
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 660–667, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Multi-Lingual Coreference Resolution With Syntactic Features

Xiaoqiang Luo and Imed Zitouni
1101 Kitchawan Road

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, U.S.A.

{xiaoluo, izitouni}@us.ibm.com

Abstract

In this paper, we study the impact of a
group of features extracted automatically from
machine-generated parse trees on coreference
resolution. One focus is on designing syn-
tactic features using the binding theory as the
guideline to improve pronoun resolution, al-
though linguistic phenomenon such as apposi-
tion is also modeled. These features are ap-
plied to the Arabic, Chinese and English coref-
erence resolution systems and their effective-
ness is evaluated on data from the Automatic
Content Extraction (ACE) task. The syntactic
features improve the Arabic and English sys-
tems significantly, but play a limited role in the
Chinese one. Detailed analyses are done to un-
derstand the syntactic features’ impact on the
three coreference systems.

1 Introduction

A coreference resolution system aims to group together
mentions referring to the same entity, where a mention is
an instance of reference to an object, and the collection of
mentions referring to the same object in a document form
an entity. In the following example:

(I) “John believes himself to be the best student.”

mentions are underlined. The three mentions “John”,
“himself”, “the best student” are of type name, pronoun 1,
and nominal, respectively. They form an entity since they
all refer to the same person.

Syntactic information plays an important role in corefer-
ence resolution. For example, the binding theory (Haege-
man, 1994; Beatrice and Kroch, 2000) provides a good
account of the constraints on the antecedent of English
pronouns. The theory relies on syntactic parse trees to de-
termine the governing category which defines the scope

1“Pronoun” in this paper refers to both anaphor and normal
pronoun.

of binding constraints. We will use the theory as a guide-
line to help us design features in a machine learning
framework.

Previous pronoun resolution work (Hobbs, 1976; Lappin
and Leass, 1994; Ge et al., 1998; Stuckardt, 2001) explic-
itly utilized syntactic information before. But there are
unique challenges in this study: (1) Syntactic informa-
tion is extracted from parse trees automatically generated.
This is possible because of the availability of statistical
parsers, which can be trained on human-annotated tree-
banks (Marcus et al., 1993; Xia et al., 2000; Maamouri
and Bies, 2004) for multiple languages; (2) The bind-
ing theory is used as a guideline and syntactic structures
are encoded as features in a maximum entropy corefer-
ence system; (3) The syntactic features are evaluated on
three languages: Arabic, Chinese and English (one goal
is to see if features motivated by the English language can
help coreference resolution in other languages). All con-
trastive experiments are done on publicly-available data;
(4) Our coreference system resolves coreferential rela-
tionships among all the annotated mentions, not just for
pronouns.

Using machine-generated parse trees eliminates the need
of hand-labeled trees in a coreference system. How-
ever, it is a major challenge to extract useful informa-
tion from these noisy parse trees. Our approach is encod-
ing the structures contained in a parse tree into a set of
computable features, each of which is associated with a
weight automatically determined by a machine learning
algorithm. This contrasts with the approach of extracting
rules and assigning weights to these rules by hand (Lap-
pin and Leass, 1994; Stuckardt, 2001). The advantage
of our approach is robustness: if a particular structure is
helpful, it will be assigned a high weight; if a feature is
extracted from a highly noisy parse tree and is not in-
formative in coreference resolution, it will be assigned
a small weight. By avoiding writing rules, we automati-
cally incorporate useful information into our model and at
the same time limit the potentially negative impact from
noisy parsing output.
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2 Statistical Coreference Resolution Model

Our coreference system uses a binary entity-mention
model PL(·|e, m) (henceforth “link model”) to score the
action of linking a mention m to an entity e. In our im-
plementation, the link model is computed as

PL(L = 1|e, m) ≈ max
m′∈e

P̂L(L = 1|e, m′, m), (1)

where m′ is one mention in entity e, and the basic model
building block P̂L(L = 1|e, m′, m) is an exponential or
maximum entropy model (Berger et al., 1996):

P̂L(L|e, m′, m) =
exp

{
∑

i λigi(e, m
′, m, L)

}

Z(e, m′, m)
, (2)

where Z(e, m′, m) is a normalizing factor to ensure that
P̂L(·|e, m′, m) is a probability, {gi(e, m

′, m, L)} are fea-
tures and {λi} are feature weights.

Another start model is used to score the action of creating
a new entity with the current mention m. Since starting
a new entity depends on all the partial entities created in
the history {ei}

t
i=1

, we use the following approximation:

PS(S = 1|e1, e2, · · · , et, m) ≈

1 − max
1≤i≤t

PL(L = 1|ei, m) (3)

In the maximum-entropy model (2), feature (typically bi-
nary) functions {gi(e, m

′, m, ·)} provide us with a flex-
ible framework to encode useful information into the
the system: it can be as simple as “gi(e, m

′, m, L =
1) = 1 if m′ and m have the same surface string,” or
“gj(e, m

′, m, L = 0) = 1 if e and m differ in num-
ber,” or as complex as “gl(e, m

′, m, L = 1) = 1 if m′

c-commands m and m′ is a NAME mention and m is a
pronoun mention.” These feature functions bear similar-
ity to rules used in other coreference systems (Lappin and
Leass, 1994; Mitkov, 1998; Stuckardt, 2001), except that
the feature weights {λi} are automatically trained over a
corpus with coreference information. Learning feature
weights automatically eliminates the need of manually
assigning the weights or precedence of rules, and opens
the door for us to explore rich features extracted from
parse trees, which is discussed in the next section.

3 Syntactic Features

In this section, we present a set of features extracted
from syntactic parse trees. We discuss how we approx-
imately compute linguistic concepts such as governing
category (Haegeman, 1994), apposition and dependency
relationships from noisy syntactic parse trees. While
parsing and parse trees depend on the target language,
the automatic nature of feature extraction from parse trees
makes the process language-independent.
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Figure 1: GC examples.

3.1 Features Inspired by Binding Theory

The binding theory (Haegeman, 1994) concerning pro-
nouns can be summarized with the following principles:

1. A reflexive or reciprocal pronoun (e.g., “herself” or
“each other”) must be bound in its governing cate-
gory (GC).

2. A normal pronoun must be free in its governing cat-
egory.

The first principle states that the antecedent of a reflexive
or reciprocal pronoun is within its GC, while the second
principle says that the antecedent of a normal pronoun is
outside its GC. While the two principles are simple, they
all rely on the concept of governing category, which is
defined as the minimal domain containing the pronoun in
question, its governor, and an accessible subject.

The concept GC can best be explained with a few exam-
ples in Figure 1, where the label of a head constituent
is marked within a box, and GC, accessible subject, and
governor constituents are marked in parentheses with
“GC”, “Sub” and “gov.” Noun-phrases (NP) are num-
bered for the convenience of referencing. For example,
in sub-figure (1) of Figure 1, the governor of “himself”
is “likes,” the subject is “John,” hence the GC is the en-
tire sentence spanned by the root “S.” Since “himself”
is reflexive, its antecedent must be “John” by Principle
1. The parse tree in sub-figure (2) is the same as that
in sub-figure (1), but since “him” is a normal pronoun,
its antecedent, according to Principle 2, has to be out-
side the GC, that is, “him” cannot be coreferenced with
“John.”. Sentence in sub-figure (3) is slightly more com-
plicated: the governor of “herself” is “description,” and
the accessible subject is “Miss Smith.” Thus, the govern-
ing category is NP6. The first principle implies that the
antecedent of “herself” must be “Miss Smith.”

It is clear from these examples that GC is very useful
in finding the antecedent of a pronoun. But the last ex-
ample shows that determining GC is not a trivial matter.
Not only is the correct parse tree required, but extra in-
formation is also needed to identify the head governor
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and the minimal constituent dominating the pronoun, its
governor and an accessible subject. Determining the ac-
cessible subject itself entails checking other constraints
such as number and gender agreement. The complexity
of computing governing category, compounded with the
noisy nature of machine-generated parse tree, prompts us
to compute a set of features that characterize the struc-
tural relationship between a candidate mention and a pro-
noun, as opposed to explicitly identify GC in a parse tree.
These features are designed to implicitly model the bind-
ing constraints.

Given a candidate antecedent or mention m1 and a pro-
noun mention m2 within a parsed sentence, we first test
if they have c-command relation, and then a set of count-
ing features are computed. The features are detailed as
follows:

(1) C-command ccmd(m1, m2) : A constituent X c-
commands another constituent Y in a parse tree if the first
branching node dominating X also dominates Y . The bi-
nary feature ccmd(m1, m2) is true if the minimum NP
dominating m1 c-commands the minimum NP dominat-
ing m2. In sub-figure (1) of Figure 1, NP1 c-commands
NP2 since the first branching node dominating NP1 is S
and it dominates NP2.

If ccmd(m1, m2) is true, we then define the c-command
path T (m1, m2) as the path from the minimum NP dom-
inating m2 to the first branching node that dominates the
minimum NP dominating m1. In sub-figure (1) of Fig-
ure 1, the c-command path T (“John”, “himself”) would
be “NP2-VP-S.”

(2) NP count(m1, m2): If ccmd(m1, m2) is true,
then NP count(m1, m2) counts how many NPs are
seen on the c-command path T (m1, m2), exclud-
ing two endpoints. In sub-figure (1) of Figure 1,
NP count(“John”, “himself”) = 0 since there is no NP
on T (“John”, “himself”).

(3) V P count(m1, m2): similar to NP count(m1, m2),
except that this feature counts how many verb phrases
(VP) are seen on the c-command path. In sub-figure (1)
of Figure 1, V P count(“John”, “himself”) is true since
there is one VP on T (“John”, “himself”).

(4) S count(m1, m2): This feature counts how many
clauses are seen on the c-command path when
ccmd(m1, m2) is true. In sub-figure (1) of Figure 1,
S count(“John”, “himself”) = 0 since there is no clause
label on T (“John”, “himself”).

These features are designed to capture information in the
concept of governing category when used in conjunction
with attributes (e.g., gender, number, reflexiveness) of in-
dividual pronouns. Counting the intermediate NPs, VPs
and sub-clauses implicitly characterizes the governor of
a pronoun in question; the presence or absence of a sub-
clause indicates whethere or not a coreferential relation is
across clause boundary.

3.2 Dependency Features

In addition to features inspired by the binding theory, a
set of dependency features are also computed with the
help of syntactic parse trees. This is motivated by exam-
ples such as “John is the president of ABC Corporation,”
where “John” and “the president” refer to the same per-
son and should be in the same entity. In scenarios like
this, lexical features do not help, while the knowledge
that “John” left-modifies the verb “is” and the “the presi-
dent” right-modifies the same verb would be useful.

Given two mentions m1 and m2 in a sentence, we com-
pute the following dependency features:

(1)same head(m1, m2): The feature compares the bi-
lexical dependencies 〈m1, h(m1)〉, and 〈m2, h(m2)〉,
where h(x) is the head word which x modifies. The fea-
ture is active only if h(m1) = h(m2), in which case it
returns h(m1).

(2)same POS(m1, m2): To get good coverage of de-
pendencies, we compute a feature same POS(m1, m2),
which examines the same dependency as in (1) and
returns the common head part-of-speech (POS) tag if
h(m1) = h(m2).

The head child nodes are marked with boxes in
Figure 1. For the parse tree in sub-figure (1),
same head(“John”, “him”) would return “likes” as
“John” left-modifies “likes” while “him” right-modifies
“likes,” and same POS(“John”, “him”) would return
“V” as the POS tag of “likes” is “V.”

(3) mod(m1, m2): the binary feature is true if m1

modifies m2. For parse tree (2) of Figure 1,
mod(“John”, “him”) returns false as “John” does not
modify “him” directly. A reverse order feature
mod(m2, m1) is computed too.

(4) same head2(m1, m2): this set of features examine
second-level dependency. It compares the head word of
h(m1), or h(h(m1)), with h(m2) and returns the com-
mon head if h(h(m1)) = h(m2). A reverse order feature
same head2(m2, m1) is also computed.

(5) same POS2(m1, m2): similar to (4), except that it
computes the second-level POS. A reverse order feature
same POS2(m2, m1) is computed too.

(6) same head22(m1, m2): it returns the common
second-level head if h(h(m1)) = h(h(m2)).

3.3 Apposition and Same-Parent Features

Apposition is a phenomenon where two adjacent NPs re-
fer to the same entity, as “Jimmy Carter” and “the former
president” in the following example:
(II) “Jimmy Carter, the former president of US, is visit-

ing Europe.”
Note that not all NPs separated by a comma are neces-
sarily appositive. For example, in “John called Al, Bob,
and Charlie last night,” “Al” and “Bob” share a same NP
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parent and are separated by comma, but they are not ap-
positive.

To compute the apposition feature appos(m1, m2) for
mention-pair (m1, m2), we first determine the minimum
dominating NP of m1 and m2. The minimum dominating
NP of a mention is the lowest NP, with an optional modi-
fying phrase or clause, that spans the mention. If the two
minimum dominating NPs have the same parent NP, and
they are the only two NP children of the parent, the value
of appos(m1, m2) is true. This would exclude “Al” and
“Bob” in “John called Al, Bob, and Charlie last night”
from being computed as apposition.

We also implement a feature same parent(m1, m2)
which tests if two mentions m1 and m2 are dominated
by a common NP. The feature helps to prevent the system
from linking “his” with “colleague” in the sentence “John
called his colleague.”

All the features described in Section 3.1-3.3 are com-
puted from syntactic trees generated by a parser. While
the parser is language dependent, feature computation
boils down to encoding the structural relationship of two
mentions, which is language independent. To test the ef-
fectiveness of the syntactic features, we integrate them
into 3 coreference systems processing Arabic, Chinese
and English.

4 Experimental Results

4.1 Data and System Description

All experiments are done on true mentions of the
ACE (NIST, 2004) 2004 data. We reserve part of LDC-
released 2004 data as the development-test set (hence-
forth “devtest”) as follows: documents are sorted by their
date and time within each data source (e.g., broadcast
news (bnews) and news wire (nwire) are two different
sources) and the last 25% documents of each data source
are reserved as the devtest set. Splitting data on chrono-
logical order simulates the process of a system’s devel-
opment and deployment in the real world. The devtest
set statistics of three languages (Arabic, Chinese and
English) is summarized in Table 1, where the number
of documents, mentions and entities is shown on row 2
through 4, respectively. The rest of 2004 ACE data to-
gether with earlier ACE data is used as training.

Arabic Chinese English
#-docs 178 166 114
#-mentions 11358 8524 7008
#-entities 4428 3876 2929

Table 1: Devtest Set Statistics by Language

The official 2004 evaluation test set is used as the blind
test set on which we run our system once after the system
development is finished. We will report summary results

on this test set.

As for parser, we train three off-shelf maximum-entropy
parsers (Ratnaparkhi, 1999) using the Arabic, Chinese
and English Penn treebank (Maamouri and Bies, 2004;
Xia et al., 2000; Marcus et al., 1993). Arabic words
are segmented while the Chinese parser is a character-
based parser. The three parsers have a label F-measure
of 77%, 80%, and 86% on their respective test sets. The
three parsers are used to parse both ACE training and test
data. Features described in Section 3 are computed from
machine-generated parse trees.

Apart from features extracted from parse trees, our coref-
erence system also utilizes other features such as lex-
ical features (e.g., string matching), distance features
characterized as quantized word and sentence distances,
mention- and entity-level attribute information (e.g, ACE
distinguishes 4 types of mentions: NAM(e), NOM(inal),
PRE(modifier) and PRO(noun)) found in the 2004 ACE
data. Details of these features can be found in (Luo et
al., 2004).

4.2 Performance Metrics

The official performance metric in the ACE task is ACE-
Value (NIST, 2004). The ACE-Value is an entity-based
metric computed by subtracting a normalized cost from
1 (so it is unbounded below). The cost of a system is
a weighted sum of costs associated with entity misses,
false alarms and errors. This cost is normalized against
the cost of a nominal system that outputs no entity. A
perfect coreference system gets 100% ACE-Value while
a system outputting many false-alarm entities could get a
negative value.

The default weights in ACE-Value emphasize names, and
severely discount pronouns: the relative importance of a
pronoun is two orders of magnitude less than that of a
name. So the ACE-Value will not be able to accurately re-
flect a system’s improvement on pronouns2. For this rea-
son, we compute an unweighted entity-constrained men-
tion F-measure (Luo, 2005) and report all contrastive
experiments with this metric. The F-measure is com-
puted by first aligning system and reference entities such
that the number of common mentions is maximized
and each system entity is constrained to align with at
most one reference entity, and vice versa. For exam-
ple, suppose that a reference document contains three
entities: {[m1], [m2, m3], [m4]} while a system outputs
four entities: {[m1, m2], [m3], [m5], [m6]}, where {mi :
i = 1, 2, · · · , 6} are mentions, then the best alignment
from reference to system would be [m1] ⇔ [m1, m2],
[m2, m3] ⇔ [m3] and other entities are not aligned. The
number of common mentions of the best alignment is 2

2Another possible choice is the MUC F-measure (Vilain et
al., 1995). But the metric has a systematic bias for systems
generating fewer entities (Bagga and Baldwin, 1998) – see Luo
(2005). Another reason is that it cannot score single-mention
entity.
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(i.e., m1 and m3), thus the recall is 2

4
and precision is

2

5
. Due to the one-to-one entity alignment constraint, the

F-measure here is more stringent than the accuracy (Ge
et al., 1998; Mitkov, 1998; Kehler et al., 2004) computed
on antecedent-pronoun pairs.

4.3 Effect of Syntactic Features

We first present the contrastive experimental results on
the devtest described in sub-section 4.1.

Two coreference systems are trained for each language:
a baseline without syntactic features, and a system in-
cluding the syntactic features. The entity-constrained F-
measures with mention-type breakdown are presented in
Table 2. Rows marked with Nm contain the number of
mentions, while rows with “base” and “+synt” are F-
measures for the baseline and the system with the syn-
tactic features, respectively.

The syntactic features improve pronoun mentions across
three languages – not surprising since features inspired
by the binding theory are designed to improve pronouns.
The pronoun improvement on the Arabic (from 73.2%
to 74.6%) and English (from 69.2% to 72.0%) system is
statistically significant (at above 95% confidence level),
but change on the Chinese system is not. For Arabic,
the syntactic features improve Arabic NAM, NOM and
PRE mentions, probably because Arabic pronouns are
sometimes attached to other types of mentions. For Chi-
nese and English, the syntactic features do not practically
change the systems’ performance.

As will be shown in Section 4.5, the baseline systems
without syntactic features are already competitive, com-
pared with the results on the coreference evaluation track
(EDR-coref) of the ACE 2004 evaluation (NIS, 2004). So
it is nice to see that syntactic features further improve a
good baseline on Arabic and English.

Arabic
Mention Type

NAM NOM PRE PRO Total
Nm 2843 3438 1291 3786 11358
base 86.8 73.2 86.7 73.2 78.2
+synt 88.4 76.4 87.4 74.6 80.1

Chinese
Nm 4034 3696 - 794 8524
base 95.4 77.8 - 65.9 85.0
+synt 95.2 77.7 - 66.5 84.9

English
Nm 2069 2173 835 1931 7008
base 92.0 73.4 88.7 69.2 79.6
+synt 92.0 75.3 87.8 72.0 80.8

Table 2: F-measure(%) Breakdown by Mention Type:
NAM(e), NOM(inal), PRE(modifier) and PRO(noun).
Chinese data does not have the PRE type.

4.4 Error Analyses

From the results in Table 2, we know that the set of syn-
tactic features are working in the Arabic and English sys-
tem. But the results also raise some questions: Are there
interactions among the the syntactic features and other
features? Why do the syntactic features work well for
Arabic and English, but not Chinese? To answer these
questions, we look into each system and report our find-
ings in the following sections.

4.4.1 English System

Our system uses a group of distance features. One ob-
servation is that information provided by some syntactic
features (e.g., V P count(m1, m2) etc) may have over-
lapped with some of the distance features. To test if this
is the case, we take out the distance features from the En-
glish system, and then train two systems, one with the
syntactic features, one without. The results are shown
in Table 3, where numbers on the row “b-dist” are F-
measures after removing the distance features from the
baseline, and numbers on the row “b-dist+synt” are with
the syntactic features.

Mention Type
NAM NOM PRE PRO Total

b-dist 84.2 68.8 74.6 63.3 72.5
b-dist+synt 90.7 74.2 87.8 69.0 79.3

Table 3: Impact of Syntactic Features on English Sys-
tem After Taking out Distance Features. Numbers are
F-measures(%).

As can be seen, the impact of the syntactic features is
much larger when the distance features are absent in the
system: performance improves across all the four men-
tion types after adding the syntactic features, and the
overall F-measure jumps from 72.5% to 79.3%. The
PRE type gets the biggest improvement since features ex-
tracted from parse trees include apposition, same-parent
test, and dependency features, which are designed to help
mention pairs in close distance, just as in the case of PRE
mentions.

Comparing the numbers in Table 3 with the English base-
line of Table 2, we can also conclude that distance fea-
tures and syntactic features lead to about the same level
of performance when the other set of features is not
used. When the distance features are used, the syntac-
tic features further help to improve the performance of
the NOM and PRO mention type, albeit to a less degree
because of information overlap between the two sets of
features.

4.4.2 Chinese System

Results in Table 2 show that the syntactic features are not
so effective for Chinese as for Arabic and English. The
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first thing we look into is if there is any idiosyncrasy in
the Chinese language.

In Table 4, we list the statistics collected over the training
sets of the three languages: the second row are the total
number of mentions, the third row the number of pronoun
mentions, the fourth row the number of events where the
c-command feature ccmd(m1, m2) is used, and the last
row the average number of c-command features per pro-
noun (i.e., the fourth row divided by the third row). A
pronouns event is defined as a tuple of training instance
(e, m1, m2) where m1 is a mention in entity e, and the
second mention m2 is a pronoun.

From Table 4, it is clear that Chinese pronoun distribution
is very different: pronoun mentions account for about
8.7% of the total mentions in Chinese, while 29.0% of
Arabic mentions and 25.1% of English mentions are pro-
nouns (the same disparity can be observed in the devtest
set in Table 2). This is because Chinese is a pro-drop lan-
guage (Huang, 1984): for example, in the Chinese Penn
treebank version 4, there are 4933 overt pronouns, but
5750 pro-drops! The ubiquity of pro-drops in Chinese
results in signigicantly less pronoun training events. Con-
sequently, the pronoun-related features are not trained as
well as in English and Arabic. One way to quantify this
is by looking at the average number of c-command fea-
tures on a per-pronoun basis: as shown in the last row of
Table 4, the c-command feature is seen more than twice
often in Arabic and English as in Chinese. Since low-
count features are filtered out, the sparsity of pronoun
events prevent many compound features (e.g., conjunc-
tion of syntactic and distance features) from being trained
in the Chinese system, which explains why the syntactic
features do not help Chinese pronouns.

Arabic Chinese English
#total-mentions 31706 33851 58202
#pron-mentions 9183 2941 14635
#-ccmd-event 10236 1260 13691
#ccmd/pron 1.14 0.428 0.936

Table 4: Distribution of Pronoun Mentions and Fre-
quency of c-command Features

4.4.3 Arabic System

As stated in Table 4, 29.0% of Arabic mentions are pro-
nouns, compared to a slightly lower number (25.1%) for
English. This explains the relatively high positive impact
of the syntactic features on the Arabic coreference sys-
tem, compared to English and Chinese systems. To un-
derstand how syntactic features work in the Arabic sys-
tem, we examine two examples extracted from the de-
vtest set: (1) the first example shows the negative impact
of syntactic features because of the noisy parsing output,
and (2) the second example proves the effectiveness of
the syntactic features to find the dependency between two

mentions. In both examples, the baseline system and the
system with syntactic features give different results.

Let’s consider the following sentence:
. . . A �î �DÖÞ�A �« �Y�®Ë@ ÉJ


K�Qå� @�
Q�.
�Jª�Kð . . .

... its-capital← Jerusalem← Israel← consider← and ...

. . . �é 	JK
YÒÊË� ú

�̄Qå��Ë @ Q¢ ��Ë@ 	àñJ


	�J
¢�Ê 	®Ë @ YK
QK
 A �ÒJ

	̄

of-the-city← the-Eastern← the-half← the-Palestininan← want← while

The English text shown above is a word-to-word trans-
lation of the Arabic text (read from right-to-left). In this
example, the parser wrongly put the nominal mention
�Y �® Ë

�
@ (Jerusalem) and the pronominal mention�é 	JK
YÖÏ @ (the-city) under the same constituent, which acti-

vates the same parent feature. The use of the feature
same parent(�Y�®Ë

�
@, �é 	JK
YÖÏ @) leads to the two mentions

being put into different entities. This is because there
are many cases in the training data where two mentions
under the same parent are indeed in different entities: a
similar English example is “John called his sister”, where
“his” and “sister” belong to two different entities. The
same parent feature is a strong indicator of not putting
them into the same entity.

	àð + ÈðA �g + ø

+ 	àñJ


�̄ A
��̄ 	P + È@ + 	àA

�
¿

�è + ø
 PA
�m.�
�' + È@ + �H@ + Ém× + È@ + I. î

	E +

. . . + Ñë + 	à
�
@ + �ém.k + H.

kAn + Al + zqAqywn + y + HAwl + wn
+ nhb + Al + mHl + At + Al + tjAry + p

+ b + Hjp + An + hm + ...
was + the + zqAqywn + present-verb-marker y + trying + plural-verb-marker wn

+ to-steal + the + office + s + the + commercial + s

+ with + excuse + that + they + ...

Table 5: An example where syntactic features help to link
the PRO mention Ñë (hm) with its antecedent, the NAM
mention 	àñ J


�̄ A
��̄ 	Q Ë @ (AlzqAqywn): top – Arabic sen-

tence; middle – corresponding romanized sentence; bot-
tom – token-to-token English translation.

Table 5 shows another example in the devtest set. The top
part presents the segmented Arabic text, the middle part
is the corresponding romanized text, and the bottom part
contains the token-to-token English translation. Note that
Arabic text reads from right to left and its corresponding
romanized text from left to right (i.e., the right-most Ara-
bic token maps to the left-most romanized token). The
parser output the correct syntactic structure: Figure 2
shows a portion of the system-generated parse tree. It can
be checked that NP1 c-commands NP2 and the group of
features inspired by the binding theory are active. These
features help to link the PRO(onominal) mention Ñ ë
(hm) with the NAM(e) mention 	àñJ


�̄ A
��̄ 	QË @ (AlzqAqywn).

Without syntactic features theses two mentions were split
into different entities.
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Al+zqAqywn An

VP

NP1

SBAR

VP

hm
NP2

S

kAn

Figure 2: A Portion of the Syntactic Tree.

4.5 ACE 2004 Results

To get a sense of the performance level of our system, we
report the results on the ACE 2004 official test set with
both the F-measure and the official ACE-Value metric.
This data is used as the blind test set which we run our
system only once.

Results are summarized in Table 6, where the second row
(i.e. “base”) contains the baseline numbers, and the third
row (i.e., “+synt”) contains the numbers from systems
with the syntactic features. Columns under “F” are F-
measure and those under “AV” are ACE-Value. The last
row Nm contains the number of mentions in the three test
sets.

Arabic Chinese English
F AV F AV F AV

base 80.1 88.0 84.7 92.7 80.6 90.9
+synt 81.5 88.9 84.7 92.8 82.0 91.6
Nm 11358 11178 10336

Table 6: Summary Results on the 2004 ACE Evaluation
Data.

The performance of three full (“+synt”) systems is re-
markably close to that on the devtest set(cf. Table 2):
For Arabic, F-measure is 80.1 on the devtest vs. 81.5
here; For Chinese, 84.9 vs. 84.7; And for English, 80.8
vs. 82.0. The syntactic features again help Arabic and
English – statistically very significant in F-measure, but
have no significant impact on Chinese. The performance
consistency across the devtest and blind test set indicates
that the systems are well trained.

The F-measures are computed on all types of mentions.
Improvement on mention-types targeted by the syntactic
features is larger than the lump-sum F-measure. For ex-
ample, the F-measure for English pronouns on this test set
is improved from 69.5% to 73.7% (not shown in Table 6
due to space limit). The main purpose of Table 6 is to get
a sense of performance level correspondence between the
F-measure and ACE-Value.

Also note that, for Arabic and English, the difference be-
tween the “base” and “+synt” systems, when measured
by ACE-Value, is much smaller. This is not surprising
since ACE-Value heavily discounts pronouns and is in-

sensitive to improvement on pronouns – the very reason
we adopt the F-measure in Section 4.3 and 4.4 when re-
porting the contrastive experiment results.

5 Related Work

Many researchers have used the syntactic information in
their coreference system before. For example, Hobbs
(1976) uses a set of rules that are applied to parse trees to
determine the antecedent of a pronoun. The rule prece-
dence is determined heuristically and no weight is used.
Lappin and Leass (1994) extracted rules from the out-
put of the English Slot Grammar (ESG) (McCord, 1993).
Rule weights are assigned manually and the system re-
solves the third person pronouns and reflexive pronouns
only. Ge et al. (1998) uses a non-parametrized statisti-
cal model to find the antecedent from a list of candidates
generated by applying the Hobbs algorithm to the English
Penn Treebank. Kehler et al. (2004) experiments mak-
ing use of predicate-argument structure extracted from a
large TDT-corpus. Compared with these work, our work
uses machine-generated parse trees from which trainable
features are extracted in a maximum-entropy coreference
system, while (Ge et al., 1998) assumes that correct parse
trees are given. Feature weights are automatically trained
in our system while (Lappin and Leass, 1994; Stuckardt,
2001) assign weights manually.

There are a large amount of published work (Morton,
2000; Soon et al., 2001; Ng and Cardie, 2002; Yang et
al., 2003; Luo et al., 2004; Kehler et al., 2004) using
machine-learning techniques in coreference resolution.
But none of these work tried to compute complex lin-
guistic concept such as governing category 3 . Our work
demonstrates how relevant linguistic knowledge can be
derived automatically from system-generated parse trees
and encoded into computable and trainable features in a
machine-learning framework.

6 Conclusions

In this paper, linguistic knowledge is used to guide us to
design features in maximum-entropy-based coreference
resolution systems. In particular, we show how to com-
pute a set of features to approximate the linguistic notions
such as governing category and apposition, and how to
compute the dependency features using syntactic parse
trees. While the features are motivated by examining En-
glish data, we see significant improvements on both En-
glish and Arabic systems. Due to the language idiosyn-
crasy (e.g., pro-drops), we do not see the syntactic fea-
tures change the Chinese system significantly.

3Ng and Cardie (2002) used a BINDING feature, but it is
not clear from their paper how the feature was computed and
what its impact was on their system.
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