
Making Tree Kernels practical for Natural Language Learning

Alessandro Moschitti

Department of Computer Science

University of Rome ”Tor Vergata”

Rome, Italy

moschitti@info.uniroma2.it

Abstract

In recent years tree kernels have been pro-

posed for the automatic learning of natural

language applications. Unfortunately, they

show (a) an inherent super linear complex-

ity and (b) a lower accuracy than tradi-

tional attribute/value methods.

In this paper, we show that tree kernels

are very helpful in the processing of nat-

ural language as (a) we provide a simple

algorithm to compute tree kernels in linear

average running time and (b) our study on

the classification properties of diverse tree

kernels show that kernel combinations al-

ways improve the traditional methods. Ex-

periments with Support Vector Machines

on the predicate argument classification

task provide empirical support to our the-

sis.

1 Introduction

In recent years tree kernels have been shown to

be interesting approaches for the modeling of syn-

tactic information in natural language tasks, e.g.

syntactic parsing (Collins and Duffy, 2002), rela-

tion extraction (Zelenko et al., 2003), Named En-

tity recognition (Cumby and Roth, 2003; Culotta

and Sorensen, 2004) and Semantic Parsing (Mos-

chitti, 2004).

The main tree kernel advantage is the possibility

to generate a high number of syntactic features and

let the learning algorithm to select those most rel-

evant for a specific application. In contrast, their

major drawback are (a) the computational time

complexity which is superlinear in the number of

tree nodes and (b) the accuracy that they produce is

often lower than the one provided by linear models

on manually designed features.

To solve problem (a), a linear complexity al-

gorithm for the subtree (ST) kernel computation,

was designed in (Vishwanathan and Smola, 2002).

Unfortunately, the ST set is rather poorer than the

one generated by the subset tree (SST) kernel de-

signed in (Collins and Duffy, 2002). Intuitively,

an ST rooted in a node n of the target tree always

contains all n’s descendants until the leaves. This

does not hold for the SSTs whose leaves can be

internal nodes.

To solve the problem (b), a study on different

tree substructure spaces should be carried out to

derive the tree kernel that provide the highest ac-

curacy. On the one hand, SSTs provide learn-

ing algorithms with richer information which may

be critical to capture syntactic properties of parse

trees as shown, for example, in (Zelenko et al.,

2003; Moschitti, 2004). On the other hand, if the

SST space contains too many irrelevant features,

overfitting may occur and decrease the classifica-

tion accuracy (Cumby and Roth, 2003). As a con-

sequence, the fewer features of the ST approach

may be more appropriate.

In this paper, we aim to solve the above prob-

lems. We present (a) an algorithm for the eval-

uation of the ST and SST kernels which runs in

linear average time and (b) a study of the impact

of diverse tree kernels on the accuracy of Support

Vector Machines (SVMs).

Our fast algorithm computes the kernels be-

tween two syntactic parse trees in O(m + n) av-

erage time, where m and n are the number of

nodes in the two trees. This low complexity al-

lows SVMs to carry out experiments on hundreds

of thousands of training instances since it is not

higher than the complexity of the polynomial ker-

113

nel, widely used on large experimentation e.g.

(Pradhan et al., 2004). To confirm such hypothe-

sis, we measured the impact of the algorithm on

the time required by SVMs for the learning of

about 122,774 predicate argument examples anno-

tated in PropBank (Kingsbury and Palmer, 2002)

and 37,948 instances annotated in FrameNet (Fill-

more, 1982).

Regarding the classification properties, we stud-

ied the argument labeling accuracy of ST and SST

kernels and their combinations with the standard

features (Gildea and Jurafsky, 2002). The re-

sults show that, on both PropBank and FrameNet

datasets, the SST-based kernel, i.e. the richest

in terms of substructures, produces the highest

SVM accuracy. When SSTs are combined with the

manual designed features, we always obtain the

best figure classifier. This suggests that the many

fragments included in the SST space are relevant

and, since their manual design may be problem-

atic (requiring a higher programming effort and

deeper knowledge of the linguistic phenomenon),

tree kernels provide a remarkable help in feature

engineering.

In the remainder of this paper, Section 2 de-

scribes the parse tree kernels and our fast algo-

rithm. Section 3 introduces the predicate argument

classification problem and its solution. Section 4

shows the comparative performance in term of the

execution time and accuracy. Finally, Section 5

discusses the related work whereas Section 6 sum-

marizes the conclusions.

2 Fast Parse Tree Kernels

The kernels that we consider represent trees in

terms of their substructures (fragments). These

latter define feature spaces which, in turn, are

mapped into vector spaces, e.g. <n. The asso-

ciated kernel function measures the similarity be-

tween two trees by counting the number of their

common fragments. More precisely, a kernel func-

tion detects if a tree subpart (common to both

trees) belongs to the feature space that we intend

to generate. For such purpose, the fragment types

need to be described. We consider two important

characterizations: the subtrees (STs) and the sub-

set trees (SSTs).

2.1 Subtrees and Subset Trees

In our study, we consider syntactic parse trees,

consequently, each node with its children is asso-

ciated with a grammar production rule, where the

symbol at left-hand side corresponds to the parent

node and the symbols at right-hand side are asso-

ciated with its children. The terminal symbols of

the grammar are always associated with the leaves

of the tree. For example, Figure 1 illustrates the

syntactic parse of the sentence "Mary brought a

cat to school".

S → N VP

VP → V NP PP

PP → IN N

N → school
N

school

The root

A leaf

S

N

NP

D N

VP

VMary

to

brought

a cat

PP

IN

A subtree

Figure 1: A syntactic parse tree.

We define as a subtree (ST) any node of a tree

along with all its descendants. For example, the

line in Figure 1 circles the subtree rooted in the NP

node. A subset tree (SST) is a more general struc-

ture. The difference with the subtrees is that the

leaves can be associated with non-terminal sym-

bols. The SSTs satisfy the constraint that they are

generated by applying the same grammatical rule

set which generated the original tree. For exam-

ple, [S [N VP]] is a SST of the tree in Figure

1 which has two non-terminal symbols, N and VP,

as leaves.

S

N

NP

D N

VP

VMary

brought

a cat

NP

D N

a cat

N

 cat

D

a

V

brought

N

Mary

NP

D N

VP

V

brought

a cat

Figure 2: A syntactic parse tree with its subtrees (STs).

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

Figure 3: A tree with some of its subset trees (SSTs).

Given a syntactic tree we can use as feature rep-

resentation the set of all its STs or SSTs. For ex-

ample, Figure 2 shows the parse tree of the sen-

tence "Mary brought a cat" together with its 6

STs, whereas Figure 3 shows 10 SSTs (out of

17) of the subtree of Figure 2 rooted in VP. The

114

high different number of substructures gives an in-

tuitive quantification of the different information

level between the two tree-based representations.

2.2 The Tree Kernel Functions

The main idea of tree kernels is to compute the

number of the common substructures between two

trees T1 and T2 without explicitly considering

the whole fragment space. For this purpose, we

slightly modified the kernel function proposed in

(Collins and Duffy, 2002) by introducing a param-

eter σ which enables the ST or the SST evaluation.

Given the set of fragments {f1, f2, ..} = F , we

defined the indicator function Ii(n) which is equal

1 if the target fi is rooted at node n and 0 other-

wise. We define

K(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2) (1)

where NT1 and NT2 are the sets of the T1’s

and T2’s nodes, respectively and ∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). This latter is equal to the

number of common fragments rooted in the n1 and

n2 nodes. We can compute ∆ as follows:

1. if the productions at n1 and n2 are different

then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the

same, and n1 and n2 have only leaf children

(i.e. they are pre-terminals symbols) then

∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same,

and n1 and n2 are not pre-terminals then

∆(n1, n2) =

nc(n1)∏

j=1

(σ + ∆(cj
n1

, cj
n2

)) (2)

where σ ∈ {0, 1}, nc(n1) is the number of the

children of n1 and cj
n is the j-th child of the node

n. Note that, since the productions are the same,

nc(n1) = nc(n2).
When σ = 0, ∆(n1, n2) is equal 1 only if

∀j ∆(cj
n1

, cj
n2

) = 1, i.e. all the productions as-

sociated with the children are identical. By recur-

sively applying this property, it follows that the

subtrees in n1 and n2 are identical. Thus, Eq. 1

evaluates the subtree (ST) kernel. When σ = 1,

∆(n1, n2) evaluates the number of SSTs common

to n1 and n2 as proved in (Collins and Duffy,

2002).

Additionally, we study some variations of the

above kernels which include the leaves in the frag-

ment space. For this purpose, it is enough to add

the condition:

0. if n1 and n2 are leaves and their associated

symbols are equal then ∆(n1, n2) = 1,

to the recursive rule set for the ∆ evaluation

(Zhang and Lee, 2003). We will refer to such ex-

tended kernels as ST+bow and SST+bow (bag-of-

words).

Moreover, we add the decay factor λ by modi-

fying steps (2) and (3) as follows1:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)

j=1 (σ + ∆(cj
n1

, cj
n2

)).

The computational complexity of Eq. 1 is

O(|NT1 | × |NT2 |). We will refer to this basic im-

plementation as the Quadratic Tree Kernel (QTK).

However, as observed in (Collins and Duffy, 2002)

this worst case is quite unlikely for the syntactic

trees of natural language sentences, thus, we can

design algorithms that run in linear time on aver-

age.

function Evaluate Pair Set(Tree T1, T2) returns NODE PAIR SET;
LIST L1,L2;
NODE PAIR SET Np;
begin

L1 = T1.ordered list;
L2 = T2.ordered list; /*the lists were sorted at loading time*/
n1 = extract(L1); /*get the head element and*/
n2 = extract(L2); /*remove it from the list*/
while (n1 and n2 are not NULL)

if (production of(n1) > production of(n2))
then n2 = extract(L2);
else if (production of(n1) < production of(n2))

then n1 = extract(L1);
else

while (production of(n1) == production of(n2))
while (production of(n1) == production of(n2))

add(〈n1, n2〉, Np);
n2=get next elem(L2); /*get the head element
and move the pointer to the next element*/

end
n1 = extract(L1);
reset(L2); /*set the pointer at the first element*/

end
end
return Np ;

end

Table 1: Pseudo-code for fast evaluation of the node pair
sets used in the fast Tree Kernel.

2.3 A Fast Tree Kernel (FTK)

To compute the kernels defined in the previous

section, we sum the ∆ function for each pair

〈n1, n2〉∈ NT1 × NT2 (Eq. 1). When the pro-

ductions associated with n1 and n2 are different,

we can avoid to evaluate ∆(n1, n2) since it is 0.

1To have a similarity score between 0 and 1, we also ap-
ply the normalization in the kernel space, i.e. K′(T1, T2) =

K(T1,T2)√
K(T1,T1)×K(T2,T2)

.

115

S

N

NP

D N

VP

VMary

 to

brought

a cat

PP

IN N

school

Arg. 0

Arg. MArg. 1

Predicate

NP

D N

VP

V

brought

a cat

SArg1 VP

V

 to

brought

PP

IN N

school

S

N

VMary

brought

VP

SArg0 SArgM

Figure 4: Tree substructure space for predicate argument classification.

Thus, we look for a node pair set Np ={〈n1, n2〉∈
NT1 × NT2 : p(n1) = p(n2)}, where p(n) returns

the production rule associated with n.

To efficiently build Np, we (i) extract the L1 and

L2 lists of the production rules from T1 and T2,

(ii) sort them in the alphanumeric order and (iii)

scan them to find the node pairs 〈n1, n2〉 such that

(p(n1) = p(n2)) ∈ L1∩L2. Step (iii) may require

only O(|NT1 |+ |NT2 |) time, but, if p(n1) appears

r1 times in T1 and p(n2) is repeated r2 times in

T2, we need to consider r1 × r2 pairs. The formal

algorithm is given in Table 1.

Note that:

(a) The list sorting can be done only once at the

data preparation time (i.e. before training) in

O(|NT1 | × log(|NT1 |)).
(b) The algorithm shows that the worst case oc-

curs when the parse trees are both generated us-

ing only one production rule, i.e. the two inter-

nal while cycles carry out |NT1 |×|NT2 | iterations.

In contrast, two identical parse trees may generate

a linear number of non-null pairs if there are few

groups of nodes associated with the same produc-

tion rule.

(c) Such approach is perfectly compatible with the

dynamic programming algorithm which computes

∆. In fact, the only difference with the original

approach is that the matrix entries corresponding

to pairs of different production rules are not con-

sidered. Since such entries contain null values

they do not affect the application of the original

dynamic programming. Moreover, the order of

the pair evaluation can be established at run time,

starting from the root nodes towards the children.

3 A Semantic Application of Parse Tree

Kernels

An interesting application of the SST kernel is

the classification of the predicate argument struc-

tures defined in PropBank (Kingsbury and Palmer,

2002) or FrameNet (Fillmore, 1982). Figure

4 shows the parse tree of the sentence: "Mary

brought a cat to school" along with the pred-

icate argument annotation proposed in the Prop-

Bank project. Only verbs are considered as pred-

icates whereas arguments are labeled sequentially

from ARG0 to ARG9.

Also in FrameNet predicate/argument informa-

tion is described but for this purpose richer seman-

tic structures called Frames are used. The Frames

are schematic representations of situations involv-

ing various participants, properties and roles in

which a word may be typically used. Frame el-

ements or semantic roles are arguments of pred-

icates called target words. For example the fol-

lowing sentence is annotated according to the AR-

REST frame:

[Time One Saturday night] [Authorities police

in Brooklyn] [Target apprehended] [Suspect

sixteen teenagers].
The roles Suspect and Authorities are specific to

the frame.

The common approach to learn the classifica-

tion of predicate arguments relates to the extrac-

tion of features from the syntactic parse tree of

the target sentence. In (Gildea and Jurafsky, 2002)

seven different features2, which aim to capture the

relation between the predicate and its arguments,

were proposed. For example, the Parse Tree Path

of the pair 〈brought, ARG1〉 in the syntactic tree

of Figure 4 is V ↑ VP ↓ NP. It encodes the depen-

dency between the predicate and the argument as a

sequence of nonterminal labels linked by direction

symbols (up or down).

An alternative tree kernel representation, pro-

posed in (Moschitti, 2004), is the selection of the

minimal tree subset that includes a predicate with

only one of its arguments. For example, in Figure

4, the substructures inside the three frames are the

semantic/syntactic structures associated with the

three arguments of the verb to bring, i.e. SARG0,

SARG1 and SARGM .

Given a feature representation of predicate ar-

2Namely, they are Phrase Type, Parse Tree Path, Pred-
icate Word, Head Word, Governing Category, Position and
Voice.

116

guments, we can build an individual ONE-vs-ALL

(OVA) classifier Ci for each argument i. As a fi-

nal decision of the multiclassifier, we select the ar-

gument type ARGt associated with the maximum

value among the scores provided by the Ci, i.e.

t = argmaxi∈S score(Ci), where S is the set

of argument types. We adopted the OVA approach

as it is simple and effective as showed in (Pradhan

et al., 2004).

Note that the representation in Figure 4 is quite

intuitive and, to conceive it, the designer requires

much less linguistic knowledge about semantic

roles than those necessary to define relevant fea-

tures manually. To understand such point, we

should make a step back before Gildea and Juraf-

sky defined the first set of features for Semantic

Role Labeling (SRL). The idea that syntax may

have been useful to derive semantic information

was already inspired by linguists, but from a ma-

chine learning point of view, to decide which tree

fragments may have been useful for semantic role

labeling was not an easy task. In principle, the de-

signer should have had to select and experiment

all possible tree subparts. This is exactly what the

tree kernels can automatically do: the designer just

need to roughly select the interesting whole sub-

tree (correlated with the linguistic phenomenon)

and the tree kernel will generate all possible syn-

tactic features from it. The task of selecting the

most relevant substructures is carried out by the

kernel machines themselves.

4 The Experiments

The aim of the experiments is twofold. On the one

hand, we show that the FTK running time is linear

on the average case and is much faster than QTK.

This is accomplished by measuring the learning

time and the average kernel computation time. On

the other hand, we study the impact of the differ-

ent tree based kernels on the predicate argument

classification accuracy.

4.1 Experimental Set-up

We used two different corpora: PropBank

(www.cis.upenn.edu/∼ace) along with Pen-

nTree bank 2 (Marcus et al., 1993) and FrameNet.

PropBank contains about 53,700 sentences and

a fixed split between training and testing which has

been used in other researches, e.g. (Gildea and

Palmer, 2002; Pradhan et al., 2004). In this split,

sections from 02 to 21 are used for training, sec-

tion 23 for testing and sections 1 and 22 as devel-

oping set. We considered a total of 122,774 and

7,359 arguments (from ARG0 to ARG9, ARGA

and ARGM) in training and testing, respectively.

Their tree structures were extracted from the Penn

Treebank. It should be noted that the main contri-

bution to the global accuracy is given by ARG0,

ARG1 and ARGM.

From the FrameNet corpus (http://www.icsi

.berkeley.edu/∼framenet), we extracted all

24,558 sentences of the 40 Frames selected for

the Automatic Labeling of Semantic Roles task of

Senseval 3 (www.senseval.org). We mapped to-

gether the semantic roles having the same name

and we considered only the 18 most frequent roles

associated with verbal predicates, for a total of

37,948 arguments. We randomly selected 30% of

sentences for testing and 70% for training. Addi-

tionally, 30% of training was used as a validation-

set. Note that, since the FrameNet data does not

include deep syntactic tree annotation, we pro-

cessed the FrameNet data with Collins’ parser

(Collins, 1997), consequently, the experiments on

FrameNet relate to automatic syntactic parse trees.

The classifier evaluations were carried out

with the SVM-light-TK software available at

http://ai-nlp.info.uniroma2.it/moschitti/

which encodes ST and SST kernels in the SVM-

light software (Joachims, 1999). We used the

default linear (Linear) and polynomial (Poly)

kernels for the evaluations with the standard

features defined in (Gildea and Jurafsky, 2002).

We adopted the default regularization parameter

(i.e., the average of 1/||~x||) and we tried a few

cost-factor values (i.e., j ∈ {1, 3, 7, 10, 30, 100})

to adjust the rate between Precision and Recall on

the validation-set.

For the ST and SST kernels, we derived that the

best λ (see Section 2.2) were 1 and 0.4, respec-

tively. The classification performance was eval-

uated using the F1 measure3 for the single argu-

ments and the accuracy for the final multiclassi-

fier. This latter choice allows us to compare our

results with previous literature work, e.g. (Gildea

and Jurafsky, 2002; Pradhan et al., 2004).

4.2 Time Complexity Experiments

In this section we compare our Fast Tree Kernel

(FTK) approach with the Quadratic Tree Kernel

(QTK) algorithm. The latter refers to the naive

evaluation of Eq. 1 as presented in (Collins and

Duffy, 2002).

3F1 assigns equal importance to Precision P and Recall
R, i.e. f1 = 2P×R

P+R
.

117

Figure 5 shows the learning time4 of the SVMs

using QTK and FTK (over the SST structures)

for the classification of one large argument (i.e.

ARG0), according to different percentages of

training data. We note that, with 70% of the train-

ing data, FTK is about 10 times faster than QTK.

With all the training data FTK terminated in 6

hours whereas QTK required more than 1 week.

y = 0.0006x
2

 - 0.001x

y = 0.0045x
2

 + 0.1004x

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

% Training Data

H
o

u
rs

FTK

QTK

Figure 5: ARG0 classifier learning time according to dif-
ferent training percentages.

y = 0.04x
2

 - 0.05x

y = 0.14x

0

20

40

60

80

100

120

10 15 20 25 30 35 40 45 50 55 60

Number of Tree Nodes

µµ µµ
s
e
c
o

n
d

s

FTK

QTK

Figure 6: Average time in seconds for the QTK and FTK
evaluations.

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0 10 20 30 40 50 60 70 80 90 100

% Training Data

A
c

c
u

ra
c

y

ST

SST

ST+bow

SST+bow

Linear

Poly

Figure 7: Multiclassifier accuracy according to different
training set percentages.

4We run the experiments on a Pentium 4, 2GHz, with 1
Gb ram.

The above results are quite interesting because

they show that (1) we can use tree kernels with

SVMs on huge training sets, e.g. on 122,774 in-

stances and (2) the time needed to converge is ap-

proximately the one required by SVMs when us-

ing polynomial kernel. This latter shows the mini-

mal complexity needed to work in the dual space.

To study the FTK running time, we extracted

from PennTree bank the first 500 trees5 containing

exactly n nodes, then, we evaluated all 25,000 pos-

sible tree pairs. Each point of the Figure 6 shows

the average computation time on all the tree pairs

of a fixed size n.

In the figures, the trend lines which best inter-

polates the experimental values are also shown. It

clearly appears that the training time is quadratic

as SVMs have quadratic learning time complexity

(see Figure 5) whereas the FTK running time has

a linear behavior (Figure 6). The QTK algorithm

shows a quadratic running time complexity, as ex-

pected.

4.3 Accuracy of the Tree Kernels

In these experiments, we investigate which ker-

nel is the most accurate for the predicate argument

classification.

First, we run ST, SST, ST+bow, SST+bow, Lin-

ear and Poly kernels over different training-set size

of PropBank. Figure 7 shows the learning curves

associated with the above kernels for the SVM-

based multiclassifier. We note that (a) SSTs have

a higher accuracy than STs, (b) bow does not im-

prove either ST or SST kernels and (c) in the fi-

nal part of the plot SST shows a higher gradient

than ST, Linear and Poly. This latter produces

the best accuracy 90.5% in line with the litera-

ture findings using standard features and polyno-

mial SVMs, e.g. 87.1%6 in (Pradhan et al., 2004).

Second, in tables 2 and 3, we report the results

using all available training data, on PropBank and

FrameNet test sets, respectively. Each row of the

two tables shows the F1 measure of the individ-

ual classifiers using different kernels whereas the

last column illustrates the global accuracy of the

multiclassifier.

5We measured also the computation time for the incom-
plete trees associated with the predicate argument structures
(see Section 3); we obtained the same results.

6The small difference (2.4%) is mainly due to the differ-
ent treatment of ARGMs: we built a single ARGM class for
all subclasses, e.g. ARGM-LOC and ARGM-TMP, whereas
in (Pradhan et al., 2004), the ARGMs, were evaluated sepa-
rately.

118

We note that, the F1 of the single arguments

across the different kernels follows the same be-

havior of the global multiclassifier accuracy. On

FrameNet, the bow impact on the ST and SST

accuracy is higher than on PropBank as it pro-

duces an improvement of about 1.5%. This sug-

gests that (1) to detect semantic roles, lexical in-

formation is very important, (2) bow give a higher

contribution as errors in POS-tagging make the

word + POS fragments less reliable and (3) as the

FrameNet trees are obtained with the Collins’ syn-

tactic parser, tree kernels seem robust to incorrect

parse trees.

Third, we point out that the polynomial ker-

nel on flat features is more accurate than tree ker-

nels but the design of such effective features re-

quired noticeable knowledge and effort (Gildea

and Jurafsky, 2002). On the contrary, the choice

of subtrees suitable to syntactically characterize a

target phenomenon seems a easier task (see Sec-

tion 3 for the predicate argument case). More-

over, by combining polynomial and SST kernels,

we can improve the classification accuracy (Mos-

chitti, 2004), i.e. tree kernels provide the learn-

ing algorithm with many relevant fragments which

hardly can be designed by hand. In fact, as many

predicate argument structures are quite large (up

to 100 nodes) they contain many fragments.

ARGs ST SST ST+bow SST+bow Linear Poly

ARG0 86.5 88.0 86.9 88.4 88.6 90.6
ARG1 83.1 87.4 82.8 86.7 85.9 90.8
ARG2 58.0 67.6 58.9 66.7 65.5 80.4
ARG3 35.7 37.5 39.3 41.2 51.9 60.4
ARG4 62.7 65.6 63.3 63.9 66.2 70.0
ARGM 92.0 94.2 92.0 93.7 94.9 95.3

Acc. 84.6 87.7 84.8 87.5 87.6 90.7

Table 2: Evaluation of Kernels on PropBank.

Roles ST SST ST+bow SST+bow Linear Poly

agent 86.9 87.8 89.2 90.2 89.8 91.7
theme 76.1 79.2 78.5 80.7 82.9 90.4
goal 77.9 78.9 78.2 80.1 80.2 85.8
path 82.8 84.4 83.7 85.1 81.3 85.5
manner 79.9 82.0 81.3 82.5 70.8 80.5
source 85.6 87.7 86.9 87.8 86.5 89.8
time 76.3 78.3 77.0 79.1 61.8 68.3
reason 75.9 77.3 78.9 81.4 82.9 86.4

Acc. 80.0 81.2 81.3 82.9 82.3 85.6
18 roles

Table 3: Evaluation of the Kernels on FrameNet semantic
roles.

Finally, to study the combined kernels, we ap-

plied the K1 + γK2 formula, where K1 is either

the Linear or the Poly kernel and K2 is the ST

Corpus Poly ST+Linear SST+Linear ST+Poly SST+Poly

PropBank 90.7 88.6 89.4 91.1 91.3
FrameNet 85.6 85.3 85.8 87.5 87.2

Table 4: Multiclassifier accuracy using Kernel Combina-
tions.

or the SST kernel. Table 4 shows the results of

four kernel combinations. We note that, (a) STs

and SSTs improve Poly (about 0.5 and 2 percent

points on PropBank and FrameNet, respectively)

and (b) the linear kernel, which uses fewer fea-

tures than Poly, is more enhanced by the SSTs than

STs (for example on PropBank we have 89.4% and

88.6% vs. 87.6%), i.e. Linear takes advantage by

the richer feature set of the SSTs. It should be

noted that our results of kernel combinations on

FrameNet are in contrast with (Moschitti, 2004),

where no improvement was obtained. Our expla-

nation is that, thanks to the fast evaluation of FTK,

we could carry out an adequate parameterization.

5 Related Work

Recently, several tree kernels have been designed.

In the following, we highlight their differences and

properties.

In (Collins and Duffy, 2002), the SST tree ker-

nel was experimented with the Voted Perceptron

for the parse-tree reranking task. The combination

with the original PCFG model improved the syn-

tactic parsing. Additionally, it was alluded that the

average execution time depends on the number of

repeated productions.

In (Vishwanathan and Smola, 2002), a linear

complexity algorithm for the computation of the

ST kernel is provided (in the worst case). The

main idea is the use of the suffix trees to store par-

tial matches for the evaluation of the string kernel

(Lodhi et al., 2000). This can be used to compute

the ST fragments once the tree is converted into a

string. To our knowledge, ours is the first applica-

tion of the ST kernel for a natural language task.

In (Kazama and Torisawa, 2005), an interesting

algorithm that speeds up the average running time

is presented. Such algorithm looks for node pairs

that have in common a large number of trees (ma-

licious nodes) and applies a transformation to the

trees rooted in such nodes to make faster the kernel

computation. The results show an increase of the

speed similar to the one produced by our method.

In (Zelenko et al., 2003), two kernels over syn-

tactic shallow parser structures were devised for

the extraction of linguistic relations, e.g. person-

affiliation. To measure the similarity between two

119

nodes, the contiguous string kernel and the sparse

string kernel (Lodhi et al., 2000) were used. In

(Culotta and Sorensen, 2004) such kernels were

slightly generalized by providing a matching func-

tion for the node pairs. The time complexity for

their computation limited the experiments on data

set of just 200 news items. Moreover, we note that

the above tree kernels are not convolution kernels

as those proposed in this article.

In (Shen et al., 2003), a tree-kernel based on

Lexicalized Tree Adjoining Grammar (LTAG) for

the parse-reranking task was proposed. Since

QTK was used for the kernel computation, the

high learning complexity forced the authors to

train different SVMs on different slices of train-

ing data. Our FTK, adapted for the LTAG tree ker-

nel, would have allowed SVMs to be trained on

the whole data.

In (Cumby and Roth, 2003), a feature descrip-

tion language was used to extract structural fea-

tures from the syntactic shallow parse trees asso-

ciated with named entities. The experiments on

the named entity categorization showed that when

the description language selects an adequate set of

tree fragments the Voted Perceptron algorithm in-

creases its classification accuracy. The explana-

tion was that the complete tree fragment set con-

tains many irrelevant features and may cause over-

fitting.

6 Conclusions

In this paper, we have shown that tree kernels

can effectively be adopted in practical natural lan-

guage applications. The main arguments against

their use are their efficiency and accuracy lower

than traditional feature based approaches. We

have shown that a fast algorithm (FTK) can evalu-

ate tree kernels in a linear average running time

and also that the overall converging time re-

quired by SVMs is compatible with very large

data sets. Regarding the accuracy, the experiments

with Support Vector Machines on the PropBank

and FrameNet predicate argument structures show

that: (a) the richer the kernel is in term of substruc-

tures (e.g. SST), the higher the accuracy is, (b)

tree kernels are effective also in case of automatic

parse trees and (c) as kernel combinations always

improve traditional feature models, the best ap-

proach is to combine scalar-based and structured

based kernels.

Acknowledgments

I would like to thank the AI group at the University of Rome
”Tor Vergata”. Many thanks to the EACL 2006 anonymous
reviewers, Roberto Basili and Giorgio Satta who provided
me with valuable suggestions. This research is partially sup-
ported by the Presto Space EU Project#: FP6-507336.

References
Michael Collins and Nigel Duffy. 2002. New ranking al-

gorithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. In ACL02.

Michael Collins. 1997. Three generative, lexicalized mod-
els for statistical parsing. In proceedings of the ACL97,
Madrid, Spain.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency tree
kernels for relation extraction. In proceedings of ACL04,
Barcelona, Spain.

Chad Cumby and Dan Roth. 2003. Kernel methods for rela-
tional learning. In proceedings of ICML 2003. Washing-
ton, US.

Charles J. Fillmore. 1982. Frame semantics. In Linguistics
in the Morning Calm.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguistic,
28(3):496–530.

Daniel Gildea and Martha Palmer. 2002. The necessity of
parsing for predicate argument recognition. In proceed-
ings of ACL02, Philadelphia, PA.

T. Joachims. 1999. Making large-scale SVM learning prac-
tical. In B. Schölkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods - Support Vector Learning.

Junichi Kazama and Kentaro Torisawa. 2005. Speeding up
training with tree kernels for node relation labeling. In
proceedings of EMNLP 2005, Toronto, Canada.

Paul Kingsbury and Martha Palmer. 2002. From Treebank to
PropBank. In proceedings of LREC-2002, Spain.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Cristianini, and Christopher Watkins. 2000. Text clas-
sification using string kernels. In NIPS02, Vancouver,
Canada.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of english: The Penn
Treebank. Computational Linguistics, 19:313–330.

Alessandro Moschitti. 2004. A study on convolution ker-
nels for shallow semantic parsing. In proceedings ACL04,
Barcelona, Spain.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne
Ward, James H. Martin, and Daniel Jurafsky. 2005. Sup-
port vector learning for semantic argument classification.
Machine Learning Journal.

Libin Shen, Anoop Sarkar, and Aravind Joshi. 2003. Using
LTAG based features in parse reranking. In proceedings
of EMNLP 2003, Sapporo, Japan.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and
Christopher Manning. 2004. Max-margin parsing. In
proceedings of EMNLP 2004 Barcelona, Spain.

S.V.N. Vishwanathan and A.J. Smola. 2002. Fast kernels on
strings and trees. In proceedings of Neural Information
Processing Systems.

D. Zelenko, C. Aone, and A. Richardella. 2003. Ker-
nel methods for relation extraction. Journal of Machine
Learning Research.

Dell Zhang and Wee Sun Lee. 2003. Question classifica-
tion using support vector machines. In proceedings of SI-
GIR’03, ACM Press.

120

