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Abstract

Document-level relation extraction is a com-

plex human process that requires logical infer-

ence to extract relationships between named

entities in text. Existing approaches use graph-

based neural models with words as nodes and

edges as relations between them, to encode

relations across sentences. These models are

node-based, i.e., they form pair representa-

tions based solely on the two target node rep-

resentations. However, entity relations can be

better expressed through unique edge repre-

sentations formed as paths between nodes. We

thus propose an edge-oriented graph neural

model for document-level relation extraction.

The model utilises different types of nodes and

edges to create a document-level graph. An

inference mechanism on the graph edges en-

ables to learn intra- and inter-sentence rela-

tions using multi-instance learning internally.

Experiments on two document-level biomed-

ical datasets for chemical-disease and gene-

disease associations show the usefulness of the

proposed edge-oriented approach.1

1 Introduction

The extraction of relations between named enti-

ties in text, known as Relation Extraction (RE), is

an important task of Natural Language Processing

(NLP). Lately, RE has attracted a lot of attention

from the field, in an effort to improve the inference

capability of current methods (Zeng et al., 2017;

Christopoulou et al., 2018; Luan et al., 2019).

In real-world scenarios, a large amount of rela-

tions are expressed across sentences. The task of

identifying these relations is named inter-sentence

RE. Typically, inter-sentence relations occur in

1Source code available at https://github.com/

fenchri/edge-oriented-graph

The case of a 40 - year - old patient who underwent an unsuccessful 
Bilateral optic neuropathy due to combined and
treatment .

ethambutol and isoniazid
is reported . A with an unusual central

was found .

cadaver kidney transplantation and was treated with

scotoma
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bilateral retrobulbar neuropathy

bitemporal hemianopic

Figure 1: Example of document-level, inter-sentence

relations adapted from the CDR dataset (Li et al.,

2016a). The solid and dotted lines represent intra- and

inter-sentence relations, respectively.

textual snippets with several sentences, such as

documents. In these snippets, each entity is usu-

ally repeated with the same phrases or aliases, the

occurrences of which are often named entity men-

tions and regarded as instances of the entity. The

multiple mentions of the target entities in differ-

ent sentences can be useful for the identification

of inter-sentential relations, as these relations may

depend on the interactions of their mentions with

other entities in the same document.

As shown in the example of Figure 1, the en-

tities bilateral optic neuropathy, ethambutol and

isoniazid have two mentions each, while the entity

scotoma has one mention. The relation between

the chemical ethambutol and the disease scotoma

is clearly inter-sentential. Their association can

only be determined if we consider the interactions

between the mentions of these entities in different

sentences. A mention of bilateral optic neuropa-

thy interacts with a mention of ethambutol in the

first sentence. Another mention of the former in-

teracts with the mention of scotoma in the third

sentence. This chain of interactions can help us

infer that the entity ethambutol has a relation with

the entity scotoma.

The most common technique that is currently

https://github.com/fenchri/edge-oriented-graph
https://github.com/fenchri/edge-oriented-graph
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used to deal with multiple mentions of named en-

tities is Multi-Instance Learning (MIL). Initially,

MIL was introduced by Riedel et al. (2010) in

order to reduce noise in distantly supervised cor-

pora (Mintz et al., 2009). In DS, training instances

are created from large, raw corpora using Knowl-

edge Base (KB) entity linking and automatic an-

notation with heuristic rules. MIL in this setting

considers multiple sentences (bags) that contain a

pair of entities serving as the multiple instances

of this pair. Verga et al. (2018) introduced an-

other MIL setting for relation extraction between

named entities in a document. In this setting, en-

tities mapped to the same KB ID are considered

as mentions of an entity concept and pairs of men-

tions correspond to the pair’s multiple instances.

However, document-level RE is not common in

the general domain, as the entity types of interest

can often be found in the same sentence (Banko

et al., 2007). On the contrary, in the biomedical

domain, document-level relations are particularly

important given the numerous aliases that biomed-

ical entities can have (Quirk and Poon, 2017).

To deal with document-level RE, recent ap-

proaches assume that only two mentions of the tar-

get entities reside in the document (Nguyen and

Verspoor, 2018; Verga et al., 2018) or utilise dif-

ferent models for intra- and inter-sentence RE (Gu

et al., 2016; Li et al., 2016b; Gu et al., 2017). In

contrast with approaches that employ sequential

models (Nguyen and Verspoor, 2018; Gu et al.,

2017; Zhou et al., 2016), graph-based neural ap-

proaches have proven useful in encoding long-

distance, inter-sentential information (Peng et al.,

2017; Quirk and Poon, 2017; Gupta et al., 2019).

These models interpret words as nodes and con-

nections between them as edges. They typically

perform on the nodes by updating the represen-

tations during training. However, a relation be-

tween two entities depends on different contexts.

It could thus be better expressed with an edge con-

nection that is unique for the pair. A straightfor-

ward way to address this is to create graph-based

models that rely on edge representations rather fo-

cusing on node representations, which are shared

between multiple entity pairs.

In this work, we tackle document-level, intra-

and inter-sentence RE using MIL with a graph-

based neural model. Our objective is to infer the

relation between two entities by exploiting other

interactions in the document. We construct a doc-

ument graph with heterogeneous types of nodes

and edges to better capture different dependencies

between nodes. In the proposed graph, a node cor-

responds to either entities, mentions, or sentences,

instead of words. We connect distinct nodes based

on simple heuristic rules and generate different

edge representations for the connected nodes. To

achieve our objective, we design the model to be

edge-oriented in a sense that it learns edge repre-

sentations (between the graph nodes) rather than

node representations. An iterative algorithm over

the graph edges is used to model dependencies be-

tween the nodes in the form of edge representa-

tions. The intra- and inter-sentence entity relations

are predicted by employing these edges. Our con-

tributions can be summarised as follows:

• We propose a novel edge-oriented graph neural

model for document-level relation extraction.

The model deviates from existing graph mod-

els as it focuses on constructing unique nodes

and edges, encoding information into edge rep-

resentations rather than node representations.

• The proposed model is independent of syn-

tactic dependency tools and can achieve state-

of-the-art performance on a manually anno-

tated, document-level chemical-disease interac-

tion dataset.

• Analysis of the model components indicates

that the document-level graph can effectively

encode document-level dependencies. Addi-

tionally, we show that inter-sentence associa-

tions can be beneficial for the detection of intra-

sentence relations.

2 Proposed Model

We build our model as a significant exten-

sion of our previously proposed sentence-level

model (Christopoulou et al., 2018) for document-

level RE. The most critical difference between

the two models is the introduction and construc-

tion of a partially-connected document graph, in-

stead of a fully-connected sentence-level graph.

Additionally, the document graph consists of het-

erogeneous types of nodes and edges in compar-

ison with the sentence-level graph that contains

only entity-nodes and single edge types among

them. Furthermore, the proposed approach utilises

multi-instance learning when mention-level anno-

tations are available.

As illustrated in Figure 2, the proposed model

consists of four layers: sentence encoding, graph
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Figure 2: Abstract architecture of the proposed approach. The model receives a document and encodes each

sentence separately. A document-level graph is constructed and fed into an iterative algorithm to generate edge

representations between the target entity nodes. Some node connections are not shown for brevity.

construction, inference and classification layers.

The model receives as input a document with iden-

tified concept-level entities and their textual men-

tions. Next, a document-level graph with multiple

types of nodes and edges is constructed. An in-

ference algorithm is applied on the graph edges to

generate concept-level pair representations. In the

final layer, the edge representations between the

target concept-entity nodes are classified into rela-

tion categories.

For the remainder of this section, we first briefly

introduce the document-level RE task setting and

then explain the four layers of the proposed model.

2.1 Task Setting

In concept, document-level RE the input is con-

sidered an annotated document. The annotations

include concept-level entities (with assigned KB

IDs), as well as multiple occurrences of each en-

tity under the same phrase of alias, i.e., entity men-

tions. We consider the associations of mentions to

concept entities given (also known as entity link-

ing (Shen et al., 2014)). The objective of the task is

given an annotated document, to identify all the re-

lated concept-level pairs in that document. In this

work, we refer to concept-level annotations as en-

tities and mention-level annotations as mentions.

2.2 Sentence Encoding Layer

First, each word in the sentences of the input doc-

ument is transformed into a dense vector repre-

sentation, i.e., a word embedding. The vectorised

words of each sentence are then fed into a Bi-

directional LSTM network (BiLSTM) (Hochre-

iter and Schmidhuber, 1997; Schuster and Paliwal,

1997), named the encoder. The output of the en-

coder results in contextualised representations for

each word of the input sentence.

2.3 Graph Layer

The contextualised word representations from the

encoder are used to construct a document-level

graph structure. The graph layer comprises of two

sub-layers, a node construction layer and an edge

construction layer. We compose the representa-

tions of the graph nodes in the first sub-layer and

the representations of the edges in the second.

2.3.1 Node construction

We form three distinct types of nodes in the graph:

mention nodes (M) nm, entity nodes (E) ne, and

sentence nodes (S) ns. Each node representation

is computed as the average of the embeddings of

different elements. Firstly, mention nodes corre-

spond to different mentions of entities in the in-

put document. The representation of a mention

node is formed as the average of the words (w)

that the mention contains. Secondly, entity nodes

represent unique entity concepts. The represen-

tation of an entity node is computed as the av-

erage of the mention (m) representations associ-

ated with the entity. Finally, sentence nodes cor-

respond to sentences. A sentence node is rep-

resented as the average of the word representa-

tions in the sentence. In order to distinguish dif-

ferent node types in the graph, we concatenate a

node type (t) embedding to each node represen-

tation. The final node representations are then

estimated as nm = [avgwi∈m
(wi); tm], ne =

[avgmi∈e
(mi); te], ns = [avgwi∈s

(wi); ts].

2.3.2 Edge construction

We initially construct non-directed edges between

the graph nodes using heuristic rules that stem

from the natural associations between the ele-

ments of a document, i.e., mentions, entities and

sentences. As we cannot know in advance if two
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entities are related, we do not directly connect en-

tity nodes. Connections between nodes are based

on pre-defined document-level interactions. The

model objective is to generate entity-to-entity (EE)

edge representations using other existing edges in

the graph and consequently infer entity-to-entity

relations. The different pre-defined edge types are

described below.

Mention-Mention (MM): Co-occurrence of men-

tions in a sentence might be a weak indication of

an interaction. For this reason, we create mention-

to-mention edges only if the corresponding men-

tions reside in the same sentence. The edge rep-

resentation between each mention pair mi and mj

is generated by concatenating the representations

of the nodes, the contexts cmi,mj
and a distance

embedding associated with the distance between

the two mentions dmi,mj
, in terms of intermedi-

ate words: xMM = [nmi
;nmj

; cmi,mj
;dmi,mj

].
Here, we generate the context representation for

these pairs in order to encode local, pair-centric

information. We use an argument-based attention

mechanism (Wang et al., 2016), to measure the im-

portance of other words in the sentence towards

the mention, denoting k ∈ {1, 2} as the mention

arguments.

αk,i = n⊺

mk
wi,

ak,i =
exp (αk,i)

∑

j∈[1,n],j 6∈mk
exp (αk,j)

,

ai = (a1,i + a2,i)/2,

cm1,m2
= H⊺ a,

(1)

where nmk
is a mention node representation, wi is

a sentence word representation, ai is the attention

weight of word i for mention pair m1,m2, H ∈
R
w×d is a sentence word representations matrix,

a ∈ R
w is the attention weights vector for the pair

and cm1,m2
is the final context representation for

the mention pair.

Mention-Sentence (MS): Mention-to-sentence

nodes are connected only if the mention resides in

the sentence. Their initial edge representation is

constructed as a concatenation of the mention and

sentence nodes, xMS = [nm;ns].
Mention-Entity (ME): We connect a mention

node to an entity node if the mention is associated

with the entity, xME = [nm;ne].
Sentence-Sentence (SS): Motivated by Quirk and

Poon (2017), we connect sentence nodes to en-

code non-local information. The main differences

with prior work is that our edges are unlabelled,

non-directed and span multiple sentences. To en-

code the distance between sentences, we concate-

nate to the sentence node representations their

distance in the form of an embedding: xSS =
[nsi ;nsj ;dsi,sj ]. We connect all sentence nodes in

the graph. We consider SSdirect as direct, ordered

edges (distance equal to 1) and SSindirect as indi-

rect, non-ordered edges (distance > 1) between S

nodes, respectively. In our setting, SS denotes the

combination of SSdirect and SSindirect.

Entity-Sentence (ES): To directly model entity-

to-sentence associations, we connect an entity

node to a sentence node if at least one mention of

the entity resides in this sentence, xES = [ne;ns].

In order to result in edge representations of

equal dimensionality, we use different linear re-

duction layers for different edge representations,

e(1)z = Wz xz, (2)

where e
(1)
z is an edge representation of length 1,

Wz ∈ R
dz×d corresponds to a learned matrix and

z ∈ [MM,MS,ME, SS,ES].

2.4 Inference Layer

We utilise an iterative algorithm to generate edges

between different nodes in the graph, as well as to

update existing edges. We initialise the graph only

with the edges described in Section 2.3.2, mean-

ing that direct entity-to-entity (EE) edges are ab-

sent. We can only generate EE edge representa-

tions by representing a path between their nodes.

This implies that entities can be associated through

an edge path of minimum length equal to 32.

For this purpose, we adapt our two-step infer-

ence mechanism, proposed in Christopoulou et al.

(2018), to encode interactions between nodes and

edges in the graph and hence model EE associa-

tions.

At the first step, we aim to generate a path be-

tween two nodes i and j using intermediate nodes

k. We thus combine the representations of two

consecutive edges eik and ekj , using a modified

bilinear transformation. This action generates an

edge representation of double length. We combine

all existing paths between i and j through k. The i,
j, and k nodes can be any of the three node types

E, M, or S. Intermediate nodes without adjacent

2Length 2 for an intra-sentence pair (E-S-E) or length 3

for an inter-sentence pair (E-S-S-E)
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edges to the target nodes are ignored.

f
(

e
(l)
ik , e

(l)
kj

)

= σ
(

e
(l)
ik ⊙

(

W e
(l)
kj

))

, (3)

where σ is the sigmoid non-linear function, W ∈
R
dz×dz is a learned parameter matrix, ⊙ refers to

element-wise multiplication, l is the length of the

edge and eik corresponds to the representation of

the edge between nodes i and k.

During the second step, we aggregate the

original (short) edge representation and the new

(longer) edge representation resulted from Equa-

tion (3) with linear interpolation as follows:

e
(2l)
ij = β e

(l)
ij + (1− β)

∑

k 6=i,j

f
(

e
(l)
ik , e

(l)
kj

)

, (4)

where β ∈ [0, 1] is a scalar that controls the con-

tribution of the shorter edge presentation. In gen-

eral β is larger for shorter edges as we expect that

the relation between two nodes is better expressed

through the shortest path between them (Xu et al.,

2015; Borgwardt and Kriegel, 2005).

The two steps are repeated a finite number of

times N . The number of iterations is correlated

with the final length of the edge representations.

With initial edge length l equal to 1, the first itera-

tion results in edges of length up-to 2. The second

iteration results in edges of length up-to 4. Sim-

ilarly, after N iterations, the length of edges will

be up-to 2N .

2.5 Classification Layer

To classify the concept-level entity pairs of inter-

est, we incorporate a softmax classifier, using the

entity-to-entity edges (EE) of the document graph

that correspond to the concept-level entity pairs.

y = softmax (Wc eEE + bc) , (5)

where Wc ∈ R
r×dz and bc ∈ R

r are learned

parameters of the classification layer and r is the

number of relation categories.

3 Experimental Settings

The model was developed using PyTorch (Paszke

et al., 2017). We incorporated early stopping

to identify the best training epoch and used

Adam (Kingma and Ba, 2015) as the model op-

timiser.

3.1 Data and Task Settings

We evaluated the proposed model on two datasets:

CDR (BioCreative V): The Chemical-Disease Re-

actions dataset was created by Li et al. (2016a) for

document-level RE. It consists of 1, 500 PubMed

abstracts, which are split into three equally sized

sets for training, development and testing. The

dataset was manually annotated with binary inter-

actions between Chemical and Disease concepts.

For this dataset, we utilised PubMed pre-trained

word embeddings (Chiu et al., 2016).

GDA (DisGeNet): The Gene-Disease Associa-

tions dataset was introduced by Wu et al. (2019),

containing 30, 192 MEDLINE abstracts, split into

29, 192 articles for training and 1, 000 for test-

ing. The dataset was annotated with binary in-

teractions between Gene and Disease concepts at

the document-level, using distant supervision. As-

sociations between concepts were generated by

aligning the DisGeNet (Piñero et al., 2016) plat-

form with PubMed3 abstracts. We further split the

training set into a 80/20 percentage split as train-

ing and development sets. For the GDA dataset,

we used randomly initialized word embeddings.

3.2 Model Settings

We explore multiple settings of the proposed

graph using different edges (MM, ME, MS, ES,

SS) and enhancements (node type embeddings,

mention-pairs context embeddings, distance em-

beddings). We name our model EoG, an abbrevi-

ation of Edge-oriented Graph. We briefly describe

the model settings in this section.

EoG refers to our main model with edges {MM,

ME, MS, ES, SS }. The EoG (Full) setting refers

to a model with a fully connected graph, where the

graph nodes are all connected to each other, in-

cluding E nodes. For this purpose, we introduce

an additional linear layer for the EE edges as in

Equation (2). The EoG (NoInf) setting refers

to a no inference model, where the iterative infer-

ence algorithm (Section 2.4) is ignored. The con-

catenation of the entity node embeddings is used

to represent the target pair. In this case, we also

make use of an additional EE linear layer for EE

edges. Finally, the EoG (Sent) setting refers to

a model that was trained on sentences instead of

documents. For each entity-level pair we merge

the predictions of the mention-level pairs in differ-

ent sentences using a maximum assumption: if at

3https://www.ncbi.nlm.nih.gov/pubmed/

https://www.ncbi.nlm.nih.gov/pubmed/
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Method
Overall (%) Intra (%) Inter (%)

P R F1 P R F1 P R F1

Gu et al. (2017) 55.7 68.1 61.3 59.7 55.0 57.2 51.9 7.0 11.7

Verga et al. (2018) 55.6 70.8 62.1 - - - - - -

Nguyen and Verspoor (2018) 57.0 68.6 62.3 - - - - - -

EoG 62.1 65.2 63.6 64.0 73.0 68.2 56.0 46.7 50.9

EoG (Full) 59.1 56.2 57.6 71.2 62.3 66.5 37.1 42.0 39.4

EoG (NoInf) 48.2 50.2 49.2 65.8 55.2 60.2 25.4 38.5 30.6

EoG (Sent) 56.9 53.5 55.2 56.9 76.4 65.2 - - -

Zhou et al. (2016) 55.6 68.4 61.3 - - - - - -

Peng et al. (2016) 62.1 64.2 63.1 - - - - - -

Li et al. (2016b) 60.8 76.4 67.7 67.3 52.4 58.9 - - -

Panyam et al. (2018) 53.2 69.7 60.3 54.7 80.6 65.1 47.8 43.8 45.7

Zheng et al. (2018) 56.2 67.9 61.5 - - - - - -

Table 1: Overall, intra- and inter-sentence pairs performance comparison with the state-of-the-art on the CDR test

set. The methods below the double line take advantage of additional training data and/or incorporate external tools.

least one mention-level prediction indicates a re-

lation then we predict the entity pair as related,

similarly to Gu et al. (2017). All of the settings

incorporate node type embeddings, contextual em-

beddings for MM edges and distance embeddings

for MM and SS edges, unless otherwise stated.

4 Results

Table 1 depicts the performance of our proposed

model on the CDR test set, in comparison with

the state-of-the-art. We directly compare our

model with models that do not incorporate exter-

nal knowledge. Verga et al. (2018) and Nguyen

and Verspoor (2018) consider a single pair per

document, while Gu et al. (2017) develops sepa-

rate models for intra- and inter-sentence pairs. As

it can be observed, the proposed model outper-

forms the state-of-the-art in CDR dataset by 1.3
percentage points of overall performance. We also

show the methods that take advantage of syntac-

tic dependency tools. Li et al. (2016b) uses co-

training with additional unlabeled training data.

Our model performs significantly better on intra-

and inter-sentential pairs, even compared to most

of the models with external knowledge, except for

Li et al. (2016b).

In addition, we report the performance of three

baseline models. The EoG model outperforms

all baselines for all pair types. In particular, for

the inter-sentence pairs, performance significantly

drops with a fully connected graph (Full) or

without inference (NoInf). The former might in-

dicate the existence of certain reasoning paths that

should be followed in order to relate entities re-

siding in different sentences. It is also important

Model
Dev | Test F1 (%)

Overall Intra Inter

EoG 78.7 81.5 82.5 85.2 48.8 50.0

EoG (Full) 78.6 80.8 82.4 84.1 52.3 54.7

EoG (NoInf) 71.8 74.6 76.8 79.1 45.5 49.3

EoG (Sent) 73.8 73.8 78.1 78.8 - -

Table 2: Performance comparison on the GDA devel-

opment and test sets.

to note that the intra-sentence pairs substantially

benefit from the document-level information, as

EoG surpasses the performance of training on sin-

gle sentences (Sent) by 3%. Finally, the per-

formance drop in intra-sentence pairs, as a result

of the inference algorithm removal (NoInf), sug-

gests that multiple entity associations exist in sen-

tences (Christopoulou et al., 2018). Their inter-

actions can be beneficial in cases of lack of word

context information.

We also apply our model on the distantly su-

pervised GDA dataset. As shown in Table 2 re-

sults for intra-sentence pairs are consistent with

the findings of the CDR dataset for both develop-

ment and test sets. This indicates that document-

level information is helpful. However, perfor-

mance differs for inter-sentence pairs and in par-

ticular for the fully connected graph (Full) base-

line. We partially attribute this behavior to the

small number of inter-sentence pairs in the GDA

dataset (only 13% compared to 30% in the CDR

dataset) that results in inadequate learning patters

for EoG. We leave further investigation as part of

future work.
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Embeddings
F1 (%)

Overall Intra Inter

EoG (PubMed) 63.62 68.25 50.94

EoG (GloVe) 63.01 67.52 50.26

EoG (random) 61.41 66.80 46.51

Table 3: Performance of EoG on the CDR test set with

different pre-trained word embeddings.
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Figure 3: Performance as a function of the number of

inference steps when using direct (SSdirect) or direct and

indirect (SS) sentence-to-sentence edges, on the CDR

development set.

5 Analysis & Discussion

We first analyse the performance of our main

model (EoG) using different pre-trained word em-

beddings. Table 3 shows the performance dif-

ference between domain-specific (PubMed) (Chiu

et al., 2016), general-domain (GloVe) (Pen-

nington et al., 2014) and randomly initialized

(random) word embeddings. As observed, our

proposed model performs consistently with both

in-domain and out-of-domain pre-trained word

embeddings. The low performance of random em-

beddings is due to the small size of the dataset,

which results in lower quality embeddings.

For further analysis, we choose the CDR dataset

as it is manually annotated. To better analyse

the behaviour of our model, we conduct analysis

on the effect of direct and indirect sentence-to-

sentence edges as a function of the inference steps.

Figures 3a, 3b and 3c illustrate the performance of

both graphs for overall, intra- and inter-sentence

pairs respectively.

The first observation is that usage of direct

edges only, reduces the overall performance al-

Edge Types
F1 (%)

Overall Intra Inter

EE 55.14 61.31 40.34

EoG 63.57 68.25 46.68

−MM 62.77 67.93 46.65

−ME 61.57 66.39 45.40

−MS 62.92 67.55 44.74

−ES 61.41 66.44 43.04

−SSindirect 59.70 67.09 28.00

−SS 57.41 65.45 1.59

−MM,ME,MS 60.46 66.07 39.56

−ES,MS,SS 56.86 64.63 0.00

Table 4: Ablation analysis for different edge and node

types on the CDR development set.

most by 4%, for inference step l = 8. This drop

mostly affects inter-sentence pairs, where a 18%
point drop is observed. In fact, ordered edges

(SSdirect) need longer inference to perform better,

in comparison with additional indirect edges (SS)

for which less steps are required. The superior-

ity of SS edges, for all inference steps, compared

to SSdirect edges on inter-sentence pairs detection,

indicates that in a narrative, some intermediate in-

formation is not important. The observation that

indirect edges perform slightly better than direct

for intra-sentence pairs (l ≤ 16) agrees with the

results of Table 1 where we showed that inter-

sentence information can act as complementary

evidence for intra-sentence pairs.

We additionally conduct ablation analysis on

the graph edges and nodes, as shown in Table 4.

Usage of EE edges only results in poor perfor-

mance across pairs. Removal of MM and ME

edges does not significantly affect the performance

as ES edges can replace their impact. Complete

removal of connections to M nodes results in low

inter-sentence performance. This behaviour pin-

points the importance of some local dependencies

in identifying cross-sentence relations.

Removal of ES edges reduces the perfor-

mance of all pairs, as encoding of EE edges be-

comes more difficult4. We further observe very

poor identification of inter-sentence pairs without

sentence-to-sentence connections. This is comple-

mentary with the inability of the model to identify

any inter-sentence pairs without connections to S

nodes. In this scenario, we enable identification of

pairs across sentences only through MM and ME

edges, as shown in Figure 4a. In the CDR dataset,

4Length 3 (E-M-M-E) for intra- and length 5 (E-M-S-S-
M-E) for inter-sentence pairs.
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(a) MM, ME edges (b) ES, SS edges

Figure 4: Relation paths with different types of edges.

Model
F1 (%)

Overall Intra Inter

EoG 63.57 68.25 46.68

−node types (T) 62.31 67.50 44.80

−MM context (C) 62.88 67.67 46.59

−distances (D) 62.53 68.00 41.53

−T,C,D 63.10 68.44 43.48

Table 5: Ablation analysis of edge enhancements on

the CDR development set.

78% of inter-sentential pairs have at least one ar-

gument that is mentioned only once in the doc-

ument. The identification of these pairs, without

S nodes, requires very long inference paths5. As

shown in Figure 4b, the introduction of S nodes

results in a path with half the length, which we ex-

pect to better represent the relation. Longer infer-

ence representations are much weaker than shorter

ones. This suggests that the inference mechanism

has limited capability in identifying very complex

associations.

We then investigate the additional enhance-

ments of the graph edges in Table 5. In general,

intra-sentence pairs are not affected by these set-

tings. However, for inter-sentence pairs, removal

of node type embeddings and distance embed-

dings results in a 2% and 5% drop in terms of F1-

score. These results indicate that the interactions

between different elements in a document, along

with the distance between sentences and mentions,

play an important role in inter-sentence pair in-

ference. Removing all of these settings does not

perform worse than removing one of them, which

might indicate model overfitting. We plan to fur-

ther investigate this as part of future work.

We examine the performance of different

models on inter-sentence pairs, based on their

sentence-level distances. Figure 5 illustrates that

for long-distanced pairs, EoG has lower per-

formance, indicating the difficulty in predicting

them and a possible requirement for other, latent

document-level information (EoG (Full)).

5Minimum inference length 6 (E-M-M-E-M-M-E).
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Figure 5: Performance of inter-sentence pairs on the

CDR development set as a function of their sentence

distance.

Following short exposure to oral prednisone

[...]. Both presented in the emergency room

with profound coma, hypotension, severe hyper-

glycemia, and acidosis.

The etiology of pyeloureteritis cystica has long

been [...] The disease occurred subsequent to the

initiation of heparin therapy [...]

Time trends in warfarin-associated hemorrhage.

[...] The proportion of patients with major and

intracranial bleeding increased [...]

Table 6: Inter-sentence pairs from the CDR develop-

ment set that EoG fails to detect.

As final analysis, we investigate some of the

cases where the graph models are unable to iden-

tify inter-sentence related pairs. For this purpose,

we randomly check some of the common false

negative errors among the EoG models. We iden-

tify three frequent cases of errors, as shown in

Table 6. In the first case, when multiple enti-

ties reside in the same sentence and are connected

with conjunctions (e.g., ‘and’) or commas, the

model often failed to find associations with all of

them. The second error derives from missing co-

reference connections. For instance, pyeloureteri-

tis cystica is referred to as disease. Although our

model cannot directly create these edges, S nodes

potentially simulate such links, by encoding the

co-referring entities into the sentence representa-

tion. Finally, incomplete entity linking results into

additional model errors. For instance, in the third

example, hemorrhage and intracranial bleeding

are synonymous terms. However, they are as-

signed different KB IDs, hence treated as different

entities. The model can find the intra-sentential

relation but not the inter-sentential one.

6 Related Work

Traditional approaches focus on intra-sentence su-

pervised RE, utilising CNN or RNN, ignoring

multiple entities in a sentence (Zeng et al., 2014;

Nguyen and Grishman, 2015) as well as incorpo-

rating external syntactic tools (Miwa and Bansal,
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2016; Zhang et al., 2018). Christopoulou et al.

(2018) considered intra-sentence entity interac-

tions without domain dependencies by modelling

long dependencies between the entities of a sen-

tence.

Other approaches deal with distantly-

supervised datasets but are also limited to

intra-sentential relations. They utilise Piecewise

Convolutional Neural Networks (PCNN) (Zeng

et al., 2015), attention mechanisms (Lin et al.,

2016; Zhou et al., 2018), entity descriptors (Jiang

et al., 2016) and graph CNNs (Vashishth et al.,

2018) to perform MIL on bags-of-sentences that

contain multiple mentions of an entity pair. Re-

cently, Zeng et al. (2017) proposed a method for

extracting paths between entities using the target

entities’ mentions in several different sentences

(in possibly different documents) as intermediate

connectors. They allow mention-mention edges

only if these mentions belong to the same entity

and consider that a single mention pair exists

in a sentence. On the contrary, we not only

allow interactions between all mentions in the

same sentence, but also consider multiple edges

between mentions, entities and sentences in a

document.

Current approaches that try to deal with

document-level RE are mostly graph-based. Quirk

and Poon (2017) introduced the notion of a doc-

ument graph, where nodes are words and edges

represent intra- and inter-sentential relations be-

tween the words. They connected words with dif-

ferent dependency edges and trained a binary lo-

gistic regression classifier. They evaluated their

model on distantly supervised full-text articles

from PubMed for Gene-Drug associations, re-

stricting pairs within a window of consecutive sen-

tences. Following this work, other approaches in-

corporated graphical models for document-level

RE such as graph LSTM (Peng et al., 2017), graph

CNN (Song et al., 2018) or RNNs on dependency

tree structures (Gupta et al., 2019). Recently, Jia

et al. (2019) improved n-ary RE using informa-

tion from multiple sentences and paragraphs in a

document. Similar to our approach, they choose

to directly classify concept-level pairs rather than

multiple mention-level pairs. Although they con-

sider sub-relations to model related tuples, they ig-

nore interactions with other entities outside of the

target tuple in the discourse units.

Non-graph-based approaches utilise different

intra- and inter-sentence models and merge the

resulted predictions (Gu et al., 2016, 2017).

Other approaches extract document-level repre-

sentations for each candidate entity pair (Zheng

et al., 2018; Li et al., 2018; Wu et al., 2019), or

use syntactic dependency structures (Zhou et al.,

2016; Peng et al., 2016). Verga et al. (2018) pro-

posed a Transformer-based model for document-

level relation extraction with multi-instance learn-

ing, merging multiple mention pairs. Nguyen

and Verspoor (2018) used a CNN with additional

character-level embeddings. Singh and Bhatia

(2019) also utilised Transformer and connected

two target entities by combining them directly and

via a contextual token. However, they consider a

single target entity pair per document.

7 Conclusion

We presented a novel edge-oriented graph neural

model for document-level relation extraction us-

ing multi-instance learning. The proposed model

constructs a document-level graph with heteroge-

neous types of nodes and edges, modelling intra-

and inter-sentence pairs simultaneously with an it-

erative algorithm over the graph edges. To the

best of our knowledge, this is the first approach to

utilise an edge-oriented model for document-level

RE.

Analysis on intra- and inter-sentence pairs indi-

cated that the proposed, partially-connected, doc-

ument graph structure can effectively encode de-

pendencies between document elements. Addi-

tionally, we deduce that document-level informa-

tion can contribute to the identification of intra-

sentence pairs leading to higher precision and F1-

score.

As future work, we plan to improve the infer-

ence mechanism and potentially incorporate ad-

ditional information in the document-graph struc-

ture. We hope that this study will inspire the com-

munity to further investigate the usage of edge-

oriented models on RE and other related tasks.
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A Datasets

In Tables 7-8 we summarise the statistics for the

CDR and GDA datasets, respectively. For all

datasets, we used the GENIA Sentence Splitter6

and GENIA Tagger7 for sentence splitting and

word tokenisation respectively. We additionally

removed mentions in the given abstracts that were

not grounded to a Knowledge Base ID (ID equal

to −1).

Due to the small size of the CDR dataset, some

approaches create a new split from the union of

train and development sets (Verga et al., 2018;

Zhou et al., 2018). We select to merge the train

and development sets and re-train our model on

their entire union for evaluation on the test set fol-

lowing Lin et al. (2016) and Zhou et al. (2016).

To compare with related work, we followed Verga

et al. (2018) and Gu et al. (2016) and ignored non-

related pairs that correspond to general concepts

(MeSH vocabulary hypernym filtering).

B Hyper-parameter Setting

We used the development set to identify the stop-

ping training epoch and tune the number of infer-

ence iterations. Except from these parameters, all

experiments used the same hyperparameters, with

a fixed initialisation seed. For the CDR dataset

EoG, (Full) and (Sent) models performed best

with l = 8, 2, 4 inference steps, respectively. The

6http://www.nactem.ac.uk/y-matsu/

geniass/
7http://www.nactem.ac.uk/GENIA/tagger/

Train Dev Test

Documents 500 500 500

Positive pairs 1,038 1,012 1,066

Intra 754 766 747

Inter 284 246 319

Negative pairs 4,202 4,075 4,138

Entities

Chemical 1,467 1,507 1,434

Disease 1,965 1,864 1,988

Mentions

Chemical 5,162 5,307 5,370

Disease 4,252 4,328 4,430

Table 7: CDR (BioCreative V) dataset statistics.

Train Dev Test

Documents 23,353 5,839 1,000

Positive pairs 36,079 8,762 1,502

Intra 30,905 7,558 1,305

Inter 5,174 1,204 197

Negative pairs 96,399 24,362 3,720

Entities

Gene 46,151 11,406 1,903

Disease 67,257 16,703 2,778

Mentions

Gene 205,457 51,410 8,404

Disease 226,015 56,318 9,524

Table 8: GDA (DisGeNet) dataset statistics.

chosen batchsize was equal to 2. For the GDA

dataset, EoG and EoG (Full) performed best

with l = 16 and EoG (Sent) with l = 8 infer-

ence steps. The chosen batchsize was equal to 3.

For all experiments performance was measured in

terms of micro precision (P), recall (R) and F1-

score (F1). We list the hyper-parameters used to

train the proposed model in Table 9.

Parameter Value

Batch size [2, 3]
Learning rate 0.002
Gradient clipping 10
Early stop patience 10
Regularization 10−4

Dropout word embedding layer 0.5
Dropout classification layer 0.3
Word dimension 200
Node type dimension 10
Distance dimension 10
Edge dimension 100
β 0.8
Optimizer Adam

Inference iterations [0, 5]

Table 9: Hyper-parameter values used in the reported

experiments.
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