
From detecting errors to automatically correcting them

Markus Dickinson

Department of Linguistics
Georgetown University

mad87@georgetown.edu

Abstract

Faced with the problem of annotation er-

rors in part-of-speech (POS) annotated

corpora, we develop a method for auto-

matically correcting such errors. Build-

ing on top of a successful error detection

method, we first try correcting a corpus us-

ing two off-the-shelf POS taggers, based

on the idea that they enforce consistency;

with this, we find some improvement. Af-

ter some discussion of the tagging process,

we alter the tagging model to better ac-

count for problematic tagging distinctions.

This modification results in significantly

improved performance, reducing the error

rate of the corpus.

1 Introduction

Annotated corpora serve as training material and

as “gold standard” testing material for the devel-

opment of tools in computational linguistics, and

as a source of data for theoretical linguists search-

ing for relevant language patterns. However, they

contain annotation errors, and such errors provide

unreliable training and evaluation data, as has been

previously shown (see ch. 1 of Dickinson (2005)

and references therein). Improving the quality of

linguistic annotation where possible is thus a key

issue for the use of annotated corpora in computa-

tional and theoretical linguistics.

Research has gone into automatically detect-

ing annotation errors for part-of-speech annota-

tion (van Halteren, 2000; Květǒn and Oliva, 2002;

Dickinson and Meurers, 2003), yet there has

been virtually no work on automatically or semi-

automatically correcting such annotation errors.1

1Oliva (2001) specifies hand-written rules to detect and

Automatic correction can speed up corpus im-

provement efforts and provide new data for NLP

technology training on the corpus. Additionally,

an investigation into automatic correction forces

us to re-evaluate the technology using the corpus,

providing new insights into such technology.

We propose in this paper to automatically cor-

rect part-of-speech (POS) annotation errors in cor-

pora, by adapting existing technology for POS dis-

ambiguation. We build the correction work on

top of a POS error detection phase, described in

section 2. In section 3 we discuss how to eval-

uate corpus correction work, given that we have

no benchmark corpus to compare with. We turn

to the actual work of correction in section 4, us-

ing two different POS taggers as automatic cor-

rectors and using the Wall Street Journal (WSJ)

corpus as our data. After more thoroughly investi-

gating how problematic tagging distinctions affect

the POS disambiguation task, in section 5 we mod-

ify the tagging model in order to better account

for these distinctions, and we show this to signifi-

cantly reduce the error rate of a corpus.

It might be objected that automatic correction

of annotation errors will cause information to be

lost or will make the corpus worse than it was,

but the construction of a large corpus generally

requires semi-automated methods of annotation,

and automatic tools must be used sensibly at every

stage in the corpus building process. Automated

annotation methods are not perfect, but humans

also add errors, from biases and inconsistent judg-

ments. Thus, automatic corpus correction methods

can be used semi-automatically, just as the original

corpus creation methods were used.

then correct errors, but there is no general correction scheme.

265



2 Detecting POS Annotation Errors

To correct part-of-speech (POS) annotation errors,

one has to first detect such errors. Although there

are POS error detection approaches, using, e.g.,

anomaly detection (Eskin, 2000), our approach

builds on the variation n-gram algorithm intro-

duced in Dickinson and Meurers (2003) and Dick-

inson (2005). As we will show in section 5, such

a method is useful for correction because it high-

lights recurring problematic tag distinctions in the

corpus.

The idea behind the variation n-gram approach

is that a string occurring more than once can oc-

cur with different labels in a corpus, which is re-

ferred to as variation. Variation is caused by one

of two reasons: i) ambiguity: there is a type of

string with multiple possible labels and different

corpus occurrences of that string realize the differ-

ent options, or ii) error: the tagging of a string is

inconsistent across comparable occurrences.

The more similar the context of a variation, the

more likely the variation is an error. In Dickin-

son and Meurers (2003), contexts are composed

of words, and identity of the context is required.

The term variation n-gram refers to an n-gram (of

words) in a corpus that contains a string annotated

differently in another occurrence of the same n-

gram in the corpus. The string exhibiting the vari-

ation is referred to as the variation nucleus.

For example, in the WSJ corpus, part of the

Penn Treebank 3 release (Marcus et al., 1993), the

string in (1) is a variation 12-gram since off is a

variation nucleus that in one corpus occurrence is

tagged as a preposition (IN), while in another it is

tagged as a particle (RP).

(1) to ward off a hostile takeover attempt by

two European shipping concerns

Once the variation n-grams for a corpus have

been computed, heuristics are employed to clas-

sify the variations into errors and ambiguities. The

most effective heuristic takes into account the fact

that natural languages favor the use of local de-

pendencies over non-local ones: nuclei found at

the fringe of an n-gram are more likely to be gen-

uine ambiguities than those occurring with at least

one word of surrounding context.

Running the variation n-gram error detection

method on the WSJ turns up 7141 distinct2 non-

2Being distinct means each corpus position is only taken
into account for the longest variation n-gram it occurs in.

fringe nuclei, of which an estimated 92.8%, or

6627, are erroneous.3 Since a variation nucleus

refers to multiple corpus positions, this precision

is a precision on types; we, however, are correct-

ing tokens. Still, this precision is high enough to

experiment with error correction.

3 Methodology

Since we intend to correct a corpus with POS an-

notation errors, we have no true benchmark by

which to gauge the accuracy of the corrected cor-

pus, and we thus created a hand-checked sub-

corpus. Using the variation n-gram output, we

flagged every non-fringe variation nucleus (token)

as a potential error, giving us 21,575 flagged po-

sitions in the WSJ. From this set, we sampled 300

positions, removed the tag for each position, and

hand-marked what the correct tag should be, based

solely on the tagset definitions given in the WSJ

tagging manual (Santorini, 1990), i.e., blind to the

original data. Because some of the tagset distinc-

tions were not defined clearly enough in the guide-

lines, in 20 cases we could not decide what the ex-

act tag should be. For the purposes of comparison,

we score a match with either tag as correct since a

human could not disambiguate such cases.

For the benchmark, we find that 201 positions

in our sample set of 300 are correct, giving us a

precision of 67%. A correction method must then

surpass this precision figure in order to be useful.

4 Approach to correction

Since our error detection phase relies on variation

in annotation, i.e., the inconsistent application of

POS labels across the corpus, we propose to cor-

rect such errors by enforcing consistency in the

text. As van Halteren (2000) points out, POS tag-

gers can be used to enforce consistency, and so we

employ off-the-shelf supervised POS taggers for

error correction. The procedure is as follows:

1. Train the tagger on the entire corpus.

2. Run the trained tagger over the same corpus.

3. For the positions the variation n-gram detec-

tion method flags as potentially erroneous,

choose the label obtained in step 2.

We do not split training data from testing data be-

cause we want to apply the patterns found in the

3The recall cannot easily be estimated, but this is still a
significant number of errors.

266



whole corpus to the corpus we want to correct,

which happens to be the same corpus.4 If the tag-

ger has learned the consistent patterns in the cor-

pus, it will then generalize these patterns to the

problematic parts of the corpus.

This approach hinges on high-quality error de-

tection since in general we cannot assume that dis-

crepancies between a POS tagger and the bench-

mark are errors in the benchmark. Van Hal-

teren (2000), for example, found that his tagger

was correct in only 20% of disagreements with the

benchmark. By focusing only on the variation-

flagged positions, we expect the tagger decisions

to be more often correct than incorrect.

We use two off-the-shelf taggers for correc-

tion, the Markov model tagger TnT (Brants, 2000)

and the Decision Tree Tagger (Schmid, 1997),

which we will abbreviate as DTT. Both taggers

use probabilistic contextual and lexical informa-

tion to disambiguate a tag at a particular cor-

pus position. The difference is that TnT obtains

contextual probabilities from maximum likelihood

counts, whereas DTT constructs binary-branching

decision trees to obtain contextual probabilities.

In both cases, instead of looking at n-grams of

words, the taggers use n-grams of tags. This gen-

eralization is desirable, as the variation n-gram

method shows that the corpus has conflicting la-

bels for the exact same sequence of n words.

Results For the TnT tagger, we obtain an overall

precision of 71.67% (215/300) on the 300 hand-

annotated samples. For the DTT tagger, we get a

higher precision, that of 76.33% (229/300). The

DTT results are a significant improvement over

the original corpus precision of 67% (p = .0045),

while the TnT results are not.

As mentioned, tagger-benchmark disagree-

ments are more commonly tagger errors, but we

find the opposite for variation-flagged positions.

Narrowing in on the positions which the tagger

changed, we find a precision of 58.56% (65/111)

for TnT and 65.59% (69/107) for DTT. As the goal

of correction is to change tags with 100% accu-

racy, we place a priority in improving these fig-

ures.

One likely reason that DTT outperforms TnT is

4Note, then, that some typical tagging issues, such as
dealing with unknown words, are not an issue for us.

5All p-values in this paper are from McNemar’s Test (Mc-
Nemar, 1947) for analyzing matched dichotomous data (i.e.,
a correct or incorrect score for each corpus position from both
models).

its more flexible context. For instance, in example

(2)—which DTT correctly changes and TnT does

not— to know that such should be changed from

adjective (JJ) to pre-determiner (PDT), one only

need look at the following determiner (DT) an,

and that provides enough context to disambiguate.

TnT uses a fixed context of trigrams, and so can

be swayed by irrelevant tags—here, the previous

tags—which DTT can in principle ignore.6

(2) Mr. Bush was n’t interested in such/JJ an in-

formal get-together .

5 Modifying the tagging model

The errors detected by the variation n-gram

method arise from variation in the corpus, of-

ten reflecting decisions difficult for annotators to

maintain over the entire corpus, for example, the

distinction between preposition (IN) and particle

(RP) (as in (1)). Although these distinctions are

listed in the tagging guidelines (Santorini, 1990),

nowhere are they encoded in the tags themselves;

thus, a tagger has no direct way of knowing that IN

and RP are easily confusable but IN and NN (com-

mon noun) are not. In order to improve automatic

correction, we can add information about these re-

curring distinctions to the tagging model, making

the tagger aware of the difficult distinctions. But

how do we make a tagger “aware” of a relevant

problematic distinction?

Consider the domain of POS tagging. Every

word patterns uniquely, yet there are generaliza-

tions about words which we capture by group-

ing them into POS classes. By grouping words

into the same class, there is often a claim that

these words share distributional properties. But

how true this is depends on one’s tagset (see, e.g.,

Déjean (2000)). If we can alter the tagset to bet-

ter match the distributional facts, we can improve

correction.

To see how problematic distinctions can assist

in altering the tagset, consider the words away and

aboard, both of which can be adverbs (RB) in the

Penn Treebank, as shown in (3a) and (4a). In ex-

ample (3b), we find that away can also be a par-

ticle (RP), thus making it a part of the ambigu-

ity class RB/RP. On the other hand, as shown in

(4b), aboard can be a preposition (IN), but not a

particle, putting it in the ambiguity class IN/RB.

Crucially, not only do away and aboard belong

6As DTT does not provide a way of viewing output trees,
we cannot confirm that this is the reason for improvement.

267



to different ambiguity classes, but their adverbial

uses are also distinguished. The adverbial away

is followed by from, a construction forbidden for

aboard. When we examine the RB/RP words, we

find that they form a natural class: apart, aside,

and away, all of which can be followed by from.

(3) a. the Cray-3 machine is at least another

year away/RB from a ... prototype

b. A lot of people think 0 I will give

away/RP the store

(4) a. Saturday ’s crash ... that *T* killed 132

of the 146 people aboard/RB

b. These are used * aboard/IN military heli-

copters

Although not every ambiguity class is so

cleanly delineated, this example demonstrates that

such classes can be used to redefine a tagging

model with more unified groupings.

5.1 Using complex ambiguity tags

We thus propose splitting a class such as RB into

subclasses, using these ambiguity classes—JJ/RB,

NN/RB, IN/RB, etc.—akin to previous work on

splitting labels in order to obtain better statistics

(e.g., Brants (1996); Ule (2003)) for situations

with “the same label but different usage” (Ule,

2003, p. 181). By taking this approach, we are

narrowing in on what annotators were instructed

to focus on, namely “difficult tagging decisions,”

(Santorini, 1990, p. 7).

We implement this idea by assigning words a

new, complex tag composed of its ambiguity class

and the benchmark tag for that position. For ex-

ample, ago has the ambiguity class IN/RB, and in

example (5a), it resolves to RB. Thus, following

the notation in Pla and Molina (2004), we assign

ago the complex ambiguity tag <IN/RB,RB> in

the training data, as shown in (5b).

(5) a. ago/RB

b. ago/<IN/RB,RB>

Complex ambiguity tags can provide better dis-

tinctions than the unaltered tags. For example,

words which vary between IN and RB and tagged

as IN (e.g., ago, tagged <IN/RB,IN>) can ignore

the contextual information that words varying be-

tween DT (determiner) and IN (e.g., that, tagged

<DT/IN,IN>) provide. This proposal is in the

spirit of a tagger like that described in Marquez et

al (2000), which breaks the POS tagging problem

into one problem for each ambiguity class, but be-

cause we alter the tagset here, different underlying

tagging algorithms can be used.

To take an example, consider the 5-gram rev-

enue of about $ 370 as it is tagged by TnT. The

5-gram (at position 1344) in the WSJ is annotated

as in (6). The tag for about is incorrect since

“about when used to mean ’approximately’ should

be tagged as an adverb (RB), rather than a prepo-

sition (IN)” (Santorini, 1990, p. 22).

(6) revenue/NN of/IN about/IN $/$ 370/CD

Between of and $, the word about varies be-

tween preposition (IN) and adverb (RB): it is IN

67 times and RB 65 times. After training TnT on

the original corpus, we find that RB is a slightly

better predictor of the following $ tag, as shown in

(7), but, due to the surrounding probabilities, IN is

the tag TnT assigns.

(7) a. p($|IN,RB) = .0859

b. p($|IN,IN) = .0635

The difference between probabilities is more

pronounced in the model with complex ambigu-

ity tags. The word about generally varies between

three tags: IN, RB, and RP (particle), receiving the

ambiguity class IN/RB/RP (as of also does). For

IN/RB/RP words, RB is significantly more proba-

ble in this context than IN, as shown in (8).

(8) a. p($|<IN/RB/RP,IN>,<IN/RB/RP,RB>)
= .6016

b. p($|<IN/RB/RP,IN>,<IN/RB/RP,IN>)
= .1256

Comparing (7) and (8), we see that RB for the

ambiguity class of IN/RB/RP behaves differently

than the general class of RB words.

We have just shown that the contextual proba-

bilities of an n-gram tagger are affected when us-

ing complex ambiguity tags; lexical probabilities

are also dramatically changed. The relevant prob-

abilities were originally as in (9), but for the mod-

ified corpus, we have the probabilities in (10).

(9) a. p(about|IN) = 2074/134926 = .0154

b. p(about|RB) = 785/42207 = .0186

(10) a. p(about|<IN/RB/RP,IN>)
= 2074/64046 = .0324

b. p(about|<IN/RB/RP,RB>)
= 785/2045 = .3839

268



These altered probabilities provide information

similar to that found in a lexicalized tagger—

i.e., about behaves differently than the rest of its

class—but the altered contextual probabilities, un-

like a lexicalized tagger, bring general IN/RB/RP

class information to bear on this tagging situation.

Combining the two, we get the correct tag RB at

this position.

Since variation errors are errors for words with

prominent ambiguity classes, zeroing in on these

ambiguity classes should provide more accurate

probabilities. For this to work, however, we have

to ensure that we have the most effective ambigu-

ity class for every word.

5.2 Assigning complex ambiguity tags

In the tagging literature (e.g., Cutting et al (1992))

an ambiguity class is often composed of the set of

every possible tag for a word. For correction, us-

ing every possible tag for an ambiguity class will

result in too many classes, for two reasons: 1)

there are erroneous tags which should not be part

of the ambiguity class, and 2) some classes are ir-

relevant for disambiguating variation positions.

Guided by these considerations, we use the pro-

cedure below to assign complex ambiguity tags to

all words in the corpus, based on whether a word is

a non-fringe variation nucleus and thus flagged as

a potential error by the variation n-gram method

(choice 1), or is not a nucleus (choice 2).

1. Every word which is a variation word (nu-

cleus of a non-fringe variation) or type-

identical to a variation word is assigned:

(a) a complex tag reflecting the ambiguity

class of all relevant ambiguities in the

non-fringe variation nuclei; or

(b) a simple tag reflecting no ambiguity, if

the tag is irrelevant.

2. Based on their relevant unigram tags, non-

variation words are assigned:

(a) a complex tag, if the word’s ambiguity

tag also appears as a variation ambigu-

ity; or

(b) a simple tag, otherwise.

Variation words (choice 1) We start with vari-

ation nuclei because these are the potential errors

we wish to correct. An example of choice 1a is

ago, which varies between IN and RB as a nu-

cleus, and so receives the tag <IN/RB,IN> when

it resolves to IN and <IN/RB,RB> when it re-

solves to RB.

The choices are based on relevance, though; in-

stead of simply assigning all tags occurring in an

ambiguity to an ambiguity class, we filter out am-

biguities which we deem irrelevant. Similar to

Brill and Pop (1999) and Schmid (1997), we do

this by examining the variation unigrams and re-

moving tags which occur less than 0.01 of the

time for a word and less than 10 times overall.

This eliminates variations like ,/DT where DT ap-

pears 4210 times for an, but the comma tag ap-

pears only once. Doing this means that an can

now be grouped with other unambiguous deter-

miners (DT). In addition to removing some erro-

neous classes, we gain generality and avoid data

sparseness by using fewer ambiguity classes.

This pruning also means that some variation

words will receive tags which are not part of a

variation, which is when choice 1b is selected. For

instance, if the class is IN/RB and the current tag

is JJ, it gets JJ instead of <IN/RB,JJ> because a

word varying between IN and RB should not re-

solve to JJ. This situation also arises because we

are deriving the ambiguity tags only from the non-

fringe nuclei but are additionally assigning them

to type-identical words in the corpus. Words in-

volved in a variation may elsewhere have tags

never involved in a variation. For example, Ad-

vertisers occurs as a non-fringe nucleus varying

between NNP (proper noun) and NNPS (plural

proper noun). In non-variation positions, it ap-

pears as a plural common noun (NNS), which we

tag as NNS because NNS is not relevant to the

variation (NNP/NNPS) we wish to distinguish.

One more note is needed to explain how we han-

dled the vertical slashes used in the Penn Tree-

bank annotation. Vertical slashes represent uncer-

tainty between two tags—e.g., JJ|VBN means the

annotator could not decide between JJ and VBN

(past participle). Variation between JJ, VBN, and

JJ|VBN is simply variation between JJ and VBN,

and we represent it by the class JJ/VBN, thereby

ensuring that JJ/VBN has more data.

In short, we assign complex ambiguity tags to

variation words whenever possible (choice 1a), but

because of pruning and because of non-variation

tags for a word, we have to assign simple tags to

some corpus positions (choice 1b).

Non-variation words (choice 2) In order to

have more data for a tag, non-variation words also

269



take complex ambiguity tags. For words which

are not a part of a variation nucleus, we simi-

larly determine relevance and then assign a com-

plex ambiguity tag if the ambiguity is elsewhere

involved in a non-fringe nucleus (choice 2a). For

instance, even though join is never a non-fringe

variation nucleus, it gets the tag <VB/VBP,VB>
in the first sentence of the treebank because its am-

biguity class VB/VBP is represented in the non-

fringe nuclei.

On the other hand, we ignore ambiguity classes

which have no bearing on correction (choice 2b).

For example, ours varies between JJ and PRP (per-

sonal pronoun), but no non-fringe variation nuclei

have this same ambiguity class, so no complex

ambiguity tag is assigned. Our treatment of non-

variation words increases the amount of relevant

data (choice 2a) and still puts all non-varying data

together (choice 2b).

Uniform assignment of tags Why do we allow

only one ambiguity class per word over the whole

corpus? Consider the variation nucleus traded:

in publicly traded investments, traded varies be-

tween JJ and VBN, but in contracts traded on, it

varies between VBN and VBD (past tense verb). It

seems like it would be useful to keep the JJ/VBN

cases separate from the VBD/VBN ones, so that a

tagger can learn one set of patterns for JJ/VBN and

a different set for VBD/VBN. While that might

have its benefits, there are several reasons why re-

stricting words to a single ambiguity class is de-

sirable, i.e., why we assign traded the ambiguity

class JJ/VBD/VBN in this case.

First, we want to group as many of the word oc-

currences as possible together into a single class.

Using JJ/VBN and VBD/VBN as two separate am-

biguity classes would mean that traded as VBN

lacks a pattern of its own.

Secondly, multiple ambiguity classes for a

word can increase the number of possible tags

for a word. For example, instead of having

only the tag <JJ/VBD/VBN,VBN> for traded as

VBN, we would have both <JJ/VBN,VBN> and

<VBD/VBN,VBN>. With such an increase in the

number of tags, data sparseness becomes a prob-

lem.

Finally, although we know what the exact ambi-

guity in question is for a non-fringe nucleus, it is

too difficult to go through position by position to

guess the correct ambiguity for every other spot. If

we encounter a JJ/VBD/VBN word like followed

tagged as VBN, for example, we cannot know for

sure whether this is an instance where JJ/VBN was

the decision which had to be made or if VBD/VBN

was the difficult choice; keeping only one ambigu-

ity class per word allows us to avoid guessing.

5.3 Results with complex ambiguity tags

Using complex ambiguity tags increases the size

of the tagset from 80 tags in the original corpus 7

to 418 tags in the altered tagset, 53 of which are

simple (e.g. IN) and 365 of which are complex

(e.g. <IN/RB,IN>).

TnT Examining the 300 samples of variation

positions from the WSJ corpus for the TnT tag-

ger with complex ambiguity tags, we find that

234 spots are correctly tagged, for a precision of

78.00%. Additionally, we find 73.86% (65/88)

precision for tags which have been changed from

the original corpus. The 78% precision is a signif-

icant improvement both over the original TnT pre-

cision of 71.67% (p = .008) and the benchmark of

67% (p = .001). Perhaps more revealing is the im-

provement in the precision of the changed tokens,

from 58.56% to 73.86%. With 73.86% precision

for changed positions, this means that we expect

approximately 3968 of the 5373 changes that the

tagger makes, out of 21,575 flagged positions, to

be correct changes. Thus, the error rate of the cor-

pus will be reduced.

Decision Tree Tagger (DTT) Using complex

ambiguity tags with DTT results in an overall pre-

cision of 78.33% (235/300) and a precision of

73.56% (64/87) for the changed positions. We im-

prove the overall error correction precision, from

76.33% to 78.33%, and the tagging of changed po-

sitions, going from 65.59% to 73.56%.

The results for all four models, plus the base-

line, are summarized in figure 1. From these fig-

ures, it seems that the solution for error correction

lies less in what tagging method is used and more

in the information we give each method.

The improvement in changed positions for both

TnT and DTT is partly attributable to the fact that

both tagging models are making fewer changes.

Indeed, training TnT on the original corpus and

then testing on the same corpus results in a 97.37%

similarity, but a TnT model trained on complex

ambiguity tags results in 98.49% similarity with

7The number of tags here counts tags with vertical slashes
separately.

270



Total Changed

Baseline 67.00% N/A

TnT 71.67% 58.56% (65/111)

C.A. TnT 78.00% 73.86% (65/88)

DTT 76.33% 65.59% (69/107)

C.A. DTT 78.33% 73.56% (64/87)

Figure 1: Summary of results

the original. DTT sees a parallel overall improve-

ment, from 97.47% to 98.33%. Clearly, then, each

complex ambiguity model is a closer fit to the orig-

inal corpus. Whether this means it is an overall

better POS tagging model is an open question.

Remaining issues We have shown that we can

improve the annotation of a corpus by using tag-

ging models with complex ambiguity tags, but can

we improve even further? To do so, there are sev-

eral obstacles to overcome.

First, some distinctions cannot be handled by an

automated system without semantic or non-local

information. As Marquez and Padro (1997) point

out, distinctions such as that between JJ and VBN

are essentially semantic distinctions without any

structural basis. For example, in the phrase pro-

posed offering, the reason that proposed should be

VBN is that it indicates a specific event. Since our

method uses no external semantic information, we

have no way to know how to correct this.8

Other distinctions, such as the one between

VBD and VBN, require some form of non-local

knowledge in order to disambiguate because it de-

pends on the presence or absence of an auxiliary

verb, which can be arbitrarily far away.

Secondly, sometimes the corpus was more of-

ten wrong than right for a particular pattern. This

can be illustrated by looking at the word later in

example (11), from the WSJ corpus. In the tag-

ging manual (Santorini, 1990, p. 25), we find the

description of later as in (12).

(11) Now , 13 years later , Mr. Lane has revived

his Artist ...

(12) later should be tagged as a simple

adverb (RB) rather than as a com-

parative adverb (RBR), unless its

meaning is clearly comparative. A

8Note that it could be argued that this lack of a structural
distinction contributed to the inconsistency among annotators
in the first place and thus made error detection successful.

useful diagnostic is that the com-

parative later can be preceded by

even or still.

In example (11), along with the fact that this

is 13 years later as compared to now (i.e., com-

parative), one can say Now, (even) 13 years later,

Mr. Lane has revived his Artist ..., favoring RBR

as a tag. But the trigram years later , occurs 16

times, 12 as RB and 4 as RBR. Assuming RBR is

correct, we clearly have a lot of wrong annotation

in the corpus, even though here the corpus is cor-

rectly annotated as RBR. As seen in (13), in the

context of following CD and NNS, RBR is much

less likely for TnT than either RB or JJ.

(13) a. p(JJ|CD,NNS) = .0366

b. p(RB|CD,NNS) = .0531

c. p(RBR|CD,NNS) = .0044

As shown in (14), even when we use complex

ambiguity tags, we still find this favoritism for RB

because of the overwhelmingly wrong data in the

corpus. However, we note that although RB is fa-

vored, its next closest competitor is now RBR—

not JJ—and RB is no longer favored by as much

as it was over RBR. We have more appropriately

narrowed down the list of proper tags for this posi-

tion by using complex ambiguity tags, but because

of too much incorrect annotation, we still generate

the wrong tag.

(14) a. p(<JJ/RB/RBR,JJ>|CD,NNS) = .0002

b. p(<JJ/RB/RBR,RB>|CD,NNS)= .0054

c. p(<JJ/RB/RBR,RBR>|CD,NNS)=.0017

These issues show that automatic correction

must be used with care, but they also highlight par-

ticular aspects of this tagset that any POS tagging

method will have difficulty overcoming, and the

effect of wrong data again serves to illustrate the

problem of annotation errors in training data.

6 Summary and Outlook

We have demonstrated the effectiveness of using

POS tagging technology to correct a corpus, once

an error detection method has identified poten-

tially erroneous corpus positions. We first showed

that using a tagger as is provides moderate re-

sults, but adapting a tagger to account for problem-

atic tag distinctions in the data—i.e., using com-

plex ambiguity tags—performs much better and

271



reduces the true error rate of a corpus. The distinc-

tions in the tagging model have more of an impact

on the precision of correction than the underlying

tagging algorithm.

Despite the gain in accuracy, we pointed out

that there are still several residual problems which

are difficult for any tagging system. Future work

will go into automatically sorting the tags so that

the difficult disambiguation decisions can be dealt

with differently from the easily disambiguated

corpus positions. Additionally, we will want to

test the method on a variety of corpora and tag-

ging schemes and gauge the impact of correc-

tion on POS tagger training and evaluation. We

hypothesize that this method will work for any

tagset with potentially confusing distinctions be-

tween tags, but this is yet to be tested.

The method of adapting a tagging model by us-

ing complex ambiguity tags originated from an

understanding that the POS tagging process is

crucially dependent upon the tagset distinctions.

Based on this, the correction work described in

this paper can be extended to the general task of

POS tagging, as a tagger using complex ambiguity

classes is attempting to tackle the difficult distinc-

tions in a corpus. To pursue this line of research,

work has to go into defining ambiguity classes for

all words in the corpus, instead of focusing on

words involved in variations.

Acknowledgments I would like to thank Det-

mar Meurers for helpful discussion, Stephanie

Dickinson for her statistical assistance, and the

three anonymous reviewers for their comments.

References

Thorsten Brants. 1996. Estimating Markov model
structures. In Proceedings of ICSLP-96, pages 893–
896, Philadelphia, PA.

Thorsten Brants. 2000. TnT – a statistical part-of-
speech tagger. In Proceedings of ANLP-2000, pages
224–231, Seattle, WA.

Eric Brill and Mihai Pop. 1999. Unsupervised learn-
ing of disambiguation rules for part of speech tag-
ging. In Kenneth W. Church, editor, Natural Lan-
guage Processing Using Very Large Corpora, pages
27–42. Kluwer Academic Press, Dordrecht.

Doug Cutting, Julian Kupiec, Jan Pedersen, and Pene-
lope Sibun. 1992. A practical part-of-speech tagger.
In Proceedings of ANLP-92, pages 133–140, Trento,
Italy.

Hervé Déjean. 2000. How to evaluate and compare
tagsets? a proposal. In Proceedings of LREC-00,
Athens.

Markus Dickinson and W. Detmar Meurers. 2003.
Detecting errors in part-of-speech annotation. In
Proceedings of EACL-03, pages 107–114, Budapest,
Hungary.

Markus Dickinson. 2005. Error detection and correc-
tion in annotated corpora. Ph.D. thesis, The Ohio
State University.

Eleazar Eskin. 2000. Automatic corpus correction
with anomaly detection. In Proceedings of NAACL-
00, pages 148–153, Seattle, Washington.

Pavel Květǒn and Karel Oliva. 2002. Achieving an
almost correct PoS-tagged corpus. In Text, Speech
and Dialogue (TSD 2002), pages 19–26, Heidelberg.
Springer.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Lluis Marquez and Lluis Padro. 1997. A flexible
POS tagger using an automatically acquired lan-
guage model. In Proceedings of ACL-97, pages
238–245, Madrid, Spain.

Lluis Marquez, Lluis Padro, and Horacio Rodriguez.
2000. A machine learning approach to POS tagging.
Machine Learning, 39(1):59–91.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12:153–157.

Karel Oliva. 2001. The possibilities of automatic de-
tection/correction of errors in tagged corpora: a pilot
study on a German corpus. In Text, Speech and Di-
alogue (TSD 2001), pages 39–46. Springer.

Ferran Pla and Antonio Molina. 2004. Improving part-
of-speech tagging using lexicalized HMMs. Natural
Language Engineering, 10(2):167–189.

Beatrice Santorini. 1990. Part-of-speech tagging
guidelines for the Penn Treebank project (3rd revi-
sion, 2nd printing). Technical Report MS-CIS-90-
47, The University of Pennsylvania, Philadelphia,
PA, June.

Helmut Schmid. 1997. Probabilistic part-of-speech
tagging using decision trees. In D.H. Jones and H.L.
Somers, editors, New Methods in Language Process-
ing, pages 154–164. UCL Press, London.

Tylman Ule. 2003. Directed treebank refinement for
PCFG parsing. In Proceedings of TLT 2003, pages
177–188, Växjö, Sweden.

Hans van Halteren. 2000. The detection of incon-
sistency in manually tagged text. In Anne Abeillé,
Thosten Brants, and Hans Uszkoreit, editors, Pro-
ceedings of LINC-00, Luxembourg.

272


