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Abstract

We present a system for answering questions
based on the full text of books (BookQA),
which first selects book passages given a ques-
tion at hand, and then uses a memory net-
work to reason and predict an answer. To im-
prove generalization, we pretrain our mem-
ory network using artificial questions gener-
ated from book sentences. We experiment
with the recently published NarrativeQA cor-
pus, on the subset of Who questions, which
expect book characters as answers. We ex-
perimentally show that BERT-based retrieval
and pretraining improve over baseline results
significantly. At the same time, we confirm
that NarrativeQA is a highly challenging data
set, and that there is need for novel research
in order to achieve high-precision BookQA re-
sults. We analyze some of the bottlenecks of
the current approach, and we argue that more
research is needed on text representation, re-
trieval of relevant passages, and reasoning, in-
cluding commonsense knowledge.

1 Introduction

Considerable volume of research work has looked
into various Question Answering (QA) settings,
ranging from retrieval-based QA (Voorhees, 2001)
to recent neural approaches that reason over
Knowledge Bases (KB) (Bordes et al., 2014), or
raw text (Shen et al., 2017; Deng and Tam, 2018;
Min et al., 2018). In this paper we use the Nar-
rativeQA corpus (Kocisky et al., 2018) as a start-
ing point and focus on the task of answering
questions from the full text of books, which we
call BookQA. BookQA has unique characteristics
which prohibit the direct application of current QA
methods. For instance, (a) books are usually or-
ders of magnitude longer than the short texts (e.g.,
∗Work done while first author was interning at Amazon.

Wikipedia articles) used in neural QA architec-
tures; (b) many facts about a book story are never
made explicit, and require external or common-
sense knowledge to infer them; (c) the QA system
cannot rely on pre-existing KBs; (d) traditional
retrieval techniques are less effective in selecting
relevant passages from self-contained book sto-
ries (Kocisky et al., 2018); (e) collecting human-
annotated BookQA data is a significant challenge;
(f) stylistic disparities in the language used among
different books may hinder generalization.

Additionally, the style of book questions may
vary significantly, with different approaches be-
ing potentially useful for different question types:
from queries about story facts that have entities
as answers (e.g., Who and Where questions); to
open-ended questions that require the extraction or
generation of longer answers (e.g., Why or How
questions). The difference in reasoning required
for different question types can make it very hard
to draw meaningful conclusions.

For this reason, we concentrate on the task
of answering Who questions, which expect book
characters as answers (e.g., “Who is Harry Pot-
ter’s best friend?”). This task allows to simplify
the output and evaluation (we look for entities, and
we can apply precision-based and ranking evalu-
ation metrics), but still retains the important ele-
ments of the original NarrativeQA task, i.e., the
need to explore over the full content of the book
and to reason over a deep understanding of the nar-
rative. Table 1 exemplifies the diversity and com-
plexity of Who questions in the data, by listing a
set of questions from a single book, which require
increasingly complex types of reasoning.

NarrativeQA (Kocisky et al., 2018) is the first
publicly available dataset for QA over long nar-
ratives, namely the full text of books and movie
scripts. The full-text task has only been addressed
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Who is Emily in love with?
Who is Emily imprisoned by?
Who helps Emily escape from the castle?
Who owns the castle in which Emily is imprisoned?
Who became Emily’s guardian after her father’s death?

Table 1: Who questions from NarrativeQA for the book
The Mysteries of Udolpho, by Ann Radcliffe. The di-
versity and complexity of questions in the corpus re-
mains high, even when considering only the subset of
Who questions that expect characters as answers.

by Tay et al. (2019), who proposed a curricu-
lum learning-based two-phase approach (context
selection and neural inference). More papers
have looked into answering NarrativeQA’s ques-
tions from only book/movie summaries (Indurthi
et al., 2018; Bauer et al., 2018; Tay et al., 2018a,b;
Nishida et al., 2019). This is a fundamentally sim-
pler task, because: i) the systems need to reason
over a much shorter context, i.e., the summary;
and ii) there is the certainty that the answer can be
found in the summary. This paper is another step
in the exploration of the full NarrativeQA task,
and embraces the goal of finding an answer in the
complete book text. We propose a system that
first selects a small subset of relevant book pas-
sages, and then uses a memory network to reason
and extract the answer from them. The network
is specifically adapted for generalization across
books. We analyze different options for selecting
relevant contexts, and for pretraining the memory
network with artificially created question–answer
pairs. Our key contributions are: i) this is the first
systematic exploration of the challenges in full-
text BookQA, ii) we present a full pipeline frame-
work for the task, iii) we publish a dataset of Who
questions which expect book characters as an an-
swer, and iv) we include a critical discussion on
the shortcomings of the current QA approach, and
we discuss potential avenues for future research.

2 Book Character Questions

NarrativeQA was created using a large annotation
effort, where participants were shown a human-
curated summary of a book/script and were asked
to produce question-answer pairs without referring
to the full story. The main task of interest is to
answer the questions by looking at the full story
and not at the summary, thus ensuring that an-
swers cannot be simply copied from the story. The
full corpus contains 1,567 stories (split equally be-
tween books and movies) and 46,765 questions.

We restrict our study to Who questions about
books, which have book characters as answers
(e.g., “Who is charged with attempted murder?”).
Using the book preprocessing system, book-nlp
(see Section 3.1), and a combination of automatic
and crowdsourced efforts, we obtained a total of
3,427 QA pairs, spanning 614 books.1

3 BookQA Framework

The length of books and limited annotated data
prohibit the application of end-to-end neural QA
models that reason over the full text of a book.
Instead, we opted for a pipeline approach, whose
components are described below.

3.1 Book & Question Preprocessing

Books and questions are preprocessed in advance
using the book-nlp parser (Bamman et al., 2014),
a system for character detection and shallow pars-
ing in books (Iyyer et al., 2016; Frermann and
Szarvas, 2017) which provides, among others:
sentence segmentation, POS tagging, dependency
parsing, named entity recognition, and corefer-
ence resolution. The parser identifies and clusters
character mentions, so that all coreferent (direct
or pronominal) character mentions are associated
with the same unique character identifier.

3.2 Context Selection

In order to make inference over book text tractable
and give our model a better chance at predicting
the correct answer, we must restrict the context to
only a small number of book sentences. We de-
veloped two context selection methods to retrieve
relevant book passages, which we define as win-
dows of 5 consecutive sentences:

IR-style selection (BM25F): We constructed a
searchable book index to store individual book
sentences. We replace every book character men-
tion, including pronoun references, with the char-
acter’s unique identifier. At retrieval time, we sim-
ilarly replace character mentions in each question,
and rank passages from the corresponding book
using BM25F (Zaragoza et al., 2004).

BERT-based selection: We developed a neural
context selection method, based on the BERT lan-
guage representation model (Devlin et al., 2019).
A pretrained BERT model is fine-tuned to predict

1To obtain the BookQA data, follow the instructions at:
https://github.com/stangelid/bookqa-who.

https://github.com/stangelid/bookqa-who
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Initialization:

Query : qt=0 = avg(vqw1 , . . . , vqwm)

Keys : min
i = avg(vsw1 , . . . , vswl)

Values : mout
i = avg(vc1∈s, . . . )

Candidates : cj = vcj

At Hop t:

ati = sparsemax (qtRtmi)

ot =
∑
i

atim
out
i

qt+1 = qt + ot

After last hop:

p(cj) = softmax(ohCvcj )

Figure 1: Overview of our Key-Value Memory Network for BookQA. Encodings of questions, keys (selected
sentences), and values (characters mentioned in those sentences) are loaded. After multiple hops of inference, the
model’s output is compared against the candidate answers’ encodings to make a prediction.

if a sentence is relevant to a question, using posi-
tive (questions, summary sentence) training pairs
which have been heuristically matched. Randomly
sampled negative pairs were also used. At retrieval
time, a question is used to retrieve relevant pas-
sages from the full text of a book.

3.3 Neural Inference

Having replaced character mentions in questions
and books with character identifiers, we first pre-
train word2vec embeddings (Mikolov et al., 2013)
for all words and book characters in our corpus.2

Our neural inference model is a variant of the Key-
Value Memory Network (KV-MemNet) (Miller
et al., 2016), which has been previously applied to
QA tasks over KBs and short texts. The original
model was designed to handle a fixed set of poten-
tial answers across all QA examples, as do most
neural QA architectures. This comes in contrast
with our task, where the pool of candidate charac-
ters is different for each book. Our KV-MemNet
variant, illustrated in Figure 1, uses a dynamic out-
put layer where different candidate answers are
made available for different books, while the re-
maining model parameters are shared.

A question is initially represented as q0, i.e.,
the average of its word embeddings3 (gray vec-
tor). The Key memories min

1 . . .min
k (purple vec-

tors) are filled with the k most relevant sentences,
as retrieved from the context selection step, us-

2Character identifiers are treated like all other tokens.
3Experiments with more sophisticated question/sentence

representation variants showed no significant improvements.

ing the average of their word embeddings. Value
memories mout

1 . . .mout
k (green vectors) contain

the average embedding of all characters mentioned
in the respective sentence, or a padding vector if
no character is mentioned. Candidate embeddings
c1 . . . cn (orange vectors) hold the embeddings of
every character in the current book. The model
makes multiple reasoning hops t = 1 . . . h over
the memories. At each hop, qt is passed through
linear layer Rt and is then compared against
all key memories. The sparsemax-normalized
(Martins and Astudillo, 2016) attention weights
a1 . . . ak are then used for obtaining output vec-
tor ot, as the weighted average of value memo-
ries. The process is repeated h times, and the final
output is passed through linear layer C, before be-
ing compared against all candidate vectors via dot-
product, to obtain the final prediction. The model
is trained using negative log-likelihood.

3.4 Pretraining

A significant obstacle towards effective BookQA
is the limited amount of data available for super-
vised training. A potential avenue for overcoming
this is pretraining the neural inference model on an
auxiliary task, for which we can generate orders of
magnitude more training examples. To this end,
we generated 688,228 artificial questions from the
book text using a set of simple pruning rules over
the dependency trees of book sentences. We used
all book sentences where a character mention is
the agent or the patient of an active voice verb, or
the patient of a passive voice verb. Two examples
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Metric→ P@1 P@5 MRR
Context selection→ BM25F BERT BM25F BERT BM25F BERT
Baselines:
Book frequency 15.73 56.29 0.337
Context frequency 10.53 13.80 51.42 53.02 0.276 0.305
KV-MemNet:
No pretraining 15.57±0.97 15.89±0.95 58.18±1.57 58.77±1.29 0.339±0.006 0.343±0.008
Pretrain w/ Artif. Qs 15.92±0.73 18.73±1.07 61.25±0.74 62.81±1.07 0.351±0.005 0.376±0.006

Table 2: Precision scores (P@1, P@5), and Mean Reciprocal Rank (MRR) for frequency-based baselines and our
system, with and without pretraining. We report average and standard deviation over 50 runs.

Original Sentence (Active):

Marriat had

nsubj
��

dobj

��
a gift

det
��

prep
��
for

pobj

��
the invention

det
��

prep
��
of

pobj
��

stories.

Artificial Question:

Who had a gift for invention?

Original Sentence (Passive):

Hermione was attacked

nsubjpass

��
auxpass
��

prep
��
by

pobj

��
another spell.

det
��

Artificial Question:

Who was attacked by spell?

Figure 2: Examples of artificial questions generated
from the dependency trees of an active voice (top) and
a passive voice (bottom) sentence. The correct answer
(verb’s subject) is marked with blue, whereas the yel-
low words are used in the question. The remaining
words are discarded by pruning the dependency tree.

are illustrated in Figure 2: at the top, the active
voice sentence “Marriat had a gift for the inven-
tion of stories.” is transformed into the question
“Who had a gift for invention?” and, at the bot-
tom, the passive voice sentence “Hermione was
attacked by another spell.” is transformed into the
question “Who was attacked by a spell?”. The
previous 20 book sentences, including the source
sentence, are used as context during pretraining.

4 Experimental Setup

For every question, 100 sentences (top 20 passages
of five sentences) were selected as contexts using
our retrieval methods. We used word and book
character embeddings of 100 dimensions. The
number of reasoning hops was set to 3. When no
pretraining was performed, we trained on the real
QA examples for 60 epochs, using Adam with ini-

tial learning rate of 10−3, which we reduced by
10% every two epochs. Word and character em-
beddings were fixed during training. When us-
ing pretraining, we trained the memory network
for one epoch on the auxiliary task, including the
embeddings. Then, the model was fine-tuned as
described above on the real QA examples where,
again, embeddings were fixed. We use Preci-
sion at the 1st and 5th rank (P@1 and P@5) and
Mean Reciprocal Rank (MRR) as evaluation met-
rics. We adopted a 10-fold cross validation ap-
proach and performed 5 trials for each cross vali-
dation split, for a total of 50 experiments.

Baselines: We implemented a random baseline
and two frequency-based baselines, where the
most frequent character in the entire book (Book
frequency) or the selected context (Context fre-
quency) was selected as the answer.

5 Results

Our main results are presented in Table 2. Firstly,
we observe one of the dataset’s biases, as the
book’s most frequent character is the correct an-
swer in more than 15% of examples, whereas se-
lecting a character at random would only yield the
correct answer 2.5% of the time.

With regards to our BookQA pipeline, the re-
sults confirm that BookQA is a very challenging
task. Without pretraining, our KV-MemNet which
uses IR contexts achieves 15.57% P@1, and it
is slightly outperformed by its BERT-based coun-
terpart.4 When pretraining the memory network
with artificial questions, the BERT-based model
achieves 18.73% P@1. The same trend is ob-
served with the other metrics.

Number of hops: We also calculated the impact
of the number of hops with respect to the P@1 for
a pretrained model fine-tuned with BERT-selected

4Despite the similar performance to the Book frequency
baseline, we did not observe that our model was systemati-
cally selecting the most frequent character as the answer.
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1 2 3 4 5
number of hops

14

16

18

20
P@

1

Figure 3: P@1 for dif-
ferent number of hops.

0 100 200 300 400 500
number of context sentences

14
15
16
17
18
19
20

P@
1 BERT

BM25F

Figure 4: P@1 for varying context
sizes from BM25F and BERT.

correct character mentioned in
context

BM25F 69.7%
BERT 74.7%

full evidence found in context
BM25F

27%
partial evidence found in context 47%
no evidence found in context 26%

Table 3: Percentage of contexts where the correct
character is mentioned (top). Percentage of contexts
where full/partial/no evidence for the answer was
found according to crowd-workers who examined a
sample of 100 cases (bottom).

contexts. Figure 3 shows that performance in-
creases up to 3 hops and then it stabilizes.

Context size: We expected the context size (i.e.,
the number of retrieved sentences that we store
in the memory slots of our KV-MemNet) to sig-
nificantly affect performance. Smaller contexts,
obtained by only retrieving the topmost relevant
passages, might miss important evidence for an-
swering a question at hand. Conversely, larger
contexts might introduce noise in the form of ir-
relevant sentences that hinder inference. Figure 4
shows the performance of our method when vary-
ing the number of context sentences (or, equiva-
lently, memory slots). The neural inference model
struggles for very small context sizes and achieves
its best performance for 75 and 100 context sen-
tences obtained by BM25F and BERT, respec-
tively. For both alternatives, we observe no further
improvements for larger contexts.

Pretraining size & epochs: A key component of
our BookQA framework is the pretraining of our
neural inference model with artificially generated
questions. Although it helped achieve the high-
est percentage of correctly answered questions, the
performance gains were relatively small given the
number of artificial questions used to pretrain the
model. We further investigated the effect of pre-
training by varying the number of artificial ques-
tions used during training and the number of pre-
training epochs. Figure 5 shows the QA perfor-
mance achieved on the real BookQA questions
(using BM25F or BERT contexts) after pretrain-
ing on a randomly sampled subset of the artificial
questions. For our BERT-based variant, the pen-
centage of correctly answered questions increases
steadily, but flattens out when reaching 75% of
pretraining set usage. On the contrary, when using
BM25F contexts we achieved insignificant gains,
with performance appearing constrained by the
quality of retrieved passages. In Figure 6 we show

0 20 40 60 80 100
percentage of pretraining set used

14
15
16
17
18
19
20

P@
1

BERT
BM25F

Figure 5: P@1 for varying percentage of pretraining
questions used (BM25F and BERT contexts).

1 2 3 4 5
number of pretraining epochs

14

16

18

20

P@
1

BERT
BM25F

Figure 6: P@1 as a function of pretraining epochs for
BM25F and BERT contexts.

P@1 scores as a function of the number of pre-
training epochs. Best performance is achieved af-
ter only one epoch for both variants, indicating
that further pretraining might cause the model to
overfit to the simpler type of reasoning required
for answering artificial questions.

5.1 Further Discussion
Despite the limitation to Who questions, the em-
ployment of strong models for context selection
and neural inference, and our pretraining efforts,
the overall BookQA accuracy remains modest, as
our best-performing system achieves a P@1 score
below 20%. Even when we only allowed our sys-
tem to answer if it was very confident (according
to the probability difference between top-ranked
candidate answers), it answered correctly 35% of
times.
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We have identified a number of reasons which
inhibit better performance. Firstly, the passage se-
lection process constrains the answers that can be
logically inferred. We provide our findings in re-
gards to this claim in Table 3. We calculated that
the correct answer appears in the IR-selected con-
texts in 69.7% of cases. For BERT-selected con-
texts it appears in 74.7% of cases. In practice,
however, these upper-bounds are not achievable;
even when the correct answer appears in the con-
text, there is no guarantee that enough evidence
exists to infer it. To further investigate this, we
ran a survey on Amazon Mechanichal Turk, where
participants were asked to indicate if the selected
context (IR-retrieved) contained partial or full ev-
idence for answering a question. For a set of 100
randomly sampled questions, participants found
full evidence for answering a question in just 27%
of cases. Only partial evidence was found in 47%
of cases, and no evidence in the remaining 26%.

Manual inspection of context sentences indi-
cated that a common reason for the absence of full
evidence is the inherent vagueness of literary lan-
guage. Repeated expressions or direct references
to character names are often avoided by authors,
thus requiring very accurate paraphrase detection
and coreference resolution. We believe that com-
monsense knowledge is particularly crucial for im-
proving BookQA. When exploring the output of
our system, we repeatedly found cases where the
model failed to arrive at the correct answer due to
key information being left implicit. Common ex-
amples we identified were: i) character relation-
ships which were clear to the reader, but never
explicitly described (e.g., “Who did Mark’s best
friend marry?” ); ii) the attitude of a character to-
wards an event or situation (e.g., “Who was angry
at the school’s policy?” ); iii) the relative succes-
sion of events (e.g., “Who did Marriat talk to after
the big fight?” ). The injection of commonsense
knowledge into a QA system is an open problem
for general and, consequently, BookQA.

In regards to pretraining, the lack of further im-
provements is likely related to the difference in the
type of reasoning required for answering the artifi-
cial questions and the real book questions. By con-
struction, the artificial questions will only require
that the model accurately matches the source sen-
tence, without the need for complex or multi-hop
reasoning steps. In contrast, real book questions
require inference over information spread across

many parts of a book. We believe that our pro-
posed auxiliary task mainly helps the model by
improving the quality of word and book charac-
ter representations. It is, however, clear from our
results that pretraining is an important avenue for
improving BookQA accuracy, as it can increase
the number of training instances by many orders
of magnitude with limited human involvement.
Future work should look into automatically con-
structing auxiliary questions that better approxi-
mate the types of reasoning required for realistic
questions on the content of books.

We argue that the shortcomings discussed in
previous paragraphs, i.e., the lack of evidence
in retrieved passages, the difficulty of long-term
reasoning, the need for paraphrase detection and
commonsense knowledge, and the challenge of
useful pretraining, are not specific to Who ques-
tions. On the contrary, we expect that the require-
ment for novel research in these areas will gener-
alize or, potentially, increase in the case of more
general questions (e.g., open-ended questions).

6 Conclusions

We presented a pipeline BookQA system to an-
swer character-based questions on NarrativeQA,
from the full book text. By constraining our study
to Who questions, we simplified the task’s out-
put space, while largely retaining the reasoning
challenges of BookQA, and our ability to draw
conclusions that will generalize to other question
types. Given a Who question, our system retrieves
a set of relevant passages from the book, which are
then used by a memory network to infer the an-
swer in multiple hops. A BERT-based trained re-
trieval system, together with the usage of artificial
question-answer pairs to pretrain the memory net-
work, allowed our system to significantly outper-
form the lexical frequency-based baselines. The
use of BERT-retrieved contexts improved upon a
simpler IR-based method although, in both cases,
only partial evidence was found in the selected
contexts for the majority of questions. Increas-
ing the number of retrieved passages did not result
in better performance, highlighting the significant
challenge of accurate context selection. Pretrain-
ing on artificially generated questions provided
promising improvements, but the automatic con-
struction of realistic questions that require multi-
hop reasoning remains an open problem. These
results confirm the difficulty of the BookQA chal-
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lenge, and indicate that there is need for novel re-
search in order to achieve high-quality BookQA.
Future work on the task must focus on several
aspects of the problem, including: (a) improv-
ing context selection, by combining IR and neu-
ral methods to remove noise in the selected pas-
sages, or by jointly optimizing for context selec-
tion and answer extraction (Das et al., 2019); (b)
using better methods for encoding questions, sen-
tences, and candidate answers, as embedding av-
eraging results in information loss; (c) pretraining
tactics that better mimic the real BookQA task;
(d) incorporation of commonsense knowledge and
structure, which was not addressed in this paper.
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