
Online Learning of Approximate Dependency Parsing Algorithms

Ryan McDonald Fernando Pereira

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

{ryantm,pereira}@cis.upenn.edu

Abstract

In this paper we extend the maximum

spanning tree (MST) dependency parsing

framework of McDonald et al. (2005c)

to incorporate higher-order feature rep-

resentations and allow dependency struc-

tures with multiple parents per word.

We show that those extensions can make

the MST framework computationally in-

tractable, but that the intractability can be

circumvented with new approximate pars-

ing algorithms. We conclude with ex-

periments showing that discriminative on-

line learning using those approximate al-

gorithms achieves the best reported pars-

ing accuracy for Czech and Danish.

1 Introduction

Dependency representations of sentences (Hud-

son, 1984; Meĺčuk, 1988) model head-dependent

syntactic relations as edges in a directed graph.

Figure 1 displays a dependency representation for

the sentence John hit the ball with the bat. This

sentence is an example of a projective (or nested)

tree representation, in which all edges can be

drawn in the plane with none crossing. Sometimes

a non-projective representations are preferred, as

in the sentence in Figure 2.1 In particular, for

freer-word order languages, non-projectivity is a

common phenomenon since the relative positional

constraints on dependents is much less rigid. The

dependency structures in Figures 1 and 2 satisfy

the tree constraint: they are weakly connected

graphs with a unique root node, and each non-root

node has a exactly one parent. Though trees are

1Examples are drawn from McDonald et al. (2005c).

more common, some formalisms allow for words

to modify multiple parents (Hudson, 1984).

Recently, McDonald et al. (2005c) have shown

that treating dependency parsing as the search

for the highest scoring maximum spanning tree

(MST) in a graph yields efficient algorithms for

both projective and non-projective trees. When

combined with a discriminative online learning al-

gorithm and a rich feature set, these models pro-

vide state-of-the-art performance across multiple

languages. However, the parsing algorithms re-

quire that the score of a dependency tree factors

as a sum of the scores of its edges. This first-order

factorization is very restrictive since it only allows

for features to be defined over single attachment

decisions. Previous work has shown that condi-

tioning on neighboring decisions can lead to sig-

nificant improvements in accuracy (Yamada and

Matsumoto, 2003; Charniak, 2000).

In this paper we extend the MST parsing frame-

work to incorporate higher-order feature represen-

tations of bounded-size connected subgraphs. We

also present an algorithm for acyclic dependency

graphs, that is, dependency graphs in which a

word may depend on multiple heads. In both cases

parsing is in general intractable and we provide

novel approximate algorithms to make these cases

tractable. We evaluate these algorithms within

an online learning framework, which has been

shown to be robust with respect approximate in-

ference, and describe experiments displaying that

these new models lead to state-of-the-art accuracy

for English and the best accuracy we know of for

Czech and Danish.

2 Maximum Spanning Tree Parsing

Dependency-tree parsing as the search for the

maximum spanning tree (MST) in a graph was

81

root John saw a dog yesterday which was a Yorkshire Terrier

Figure 2: An example non-projective dependency structure.

root

hit

John ball with

the bat

the

root0 John1 hit2 the3 ball4 with5 the6 bat7

Figure 1: An example dependency structure.

proposed by McDonald et al. (2005c). This formu-

lation leads to efficient parsing algorithms for both

projective and non-projective dependency trees

with the Eisner algorithm (Eisner, 1996) and the

Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;

Edmonds, 1967) respectively. The formulation

works by defining the score of a dependency tree

to be the sum of edge scores,

s(x,y) =
∑

(i,j)∈y

s(i, j)

where x = x1 · · · xn is an input sentence and y

a dependency tree for x. We can view y as a set

of tree edges and write (i, j) ∈ y to indicate an

edge in y from word xi to word xj . Consider the

example from Figure 1, where the subscripts index

the nodes of the tree. The score of this tree would

then be,

s(0, 2) + s(2, 1) + s(2, 4) + s(2, 5)
+ s(4, 3) + s(5, 7) + s(7, 6)

We call this first-order dependency parsing since

scores are restricted to a single edge in the depen-

dency tree. The score of an edge is in turn com-

puted as the inner product of a high-dimensional

feature representation of the edge with a corre-

sponding weight vector,

s(i, j) = w · f(i, j)

This is a standard linear classifier in which the

weight vector w are the parameters to be learned

during training. We should note that f(i, j) can be

based on arbitrary features of the edge and the in-

put sequence x.

Given a directed graph G = (V,E), the maxi-

mum spanning tree (MST) problem is to find the

highest scoring subgraph of G that satisfies the

tree constraint over the vertices V . By defining

a graph in which the words in a sentence are the

vertices and there is a directed edge between all

words with a score as calculated above, McDon-

ald et al. (2005c) showed that dependency pars-

ing is equivalent to finding the MST in this graph.

Furthermore, it was shown that this formulation

can lead to state-of-the-art results when combined

with discriminative learning algorithms.

Although the MST formulation applies to any

directed graph, our feature representations and one

of the parsing algorithms (Eisner’s) rely on a linear

ordering of the vertices, namely the order of the

words in the sentence.

2.1 Second-Order MST Parsing

Restricting scores to a single edge in a depen-

dency tree gives a very impoverished view of de-

pendency parsing. Yamada and Matsumoto (2003)

showed that keeping a small amount of parsing

history was crucial to improving parsing perfor-

mance for their locally-trained shift-reduce SVM

parser. It is reasonable to assume that other pars-

ing models might benefit from features over previ-

ous decisions.

Here we will focus on methods for parsing

second-order spanning trees. These models fac-

tor the score of the tree into the sum of adjacent

edge pair scores. To quantify this, consider again

the example from Figure 1. In the second-order

spanning tree model, the score would be,

s(0,−, 2) + s(2,−, 1) + s(2,−, 4) + s(2, 4, 5)
+ s(4,−, 3) + s(5,−, 7) + s(7,−, 6)

Here we use the second-order score function

s(i, k, j), which is the score of creating a pair of

adjacent edges, from word xi to words xk and xj .

For instance, s(2, 4, 5) is the score of creating the

edges from hit to with and from hit to ball. The

score functions are relative to the left or right of

the parent and we never score adjacent edges that

are on different sides of the parent (for instance,

82

there is no s(2, 1, 4) for the adjacent edges from

hit to John and ball). This independence between

left and right descendants allow us to use a O(n3)
second-order projective parsing algorithm, as we

will see later. We write s(xi,−, xj) when xj is

the first left or first right dependent of word xi.

For example, s(2,−, 4) is the score of creating a

dependency from hit to ball, since ball is the first

child to the right of hit. More formally, if the word

xi0 has the children shown in this picture,

xi0

xi1 . . . xij xij+1 . . . xim

the score factors as follows:

∑j−1
k=1 s(i0, ik+1, ik) + s(i0,−, ij)

+ s(i0,−, ij+1) +
∑m−1

k=j+1 s(i0, ik, ik+1)

This second-order factorization subsumes the

first-order factorization, since the score function

could just ignore the middle argument to simulate

first-order scoring. The score of a tree for second-

order parsing is now

s(x,y) =
∑

(i,k,j)∈y

s(i, k, j)

where k and j are adjacent, same-side children of

i in the tree y.

The second-order model allows us to condition

on the most recent parsing decision, that is, the last

dependent picked up by a particular word, which

is analogous to the the Markov conditioning of in

the Charniak parser (Charniak, 2000).

2.2 Exact Projective Parsing

For projective MST parsing, the first-order algo-

rithm can be extended to the second-order case, as

was noted by Eisner (1996). The intuition behind

the algorithm is shown graphically in Figure 3,

which displays both the first-order and second-

order algorithms. In the first-order algorithm, a

word will gather its left and right dependents in-

dependently by gathering each half of the subtree

rooted by its dependent in separate stages. By

splitting up chart items into left and right com-

ponents, the Eisner algorithm only requires 3 in-

dices to be maintained at each step, as discussed in

detail elsewhere (Eisner, 1996; McDonald et al.,

2005b). For the second-order algorithm, the key

insight is to delay the scoring of edges until pairs

2-order-non-proj-approx(x, s)
Sentence x = x0 . . . xn, x0 = root
Weight function s : (i, k, j) → R

1. Let y = 2-order-proj(x, s)
2. while true
3. m = −∞, c = −1, p = −1
4. for j : 1 · · ·n
5. for i : 0 · · ·n
6. y

′ = y[i → j]
7. if ¬tree(y′) or ∃k : (i, k, j) ∈ y continue

8. δ = s(x,y′) − s(x,y)
9. if δ > m

10. m = δ, c = j, p = i
11. end for
12. end for
13. if m > 0
14. y = y[p → c]
15. else return y

16. end while

Figure 4: Approximate second-order non-

projective parsing algorithm.

of dependents have been gathered. This allows for

the collection of pairs of adjacent dependents in

a single stage, which allows for the incorporation

of second-order scores, while maintaining cubic-

time parsing.

The Eisner algorithm can be extended to an

arbitrary mth-order model with a complexity of

O(nm+1), for m > 1. An mth-order parsing al-

gorithm will work similarly to the second-order al-

gorithm, except that we collect m pairs of adjacent

dependents in succession before attaching them to

their parent.

2.3 Approximate Non-projective Parsing

Unfortunately, second-order non-projective MST

parsing is NP-hard, as shown in appendix A. To

circumvent this, we designed an approximate al-

gorithm based on the exact O(n3) second-order

projective Eisner algorithm. The approximation

works by first finding the highest scoring projec-

tive parse. It then rearranges edges in the tree,

one at a time, as long as such rearrangements in-

crease the overall score and do not violate the tree

constraint. We can easily motivate this approxi-

mation by observing that even in non-projective

languages like Czech and Danish, most trees are

primarily projective with just a few non-projective

edges (Nivre and Nilsson, 2005). Thus, by start-

ing with the highest scoring projective tree, we are

typically only a small number of transformations

away from the highest scoring non-projective tree.

The algorithm is shown in Figure 4. The ex-

pression y[i → j] denotes the dependency graph

identical to y except that xi’s parent is xi instead

83

FIRST-ORDER
h1

h3

⇒

h1 r r+1 h3

(A)

h1

h3

h1 h3

(B)

SECOND-ORDER
h1

h2 h2 h3

⇒

h1 h2 h2 r r+1 h3

(A)

h1

h2 h2 h3

⇒

h1 h2 h2 h3

(B)

h1

h3

h1 h3

(C)

Figure 3: A O(n3) extension of the Eisner algorithm to second-order dependency parsing. This figure

shows how h1 creates a dependency to h3 with the second-order knowledge that the last dependent of

h1 was h2. This is done through the creation of a sibling item in part (B). In the first-order model, the

dependency to h3 is created after the algorithm has forgotten that h2 was the last dependent.

of what it was in y. The test tree(y) is true iff the

dependency graph y satisfies the tree constraint.

In more detail, line 1 of the algorithm sets y to

the highest scoring second-order projective tree.

The loop of lines 2–16 exits only when no fur-

ther score improvement is possible. Each iteration

seeks the single highest-scoring parent change to

y that does not break the tree constraint. To that

effect, the nested loops starting in lines 4 and 5

enumerate all (i, j) pairs. Line 6 sets y
′ to the de-

pendency graph obtained from y by changing xj’s

parent to xi. Line 7 checks that the move from y

to y
′ is valid by testing that xj’s parent was not al-

ready xi and that y
′ is a tree. Line 8 computes the

score change from y to y
′. If this change is larger

than the previous best change, we record how this

new tree was created (lines 9-10). After consid-

ering all possible valid edge changes to the tree,

the algorithm checks to see that the best new tree

does have a higher score. If that is the case, we

change the tree permanently and re-enter the loop.

Otherwise we exit since there are no single edge

switches that can improve the score.

This algorithm allows for the introduction of

non-projective edges because we do not restrict

any of the edge changes except to maintain the

tree property. In fact, if any edge change is ever

made, the resulting tree is guaranteed to be non-

projective, otherwise there would have been a

higher scoring projective tree that would have al-

ready been found by the exact projective parsing

algorithm. It is not difficult to find examples for

which this approximation will terminate without

returning the highest-scoring non-projective parse.

It is clear that this approximation will always

terminate — there are only a finite number of de-

pendency trees for any given sentence and each it-

eration of the loop requires an increase in score

to continue. However, the loop could potentially

take exponential time, so we will bound the num-

ber of edge transformations to a fixed value M .

It is easy to argue that this will not hurt perfor-

mance. Even in freer-word order languages such

as Czech, almost all non-projective dependency

trees are primarily projective, modulo a few non-

projective edges. Thus, if our inference algorithm

starts with the highest scoring projective parse, the

best non-projective parse only differs by a small

number of edge transformations. Furthermore, it

is easy to show that each iteration of the loop takes

O(n2) time, resulting in a O(n3 + Mn2) runtime

algorithm. In practice, the approximation termi-

nates after a small number of transformations and

we do not need to bound the number of iterations

in our experiments.

We should note that this is one of many possible

approximations we could have made. Another rea-

sonable approach would be to first find the highest

scoring first-order non-projective parse, and then

re-arrange edges based on second order scores in

a similar manner to the algorithm we described.

We implemented this method and found that the

results were slightly worse.

3 Danish: Parsing Secondary Parents

Kromann (2001) argued for a dependency formal-

ism called Discontinuous Grammar and annotated

a large set of Danish sentences using this formal-

ism to create the Danish Dependency Treebank

(Kromann, 2003). The formalism allows for a

84

root Han spejder efter og ser elefanterne

He looks for and sees elephants

Figure 5: An example dependency tree from

the Danish Dependency Treebank (from Kromann

(2003)).

word to have multiple parents. Examples include

verb coordination in which the subject or object is

an argument of several verbs, and relative clauses

in which words must satisfy dependencies both in-

side and outside the clause. An example is shown

in Figure 5 for the sentence He looks for and sees

elephants. Here, the pronoun He is the subject for

both verbs in the sentence, and the noun elephants

the corresponding object. In the Danish Depen-

dency Treebank, roughly 5% of words have more

than one parent, which breaks the single parent

(or tree) constraint we have previously required

on dependency structures. Kromann also allows

for cyclic dependencies, though we deal only with

acyclic dependency graphs here. Though less

common than trees, dependency graphs involving

multiple parents are well established in the litera-

ture (Hudson, 1984). Unfortunately, the problem

of finding the dependency structure with highest

score in this setting is intractable (Chickering et

al., 1994).

To create an approximate parsing algorithm

for dependency structures with multiple parents,

we start with our approximate second-order non-

projective algorithm outlined in Figure 4. We use

the non-projective algorithm since the Danish De-

pendency Treebank contains a small number of

non-projective arcs. We then modify lines 7-10

of this algorithm so that it looks for the change in

parent or the addition of a new parent that causes

the highest change in overall score and does not

create a cycle2. Like before, we make one change

per iteration and that change will depend on the

resulting score of the new tree. Using this sim-

ple new approximate parsing algorithm, we train a

new parser that can produce multiple parents.

4 Online Learning and Approximate

Inference

In this section, we review the work of McDonald

et al. (2005b) for online large-margin dependency

2We are not concerned with violating the tree constraint.

parsing. As usual for supervised learning, we as-

sume a training set T = {(xt,yt)}
T
t=1, consist-

ing of pairs of a sentence xt and its correct depen-

dency representation yt.

The algorithm is an extension of the Margin In-

fused Relaxed Algorithm (MIRA) (Crammer and

Singer, 2003) to learning with structured outputs,

in the present case dependency structures. Fig-

ure 6 gives pseudo-code for the algorithm. An on-

line learning algorithm considers a single training

instance for each update to the weight vector w.

We use the common method of setting the final

weight vector as the average of the weight vec-

tors after each iteration (Collins, 2002), which has

been shown to alleviate overfitting.

On each iteration, the algorithm considers a

single training instance. We parse this instance

to obtain a predicted dependency graph, and find

the smallest-norm update to the weight vector w

that ensures that the training graph outscores the

predicted graph by a margin proportional to the

loss of the predicted graph relative to the training

graph, which is the number of words with incor-

rect parents in the predicted tree (McDonald et al.,

2005b). Note that we only impose margin con-

straints between the single highest-scoring graph

and the correct graph relative to the current weight

setting. Past work on tree-structured outputs has

used constraints for the k-best scoring tree (Mc-

Donald et al., 2005b) or even all possible trees by

using factored representations (Taskar et al., 2004;

McDonald et al., 2005c). However, we have found

that a single margin constraint per example leads

to much faster training with a negligible degrada-

tion in performance. Furthermore, this formula-

tion relates learning directly to inference, which is

important, since we want the model to set weights

relative to the errors made by an approximate in-

ference algorithm. This algorithm can thus be

viewed as a large-margin version of the perceptron

algorithm for structured outputs Collins (2002).

Online learning algorithms have been shown

to be robust even with approximate rather than

exact inference in problems such as word align-

ment (Moore, 2005), sequence analysis (Daumé

and Marcu, 2005; McDonald et al., 2005a)

and phrase-structure parsing (Collins and Roark,

2004). This robustness to approximations comes

from the fact that the online framework sets

weights with respect to inference. In other words,

the learning method sees common errors due to

85

Training data: T = {(xt, yt)}
T
t=1

1. w(0) = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. min
‚

‚

‚
w(i+1) − w(i)

‚

‚

‚

s.t. s(xt, yt; w(i+1))

−s(xt, y
′; w(i+1)) ≥ L(yt, y

′)

where y
′ = arg maxy′ s(xt, y

′; w(i))

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T)

Figure 6: MIRA learning algorithm. We write

s(x,y; w(i)) to mean the score of tree y using

weight vector w(i).

approximate inference and adjusts weights to cor-

rect for them. The work of Daumé and Marcu

(2005) formalizes this intuition by presenting an

online learning framework in which parameter up-

dates are made directly with respect to errors in the

inference algorithm. We show in the next section

that this robustness extends to approximate depen-

dency parsing.

5 Experiments

The score of adjacent edges relies on the defini-

tion of a feature representation f(i, k, j). As noted

earlier, this representation subsumes the first-order

representation of McDonald et al. (2005b), so we

can incorporate all of their features as well as the

new second-order features we now describe. The

old first-order features are built from the parent

and child words, their POS tags, and the POS tags

of surrounding words and those of words between

the child and the parent, as well as the direction

and distance from the parent to the child. The

second-order features are built from the following

conjunctions of word and POS identity predicates

xi-pos, xk-pos, xj-pos

xk-pos, xj-pos

xk-word, xj-word

xk-word, xj-pos

xk-pos, xj-word

where xi-pos is the part-of-speech of the ith word

in the sentence. We also include conjunctions be-

tween these features and the direction and distance

from sibling j to sibling k. We determined the use-

fulness of these features on the development set,

which also helped us find out that features such as

the POS tags of words between the two siblings

would not improve accuracy. We also ignored fea-

English

Accuracy Complete

1st-order-projective 90.7 36.7
2nd-order-projective 91.5 42.1

Table 1: Dependency parsing results for English.

Czech

Accuracy Complete

1st-order-projective 83.0 30.6
2nd-order-projective 84.2 33.1

1st-order-non-projective 84.1 32.2
2nd-order-non-projective 85.2 35.9

Table 2: Dependency parsing results for Czech.

tures over triples of words since this would ex-

plode the size of the feature space.

We evaluate dependencies on per word accu-

racy, which is the percentage of words in the sen-

tence with the correct parent in the tree, and on

complete dependency analysis. In our evaluation

we exclude punctuation for English and include it

for Czech and Danish, which is the standard.

5.1 English Results

To create data sets for English, we used the Ya-

mada and Matsumoto (2003) head rules to ex-

tract dependency trees from the WSJ, setting sec-

tions 2-21 as training, section 22 for development

and section 23 for evaluation. The models rely

on part-of-speech tags as input and we used the

Ratnaparkhi (1996) tagger to provide these for

the development and evaluation set. These data

sets are exclusively projective so we only com-

pare the projective parsers using the exact projec-

tive parsing algorithms. The purpose of these ex-

periments is to gauge the overall benefit from in-

cluding second-order features with exact parsing

algorithms, which can be attained in the projective

setting. Results are shown in Table 1. We can see

that there is clearly an advantage in introducing

second-order features. In particular, the complete

tree metric is improved considerably.

5.2 Czech Results

For the Czech data, we used the predefined train-

ing, development and testing split of the Prague

Dependency Treebank (Hajič et al., 2001), and the

automatically generated POS tags supplied with

the data, which we reduce to the POS tag set

from Collins et al. (1999). On average, 23% of

the sentences in the training, development and

test sets have at least one non-projective depen-

dency, though, less than 2% of total edges are ac-

86

Danish

Precision Recall F-measure

2nd-order-projective 86.4 81.7 83.9
2nd-order-non-projective 86.9 82.2 84.4

2nd-order-non-projective w/ multiple parents 86.2 84.9 85.6

Table 3: Dependency parsing results for Danish.

tually non-projective. Results are shown in Ta-

ble 2. McDonald et al. (2005c) showed a substan-

tial improvement in accuracy by modeling non-

projective edges in Czech, shown by the difference

between two first-order models. Table 2 shows

that a second-order model provides a compara-

ble accuracy boost, even using an approximate

non-projective algorithm. The second-order non-

projective model accuracy of 85.2% is the highest

reported accuracy for a single parser for these data.

Similar results were obtained by Hall and Nóvák

(2005) (85.1% accuracy) who take the best out-

put of the Charniak parser extended to Czech and

rerank slight variations on this output that intro-

duce non-projective edges. However, this system

relies on a much slower phrase-structure parser

as its base model as well as an auxiliary rerank-

ing module. Indeed, our second-order projective

parser analyzes the test set in 16m32s, and the

non-projective approximate parser needs 17m03s

to parse the entire evaluation set, showing that run-

time for the approximation is completely domi-

nated by the initial call to the second-order pro-

jective algorithm and that the post-process edge

transformation loop typically only iterates a few

times per sentence.

5.3 Danish Results

For our experiments we used the Danish Depen-

dency Treebank v1.0. The treebank contains a

small number of inter-sentence and cyclic depen-

dencies and we removed all sentences that con-

tained such structures. The resulting data set con-

tained 5384 sentences. We partitioned the data

into contiguous 80/20 training/testing splits. We

held out a subset of the training data for develop-

ment purposes.

We compared three systems, the standard

second-order projective and non-projective pars-

ing models, as well as our modified second-order

non-projective model that allows for the introduc-

tion of multiple parents (Section 3). All systems

use gold-standard part-of-speech since no trained

tagger is readily available for Danish. Results are

shown in Figure 3. As might be expected, the non-

projective parser does slightly better than the pro-

jective parser because around 1% of the edges are

non-projective. Since each word may have an ar-

bitrary number of parents, we must use precision

and recall rather than accuracy to measure perfor-

mance. This also means that the correct training

loss is no longer the Hamming loss. Instead, we

use false positives plus false negatives over edge

decisions, which balances precision and recall as

our ultimate performance metric.

As expected, for the basic projective and non-

projective parsers, recall is roughly 5% lower than

precision since these models can only pick up at

most one parent per word. For the parser that can

introduce multiple parents, we see an increase in

recall of nearly 3% absolute with a slight drop in

precision. These results are very promising and

further show the robustness of discriminative on-

line learning with approximate parsing algorithms.

6 Discussion

We described approximate dependency parsing al-

gorithms that support higher-order features and

multiple parents. We showed that these approxi-

mations can be combined with online learning to

achieve fast parsing with competitive parsing ac-

curacy. These results show that the gain from al-

lowing richer representations outweighs the loss

from approximate parsing and further shows the

robustness of online learning algorithms with ap-

proximate inference.

The approximations we have presented are very

simple. They start with a reasonably good baseline

and make small transformations until the score

of the structure converges. These approximations

work because freer-word order languages we stud-

ied are still primarily projective, making the ap-

proximate starting point close to the goal parse.

However, we would like to investigate the benefits

for parsing of more principled approaches to ap-

proximate learning and inference techniques such

as the learning as search optimization framework

of (Daumé and Marcu, 2005). This framework

will possibly allow us to include effectively more

global features over the dependency structure than

87

those in our current second-order model.

Acknowledgments

This work was supported by NSF ITR grants

0205448.

References

E. Charniak. 2000. A maximum-entropy-inspired
parser. In Proc. NAACL.

D.M. Chickering, D. Geiger, and D. Heckerman. 1994.
Learning bayesian networks: The combination of
knowledge and statistical data. Technical Report
MSR-TR-94-09, Microsoft Research.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

M. Collins and B. Roark. 2004. Incremental parsing
with the perceptron algorithm. In Proc. ACL.

M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann.
1999. A statistical parser for Czech. In Proc. ACL.

M. Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. EMNLP.

K. Crammer and Y. Singer. 2003. Ultraconservative
online algorithms for multiclass problems. JMLR.

H. Daum´e and D. Marcu. 2005. Learning as search op-
timization: Approximate large margin methods for
structured prediction. In Proc. ICML.

J. Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards,
71B:233–240.

J. Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proc. COL-
ING.

J. Hajič, E. Hajicova, P. Pajas, J. Panevova, P. Sgall, and
B. Vidova Hladka. 2001. The Prague Dependency
Treebank 1.0 CDROM. Linguistics Data Consor-
tium Cat. No. LDC2001T10.

K. Hall and V. N´ov´ak. 2005. Corrective modeling for
non-projective dependency parsing. In Proc. IWPT.

R. Hudson. 1984. Word Grammar. Blackwell.

M. T. Kromann. 2001. Optimaility parsing and local
cost functions in discontinuous grammars. In Proc.
FG-MOL.

M. T. Kromann. 2003. The danish dependency tree-
bank and the dtag treebank tool. In Proc. TLT.

R. McDonald, K. Crammer, and F. Pereira. 2005a.
Flexible text segmentation with structured multil-
abel classifi cation. In Proc. HLT-EMNLP.

R. McDonald, K. Crammer, and F. Pereira. 2005b. On-
line large-margin training of dependency parsers. In
Proc. ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič.
2005c. Non-projective dependency parsing using
spanning tree algorithms. In Proc. HLT-EMNLP.

I.A. Meĺčuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

R. Moore. 2005. A discriminative framework for bilin-
gual word alignment. In Proc. HLT-EMNLP.

J. Nivre and J. Nilsson. 2005. Pseudo-projective de-
pendency parsing. In Proc. ACL.

A. Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In Proc. EMNLP.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man-
ning. 2004. Max-margin parsing. In Proc. EMNLP.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
Proc. IWPT.

A 2nd-Order Non-projective MST

Parsing is NP-hard

Proof by a reduction from 3-D matching (3DM).
3DM: Disjoint sets X, Y, Z each with m distinct elements

and a set T ⊆ X×Y ×Z. Question: is there a subset S ⊆ T
such that |S| = m and each v ∈ X∪Y ∪Z occurs in exactly
one element of S.

Reduction: Given an instance of 3DM we defi ne a graph
in which the vertices are the elements from X ∪ Y ∪ Z as
well as an artifi cial root node. We insert edges from root to
all xi ∈ X as well as edges from all xi ∈ X to all yi ∈ Y
and zi ∈ Z. We order the words s.t. the root is on the left
followed by all elements of X, then Y , and fi nally Z. We
then defi ne the second-order score function as follows,

s(root, xi, xj) = 0, ∀xi, xj ∈ X
s(xi,−, yj) = 0, ∀xi ∈ X, yj ∈ Y
s(xi, yj , zk) = 1, ∀(xi, yj , zk) ∈ T

All other scores are defi ned to be −∞, including for edges
pairs that were not defi ned in the original graph.

Theorem: There is a 3D matching iff the second-order
MST has a score of m. Proof: First we observe that no tree
can have a score greater than m since that would require more
than m pairs of edges of the form (xi, yj , zk). This can only
happen when some xi has multiple yj ∈ Y children or mul-
tiple zk ∈ Z children. But if this were true then we would
introduce a −∞ scored edge pair (e.g. s(xi, yj , y

′

j)). Now, if
the highest scoring second-order MST has a score of m, that
means that every xi must have found a unique pair of chil-
dren yj and zk which represents the 3D matching, since there
would be m such triples. Furthermore, yj and zk could not
match with any other x′

i since they can only have one incom-
ing edge in the tree. On the other hand, if there is a 3DM, then
there must be a tree of weight m consisting of second-order
edges (xi, yj , zk) for each element of the matching S. Since
no tree can have a weight greater than m, this must be the
highest scoring second-order MST. Thus if we can fi nd the
highest scoring second-order MST in polynomial time, then
3DM would also be solvable. �

88

