., 2013a,b),
as a matrix factorization of a word-context
co-occurrence matrix with shifted positive
PMI. In this paper, we explained a well-known
method for paraphrase acquisition, bilingual
pivoting  (Bannard and Callison-Burch, 2005;
Ganitkevitch et al., 2013), as a (weighted) PML.

Chan et al. (2011) reranked paraphrase pairs ac-
quired via bilingual pivoting using distributional
similarity. The main idea of reranking paraphrase
pairs using information from a monolingual cor-
pus is similar to ours, but Chan et al.’s method
failed to acquire semantically similar paraphrases.
We succeeded in acquiring semantically similar
paraphrases because we effectively combined in-
formation from a bilingual corpus and a monolin-
gual corpus by using weighted PML.

In addition to English, paraphrase databases
are constructed in many languages using bilingual
pivoting (Bannard and Callison-Burch, 2005).
Ganitkevitch and Callison-Burch  (2014) con-
structed paraphrase databases® in 23 languages,
including European languages and Chinese.
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Furthermore, Mizukami et al. (2014) constructed
the Japanese version’. In this study, we improved
bilingual pivoting using a monolingual corpus.
Since large-scale monolingual corpora are easily
available for many languages, our proposed
method may improve paraphrase databases in
each of these languages.

PPDB (Ganitkevitch et al., 2013) constructed
by bilingual pivoting is used in many NLP
applications, such as learning word embed-
dings (Yu and Dredze, 2014), semantic textual
similarity (Sultan et al., 2015), machine trans-
lation (Mehdizadeh Seraj et al., 2015), sentence
compression (Napoles et al., 2016), question an-
swering (Sultan et al., 2016), and text simplifica-
tion (Xu et al., 2016). Our proposed method may
improve the performance of many of these NLP
applications supported by PPDB.

7 Conclusion

We proposed a new approach for formalizing lex-
ical paraphrasability based on weighted PMI and
acquired paraphrase pairs using information from
both a bilingual corpus and a monolingual corpus.
Our proposed method, MIPA, uses bilingual pivot-
ing weighted by distributional similarity to acquire
paraphrase pairs robustly, as each of the methods
complements the other. Experimental results us-
ing manually annotated datasets for lexical para-
phrase showed that the proposed method outper-
formed bilingual pivoting and distributional simi-
larity in terms of metrics such as MRR, MAP, cov-
erage, and Spearman’s correlation. We also con-
firmed the effectiveness of the proposed method

*http://ahclab.naist.jp/resource/jppdb/



by conducting an extrinsic evaluation on a seman-
tic textual similarity task. In addition to the se-
mantic textual similarity task, we hope to improve
the performance of many NLP applications based
on the results of this study.
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Abstract

Implicit semantic role labeling (iSRL) is
the task of predicting the semantic roles of
a predicate that do not appear as explicit ar-
guments, but rather regard common sense
knowledge or are mentioned earlier in the
discourse. We introduce an approach to
iSRL based on a predictive recurrent neu-
ral semantic frame model (PRNSFM) that
uses a large unannotated corpus to learn
the probability of a sequence of semantic
arguments given a predicate. We lever-
age the sequence probabilities predicted
by the PRNSFM to estimate selectional
preferences for predicates and their argu-
ments. On the NomBank iSRL test set, our
approach improves state-of-the-art perfor-
mance on implicit semantic role labeling
with less reliance than prior work on manu-
ally constructed language resources.

1 Introduction

Semantic role labeling (SRL) has traditionally fo-
cused on semantic frames consisting of verbal or
nominal predicates and explicit arguments that oc-
cur within the clause or sentence that contains the
predicate. However, many predicates, especially
nominal ones, may bear arguments that are left
implicit because they regard common sense knowl-
edge or because they are mentioned earlier in a
discourse (Ruppenhofer et al., 2010; Gerber et al.,
2009). These arguments, called implicit arguments,
are resolved by another semantic task, implicit se-
mantic role labeling (iISRL). Consider a NomBank
(Meyers et al., 2004) annotation example:

[a0 The network] had been expected to
have [np losses] [a1 of $20 million]
... Those [np losses] may widen because
of the short Series.
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The predicate loss in the first sentence has two ar-
guments annotated explicitly: AO, the entity losing
something, and Al, the thing lost. Meanwhile, the
other instance of the same predicate in the second
sentence has no associated arguments. However,
for a good reader, a reasonable interpretation of the
second loss should be that it receives the same AQ
and A1 as the first instance. These arguments are
implicit to the second loss.

As an emerging task, implicit semantic role la-
beling faces a lack of resources. First, hand-crafted
implicit role annotations for use as training data are
seriously limited: SemEval 2010 Task 10 (Baker
et al., 1998) provided FrameNet-style (Baker et al.,
1998) annotations for a fairly large number of pred-
icates but with few annotations per predicate, while
Gerber and Chai (2010) provided PropBank-style
(Palmer et al., 2005) data with many more anno-
tations per predicate but covering just 10 predi-
cates. Second, most existing iSRL systems depend
on other systems (explicit semantic role labelers,
named entity taggers, lexical resources, etc.), and
as a result not only need iSRL annotations to train
the iSRL system, but annotations or manually built
resources for all of their sub-systems as well.

We propose an iSRL approach that addresses
these challenges, requiring no manually annotated
iSRL data and only a single sub-system, an explicit
semantic role labeler. We introduce a predictive
recurrent neural semantic frame model (PRNSFM),
which can estimate the probability of a sequence
of semantic arguments given a predicate, and can
be trained on unannotated data drawn from the
Wikipedia, Reuters, and Brown corpora, coupled
with the predictions of the MATE (Bjorkelund et al.,
2010) explicit semantic role labeler on these texts.
The PRNSFM forms the foundation for our iSRL
system, where we use its probability estimates over
sequences of semantic arguments to predict selec-
tional preferences for associating predicates with
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their implicit semantic roles. Our PRNSFM-based
iSRL model improves state-of-the-art performance,
outperforming the only other system that depends
on just an explicit semantic role labeler by 10 %
F1, and achieving equal or better F1 score than sev-
eral other models that require many more lexical
resources.

Our work fits today’s interest in natural language
understanding, which is hampered by the fact that
content in a discourse is often not expressed explic-
itly because it was mentioned earlier or because
it regards common sense or world knowledge that
resides in the mind of the communicator or the audi-
ence. In contrast, humans easily combine relevant
evidence to infer meaning, determine hidden mean-
ings and make explicit what was left implicit in the
text, using the anticipatory power of the brain that
predicts or “imagines” circumstantial situations and
outcomes of actions (Friston, 2010; Vernon, 2014)
which makes language processing extremely effec-
tive and fast (Kurby and Zacks, 2015; Schacter and
Madore, 2016). The neural semantic frame rep-
resentations inferred by our PRNSFM take a first
step towards encoding something like anticipatory
power for natural language understanding systems.

The remainder of the paper is organized as fol-
lows: First, section 2 describes the related work.
Second, section 3 proposes the predictive recur-
rent neural semantic frame model including the
formal definition, architecture, and an algorithm
to extract selectional preferences from the trained
model. Third, in section 4, we introduce the appli-
cation of our PRNSFM in implicit semantic role
labeling. Fourth, the experimental results and dis-
cussions are presented in section 5. Finally, we
conclude our work and suggest some future work
in section 6.

2 Related work

Language Modeling Language models, from n-
gram models to continuous space language models
(Mikolov et al., 2013; Pennington et al., 2014),
provide probability distributions over sequences of
words and have shown their usefulness in many
natural language processing tasks. However, to our
knowledge, they have not yet been used to model
semantic frames. Recently, Peng and Roth (2016)
developed two distinct models that capture seman-
tic frame chains and discourse information while
abstracting over the specific mentions of predicates
and entities, but these models focus on discourse
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processing tasks, not semantic frame processing.

Semantic Role Labeling In unsupervised SRL,
Woodsend and Lapata (2015) and Titov and Khod-
dam (2015) induce embeddings to represent a pred-
icate and its arguments from unannotated texts, but
in their approaches, the arguments are words only,
not the semantic role labels, while in our models,
both are considered.

Low-resource Implicit Semantic Role Labeling
Several approaches have attempted to address the
lack of resources for training iSRL systems. La-
parra and Rigau (2013) proposed an approach
based on exploiting argument coherence over dif-
ferent instances of a predicate, which did not re-
quire any manual iSRL annotations but did require
many other manually-constructed resources: an ex-
plicit SRL system, WordNet super-senses, a named
entity tagger, and a manual categorization of Super-
SenseTagger semantic classes. Roth and Frank
(2015) generated additional training data for iSRL
through comparable texts, but the resulting model
performed below the previous state-of-the-art of
Laparra and Rigau (2013). Schenk and Chiarcos
(2016) proposed an approach to induce prototypical
roles using distributed word representations, which
required only an explicit SRL system and a large
unannotated corpus, but their model performance
was almost 10 points lower than the state-of-the-art
of Laparra and Rigau (2013). Similar to Schenk
and Chiarcos (2016), our model requires only an ex-
plicit SRL system and a large unannotated corpus,
but we take a very different approach to leverag-
ing these, and as a result improve state-of-the-art
performance.

3 Predictive Recurrent Neural Semantic
Frame Model

Our goal is to use unlabeled data to acquire selec-
tional preferences that characterize how likely a
phrase is to be an argument of a semantic frame.
We rely on the fact that current explicit SRL sys-
tems achieve high performance on verbal predi-
cates, and run a state-of-the-art explicit SRL system
on unlabeled data. We then construct a predictive
recurrent neural semantic frame model (PRNSFM)
from these explicit frames and roles.

Our PRNSFM views semantic frames as a se-
quence: a predicate, followed by the arguments
in their textual order, and terminated by a special
EOS symbol. We draw predicates from PropBank



verbal semantic frames, and represent arguments
with their nominal/pronominal heads. For example,
Michael Phelps swam at the Olympics is repre-
sented as [swam:PRED, Phelps:AQ, Olympics: AM-
LOC, EOS], where the predicate is labeled PRED
and the arguments Phelps and Olympics are labeled
A0 and AM-LOC, respectively. Our PRNSFM’s
task is thus to take a predicate and zero or more
arguments, and predict the next argument in the se-
quence, or EOS if no more arguments will follow.

We choose to model semantic frames as a se-
quence (rather than, say, a bag of arguments) be-
cause in English, there are often fairly strict con-
straints on the order in which arguments of a verb
may appear. A sequential model should thus be
able to capture these constraints and use them to im-
prove its probability estimates. Moreover, a sequen-
tial model has the ability to learn the interaction
between arguments in the same semantic frame.
For example, considering a swimming event, if
Phelps is A0, then Olympics is more likely to be
the AM-LOC than lake.

Formally, for each #! argument of a semantic
frame f, we denote its word (e.g., Phelps) as wy ,
its semantic label (e.g., AO) as [f;, where w € V,
the word vocabulary, and [ € L U [PRED], the
set of semantic labels. We denote the predicate
word and label, which are always at the 0** po-
sition in the sequence, in the same way as argu-
ments: wyo and lyg. We denote the sequence
[Wgo,wr1,...,Wre—1] a8 wy ¢, and the sequence
50,051, 51fe—1] as I 4. Our model aims to
estimate the conditional probability of the occur-
rence of wy; as semantic role [y ; given the preced-
ing words and their labels:

P(wf,t3lf,t|wf,<t:lf,<t)

We use a recurrent neural network to learn this
probability distribution over sequences of semantic
frame arguments. For a semantic frame f with N
arguments, at each time step 0 < ¢ < N, given the
input wy ;:1 7+, the model computes the distribution
P(wgiii:lpipr|ws<i1:lf <441) and predicts the
next most likely argument (or EOS). During train-
ing, model parameters are optimized by minimiz-
ing prediction errors over all time steps.

We consider two versions of this model that dif-
fer in input (Vj,) and output (Vout) vocabularies.

3.1 Model 1: Joint Embedding LSTM

We adopt the standard recurrent neural network
language model (Mikolov et al., 2010), which is a
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natural architecture to deal with a sequence predic-
tion problem.

Model 1 consists of three layers (see Figure 1):
an embedding layer that learns vector representa-
tions for input values; a long short-term memory
(LSTM) layer that controls the sequential informa-
tion receiving the vector representation as input;
and a softmax layer to predict the next argument
using the output of the LSTM layer as input.

This model treats the word and semantic label
as a single unit in both input and output layers.
The model, therefore, learns joint embeddings for
the word and its corresponding semantic label.
For example, if we take “Michael Phelps swam
at the Olympics” as training data, the three in-
put values would be swam:PRED, Phelps:AQ and
Olympics:AM-LOC, and the three expected outputs
would be Phelps:A0, Olympics:AM-LOC, EOS.
Since each word:label is considered as a single unit,
the embedding layer will learn three vector repre-
sentations, one for swam:PRED, one for Phelps: A0,
and one for Olympics:AM-LOC. As can be seen,
an important difference between our problem and
the traditional language model is that we have to
deal with two different types of information — word
and label. By concatenating word and label, the
standard recurrent neural network model can be
applied directly to our data.

The detail of Model 1 is as following:

Embedding Layer is a matrix of size |Vin| X d
that maps each unit of input into an d-dimensional
vector. The matrix is initialized randomly and up-
dated during network training.

LSTM Layer consists of m standard LSTM
units which take as input the output of the em-
bedding layer, z;, and produce an output h; by
updating at every time step 0 < ¢t < T

iy = sigmoid(Wizy + Uihy—1 + b;)
C, = tanh(Wexy + Uchy—1 + be)

ft = sigmoid(Wyixy + Usrhy—1 + by)
Cy=ir%Cr+ fr «Cy_y

or = sigmoid(Woxy + Uphi—1 + b,)

hy = oy * tanh(C})

where W;, W, Wr, W, are weight matrices of size
d x m; U;, U, Uy, U, are weight matrices of size
m X m; b, be, by, b, are bias vectors of size m; and
* 1s element-wise multiplication. As per the stan-
dard LSTM formulation, 7, (:‘t, ft, Ct, o represent
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the input gate, states of the memory cells, activation
of the memory cells’ forget gates, memory cells’
new state, and output gates’ values, respectively.

Softmax Layer computes the probability distri-
bution of the next argument given the preceding
arguments at time step ¢:

Pwggyrlyrrwr <oyl <ip1) =

softmax(hyW +b) (1)

where T is a weight matrix of size m X |Vout|,
and b is a bias vector of size |Vout|. The predicted
next argument is:

argmax P(wyf1:lpepr|wr <iprily<e41)
wr1ly 41

The network is trained using the negative log-
likelihood loss function.

3.2 Model 2: Separate Embedding LSTM

Model 2 shares the same basic structure as Model
1, but considers the word and the semantic label as
two different units in the input layer. As shown in
Figure 2, we use two different embedding layers,
one for word values and one for semantic labels,
and the two embedding vectors are concatenated
before being passed to the LSTM layer. The LSTM
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and softmax layers are then the same as in Model
1. For example, if we take “Michael Phelps swam
at the Olympics” as training data, the three input
words would be swam, Phelps, and Olympics, the
three input roles would be PRED, A0 and AM-
LOC, and the three expected outputs would be
Phelps:AO, Olympics:AM-LOC, EOS. A total of
six different vector representations will be learned:
a word embedding for each of swam, Phelps, and
Olympics, and a label embedding for each of PRED,
A0 and AM-LOC.

In this model, the embedding layer for labels
is initialized randomly (as in Model 1), but the
embedding layer for word values is initialized with
publicly available word embeddings that have been
trained on a large dataset (Mikolov et al., 2013).

As compared to the joint-embedding Model 1,
the separate-embedding Model 2 gives up a little
power to represent the interaction between words
and labels, but has a less sparse input vocabulary
and gains the ability to incorporate pre-trained
word embeddings.

3.3 Selectional Preferences

While the PRNSFM can predict the probability of
an argument given the predicate and the preced-
ing arguments, P(wy:lp¢|wy <:lp <¢), an iSRL
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root to the parent of the target node.

system needs a selectional preference score rep-
resenting the probability of a word w being the [
argument of predicate p, P(w:l|p:PRED). Thus,
to convert our PRNSFM probabilities to selectional
preferences, we need to marginalize over the possi-
ble argument sequences.

We approximate this marginalization by con-
structing a tree where the root is the predicate, p,
the branches are likely sequences of arguments,
and the leaves are the word and label for which we
need to estimate a probability, w:l. Formally, we
define this tree of possible sequences as:

{[p:PRED]} ift=0
g, — J Ugwelil: g €Sea, if0<t<T
wy:ly € argmax®(q)}
{lg,w:l]: ¢ € S¢—1} ift=T

where wy:lp.0 = p:PRED; k and T are thresh-
olds; and argmax”(q) is the k word:label pairs
that have the highest probability of being the next
argument given the sequence q according to the
PRNSFM.

We then estimate P(w:l|p:PRED) as the sum
of the probabilities of all the sequences encoded in
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the tree. Formally:

P(wil|p:PRED) ~ Y P(willwscp1ily<er)

0<t<T

> > P(willq) x Plq)

0<t<T qcSy

where the probability of an argument sequence g is
the product of the PRNSFM’s estimates for each
step in the sequence:

P(q) , p:PRED)

,p:PRED)
(2)

An example of the calculation of P(w:l|p:PRED)
is shown in Figure 3.

Intuitively, the tree enumerates all possible argu-
ment sequences that start with the predicate, have
zero or more intervening arguments, and end with
the word and label of interest, w:l. The probabil-
ity of w:l given the predicate is the sum of the
probabilities of all branches in this tree, i.e., of all
possible sequences that end with w:l. In reality, we
do not have the computational power to explore

= P(wt:lt\wt_lzlt_l, .
X P(wt_IZZt_llwt_QZZt_Q, R
. X P(wlil1|pZPRED)



all possible sequences, so we must limit the tree
somehow. Thus, we only ask the PRNSFM for its
top k predictions at each branch point, and we only
explore sequences with a maximum length of 7.

4 Implicit Semantic Role Labeling

As you will recall from previous sections, implicit
semantic role labeling is the task of identifying
discourse-level arguments of a semantic frame,
which are missed by standard semantic role label-
ing, which operates on individual sentences. For
instance, in “This house has a new owner. The sale
was finalized 10 days ago.”, the semantic frame
evoked by “sale” in the second sentence should
receive “the house” as an implicit A1 semantic
role. Humans easily resolve the object of the sale
given the candidates (in our example: “house” and
“owner”), but for a machine this is more difficult
unless it has knowledge on what the likely objects
of a sale are. This kind of knowledge of selec-
tional preferences can be extracted from our trained
PRNSFM.

The previous section described how to extract
selectional preferences from our PRNSFM. How-
ever, that model is trained on verbal predicates, and
the test data that we use (Gerber and Chai, 2010)
contains nominal predicates. Thus, for each triple
of a nominal predicate np, a word candidate w, and
a label [, we approximate the selectional preference
score of w being the implicit argument role [ of np
as:

P(w:lnp) = mazpey (np) P(w:l|p:PRED)

where P(w:l|p) is the selectional preference score
described in Section 3.3, and V'(np) is set of verbal
forms of np. Here, we use the NomBank lexicon to
get verbs associated with each nominal predicate,
and then find instances of those verbs in the explicit
SRL training data. For example, for the noun funds,
V (funds) = {funds, fund, funding, funded}.

We apply selectional preferences to iSRL follow-
ing (Laparra and Rigau, 2013). For each nominal
predicate np and implicit label [, the current and
previous two sentences are designated the context
window. Each sentence in the context window is
annotated with the explicit SRL system. If any in-
stances of np or V' (np) in the text have an explicit
argument of type [, we deterministically predict
the closest such argument as the implicit / argu-
ment of np. Otherwise, we run the PRNSFM over
each word in the context window, and select the
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word with the highest selectional preference score
above a threshold s. If all the candidates’ scores
are less than s, the system leaves the missing argu-
ment unfilled. We optimized this threshold on the
development data, resulting in s = 0.0003.

As in Laparra and Rigau (2013), we apply a
sentence recency factor to emphasize recent can-
didates. The selectional preference score x is up-
dated as 2/ = x — z + z x o where d is the
sentence distance, and « and z are parameters. We
set z = 0.00005 based on the development set and
set a = (0.5 as in (Laparra and Rigau, 2013).

5 Experiments

We evaluate the two PRNSFM models on the iSRL
task. The tools, resources, and settings we used are
as follows:

Semantic Role Labeling We used the full
pipeline from MATE (https://code.google.com/
archive/p/mate-tools/) (Bjorkelund et al., 2010) as
the explicit SRL system, retraining it on just the
CoNLL 2009 training portion.

Unannotated Data The unannotated data used
in the experiments was drawn from Wikipedia
(http://corpus.byu.edu/wiki/), Reuters (http://about.
reuters.com/researchandstandards/corpus/), and
Brown (https://catalog.ldc.upenn.edu/1dc99t42).

Dataset for PRNSFM The first 15 milion short
and medium (less than 100 words) sentences from
the unannotated data (described above) were an-
notated automatically by the explicit SRL system.
The obtained annotations were then used together
with the gold standard CoNLL 2009 SRL training
data to train the PRNSFM.

Neural network training and inference Param-
eters were selected using the CoNLL 2009 develop-
ment set. We set the dimensions of word and label
embeddings in the PRNSFM to 50 and 16, respec-
tively. The hidden sizes of LSTM layers are the
same as their input sizes. Word embedding layers
are initialized by Skip-gram embeddings learned
by training the word2vec tool (Mikolov et al., 2013)
on the unannotated data. Our models were trained
for 120 epochs using the AdaDelta optimization
algorithm (Zeiler, 2012). For fast selectional pref-
erence computing, we set k = 1 and T = 4!,

"We selected relatively small values for the parameters to
reduce the training and prediction time. We tried some larger
values of the parameters on a small dataset, but found that the



Evaluation We follow the evaluation setting in
Gerber and Chai (2010); Laparra and Rigau (2013);
Schenk and Chiarcos (2016)?: the method is evalu-
ated on the evaluation portion of the nominal iSRL
data by Dice coefficient metrics. For each miss-
ing argument position of a predicate instance, the
system is required to either (1) identify a single
constituent that fills the missing argument position
or (2) make no prediction and leave the missing
argument position unfilled. To give partial credit
for inexact argument boundaries, predictions are
scored by using the Dice coefficient, which is de-
fined as follows:

2 |predicted N true|
|predicted| + |true|

Dice(predicted, true) =

Predicted contains the tokens that the model has
identified as the filler of the implicit argument po-
sition. T'rue is the set of tokens from a single
annotated constituent that truely fill the missing ar-
gument position. The model’s prediction receives
a score equal to the maximum Dice overlap across
any of the annotated fillers (AF)*:

Score(predicted) =

max _Dice(predicted, true)
truec AF

Precision is equal to the summed prediction scores
divided by the number of argument positions filled
by the model. Recall is equal to the summed pre-
diction scores divided by the number of argument
positions filled in the annotated data.

5.1 Experimental Setup

In the baseline mode, instead of using the
PRNSFM, we only use the deterministic predic-
tion by the explicit SRL system. We refer to this
mode as Baseline in Table 1.

In the main mode, the joint embedding LSTM
model (Model 1) and the separate embedding
LSTM model (Model 2) were trained on the same
dataset which is a combination of the automatic
SRL annotations and the gold standard CoNLL

small values reported in the article achieved similar results
with faster processing times.

2 Following Schenk and Chiarcos (2016), we do not per-
form the alternative evaluation of Gerber and Chai (2012) that
evaluates systems on the iSRL training set, since the iSRL
training set overlaps with the CoNLL 2009 explicit semantic
role training set on which MATE is trained.

3For iSRL, one implicit role may receive more than one
annotated filler across a coreference chain in the discourse.
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20009 training data as described in the previous sec-
tion. We denote this mode as gold CoNLL 2009 +
unlabeled in Table 1.

To evaluate how well the system acquires knowl-
edge from unlabeled data, we also train the
PRNSFM only on the gold standard CoNLL 2009
training data. We denote this mode as CoNLL 2009
in Table 1.

In order to compare the performance of our se-
quential model to a non-sequential model, we train
a skip-gram neural language model on the same
unlabeled and labeled data as the PRNSFM in the
main mode. The skip-gram model treats the pred-
icates and arguments as a bag of labeled words
rather than a sequence. The P(w:l|p) is computed
at the output layer of the skip-gram model by con-
sidering w:l as the context of p. We denote this
mode as Skip-gram in Table 1.

5.2 Results and Discussion

Table 1 shows the prior state-of-the-art and the
performance of the baseline, skip-gram and our
PRNSFM-based methods.

Our Model 2 achieves the highest precision and
F1 score. This is notable because the first two mod-
els require many more language resources than
just an explicit SRL system: Gerber and Chai
(2010) use WordNet and manually annotated iSRL
data, while Laparra and Rigau (2013) use WordNet,
named entity annotations, and manual semantic
category mappings. Schenk and Chiarcos (2016),
like our approach, use only an explicit SRL sys-
tem, but both our models strongly outperform their
results. We assume that the difference here is
caused by our proposed neural semantic frame
model (PRNSFM). Schenk and Chiarcos (2016)
measure the selectional preference of a predicate
and a role as a cosine between a standard word2vec
embedding for the candidate word, and the aver-
age of all word2vec embeddings for all words that
appear in that role. Our algorithms are very differ-
ent: we take a language modeling approach and
leverage the sequence of semantic roles, we learn
custom word/role embeddings tuned for SRL, and
then marginalize over many possible argument se-
quences. We assume that the learned PRNSFM
representations are better informed about semantic
frames than simple word embeddings, which only
capture knowledge of contextual words.

Table 1 also shows that training on large unla-
beled data results in a marked improvement com-



s .8
S22
= o E X
Mo S H
Method PRNSFM training data 2 HB =7 P R F1
Gerber and Chai (2010) v vV 44.5 404 423
Laparra and Rigau (2013) vV v v 479 438 458
Schenk and Chiarcos (2016) v 33.5 39.2 36.1
Baseline v 753 17.2 28.0
Skip-gram gold CoNLL 2009 + unlabeled v 263 323 29.0
Model 1: Joint Embedding gold CoNLL 2009 + unlabeled v 48.0 382 42.6
Model 2: Separate Embedding gold CoNLL 2009 + unlabeled v 52.6 41.0 46.1
Model 1: Joint Embedding gold CoNLL 2009 v 39.2 341 365
Model 2: Separate Embedding gold CoNLL 2009 v 40.2 36.0 38.0
Table 1: Implicit role labeling evaluation.
pared to training on only the CoNLL 2009 labeled Predicate Baseline 2010 2013 2016 2017
data, providing evidence that the models have ac- sale 36.2 442 403 372 52.8
quired linguistic knowledge from the unlabeled price 154 342 533 27.3 29.0
data. Although the automatically annotated data investor 9.8 384 412 339 43.1
used to train the PRNSFM can be noisy, using a bid 323 213 52.0 40.7 35.5
large amount of data has smoothed out the noise. plan 38.5 647 40.7 474 76.8
Moreover, the better performance of our mod- cost 348 629 53.0 369 444
els over the standard skip-gram neural language loss 52.6 833 65.8 589 728
model proves the effectiveness of modeling seman- loan 182 375 222 379 38.6
tic frames as sequential data. The intuition here is investment 0.0  30.8 40.8 36.6 23.5
that explicit semantic arguments have typical or- fund 0.0 154 44.4 375 428

derings in which they occur, so a sequential model
should be a good fit for this problem. Modeling
this sequential aspect of the problem is effective,
but requires us to marginalize out positional infor-
mation to compute selectional preferences, since
implicit semantic arguments can occur anywhere
in the discourse and do not have a typical position.

Among our two models, Model 2, which learns
separate vector representations for words and se-
mantic roles, is better than Model 1, which learns a
single vector representation of each (word, seman-
tic role) pair. The separate representation of words
and roles means that Model 2 can share informa-
tion across multiple occurrences of a word even if
the semantic roles of that word are different, and
this model can use publicly available embeddings
pre-trained from even larger unannotated corpora
when initializing its embeddings.

Gerber and Chai (2012) report an inter-annotator
agreement of 64.3% using Cohen’s kappa mea-
sure on the annotated NomBank-based iSRL data.
This value is borderline between low and moderate
agreement indicating the sheer complexity of the
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Table 2: A comparison on F1 scores (%). 2010:
(Gerber and Chai, 2010), 2013: (Laparra and Rigau,
2013), 2016: Best model from (Schenk and Chiar-
cos, 2016), 2017: Our best model (Model 2).

annotation task, and explaining the relatively low
performance of the iSRL systems.

In Table 2, we compare the F1 scores over all
the ten predicates of our Model 2 to other state-
of-the-art systems *. Our system obtains relatively
high scores (> 50%) on three predicates including
“sale”, “plan” and “loss”. These three are the most
frequent predicates (among the 10 defined in the
nominal iSRL dataset) in the CoNLL 2009 train-
ing data — they occur 1016, 318 and 275 times in
verbal forms, respectively. In contrast, irregular
predicates such as “bid” or “loan” usually have low
performance. This is possibly caused by the de-

*As an overly conservative estimate, we take a t-test over
the 10 predicate-level F1 scores as can be seen in Table 2.
Comparing against Model 2, this yields p=0.28 for Gerber and
Chai (2010), p=0.46 for Laparra and Rigau (2013), and most
importantly p=0.058 for Schenk and Chiarcos (2016).



pendence of our PRNSFM on the performance of
the explicit semantic role labeling system on verbal
predicates.

It is important to consider how iSRL can be ex-
tended beyond the 10 annotated predicates of Ger-
ber and Chai (2010). Our models do not require
any handcrafted iSRL annotations for training, and
thus can be applied to all predicates observed in
large unannotated data on which they are trained.

However, as other work in iSRL, our approach
still relies on a resource-heavy SRL system to learn
selectional preferences. It would be interesting
to investigate in further studies whether this SRL
system can be replaced by a low-resource system
(Collobert et al., 2011; Connor et al., 2012).

6 Conclusion and Future Work

We have presented recurrent neural semantic frame
models for learning probability distributions over
semantic argument sequences. By modeling se-
lectional preferences from these probability dis-
tributions, we have improved state-of-the-art per-
formance on the NomBank iSRL task while us-
ing fewer language resources. In the future, we
believe that our semantic frame models are valu-
able in many language processing tasks that require
discourse-level understanding of language, such as
summarization, question answering and machine
translation.
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Abstract

We define a novel textual entailment
task that requires inference over mul-
tiple premise sentences.  We present
a new dataset for this task that mini-
mizes trivial lexical inferences, empha-
sizes knowledge of everyday events, and
presents a more challenging setting for
textual entailment. We evaluate several
strong neural baselines and analyze how
the multiple premise task differs from
standard textual entailment.

1 Introduction

Standard textual entailment recognition is con-
cerned with deciding whether one statement (the
hypothesis) follows from another statement (the
premise). However, in some situations, multiple
independent descriptions of the same event are
available, e.g. multiple news articles describing
the same story, social media posts by different
people about a single event, or multiple witness
reports for a crime. In these cases, we want to use
multiple independent reports to infer what really
happened.

We therefore introduce a variant of the standard
textual entailment task in which the premise text
consists of multiple independently written sen-
tences, all describing the same scene (see exam-
ples in Figure 1). The task is to decide whether
the hypothesis sentence 1) can be used to describe
the same scene (entailment), 2) cannot be used
to describe the same scene (contradiction), or 3)
may or may not describe the same scene (neutral).
The main challenge is to infer what happened in
the scene from the multiple premise statements, in
some cases aggregating information across multi-
ple sentences into a coherent whole.
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Premises:

1. Two girls sitting down and looking at a book.

2. A couple laughs together as they read a book on a train.

3. Two travelers on a train or bus reading a book together.

4. A woman wearing glasses and a brown beanie next to
a girl with long brown hair holding a book.

Hypothesis:

Women smiling. =ENTAILMENT

Premises:
1. Three men are working construction on top of a building.
2. Three male construction workers on a roof working
in the sun.
One man is shirtless while the other two men work
on construction.
Two construction workers working on infrastructure,
while one worker takes a break.
Hypothesis:

A man smoking a cigarette.

3.

4.

=NEUTRAL

Premises:

1. A group of individuals performed in front of a seated
crowd.

2. Woman standing in front of group with black folders in
hand.

3. A group of women with black binders stand in front of a
group of people.

4. A group of people are standing at the front of the room,
preparing to sing.

Hypothesis:

A group having a meeting. =CONTRADICTION

Figure 1: The Multiple Premise Entailment Task

Similar to the SICK and SNLI datasets (Marelli
et al., 2014; Bowman et al., 2015), each premise
sentence in our data is a single sentence describ-
ing everyday events, rather than news paragraphs
as in the RTE datasets (Dagan et al., 2006), which
require named entity recognition and coreference
resolution. Instead of soliciting humans to write
new hypotheses, as SNLI did, we use simplified
versions of existing image captions, and use a
word overlap filter and the structure of the deno-
tation graph of Young et al. (2014) to minimize
the presence of trivial lexical relationships.

2 Related Standard Entailment Tasks

In the following datasets, premises are single sen-
tences drawn from image or video caption data
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that describe concrete, everyday activities.

The SICK dataset (Marelli et al., 2014) con-
sists of 10K sentence pairs. The premise sentences
come from the FLICKR8K image caption corpus
(Rashtchian et al., 2010) and the MSR Video Para-
phrase Corpus (Agirre et al., 2012), while the hy-
potheses were automatically generated. This pro-
cess introduced some errors (e.g. “A motorcycle is
riding standing up on the seat of the vehicle”) and
an uneven distribution of phenomena across en-
tailment classes that is easy to exploit (e.g. nega-
tion (Lai and Hockenmaier, 2014)).

The SNLI dataset (Bowman et al., 2015) con-
tains over 570K sentence pairs. The premises
come from the FLICKR30K image caption corpus
(Young et al., 2014) and VisualGenome (Krishna
et al., 2016). The hypotheses were written by Me-
chanical Turk workers who were given the premise
and asked to write one definitely true sentence,
one possibly true sentence, and one definitely
false sentence. The task design prompted work-
ers to write hypotheses that frequently parallel the
premise in structure and vocabulary, and therefore
the semantic relationships between premise and
hypothesis are often limited to synonym/hyponym
lexical substitution, replacement of short phrases,
or exact word matching.

3 The Multiple Premise Entailment Task

In this paper, we propose a variant of entail-
ment where each hypothesis sentence is paired
with an unordered set of independently written
premise sentences that describe the same event.
The premises may contain overlapping informa-
tion, but are typically not paraphrases. The ma-
jority of our dataset requires consideration of mul-
tiple premises, including aggregation of informa-
tion from multiple sentences.

This Multiple Premise Entailment (MPE) task
is inspired by the Approximate Textual Entailment
(ATE) task of Young et al. (2014). Each item in the
ATE dataset consists of a premise set of four cap-
tions from FLICKR30K, and a short phrase as the
hypothesis. The ATE data was created automati-
cally, under the assumption that items are positive
(approximately entailing) if the hypothesis comes
from the same image as the four premises, and
negative otherwise. However, Young et al. found
that this assumption was only true for just over half
of the positive items. For MPE, we also start with
four FLICKR30K captions as the premises and a
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related/unrelated sentence as the hypothesis, but
we restrict the hypothesis to have low word over-
lap with the premises, and we collect human judg-
ments to label the items as entailing, contradictory,
or neutral.

4 The MPE Dataset

The MPE dataset (Figure 1) contains 10,000 items
(8,000 training, 1,000 development and 1,000
test), each consisting of four premise sentences
(captions from the same FLICKR30K image), one
hypothesis sentence (a simplified FLICKR30K
caption), and one label (entailment, neutral, or
contradiction) that indicates the relationship be-
tween the set of four premises and the hypothesis.
This label is based on a consensus of five crowd-
sourced judgments. To analyze the difference be-
tween multiple premise and single premise entail-
ment (Section 5.2), we also collected pair label an-
notations for each individual premise-hypothesis
pair in the development data. This section de-
scribes how we selected the premise and hypoth-
esis sentences, and how we labeled the items via
crowdsourcing.

4.1 Generating the Items

Hypothesis simplification The four premise
sentences of each MPE item consist of four orig-
inal FLICKR30K captions from the same image.
Since complete captions are too specific and are
likely to introduce new details that are not entailed
by the premises, the hypotheses sentences are sim-
plified versions of FLICKR30K captions. Each hy-
pothesis sentence is either a simplified variant of
the fifth caption of the same image as the premises,
or a simplified variant of one of the captions of a
random, unrelated image.

Our simplification process relies on the denota-
tion graph of Young et al. (2014), a subsumption
hierarchy over phrases, constructed from the cap-
tions in FLICKR30K. They define a set of normal-
ization and reduction rules (e.g. lemmatization,
dropping modifiers and prepositional phrases, re-
placing nouns with their hypernyms, extracting
noun phrases) to transform the original captions
into shorter, more generic phrases that are still true
descriptions of the original image.

To simplify a hypothesis caption, we consider
all sentence nodes in the denotation graph that
are ancestors (more generic versions) of this cap-
tion, but exclude nodes that are also ancestors of



any of the premises. This ensures that the simpli-
fied hypothesis cannot be trivially obtained from a
premise via the same automatic simplification pro-
cedure. Therefore, we avoid some obvious seman-
tic relationships between premises and hypothesis,
such as hypernym replacement, dropping modi-
fiers or PPs, etc.

Limiting lexical overlap Given the set of sim-
plified, restricted hypotheses, we further restrict
the pool of potential items to contain only pair-
ings where the hypothesis has a word overlap <
0.5 with the premise set. We compute word over-
lap as the fraction of hypothesis tokens that appear
in at least one premise (after stopword removal).
This eliminates trivial cases of entailment where
the hypothesis is simply a subset of the premise
text. Table 1 shows that the mean word overlap
for our training data is much lower than SNLI.

SNLI MPE
lemma full

0.48 +0.29
0.64 40.30
0.45 +0.24
0.36 4+0.25

Data full

All 044 4029
E 0.59 4031
N 041 +024
C 0.33 +£025

lemma

0.33 £0.20
0.38 +£0.19
0.33 £0.19
0.30 +0.21

0.28 +0.22
0.34 +0.21
0.28 +0.21
0.23 +022

Table 1: Mean word overlap for full training data
and each label, original and lemmatized sentences.
MPE has much lower word overlap than SNLI.

Data selection From this constrained pool of
premises-hypothesis pairings, we randomly sam-
pled 8000 items from the FLICKR30K train-
ing split for our training data. For test and
development data, we sample 1000 items from
FLICKR30K test and 1000 from dev. The hy-
potheses in the training data must be associated
with at least two captions in the FLICKR30K train
split, while the hypotheses in dev/test must be as-
sociated with at least two captions in the union
of the training and dev/test, and with at least one
caption in dev/test alone. Since the test and dev
splits of FLICKR30K are smaller than the training
split, this threshold selects hypotheses that are rare
enough to be interesting and frequent enough to be
reasonable sentences.

4.2 Assigning Entailment Labels

Crowdsourcing procedure For each item, we
solicited five responses from Crowdflower and
Amazon Mechanical Turk as to whether the hy-
pothesis was entailed, contradictory, or neither

given a set of four premises. Instructions are
shown in Table 2. We provided labeled examples
to illustrate the kinds of assumptions we expected.

Entailment labels We assume three labels (en-
tailment, neutral, contradiction). For entailment,
we deliberately asked annotators to judge whether
the hypothesis could very probably describe the
same scene as the premises, rather than specifying
that the hypothesis must definitely be true, as Bow-
man et al. (2015) did for SNLI. Our instructions
align with the standard definition of textual entail-
ment: “T entails H if humans reading T would typ-
ically infer that H is most likely true” (Dagan et al.,
2013). We are not only interested in what is logi-
cally required for a hypothesis to be true, but also
in what human readers assume is true, given their
own world knowledge.

Final label assignment Of the 10,000 items for
which we collected full label annotations, 90%
had a majority label based on the five judgments,
including 16% with a 3-2 split between entailment
and contradiction. The remaining 10% had a 2-2-
1 split across the three classes. We manually ad-
judicated the latter two cases. As a result, 82%
of the final labels in the dataset correspond to a
majority vote over the judgments (the remaining
18% differ due to our manual correction). The re-
leased dataset contains both our final labels and
the crowdsourced judgments for all items.

Image IDs Premises in the our dataset have cor-
responding image IDs from FLICKR30K. We are
interested in the information present in linguis-
tic descriptions of a scene, so our labels reflect
the textual entailment relationship between the
premise text and the hypothesis. Future work
could apply multi-modal representations to this
task, with the caveat that the image would likely
resolve many neutral items to either entailment or
contradiction.

5 Data Analysis

5.1 Statistics

The dataset contains 8000 training items, 1000 de-
velopment items, and 1000 test items. Table 3
shows overall type and token counts and sentence
lengths as well as the label distribution.

The mean annotator agreement, i.e. the fraction
of annotators who agreed with the final label, is
0.70 for the full dataset, or 0.82 for the entailment
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Instructions:

We will show you four caption sentences that describe the same scene, and one proposed sentence. Your task is to decide
whether or not the scene described by the four captions can also be described by the proposed sentence.

The four captions were written by four different people. All four people were shown the same image, and then wrote a
sentence describing the scene in this image. Therefore, there may be slight disagreements among the captions. The images are
photographs from Flickr that show everyday scenes, activities, and events. You will not be given the image that the caption
writers saw.

Process:

Read the four caption sentences and then read the proposed sentence.

Choose 1 of 3 possible responses to the question

Can the scene described by the four captions also be described by the proposed sentence?

Yes: The scene described by the captions can definitely (or very probably) be described by the proposed sentence. The
proposed sentence may leave out details that are mentioned in the captions. If the proposed sentence describes something that
is not mentioned in the captions, it is probably safe to assume the extra information is true, given what you know from the
captions. If there are disagreements among the captions about the details of the scene, the proposed sentence is consistent with
at least one caption.

Unknown: There is not enough information to decide whether or not the scene described by the captions can be described by
the proposed sentence. There may be scenes that can be described by the proposed sentence and the captions, but you don’t
know whether this is the case here.

No: The scene described by the captions can probably not be described by the proposed sentence. The proposed sentence and
the captions either contradict each other or describe what appear to be two completely separate events.

Table 2: The annotation instructions we provided to Crowdflower and Mechanical Turk annotators.

SNLI MPE SPE labels (E, N, C). The number of SPE labels
#Lexical types 36,616 9,254 that agree with the MPE label yields the five cat-
#Lexical tokens 12 million 468,524 L. i .
Mean premise length 14.0 £ 60 532+ 128 egories in Table 4, ranging from the most difficult
Mean hypothesis length 8.3 +32 53+18 case where none of the SPE labels agree with the
Label distribution MPE label (21.8% of the data) to the simplest case
Entaﬂf?ent ggg? ;é;? where all four SPE labels agree with the MPE la-

eutral 3% 3%

Contradiction 33.3% 41.6% bel (9.8% of the data).

We observe that a simple majority voting
Table 3: Type and token counts, sentence lengths, ~ scheme over the gold standard SPE labels would
and label distributions for training data. not be sufficient, since it assigns the correct MPE
label to only 34.6% of the development items (i.e.
those cases where three or four SPE pairs agree
with the MPE label). We also evaluate a slightly
more sophisticated voting scheme that applies the
following heuristic (here, £/, N, C' are the number
of SPE labels of each class):

class, 0.42 for neutral, and 0.78 for contradiction.
That is, on average, four of the five crowdsourced
judgments agree with the final label for the entail-
ment and contradiction items, whereas for the neu-
tral items, only an average of two of the five orig-

inal annotators assigned the neutral label, and the If £ > C, predict entailment.
other three were split between contradiction and Else if C' > F, predict contradiction.
entailment. Otherwise, predict neutral.

This baseline achieves an accuracy of 41.7%.
These results indicate that MPE cannot be triv-
Multiple premise entailment (MPE) differs from  ially reduced to SPE. That is, even if a model had
standard single premise entailment (SPE) in that  access to the correct SPE label for each individ-
each premise consists of four independently writ-  ual premise (an unrealistic assumption), it would
ten sentences about the same scene. To understand  require more than simple voting heuristics to ob-
how MPE differs from SPE, we used crowdsourc-  tain the correct MPE label from these pairwise la-
ing to collect pairwise single-premise entailment  bels. Table 4 illustrates that the majority of MPE
labels for each individual premise-hypothesis pair  items require aggregation of information about
in the development data. Each consensus label is  the described entities and events across multiple
based on three judgments. premises. In the first example, the first premise

In Table 4, we compare the full MPE entail-  is consistent with a scene that involves a team of
ment labels (bold =E, =N, =C), to the four pair ~ football players, while only the last premise indi-

5.2 MPE vs. Standard Entailment
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# pairs % of data Pair
agree Label

Example Hypothesis and Four Premises

0 21.8

ZZzz

=E The team waiting.
26.9

zZz0z

A football player in a red uniform is standing in front of other football players in a stadium.
A football player facing off against two others.

A football player wearing a red shirt.

Defensive player waiting for the snap.

A person is half submerged in water in their yellow kayak.
A woman has positioned her kayak nose down in the water.
A person in a canoe is rafting in wild waters.

A kayaker plunges into the river.

=C A man in a boat paddling through waters.

16.7

Z Z it

=E A man swings a bat.
24.8

zZmzz

A batter playing cricket missed the ball and the person behind him is catching it.
A cricket player misses the pitch.

The three men are playing cricket.

A man struck out playing cricket.

A young gymnast, jumps high in the air, while performing on a balance beam.
A gymnast performing on the balance beam in front of an audience.

The young gymnast’s supple body soars above the balance beam.

A gymnast is performing on the balance beam.

=N A woman doing gymnastics.

9.8

(oo NeXe!

=C Men pulled by animals.

A man with a cowboy hat is riding a horse that is jumping.
A cowboy riding on his horse that is jumping in the air.

A cowboy balances on his horse in a rodeo.

Man wearing a cowboy hat riding a horse.

Table 4: MPE examples that illustrate the difference between pair labels and the full label. We include
one example for each category, based on the number of pair labels that agree with the full label, and
indicate the size of each category as a percentage of the development data.

cates that the team may be waiting. Moreover, the
simple majority voting would work on the fourth
example but fail on the second example, while the
more sophisticated voting scheme would work on
the second example and fail on the fourth.

5.3 Semantic Phenomena

We used a random sample of 100 development
items to examine the types of semantic phenom-
ena that are useful for inference in this dataset.
We categorized each item by type of knowledge
or reasoning necessary to predict the correct label
for the hypothesis given the premises. An item be-
longs to a category if at least one premise in that
item exhibits that semantic phenomenon in rela-
tion to the hypothesis, and an item may belong
to multiple categories. For each category, Table
5 contains its frequency, an illustrative example
containing the relevant premise, and the distribu-
tion over entailment labels. We did our analysis
on full items (four premises and the correspond-
ing hypothesis), but the examples in Table 5 have
been simplified to a single premise for simplicity.
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Word equivalence Items in this category con-
tain a pair of equivalent words (synonyms or para-
phrases). The word in the hypothesis can be ex-
changed for the word in the premise without sig-
nificantly changing the meaning of the hypothesis.

Word hypernymy These items involve lexical
hypernyms: someone who is a man is also a person
(entailment), but a person may or may not be a
man (neutral), and somebody who is a man is not
a child (contradiction).

Phrase equivalence These items involve equiv-
alent phrases, i.e. synonyms or paraphrases. The
phrase in the hypothesis can be replaced by the
phrase in the premise without significantly chang-
ing the meaning of the hypothesis.

Phrase hypernymy Items in this category in-
volve a specific phrase and a general phrase: the
more general phrase “doing exercises” can refer to
multiple types of exercises in addition to “stretch-
ing their legs.”

Mutual exclusion Distinguishing between con-
tradiction and neutral items involves identifying



# E N C

Example Premise and Hypothesis Pair

Total 100 31 29 40
Word 16 12 4 0 A person climbing arock face.
equivalence A rock climber scales a cliff. =E
Word 19 6 6 7 Girlin ablue sweater painting while looking at a bird in a book.
hypernymy A child painting a picture. =E
Phrase 7 6 1 0 Acouplein their wedding attire stand behind a table with a wedding cake and flowers.
equivalence Newlyweds standing. =—E
Phrase 8 6 2 0 A group of young boys wearing track jackets stretch their legs on a gym floor as they
hypernymy sit in a circle.
A group doing exercises. =—E
Mutual 25 0 0 25 A woman in ared vest working at a computer.
exclusion Lady doing yoga. =C
Compatibility 18 0 18 0  Onlookers watch.
A girl at bat in a softball game. =N
World 35 14 9 12 A young woman gives directions to an older woman outside a subway station.
knowledge Women standing. =—E

Table 5: Analysis of 100 random dev items. For each phenomenon, we show the distribution over labels
and an example. The label is indicated with E, N, C. We use color and underlining to indicate the relevant
comparisons. The indicated span of text is part of the necessary information to predict the correct label,

but may not be sufficient on its own.

actions that are mutually exclusive, i.e. cannot
be performed simultaneously by the same agent

(“Two doctors perform surgery” vs. “Two sur-
geons are having lunch”).
Compatibility The opposite of mutual

exclusion is compatibility: two actions that
can be performed simultaneously by the same
agent (e.g. “A boy flying a red and white kite” vs.
“A boy is smiling”).

World knowledge These items require extra-
linguistic knowledge about the relative frequency
and co-occurrence of events in the world (not over-
lapping with the mutual exclusion or compatibility
phenomena). A human reader can infer that chil-
dren in a potato sack race are having fun (while a
marathon runner competing in a race might not be
described as having fun).

5.4 Combining Information Across Premises

In addition to the semantic phenomena we have
just discussed, the data presents the challenge
of how to combine information across multiple
premises. We examined examples from the de-
velopment data to analyze the different types of
information aggregation present in our dataset.

Coreference resolution This case requires
cross-caption coreference resolution of entity
mentions from multiple premises and the hy-
pothesis. In this example, a human reader can
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recognize that “two men” and “two senior citi-
zens” refer to the same entities, i.e. the “two older
men” in the hypothesis. Given that information,
the reader can additionally infer that the two older
men on the street are likely to be standing.

1. Two men in tan coats exchange looks on the city sidewalk.
2. Two senior citizens talking on a public street.

3. Two men in brown coats on the street.
4. Two men in beige coats, talking.

Two older men stand. =ENTAILMENT

Event resolution This case requires resolving
various event descriptions from multiple premises
and the hypothesis. In the following example, a
human reader recognizes that the man is sitting on
scaffolding so that he can repair the building, and
therefore he is doing construction work.

1. A man is sitting on a scaffolding in front a white building.
2. A man is sitting on a platform next to a building ledge.

3. A man looks down from his balcony from a stone building.
4. Repairing the front of an old building.

A man doing construction work. =ENTAILMENT

Visual ambiguity resolution This case involves
reconciling apparently contradictory information
across premises. These discrepancies are largely
due to the fact that the premise captions were writ-
ten to describe an image. Sometimes the image
contained visually ambiguous entities or events
that are then described by different caption writ-
ers. In this example, in order to resolve the dis-
crepancy, the reader must recognize from context



that “woman” and “young child” (also “person”)
refer to the same entity.

1. A person in a green jacket and pants appears to be digging
in a wooded field with several cars in the background.

2.A young child in a green jacket rakes leaves.

3. A young child rakes leaves in a wooded area.

4. A woman cleaning up a park.

A woman standing in the forest. =ENTAILMENT

Scene resolution These examples require the
reader to build a mental representation of the scene
from the premises in order to assess the probabil-
ity that the hypothesis is true. In the first example,
specific descriptions — a jumping horse, a cow-
boy balancing, a rodeo — combine to assign a high
probability that the specific event described by the
hypothesis is true.

1. A man with a cowboy hat is riding a horse that is jumping.
2. A cowboy riding on his horse that is jumping in the air.

3. A cowboy balances on his horse in a rodeo.

4. Man wearing a cowboy hat riding a horse.

An animal bucking a man. =ENTAILMENT

In the next example, the hypothesis does not
contradict any individual premise sentence. How-
ever, a reader who understands the generic scene
described knows that the very specific hypothesis
description is unlikely to go unmentioned. Shirt-
lessness would be a salient detail in the this scene,
so the fact that none of the premises mention it
means that the hypothesis is likely to be false.

1. A young couple sits in a park eating ice cream as children
play and other people enjoy themselves around them.

2. Couple in park eating ice cream cones with three other
adults and two children in background.

3. A couple enjoying ice cream outside on a nice day.

4. A couple eats ice cream in the park.

A shirtless man sitting. =CONTRADICTION

In the final example, the premises present a
somewhat generic description of the scene. While
some premises lean towards entailment (a woman
and a man in discussion could be having a work
meeting) and others lean towards contradiction
(two people conversing outdoors at a restaurant are
probably not working), none of them contain over-
whelming evidence that the scene entails or con-
tradicts the hypothesis. Therefore, the hypothesis
is neutral given the premises.

1. A blond woman wearing a gray jacket converses with
an older man in a green shirt and glasses while sitting on a
restaurant patio.

2. A blond pony-tailed woman and a gray-haired man con-
verse while seated at a restaurant’s outdoor area.

3. A woman with blond hair is sitting at a table and talking to
a man with glasses.

4. A woman discusses something with an older man at a table
outside a restaurant.

A woman doing work. =NEUTRAL
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6 Models

We apply several neural models from the entail-
ment literature to our data. We also present a
model designed to handle multiple premises, as
this is unique to our dataset.

LSTM In our experiments, we found that the
conditional LSTM (Hochreiter and Schmidhuber,
1997) model of Rocktaschel et al. (2016) outper-
formed a Siamese LSTM network (e.g. Bow-
man et al. (2015)), so we report results using the
conditional LSTM. This model consists of two
LSTMs that process the hypothesis conditioned on
the premise. The first LSTM reads the premise.
Its final cell state is used to initialize the cell state
of the second LSTM, which reads the hypothesis.
The resulting premise vector and hypothesis vec-
tor are concatenated and passed through a hidden
layer and a softmax prediction layer. When han-
dling four MPE premise sentences, we concate-
nate them into a single sequence (in the order of
the caption IDs) that we pass to the first LSTM.
When we only have a single premise sentence, we
simply pass it to the first LSTM.

Word-to-word attention Neural attention mod-
els have shown a lot of success on SNLI. We
evaluate the word-to-word attention model of
Rocktischel et al. (2016).! This model learns a
soft alignment of words in the premise and hy-
pothesis. One LSTM reads the premise and pro-
duces an output vector after each word. A second
LSTM, initialized by the final cell state of the first,
reads the hypothesis one word at a time. For each
word w; in the hypothesis, the model produces at-
tention weights oy over the premise output vec-
tors. The final sentence pair representation is a
nonlinear combination of the attention-weighted
representation of the premise and the final out-
put vector from the hypothesis LSTM. This final
sentence pair representation is passed through a
softmax layer to compute the cross-entropy loss.
Again, when training on MPE, we concatenate the
premise sentences into a single sequence as input
to the premise LSTM.

Premise-wise sum of experts (SE) The previ-
ous models all assume that the premise is a single
sentence, so in order to apply them naively to our
dataset, we have to concatenate the four premises.

'Our experiments use a reimplementation of their model
https://github.com/junfenglx/reasoning_attention



Training Class LSTM SE  Attention
SNLI only 526 559 55.0
E 85.8 715 81.7
N 84 216 16.4
C 557 62.0 54.5
MPE only 535 563 539
E 63.1 613 48.3
N 392 302 30.6
C 535 66.5 71.2
SNLI+MPE 604  60.0 64.0
E 65.1 654 75.9
N 409 427 32.8
C 672 65.1 71.5

Table 6: Entailment accuracy on MPE (test). SE is
best when training only on SNLI or MPE. Atten-
tion is best when training on SNLI+MPE.

To capture what distinguishes our task from stan-
dard entailment, we also consider a premise-wise
sum of experts (SE) model that makes four in-
dependent decisions for each premise paired with
the hypothesis. This model can adjust how it pro-
cesses each premise based on the relative predic-
tions of the other premises.

We apply the conditional LSTM repeatedly to
read each premise and the hypothesis, producing
four premise vectors p; ... p4 and four hypothesis
vectors hj ... hy (conditioned on each premise).
Each premise vector p; is concatenated with its
hypothesis vector h; and passed through a feed-
forward layer to produce logit prediction /;. We
sum [ ... l4 to obtain the final prediction, which
we use to compute the cross-entropy loss.

When training on SNLI, we apply the condi-
tional LSTM only once to read the premise and
hypothesis and produce p; and h;. We pass the
concatenation of p; and h; through the feedfor-
ward layer to produce /1, which we use to compute
the cross-entropy loss.

7 Training Details

For the LSTM and SE models, we use 300d GloVe
vectors (Pennington et al., 2014) trained on 840B
tokens as the input. The attention model uses
word2vec vectors (Mikolov et al., 2013) (replac-
ing with GloVe had almost no effect on perfor-
mance). We use the Adam optimizer (Kingma and
Ba, 2014) with the default configuration. We train
each model for 10 epochs based on convergence
on dev. For joint SNLI+MPE training, we use
the same parameters and pretrain for 10 epochs on
SNLI, then train for 10 epochs on MPE. This was
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the best joint training approach we found.

When training on SNLI, we use the best pa-
rameters reported for the word-to-word attention
model.> When training on MPE only, we set
dropout, learning rate, and LSTM dimensionality
as the result of a grid search on dev.’

8 Experimental Results

8.1 Overall Performance

Table 6 contains the test accuracies of the mod-
els from Section 6: LSTM, sum of experts (SE),
and word-to-word attention under three training
regimes: SNLI only, MPE only, and SNLI+MPE.

We train only on SNLI to see whether mod-
els can generalize from one entailment task to
the other. Interestingly, the attention model’s ac-
curacy on MPE is higher after training only on
SNLI than training on MPE, perhaps because it
requires much more data to learn reasonable at-
tention weighting parameters.

When training on SNLI or MPE alone, the best
model is SE, the only model that handles the four
premises. It is not surprising that the LSTM model
performs poorly, as it is forced to reduce a very
long sequence of words to a single vector. The
LSTM performs on par with SE when training on
SNLI+MPE, but our analysis (Section 5.3) shows
that their errors are quite different.

The attention model trained on SNLI+MPE has
the highest accuracy overall. We reason that pre-
training on SNLI is necessary to learn reason-
able parameters for the attention weights before
training on MPE, a smaller dataset where word-
to-word inferences may be less obvious. When
trained only on MPE, the attention model per-
forms much worse than SE, with particularly low
accuracy on entailing items.

We implemented a model that adds attention to
the SE model, but it overfit on SNLI and could
not match other models’ accuracy, reaching only
about 58% on dev compared to 59-63%. Future
work will investigate other approaches to combin-
ing the benefits of the SE and attention models.

8.2 Performance by Pair Agreement

To get a better understanding of how our task dif-
fers from standard entailment, we analyze how

’Dropout: 0.8, learning rate: 0.001, vector dim: 100,
batch size: 32

SLSTM: dropout: 0.8, vector dim: 75. SE: dropout: 0.8,
vector dim: 100. Attention: dropout: 0.6, vector dim: 100.
Learning rate: 0.001 for all models



Accuracy on SPE-MPE agreement subsets

# pairs agree 0 1 2 3 4
% of data 21.8 269 167 248 9.8
LSTM 573 576 605 67.1 633
SE 59.6 58.0 633 629 663
Attention 65.6 57.6 629 683 704

Table 7: Accuracy for each model (trained on
SNLI+MPE) on the dev data subsets that have 0—4
SPE labels that match the MPE label (Table 4).

performance is affected by the number of premises
whose SPE label agrees with the MPE label. Ta-
ble 7 shows the accuracy of each SNLI+MPE-
trained model on the dev data grouped by SPE-
MPE label agreement (as in Table 4).

The attention model has the highest accuracy on
three of five categories, including the most diffi-
cult category where none of the SPE labels match
the MPE label. SE has the highest accuracy in
the remaining two categories. The attention model
demonstrates large gains in the easiest categories,
perhaps because there is less advantage to aggre-
gating individual premise predictions (as SE does)
and more cases where attention weighting of in-
dividual words is useful. On the other hand, the
attention model also does well on the most dif-
ficult category, indicating that it may be able to
partially aggregate premises by increasing atten-
tion weights on phrases from multiple sentences.
Attention and SE exhibit complementary strengths
that we hope to combine in future work.

8.3 Performance by Semantic Phenomenon

Table 8 shows the performance of the three
SNLI+MPE-trained models over semantic phe-
nomena, based on the 100 annotated dev items
(see Section 5.3 and Table 5). It may not be infor-
mative to analyze performance on smaller classes
(e.g. phrase equivalence and phrase hypernymy),
but we can still look at other noticeable differences
between models.

Although the attention model outperformed
both LSTM and SE models in overall accuracy,
it is not the best in every category. Both SE and
attention have access to the same information, but
the attention model does better on items that con-
tain relationships like hypernyms and synonyms
for both words and short phrases. The SE model is
best at mutual exclusion, compatibility, and world
knowledge categories, e.g. knowing that a man
who is resting is not kayaking, and a bride is not
also a cheerleader. In cases that require analy-
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Accuracy
Phenomenon LSTM SE Att #
Word equivalence 500 562 688 16
Word hypernymy 526 474 526 19
Phrase equivalence 57.1 57.1 857 7
Phrase hypernymy 50.0 50.0 625 8
Mutual exclusion 68.0 72.0 60.0 25
Compatibility 50.0 61.1 50.0 18
World knowledge 57.1 629 457 35

Table 8: Accuracy for each semantic phenomenon
on 100 dev items. While attention was the best
model overall, it does not have the highest accu-
racy for all phenomena.

sis of mutually exclusive or compatible events, a
model like SE has an advantage since it can rein-
force its weighted combination prediction by ex-
amining each premise separately.

9 Conclusion

We presented a novel textual entailment task
that involves inference over longer premise
texts and aggregation of information from
multiple independent premise sentences. This
task is an important step towards a system
that can create a coherent scene representation
from longer texts, such as multiple indepen-
dent reports. We introduced a dataset for this
task (http://nlp.cs.illinois.edu/
HockenmaierGroup/data.html)  which
presents a more challenging, realistic entailment
problem and cannot be solved by majority voting
or related heuristics. We presented the results
of several strong neural entailment baselines on
this dataset, including one model that aggregates
information from the predictions of separate
premise sentences. Future work will investigate
aggregating information at earlier stages to
address the cases that require explicit reasoning
about the interaction of multiple premises.
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Abstract

To learn more knowledge, enabling tran-
sitivity is a vital step for lexical infer-
ence. However, most of the lexical infer-
ence models with good performance are
for nouns or noun phrases, which can-
not be directly applied to the inference
on events or states. In this paper, we
construct the largest Chinese verb lexical
inference dataset containing 18,029 verb
pairs, where for each pair one of four in-
ference relations are annotated. We fur-
ther build a probabilistic soft logic (PSL)
model to infer verb lexicons using the
logic language. With PSL, we easily en-
able transitivity in two layers, the observed
layer and the feature layer, which are in-
cluded in the knowledge base. We further
discuss the effect of transitives within and
between these layers. Results show the
performance of the proposed PSL model
can be improved at least 3.5% (relative)
when the transitivity is enabled. Fur-
thermore, experiments show that enabling
transitivity in the observed layer benefits
the most.

1 Introduction

Lexical inference is an important component of
natural language understanding for NLP tasks
such as textual entailment (Garrette et al., 2011),
metaphor detection (Mohler et al., 2013), and text
generation (Biran and McKeown, 2013) to ac-
quire implications not explicitly written in context.
Given two words, the goal of lexical inferences
is to detect whether there is an inference relation
between the lexicon pair. For example, the word
‘buy’ entails the word ‘have’. With the help of lex-
ical inference system, we can know “Mom has ap-
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ples” from the ground truth “Mom buys apples”to
answer the question “Who has apples?” without
explicitly mentioning it.

An intuitive solution to this problem is to first
represent the sense of words in the lexicon to cal-
culate the confidence of inferences from one sense
to another, or to build a classifier to distinguish
inference relations from other relations. Most re-
lated research is of one of these two types (Szpek-
tor and Dagan, 2008a; Kiela et al., 2015). How-
ever, for this problem it is difficult for these mod-
els to take into account transitivity. In the frame-
work of a lexical inference system, transitivity can
be included in three layers: the observed layer, the
feature layer, and the prediction layer. Figure 1
illustrates these layers and the corresponding tran-
sitives. The observed layer includes inference re-
lations we already know, e.g., true inferences from
the gold labels or ontologies; the feature layer in-
cludes the observed features for all lexicon pairs to
be predicted,i.e.,features for the testing data, and
the predicted layer saves the predicted inference
pairs, i.e., the relations of pairs in the testing data,
predicted by the model. As inference usually in-
volves available knowledge, the knowledge base
(KB) is shown in Figure 1 as well. KB contains
known information for the models. Therefore, in
this system, it includes the observed layer and the
feature layer which contain gold relations and the
features for the testing data respectively.

There has been several new rising research di-
rections involving lexical inference. The most rep-
resentative ones are the automatic problem solvers
and the open-domain question answering systems,
where inferring between events or states like Some
animals grow thick fur effecting Some animals
stay warm is critical (Clark et al., 2016). How-
ever, many recent works of lexical inference are
only designed for or being tested on nouns or noun
phrases (Jiang and Conrath, 1997; Kiela et al.,
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Figure 1: Three-layer lexical inference system.
Points of the same shape in each layer are the same
verbs; the solid arrow indicates the known infer-
ence relation; the dotted arrow indicates the hid-
den inference relation which can be inferred by the
known inference relations.

2015; Shwartz et al., 2016), which makes them
limited or not capable for these newly proposed
research problems.

In this paper, we adopt the probabilistic soft
logic (PSL) model to find lexical inference on Chi-
nese verbs toward the math word problem solver.
The contributions of this paper are listed as fol-
lows: (1) We build the largest Chinese verb lexical
inference dataset with four types of inference re-
lations as a potential testbed in the future. (2) We
show that in the proposed PSL model the transi-
tivity is easy to enabled and can benefit the lexical
inference on Chinese verbs. (3) We implement and
discuss the transitivity inter- and intra- layers and
conclude the transitivity within the observed layer
brings the most performance gain.

2 Related Work

One mainstream lexical inference extracts ei-
ther explicit or implicit features from the man-
ually constructed lexical knowledge.  Szpek-
tor (2009) constructs a WordNet inference chain
through substitution relations (synonyms and hy-
pernyms) defined in WordNet. Aharon (2010)
proposed a FrameNet Entailment-rule Derivation
(FRED) algorithm to inference on the framework
of FrameNet. FrameNet models the semantic ar-
gument structure of predicates in terms of proto-
typical situation, which is called frames. Predi-
cates belong to the same frames are highly related
to a specific situation defined for the frame. There-
fore, it is intuitive to acquire lexical inference pairs
from predicates in the same frame. However, no
matter WordNet or FrameNet was used, the cov-
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erage problem was always an issue when lever-
aging handcraft resources. Moreover, the rela-
tions of verbs in WordNet are rather flat compared
to nouns, which brings problems when directly
adopting approaches utilizing WordNet to detect
the inference between verbs.

An unsupervised concept, distributional simi-
larity, for measuring relations between words was
proposed to overcome the coverage problem. Dis-
tributional similarity related algorithms utilized a
large, unstructured corpus to learn lexical entail-
ment relations by assuming that semantically sim-
ilar lexicons appear with similar context (Harris,
1954). Various implementations were proposed
to assess contextual similarity between two lexi-
cons, including (Berant et al., 2010; Lin and Pan-
tel, 2001; Weeds et al., 2004). Lin Similarity, or
known as DIRT, is one commonly adopted method
to measure the lexical context similarity (Lin and
Pantel, 2001). Instead of applying the Distribu-
tional Hypothesis to verbs, Lin applied this hy-
pothesis to the paths in dependency trees. They
hypothesize that the meaning of two phrases is
similar, if their paths tend to link the same sets
of words in a dependency tree. Later, Weeds and
Weir (2004) proposed a general framework for di-
rectional similarity measurement. The measure-
ment examined the coverage of word w;’s features
against those of w;,.’s, and more coverage indicated
more similarity.

Lin Similarity generates errors as its symmet-
ric structure cannot tell the difference between
w; — w, and w, — w;. That is, it makes errors
on non-symmetric examples, like buy — take.
Moreover, Weeds’ method generates high score
when an infrequent lexicon has features similar
to those of another lexicon, which harms the per-
formance as it happens a lot for non-entailed lex-
icons. Therefore, Szpektor and Dagan (2008a)
proposed a hybrid method Balanced-Inclusion,
Blnc, and it was proved to outperform methods
proposed prior to it. In this paper, we adopt Blnc
measurement and complement with lexical re-
source method to construct a hybrid model, which
was proved to outperform both methods separately
on our dataset.

Recent research is exploiting the effect of tran-
sitivity during model training. The intuition is that
some implicit entailment relation is difficult to be
identified when there is no direct features support-
ing it. Sometimes previous work could find the



entailment pairs w; — wg and wy — ws, but
failed to answer distant entailment relation like
wy; — ws. Skeptor and Dagan (2009) first applied
transitive chaining in the knowledge provided by
the lexical ontology Wordnet (Miller, 1995) in the
feature layer. Berant et al. (2011) built a lexical
entailment knowledge graph given the predicted
results from the base classifier. They used inte-
ger linear programming (ILP) to find the latent
entailment in the prediction cascade, which tran-
sits in the prediction layer. Kloetzer et al. (2015),
whose system outperformed Berant et al.’s on their
own corpus, further use cascade entailment infer-
ence in the feature layer. They applied short tran-
sitivity optimization by a two-layered SVM clas-
sifier (Kloetzer et al., 2015). A set of candidate
transitivity paths were created by concatenating
two identified inference pairs from the first SVM
classifier, e.g., w3 — wg and wy — ws result
in a candidate path w; — ws — ws. Then the
two-layered SVM classifier re-predicted whether
there was an inference relation for the lexical pair
w1 — ws. However, none of these models takes
into account transitivity in the observed layer or
transitivity between two layers.

We select probabilistic soft logic (PSL) to
model the lexical inference problem. PSL is a re-
cently proposed alternative framework for prob-
abilistic logic (Bach et al., 2015). It was first
applied to the category prediction and similar-
ity propagation on Wikipedia documents to align
ontologies on a standard corpus of bibliographic
ontology (Brocheler et al., 2012). It has been
adopted in social network analysis, including so-
cial group modeling (Huang et al., 2012) and so-
cial trust analysis (Huang et al., 2013). For nat-
ural language processing, recently, Dhanya Srid-
har (2014) applied the PSL model to stance classi-
fication of on-line debates. Islam Beltagy (2014)
approached the textual problem by transforming
sentences into their logic representations and ap-
plying a PSL model to analyze word-to-word se-
mantic coverage between the hypothesis and the
premise. All these show that PSL is good at cap-
turing relations. However, PSL has not been uti-
lized yet in the lexical inference problem, and its
power to provide lexical transitivity has not been
tested, either. Thus in this paper, we explore its
ability on detecting verb lexical inference and on
enabling the transitivity.
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3 Approach

We start from describing the features for each lex-
icon pair. To use PSL, we define atoms and de-
sign rules to enable the inter- and intra-layer tran-
sitives. Finally, PSL will automatically learn the
rule weights by MLE to yield the best results.

3.1 Lexicon Pair Features

3.1.1 Lexical ontology features

E-HowNet is a large Chinese lexical resource ex-
tended from HowNet (Dong and Dong, 2006).
Manually constructed by several linguistic ex-
perts, it contains 93,953 Chinese words and 9,197
semantic types (concepts; some are sememes). It
was designed as an ontology of semantic types,
each is listed in both Chinese and in English. For
example, one semantic type is (Give|43). Each
semantic type has some instances which inherit the
concept of it. Lexical relations are also defined. In
addition to hypernym-hyponym pairs, E-Hownet
contains conflation pairs, including preconditions
like (Divorce|BEIE) is to (GetMarried|#518), con-
sequences like (Labor|fifi ) is to (Pregnant||®
%), and same-events like (Sell| &) is to (Buy|&).
The hypernym-hyponym relation and the confla-
tion relation are two features that we use to repre-
sent a lexicon pair.

3.1.2 Cohesion path score

Given two semantically related words, a key as-
pect of detecting lexical inference is the gener-
ality of the hypothesis compared to the premise.
Though we have a lexical ontology to tell us ex-
plicitly the hypernym-hyponym relations, a score
to estimate the degree of this compared generality
is still necessary for model learning. Therefore,
We define the cohesion score of a semantic type
with E-Hownet to model the generality. For each
semantic type s; € S which has a set of instantiate
words V;, the cohesion score of s; is calculated as

Coh (si) = & Do ST (V1,02) 3 0

vi,v2 € Vg,
where sim(v1,v9) is the word-embedding cosine
similarity of words v; and vs.

We construct a graph by considering hypernym,
hyponym, and conflation relations in E-HowNet
where nodes are semantic types and instantiate
words, and where edges are relations. Given a
word pair (v, v,), a set of paths P from v; to



v, can be found by traversing this graph, each of
which is denoted as p with edges in the edge set
E. Each of these edges in F is represented by the
triple e(n1, na, type.), where node ngy is of type
type. to node ny. Nodes here can be a word or a
semantic type. The PathScore(p) is defined as:

PathScore(p) =
coh(se), type. = Hyponym
HeeEp

1, otherwise
The idea of PathScore(p) is to calculate the gen-
erality lost, which is caused by hyponym rela-
tions, of each step of inference. The hypernym or
conflation relation does not lose generality, so the
PathScore(p) is always 1.

Empirically, those path p whose length exceed
10 are dropped as the inference chain is too long.
Finally, the cohesion path score of word pair
(v1,v2) is defined as:

2)

CohPathScore(v,va) =
In(maxy,ec pPathScore(p)) — In(m)
In(M) — In(m)

3)

while M and m are the Maximum and Mini-
mum PathScore respectively. The cohesion path
score also serves as a feature to build the PSL
model.

3.1.3 Distributional similarity

Distributional semantics has been used to exploit
the semantic similarities of the linguistic items
through large language data.

We applied the CKIP parser !, a well-known
Chinese text parser, to raw sentences. Context of
words are extracted as features fs of words, ac-
cording to parsed sentence trees.

Some pre-prosessing steps are performed.
Words appearing only once in the corpus are
dropped to reduce Chinese segmentation error.
For each Word v, we retrieve all the words that
share at least one feature with w and call them
candidate words. Drop the candidate word if it
shares less than 1 percent features, counted by fre-
quency, with word w. We then calculate the distri-
butional similarity score between w and its candi-
date words.

Balanced-inclusion (Blnc, (Szpektor and Da-
gan, 2008a)) is a well-known scoring function for

'CKIP parser : http://parser.iis.sinica.edu.tw/
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determining lexical entailment. It contains two
parts, one is semantic similarity measurement, and
one is semantic coverage direction measurement.
Given two words w;, w, and their feature sets Fj,
F,., the semantic similarity between w; and w,
is calculated by Lin similarity (Lin and Pantel,
2001):

 2gennp, [walf) +wu(f)]
> rer Wolf) + 22 rem, wor(f)
“)
The coverage direction measurement, which
provides clues of direction of entailment relation,
is calculated by Weed’s (Weeds et al., 2004) cov-
erage measurement:

Lin(vy, vy)

weed(vy, vy) = ZZJ":EfFl;F;Uu;E!Z;)f)
el v

The weight of each feature w(f) is the Point-
wise Mutual Information (PMI) between the word
v and the feature f :

®)

where pr(f) is probability of feature f. Blnc is
defined as geometric mean of the above two:

BInc(vy,v,) = v/Lin(v, v,) - Weed(vy, vr)
(7
To compare Blnc’s performance to the proposed
PSL model and utilize it as a feature, we imple-
mented it on the Chinese experimental dataset to
calculate the Blnc score of each lexicon pair.

3.1.4 Word Embeddings

Previous work has shown that word embeddings
work well on entailment relation recognition of
noun-noun pairs and (adj+noun)-noun pairs (Ba-
roni et al., 2012; Roller et al., 2014). We choose
glove (Pennington et al., 2014) to train embed-
dings of each word, and concatenate the embed-
ding of two words to create the embedding for
each word pair. This embedding then serves as the
feature in the rbf-kernel SVM classifier to predict
the entailment relation of the corresponding word
pair.

3.2 Probabilistic Soft Logic (PSL)

We use the PSL model to find the latent infer-
ence relations by enabling the transitivity of lex-



ical relations. The lexical relations include fea-
tures described in Section 3.1, and the known in-
ference relations in the observed layer. In PSL,
each relation of the lexicon pair v;, v, is writ-
ten as a (ground) atom a(vy, v,) in the logic lan-
guage. The description of the transitivity of atoms
a;(v1,v2), a;(ve,v3) and its latent inference rela-
tion, Etl(v1,v3) is written as a rule in the logic
language:

ai(vl, 1)2) Aaj (1)2, ’Ug) — Etl(vl, ’U3) (8)

Each rule is assigned a weight to denote the re-
liability of the hypothesis that given a;(vi,vs2),
a;j(ve,v3) are true, Etl(vy,v3) is also true. The
PSL model learns the rule weights by the training
set. We encode the transitivity inter-(¢ = j) and
intra-(i # j) different types of relations and their
resulting latent inference relation to construct the
experimental rule set.

Given a set of (ground) atoms a = {a1, ..., an},
we denote an interpretation the mapping [ : a —
[0, 1]™ from ground atoms to soft truth value. The
distance to satisfaction of each ground rule is de-
fined as:

d(?", I) = maX{07 I(rantecedent) - I(Tconsequent)}

)

The PSL model learns the weights A, of these
rules and optimizes the most probable interpreta-
tion of entailment relations, through the probabil-
ity density function f over I:

fI) = L exp|— ZTGR Ae(d(r, 1)P];  (10)

Z

where Z is the normalization term, A, is the
weight of rule r, R is the set of all ground rules,
and p € {1,2}. In this paper, we set p to 2, indi-
cating a squared function.

In the following section, we are going to de-
scribe the atoms defined in our lexical inference
model in Section 3.2.1. Then rules are defined in
Section 3.2.2. Last, weight learning is described
in Section 3.2.3

3.2.1 Atoms for PSL

Atoms are types of information provided in
Knowledge base in PSL model, Table 1 lists all
atoms defined in our lexical inference model. E'tl
denotes the entailment relation serving as the pre-
diction target. It is the only unknown atom.
In PSL model the number of prediction target

grows quadratically with the number of the enti-
ties (verbs), if no limitation is provided, which is
not desired and is time consuming. Thus C'dd in-
dicates canopies (McCallum et al., 2000) over the
prediction target. Hypr, Con, Coh, and Blnc
are the hypernym, conflation, cohesion path score,
and distributional similarity score Blnc features
described in Section 3.1. Svm is the prediction
of SVM classifier which takes concatenation of
word embeddings as feature. Obv represents the
knowledge of observed entailment lexical pairs for
the training phase. Note that the set of pairs with
Obv = true must not overlap with the testing set.

3.2.2 Inference rules for PSL

Having defined the atoms, the five features Hypr,
Con, BInc, Coh, and Svm are used in the de-
sign of five basic rules in Eq. 11. We further apply
the inference chain by concatenating two atoms to
create 25 rules shown as Eq.12 for feature-layer
transitivity. For transitivity in the observed layer,
we concatenate Obv atoms as shown in Eq.13.
Then we concatenate Obv with other features and
vice versa to add 10 additional rules shown as in
Eq.14,15 for bidirectional transitives between the
feature and the observed layers. Finally, the rule
—FEtl(vy1,v9) states that v; does not entail vy if the
previous rules are not applicable.

Rel(v1,v2) — Etl(vi,v2);

Rel € {Hypr,Con, BInc,Coh, Svm} an

Rel(vi,v2) A Rel(ve,v3) — Etl(vy,v3) (12)

Obu(v1,v2) A Obu(va,v3) — Etl(v1,v3)
(13)

Obv(v1,v2) A Rel(ve,v3) — Etl(vy,v3)
(14)

Rel(vy,v2) A Obv(ve,v3) — Etl(vy,v3)
(15)
3.2.3 Learning inference rule weights

The rule weights(\,) are determined using
maximum-likelihood estimation.

0
o logp(I) =

N ZTGRi (d(?", I)) + E [ZTERi (d(T, I)>]
(16)




Atom Name | Description
Canopies over prediction target. Return 1 if (v1,v2) is the prediction target
Cdd(’Ul,’Ug) .
in the task
Etl(vy,v9) Entail statement which is the prediction target.
Hypr(s1,s2) | Hypernym relation between two semantic concept: s is hypernym of ss.
Con(sy,s2) Conflation relation between two semantic types.
Ehow(vy, v2) | E-HowNet algorithm.
Dis(vq,v9) Blnc between v and vs.
Svm(vy,v2) Svm prediction featured by word embeddings
Obv(v1,v2) Observed entail statement.

Table 1: List of atoms in lexical inference model

The expected value E > . g, (d(r, 1 )] s
intractable. Thus it is approximated via
> rer, dr(I*), where I* is the most prob-
able interpretation given the current weight
(Kimmig et al., 2012).

4 Evaluation

4.1 Experiment Dataset

There are some of entailment dataset open to
research utility, but the Chinese Verb entail-
ment dataset (CVED) is special in some way.
First, most of the open entailment dataset in-
clude the entailment between noun-noun pairs,
adjective_noun-noun pairs, and quantity_noun-
quantity_noun pairs, but none of them consider the
entailment between verb-verb pairs like CVED.
Second, in my knowledge, our CVED is the largest
Chinese entailment dataset.

To get more verb lexical inference pairs for our
experiments, we collected verb pairs from math
application problems, which usually contain log-
ical relations in the descriptions for each problem.
A total of 995 verbs and 18,029 verb pairs were
extracted from 20,000 Chinese elementary math
problems, where the verbs in each pair are from
the same problem. Few types of verb are dis-
carded, including V_1, V2, VH, VI, V], VK and
VL ,which are adjective” and statement associated
verbs defined in CKIP?.

Given a set of verbs extracted from a math
problem, every possible directed verb pair was
labeled. If there were n verbs, n x (n — 1)
directed verb pairs (v; — v;) were collected,
where v; is the premise and v; is the hypothesis.
For example, if we extracted “sell”, “buy”, and

2 Adjective words are seen as kind of verbs in CKIP
3http://rocling.iis.sinica.edu.tw/CKIP/tr/
9305-2013%?20revision.pdf
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“pay” from the descriptions of the problem, we
added six directed verb pairs to the annotation set:
{(sell, buy), (sell,pay), (buy, pay), (buy, sell),
(pay, sell), (pay,buy)} We provide four types
of entailment label in CVED. One is commonly
seen hypernym relation. The same-event relations
are verb pairs related to same thing but in differ-
ent point of view Some examples are (sell, buy)
and (give, got). These are used by most earlier
research or in small-scale experiments (Szpektor
and Dagan, 2008b; Kiela et al., 2015). Another
two are casual relations, as premises in the pre-
condition and consequence relations are likely to
be true given their hypothesis in our daily life,
and because these relations are more useful in real
applications, we further consider these relations
as entailment relations. These relations are usu-
ally selected for web-scale experiments (Aharon
et al., 2010; Berant et al., 2011; Kloetzer et al.,
2015). Among all experimental verb pairs, 10%
were used for testing, 10% were used for develop-
ing and the remaining dataset was for training. A
five-fold training process was performed to learn
the best parameters for the testing model.

4.2 Experiment Setting

To achieve better performance, weights are ran-
domly initialized and retrained 10 times for each
fold. The best combination is derived by averaging
the five best weight sets obtained in the five-fold
cross-validation process. Two baselines are pro-
vided for the evaluation of the models with transi-
tivity disabled. Hyper+Conf is the ontology-based
baseline. In this setting, verb pairs with hyper-
nym and conflation relations found in E-Hownet
are reported as entailment pairs. Blnc is the distri-
butional similarity baseline, where we set a best
threshold for the development set and apply it



Precision | Recall | F1
Hyper+Conf | 0.547 0.189 | 0.281
Blnc 0.150 0.098 | 0.119
PSL 0.270 0.474 | 0.344

Table 2: Model performance: transitivity disabled.

to the testing set to identify the entailment rela-
tion. The 20,000 elementary math problems to-
gether with 61,777 sentences from Sinica Tree-
bank* are utilized to calculate the BInc score of
each verb pair. A set of 300 dimensional word
embedding representation is trained by a hybrid of
Sinica Treebank, elementary math problems and
Chinese Wikipedia.

To discuss the effect of transitivity within
(intra-) and between (inter-) different layers,
we build three additional models for PSL.
PSL_TrFeat allows transitivity within the fea-
ture layer, PSL_TrObv allows transitivity within
the observed layer on top of PSL_TrFeat, and
PSL_TrFeatObv allows transitivity betwen the ob-
served layer and the feature layer on top of
PSL_TrObv. Here we set the degree of transitiv-
ity to 2, and leave the determination of the best
transitivity degree as future work. For comparison,
we implement a SVM baseline ,the state-of-the-art
entailment classifier (Kloetzer(base)), and its tran-
sitivity framework (Kloetzer(TrFeatPred)) (Kloet-
zer et al., 2015). We use rbf-kernel SVM and the
other hyper-parameters are selected from the 5-
fold training.

4.3 Results and Discussion

Table 2 shows the performance of the proposed
PSL model when transitivity is disabled (PSL).
Unsurprisingly, Hyper+Conf achieves the high-
est precision as the relations found in E-Hownet
are built manually. False alarms come from pairs
that contain various unknown Chinese compound
words that E-Hownet does not include, e.g., a
%A (distribute to) is composed of 47 (issue) and
#i(give). We attempt to find its head to deter-
mine its sense, which sometimes causes errors.
Compared to Blnc, though in general distribu-
tional approaches may outperform ontology-based
approaches at least in recall, Hyper+Conf still per-
forms much better. We think the reason is that E-
Hownet already contains a large number of words

4sinica treeback: http://rocling.iis.sinica.edu.tw/CKIP/
engversion/treebank.htm
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and adopting the heuristic of finding the head for
compound words which could mitigates the cover-
age problem.

Table 3 shows the performance of various PSL
models when transitivity is enabled. We conduct a
SVM baseline, SVM(w2v), by concatenating the
word embeddings of two verbs as the features of
the verb pair and it performs comparably well,
indicating word embeddings are strong features.
Therefore, we discuss the effect of the strong and
the weak base settings here. The strong base set-
ting involves the prediction of SVM by word em-
beddings (relation SVM), while the weak base set-
ting involves the rest relations Hypr, Con, Blnc
and Coh. The SVM model from Kloetzer serves
as the second baseline. It involves more than 100
features but does not include word embeddings,
and hence we compare it with the PSL models
of the weak base setting. For the weak base set-
ting, the performance of PSL cannot beat that of
Kloetzer’s SVM in the very beginning, as SVM
is generally considered a more powerful classifier
and the Kloetzer’s SVM model involves compa-
rably more features. Surprisingly, this state-of-
the-art model from Kloetzer does not improve its
F1 score after enabling the transitivity in the fea-
ture layer by their transitivity framework. (Kloet-
zer(TrFeatPred) vs. Kloetzer(base): they report
a 2% improvement in average precision in their
paper.) For the proposed PSL models, enabling
transitivity in the feature layer (PSL(TrFeat) vs.
PSL(base)) does improve the F1 score from the
gain of recall. The reason for this could be that
the transitivities of Kloetzer’s features depend on
the transitivities of the prediction results. If the
predictions don’t indicate a path to transit, their
features will not be combined together for the next
prediction. Therefore, their transitivity framework
may involve the noise from the first prediction.
On the contrary, in our PSL models, all possi-
ble feature-layered transitivities between pairs are
explored. Hence, our feature-layered transitivity
models have the capabilities to improve the recall.

A significant improvement comes from en-
abling transitivity in the observed layer, that is,
if we know w; — w9 and wy — ws, we add
w1 — w3 to the gold labels. As the relations in the
observed layer constitute prior knowledge (known
from the training data and saved in the PSL knowl-
edge base), inferring from one relation to the other
involves less uncertainty. Therefore, compared to



Precision | Recall | F1
SVM(w2v) 0.850 0.500 | 0.630
PSL(WeakBase) 0.314 0.570 | 0.405
PSL(WeakBase_TrFeat) 0.348 0.645 | 0.452
PSL(WeakBase_TrObv) 0.675 0.577 | 0.622
PSL(WeakBase_TrFeatObv) | 0.544 0.613 | 0.577
Kloetzer(base) 0.390 0.590 | 0.469
Kloetzer(TrFeatPred) 0.385 0.604 | 0.470
PSL(StrongBase) 0.670 0.649 | 0.660
PSL(StrongBase_TrFeat) 0.667 0.649 | 0.658
PSL(StrongBase_TrObv) 0.624 0.757 | 0.684
PSL(StrongBase_TrFeatObv) | 0.612 0.764 | 0.680

Table 3: Model performance: transitivity enabled. PSL(StrongBase_TrObv) is significantly better than

all the other models with p-value < 0.001.

PSL(WeakBase_TrFeat), PSL(WeakBase_TrObv)
shows a great improvement in both preci-
sion and F1.  For recall, the feature-layer
transitivity (PSL(WeakBase_TrFeat)) enables the
model to reach more words for a better re-
call, while the enrichment of the prior knowl-
edge in PSL(WeakBase_TrObv) helps to elim-
inate uncertainty but decreases recall. If we
go further to enable transitivity between the ob-
served layer and the feature layer using model
PSL(WeakBase_TrFeatObV), it begins to suffer
from the lower precision caused by longer transi-
tivity. Overall, PSL(WeakBase_TrObV) achieves
best among all PSL(WeakBase) models, with im-
provements of 21.7% over the transitivity-disabled
PSL model.

Compared to the models of the weak base
setting, the PSL model of the strong base set-
ting without transitivity enabled has achieved
good performance in the very beginning

(F1=0.66). Its performance is better than
3 baselines, SVM(w2v), Kloetzer(base) and
Kloetzer(TrFeatPred). It also performs better

than the best PSL model of the weak base set-
ting, PSL(WeakBase_TrObv). The great thing
is, enabling transitivity achieves even better
performance in PSL(StrongBase TrObv) and
PSL(StrongBase_TrFeatObv).  For all models
of the strong base settings, only enabling the
transitivity in the feature layer does not benefit the
performance as this decreases the precision.

From all the experiment results, we can con-
clude the followings. First, enabling transitivi-
ties help to find more inference pairs no matter
the initial model is strong or weak. Second, for
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a general model, transitivities inter- or intra- lay-
ers both help it become stronger; however, for a
strong model, only the transitivities intra- or in-
ter the observed layer, i.e., involving the gold la-
bels, contribute to the performance gain. In other
words, only solid knowledge can make a strong
model even stronger through transitivities.

5 Conclusion

We have proposed a PSL model to explore the
power of transitivity. In this process, the easy
and straightforward nature of PSL in considering
transitives for lexical inference is demonstrated.
Results show that the best PSL. model achieves
the F1 score 0.684. Moreover, the proposed base
PSL model has already achieved well and mod-
els with transitivity enabled achieve even better,
which confirms the power of transitivity for solv-
ing the lexical inference problem on verbs. We
will release the current experimental dataset. Fu-
ture goals include enlarging our dataset by includ-
ing web word pairs and applied the predicted re-
sults in textual entailment tasks. The constructed
CVED dataset can be found in the NLPSA lab
webpage’.
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Abstract

In this work, we explore multiple neu-
ral architectures adapted for the task of
automatic post-editing of machine trans-
lation output. We focus on neural end-
to-end models that combine both inputs
mt (raw MT output) and src (source lan-
guage input) in a single neural architec-
ture, modeling {mt, src} — pe directly.
Apart from that, we investigate the influ-
ence of hard-attention models which seem
to be well-suited for monolingual tasks, as
well as combinations of both ideas. We
report results on data sets provided dur-
ing the WMT-2016 shared task on au-
tomatic post-editing and can demonstrate
that dual-attention models that incorporate
all available data in the APE scenario in a
single model improve on the best shared
task system and on all other published re-
sults after the shared task. Dual-attention
models that are combined with hard atten-
tion remain competitive despite applying
fewer changes to the input.

1 Introduction

Given the raw output of a (possibly unknown) ma-
chine translation system from language src to lan-
guage mt, Automatic Post-Editing (APE) is the
process of automatic correction of raw MT output
(mt), so that a closer resemblance to human post-
edited MT output (pe) is achieved. While APE
systems that only model mt — pe yield good re-
sults, the field has always strived towards methods
that also integrate src in various forms.

With neural encoder-decoder models, and
multi-source models in particular, this can be now
achieved in more natural ways than for previously
popular phrase-based statistical machine transla-
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tion (PB-SMT) systems. Despite this, previously
reported results for multi-source or dual-source
models in APE scenarios are unsatisfying in terms
of performance.

In this work, we explore a number of single-
source and dual-source neural architectures which
we believe to be better fits to the APE task than
vanilla encoder-decoder models with soft atten-
tion. We focus on neural end-to-end models that
combine both inputs mt and src in a single neu-
ral architecture, modeling {mt, src} — pe di-
rectly. Apart from that, we investigate the influ-
ence of hard-attention models, which seem to be
well-suited for monolingual tasks. Finally, we cre-
ate combinations of both architectures.

We report results on data sets provided dur-
ing the WMT-2016 shared task on automatic post-
editing (Bojar et al., 2016) and compare our per-
formance against the shared task winner, the sys-
tem submitted by the Adam Mickiewicz Univer-
sity (AMU) team (Junczys-Dowmunt and Grund-
kiewicz, 2016), and a more recent system by Pal
et al. (2017) with the previously best published re-
sults on the same test set.

Our main contributions are: (1) we perform
a thorough comparison of end-to-end neural ap-
proaches to APE during which (2) we demon-
strate that dual-attention models that incorporate
all available data in the APE scenario in a sin-
gle model achieve the best reported results for the
WMT-2016 APE task, and (3) show that models
with a hard-attention mechanism reach competi-
tive results although they execute fewer edits than
models relying only on soft attention.

The remainder of the paper is organized as fol-
lows: Previous relevant work is described in Sec-
tion 2. Section 3 summarizes the basic encoder-
decoder with attention architecture that is fur-
ther extended with multiple non-standard attention
mechanisms in Section 4. These attention mecha-
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nisms are: hard-attention in Section 4.1, a combi-
nation of hard attention and soft attention in Sec-
tion 4.2, dual soft attention in Section 4.3 and a
combination of hard attention and dual soft atten-
tion in Section 4.4. We describe experiments and
results in Section 5 and conclude in Section 7.

2 Previous work

Before the application of neural sequence-to-
sequence models to APE, most APE systems
would rely on phrase-based SMT following a
monolingual approach first introduced by Simard
et al. (2007). Béchara et al. (2011) proposed
a “‘source-context aware” variant of this ap-
proach where automatically created word align-
ments were used to create a new source language
which consisted of joined MT output and source
token pairs. The inclusion of source-language
information in that form was shown to improve
the automatic post-editing results (Béchara et al.,
2012; Chatterjee et al., 2015). The quality of the
used word alignments plays an important role for
this methods, as demonstrated for instance by Pal
et al. (2015).

During the WMT-2016 APE shared task two
systems relied on neural models, the CUNI sys-
tem (Libovicky et al., 2016) and the shared task
winner, the system submitted by the AMU team
(Junczys-Dowmunt and Grundkiewicz, 2016).
This submission explored the application of neu-
ral translation models to the APE problem and
achieved good results by treating different mod-
els as components in a log-linear model, allowing
for multiple inputs (the source src and the trans-
lated sentence m¢t) that were decoded to the same
target language (post-edited translation pe). Two
systems were considered, one using src as the in-
put (src — pe) and another using mt as the input
(mt — pe). A simple string-matching penalty in-
tegrated within the log-linear model was used to
control for higher faithfulness with regard to the
raw MT output. The penalty fired if the APE sys-
tem proposed a word in its output that had not
been seen in mt. The influence of the components
on the final result was tuned with Minimum Error
Rate Training (Och, 2003) with regard to the task
metric TER.

Following the WMT-2016 APE shared task, Pal
et al. (2017) published work on another neural
APE system that integrated precomputed word-
alignment features into the neural structure and en-
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forced symmetric attention during the neural train-
ing process. The result was the best reported sin-
gle neural model for the WMT-2016 APE test set
prior to this work. With n-best list re-ranking and
combination with phrase-based post-editing sys-
tems, the authors improved their results even fur-
ther. None of their systems, however, integrated
information from src, all modeled mt — pe.

3 Attentional Encoder-Decoder

Implementations of all models explored in this pa-
per are available in the Marian! toolkit (Junczys-
Dowmunt et al., 2016). The attentional encoder-
decoder model in Marian is a re-implementation
of the NMT model in Nematus (Sennrich et al.,
2017). The model differs from the standard model
introduced by Bahdanau et al. (2015) by several
aspects, the most important being the conditional
GRU with attention. The summary provided in
this section is based on the description in Sennrich
et al. (2017).

Given the raw MT output sequence
(x1,...,z7,) of length T, and its manually
post-edited equivalent (y1, ..., yr,) of length T},
we construct the encoder-decoder model using the
following formulations.

Encoder context A single forward encoder state

H .
h ; is calculated as:

—

.
h; = GRU(h;_1, F[z;]),

where F' is the encoder embeddings matrix. The
GRU RNN cell (Cho et al., 2014) is defined as:

GRU (s,x) =(1—2) ©s+z Os,
s =tanh (Wx +r © Us),
r=o0(W,x+U,s),
z=0(W,x+U,s),

(D

where x is the cell input; s is the previous recurrent
state; W, U, W,, U,, W_, U, are trained model
parameters”; o is the logistic sigmoid activation
function. The backward encoder state is calculated
analogously over a reversed input sequence with
its own set of trained parameters.

Let h; be the annotation of the source symbol
at position %, obtained by concatenating the for-
ward ani bagward encoder RNN hidden states,
h; = [h;; h,], the set of encoder states C
{hi,...,hy, } then forms the encoder context.

"https://github.com/marian—nmt/marian
Biases have been omitted.



Decoder initialization The decoder is initial-
ized with start state sg, computed as the average
over all encoder states:

Conditional GRU with attention We follow
the Nematus implementation of the conditional
GRU with attention, cGRU :

Z;fr% h;

so = tanh (Wim’t T
x

s; = cCGRUy (sj—1, E[y;-1],C), (2)

where s; is the newly computed hidden state, s;_1
is the previous hidden state, C the source context
and E[y;_1] is the embedding of the previously
decoded symbol y;_1.

The conditional GRU cell with attention,
c¢GRU,y, has a complex internal structure, consist-
ing of three parts: two GRU layers and an inter-
mediate attention mechanism ATT.

Layer GRU; generates an intermediate repre-
sentation s; from the previous hidden state s;_;
and the embedding of the previous decoded sym-
bol Efy;_1]:

s = GRU] (sj_1, E[y;—1]) .

The attention mechanism, ATT, inputs the en-
tire context set C along with intermediate hidden
state s;- in order to compute the context vector c;
as follows:

T;L'
c; =ATT (C,s}) = aj;h;,
%

_ exp(eij)
E:iiﬂ,exp(ekj)

e;; =v] tanh (U,s) + W,h;)

Oél'j

where «;; is the normalized alignment weight be-
tween source symbol at position ¢ and target sym-
bol at position j, and v,, U,, W, are trained
model parameters.

Layer GRU> generates s;, the hidden state of
the cGRU,y, from the intermediate representation
s;- and context vector c;:

S; = GRU2 (S;-, C]’) .

Deep output Finally, given s;, y;_1, and c;, the
output probability p(y;|s;,y;—1,c;) is computed
by a softmax activation as follows:

P(yjls;,yj-1,¢;) = softmax (t; W) ,
t]’ = tanh (Sthl + ]:‘j[z/j‘,l]vv,g2 + Cthg) .
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Wi, , Wy,, Wy, W, are the trained model pa-
rameters.

This rather standard encoder-decoder model
with attention is our baseline and denoted as
CGRU.

4 Encoder-Decoder Models with
APE-specific Attention Models

The following models reuse most parts of the
architecture described above wherever possible,
most differences occur in the decoder RNN cell
and the attention mechanism. The encoders are
identical, so are the deep output layers.

4.1 Hard Monotonic Attention

Aharoni and Goldberg (2016) introduce a sim-
ple model for monolingual morphological re-
inflection with hard monotonic attention. This
model looks at one encoder state at a time, start-
ing with the left-most encoder state and progress-
ing to the right until all encoder states have been
processed.

The target word vocabulary V,, is extended with
a special step symbol (V,; = V,, U {(STEP)}) and
whenever (STEP) is predicted as the output sym-
bol, the hard attention is moved to the next encoder
state. Formally, the hard attention mechanism
is represented as a precomputed monotonic se-
quence (a1, ..., ar,) which can be inferred from
the target sequence (y1, . . ., yr,) (containing orig-
inal target symbols and 7, step symbols) as fol-
lows:

alzl,

=

For a given context C = {hy,..., hy }, the at-
tended context vector at time step j is simply ;.

Following the description by Aharoni and Gold-
berg (2016) for their LSTM-based model, we
adapt the previously described encoder-decoder
model to incorporate hard attention. Given the se-
quence of attention indices (a1, .. ., ar, ), the con-
ditional GRU cell (Eq. 2) used for hidden state
updates of the decoder is replaced with a simple
GRU cell (Eq. 1) (thus removing the soft-attention
mechanism):

aj—1+ 1 ifyj_l = <STEP>

aj_1 otherwise.

sj = GRU (s;—1, [Elyj-1]:ha,]), O

where the cell input is now a concatenation of the
embedding of the previous target symbol E[y;_1]



and the currently attended encoder state h, ;. This
model is labeled GRU-HARD.

We find this architecture compelling for mono-
lingual tasks that might require higher faithfulness
with regard to the input. With hard monotonic at-
tention, the translation algorithm can enforce cer-
tain constraints:

1. The end-of-sentence symbol can only be gen-
erated if the hard attention mechanism has
reached the end of the input sequence, en-
forcing full coverage;

The (STEP) symbol cannot be generated once
the end-of-sentence position in the source has
been reached. It is however still possible to
generate content tokens.

This model requires a target sequence with
correctly inserted (STEP) symbols. For the de-
scribed APE task, using the Longest Common
Subsequence algorithm (Hirschberg, 1977), we
first generate a sequence of match, delete and in-
sert operations which transform the raw MT out-
put (x1, - - - xp,) into the corrected post-edited se-
quence (yi, - - -yTy)S. Next, we map these opera-
tions to the final sequence of steps and target to-
kens according to the following rules:

For each matched pair of tokens z, y we pro-
duce symbols: (STEP) y;

For each inserted target token y we produce
the same token y;

For each deleted source token x we produce
(STEP);

Since at initialization of the model a; = 1,
i.e. the first encoder state is already attended
to, we discard the first symbol in the new se-
quence if it is a (STEP) symbol.

4.2 Hard and Soft Attention

While the hard attention model can be used to en-
force faithfulness to the original input, we would
also like the model to be able to look at informa-
tion anywhere in the source sequence which is a
property of the soft attention model.

By re-introducing the conditional GRU cell
with soft attention into the GRU-HARD model
while also inputting the hard-attended encoder

3Similar to GNU wdi ff.
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state h,;, We can try to take advantage of both at-
tention mechanisms. Combining Eq. 2 and Eq. 3,
we get:

s;j = ¢CGRUy (sj_1, [Elyj-1];hg,],C) . 4
The rest of the model is unchanged; the transla-
tion process is the same as before and we use the

same target step/token sequence for training. This
model is called CGRU-HARD.

4.3 Soft Dual-Attention

Neural multi-source models (Zoph and Knight,
2016) seem to be a natural fit for the APE task as
raw MT output and original source language input
are available. Although applications to the APE
problem have been reported (Libovicky and Helcl,
2017), state-of-the-art results seem to be missing.

In this section we give details about our dual-
source model implementation. We rename the ex-
isting encoder C to C"™ to signal that the first en-
coder consumes the raw MT output and introduce
a structurally identical second encoder C*"¢ =
{hi", ..., h7° } over the source language. To
compute the decoder start state sy for the multi-
encoder model we concatenate the averaged en-
coder contexts before mapping them into the de-
coder state space:

Tmt . mt Tsre 1,87C
> i W 3 b

Winit
?
Tmt Tsrc

Sp = tanh

In the decoder, we replace the conditional GRU
with attention, with a doubly-attentive cGRU cell
(Calixto et al., 2017) over contexts C" and C*"¢:

Sj = CGRUZ-an (Sj_l, E[yj_l], Cmt, CSTC) . (5)

The procedure is similar to the original cGRU,
differing only in that in order to compute the con-
text vector c¢;, we first calculate contexts vectors

c}”t and erc for each context and then concate-

nate* the results:

4Calixto et al. (2017) combine their two attention models
by modifying their GRU cell to include another set of param-
eters that is multiplied with the additional context vector and
summed in the GRU-components. Formally, both approaches
give identical results, as for concatenation the original pa-
rameters have to grow in size to match the now longer input
vector dimensions. The GRU cell itself does not need to be
modified.



s =GRU\ (s;_1, E[y;_1]),
Tmt

Z Oé” hmt

T@’r‘(’

E O[z] hSTC

L =ATT (C™,s %)

STC _ATT CST‘C

mt, src]
)

Cj:[cj 1 €5

s; =GRUy (s;-,cj) .

This could be easily extended to an arbitrary
number of encoders with different architectures.
During training, this model is fed with a tri-
parallel corpus, and during translation both input
sequences are processed simultaneously to pro-
duce the corrected output. This model is denoted
as M-CGRU.

4.4 Hard Attention with Soft Dual-Attention

Analogously to the procedure described in sec-
tion 4.2, we can extend the doubly-attentive cGRU
to take the hard-attended encoder context as addi-
tional input:

Sj = CGRUQ.an (Sj_l, [E[y] 1] hmti| Cmt, Csrc>‘

In this formulation, only the first encoder con-
text C"™ is attended to by the hard monotonic at-
tention mechanism. The target training data con-
sists of the step/token sequences used for all pre-
vious hard-attention models. We call this model
M-CGRU-HARD.

5 Experiments and Results

5.1 Training, Development, and Test Data

We perform all our experiments® with the official
WMT-2016 (Bojar et al., 2016) automatic post-
editing data and the respective development and
test sets. The training data consists of a small
set of 12,000 post-editing triplets (srec, mt, pe),
where src is the original English text, mt is
the raw MT output generated by an English-to-
German system, and pe is the human post-edited
MT output. The MT system used to produce the
raw MT output is unknown, so is the original train-
ing data. The task consists of automatically cor-
recting the MT output so that it resembles human

SAll experiments in this sections can be reproduced

following the instructions on https://marian-nmt.
github.io/examples/exploration/.
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Data set Sentences TER
training set 12,000 26.22
development set 1,000 24.81
test set 2,000 -

artificial-large 4,335,715 36.63
artificial-small 531,839 25.28

Table 1: Statistics for artificial data sets in com-
parison to official training and development data.
Adapted from Junczys-Dowmunt and Grund-
kiewicz (2016).

post-edited data. The main task metric is TER
(Snover et al., 2006) — the lower the better —
with BLEU (Papineni et al., 2002) as a secondary
metric.

To overcome the problem of too little training
data, Junczys-Dowmunt and Grundkiewicz (2016)
— the authors of the best WMT-2016 APE shared
task system — generated large amounts of artifi-
cial data via round-trip translations. The artificial
data has been filtered to match the HTER statistics
of the training and development data for the shared
task and was made available for download®. Ta-
ble 1 summarizes the data sets used in this work.

To produce our final training data set we over-
sample the original training data 20 times and add
both artificial data sets. This results in a total of
slightly more than 5M training triplets. We val-
idate on the development set for early stopping
and report results on the WMT-2016 test set. The
data is already tokenized. Additionally we true-
case all files and apply segmentation into BPE sub-
word units (Sennrich et al., 2016). We reuse the
subword units distributed with the artificial data
set. For the hard-attention models, we create tar-
get training and development files following the
LCS-based procedure outlined in section 4.1.

5.2 Training parameters

All models are trained on the same training data.
Models with single input encoders take only the
raw MT output (m¢t) as input, dual-encoder mod-
els use raw MT output (mt) and the original source
(pe). The training procedures and model settings
are the same whenever possible:

®The artificial filtered data has been made available
athttps://github.com/emjotde/amunmt/wiki/
AmuNMT-for—-Automatic-Post-Editing.



dev 2016 test 2016
Model TER| BLEUT TER]| BLEUJ
WMT-2016 BASELINE-1 (Bojar et al., 2016) 25.14 6292 2476  62.11
WMT-2016 BASELINE-2 (Bojar et al., 2016) - - 24.64  63.47
Junczys-Dowmunt and Grundkiewicz (2016)  21.46 68.94 21.52 67.65
Pal et al. (2017) SYMMETRIC - - 21.07  67.87
Pal et al. (2017) RERANKING - - 20.70  69.90

Table 2: Results from the literature for the WMT-2016 APE development and test set.

dev 2016 test 2016
Model TER| BLEUT TER| BLEUJ
CGRU 22.01 68.11 22.27 66.90
GRU-HARD 22.72 66.82 22.72 65.86
CGRU-HARD 22.11 67.82 22.10 67.15
M-CGRU 20.79 69.28 20.69 68.56
M-CGRU X 4 20.10 70.24 19.92 69.40
M-CGRU-HARD 20.83 69.02 20.87 68.14
M-CGRU-HARD X 4 20.08 70.05 20.34 68.96

Table 3: Results for models explored in this work. Models with x 4 are ensembles of four models. The
main WMT 2016 APE shared task metric was TER (the lower the better).

* All embedding vectors consist of 512 units;
the RNN states use 1024 units. We choose
a vocabulary size of 40,000 for all inputs
and outputs. When hard attention models are
trained the maximum sentence length is 100
to accommodate the additional step symbols,
otherwise 50.

To avoid overfitting, we use pervasive
dropout (Gal and Ghahramani, 2016) over
GRU steps and input embeddings, with
dropout probabilities 0.2, and over source and
target words with probabilities 0.2.

We use Adam (Kingma and Ba, 2014) as our
optimizer, with a mini-batch size of 64. All
models are trained with Asynchronous SGD
(Adam) on three to four GPUs.

We train all models until convergence (early-
stopping with a patience of 10 based on
development set cross-entropy cost), sav-
ing model checkpoints every 10,000 mini-
batches. For different models we ob-
served early stopping to be triggered between
600,000 and 900,000 mini-batch updates or
between 8 and 11 epochs.
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* The best eight model checkpoints w.r.t. de-
velopment set cross-entropy of each train-
ing run are averaged element-wise (Junczys-
Dowmunt et al., 2016) resulting in new sin-
gle models with generally improved perfor-
mance.

For the multi-source models we repeat the
mentioned procedure four times with differ-
ent randomly initialized weights.

Training time for one model on four NVIDIA
GTX 1080 GPUs or NVIDIA TITAN X (Pascal)
GPUs is between one and two days, depending on
model complexity. The M-CGRU-HARD model is
the most complex and trains longest.

5.3 Evaluation

Table 2 contains relevant results for the WMT-
2016 APE shared task — during the task and af-
terwards. WMT-2016 BASELINE-1 is the raw un-
corrected MT output. BASELINE-2 is the result
of a vanilla phrase-based Moses system (Koehn
et al., 2007) trained only on the official 12,000
sentences. Junczys-Dowmunt and Grundkiewicz
(2016) is the best system at the shared task. Pal



Model TER-pe TER-mt
CGRU 22.27 12.01
GRU-HARD 22.72 9.48
CGRU-HARD 22.10 11.57
M-CGRU 20.69 15.98
M-CGRU x 4 19.92 15.41
M-CGRU-HARD 20.87 13.62
M-CGRU-HARD x 4  20.34 13.34

Table 4: TER w.r.t. the reference compared to TER
w.r.t. the input on test 2016. Lower results for
TER-m¢t indicate greater similarity to the input.

et al. (2017) SYMMETRIC is the currently best re-
ported result on the WMT-2016 APE test set for
a single neural model (single source), whereas Pal
et al. (2017) RERANKING — the overall best re-
ported result on the test set — is a system com-
bination of Pal et al. (2017) SYMMETRIC with
phrase-based models via n-best list re-ranking.

In Table 3 we present the results for the mod-
els discussed in this work. Unsurprisingly, none
of the single attention models can compete with
the better systems reported in the literature. The
encoder-decoder model with only hard monotonic
attention (GRU-HARD) is the clear loser, while the
comparison between CGRU and CGRU-HARD re-
mains inconclusive. CGRU-HARD seems to gener-
alize slightly better, but would not have been cho-
sen based on the development set performance.

The dual-attention models each outperform the
best WMT-2016 system and the currently reported
best single-model Pal et al. (2017) SYMMETRIC.
The ensembles also beat the system combination
Pal et al. (2017) RERANKING in terms of TER
(not in terms of BLEU though). The simpler dual-
attention model with no hard-attention M-CGRU
reaches slightly better results on the test set than
its counterpart with added hard attention M-CGRU-
HARD, but the situation would have been less clear
if only the development set were used to determine
the best model. The hard-attention model with
dual soft-attention benefits less from ensembling.

6 Analysis

6.1 Faithfulness and Errors

We postulated that the hard-attention models
might have a potential for higher faith