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Abstract

Inferring commonsense knowledge is a key
challenge in natural language processing, but
due to the sparsity of training data, previ-
ous work has shown that supervised methods
for commonsense knowledge mining under-
perform when evaluated on novel data. In
this work, we develop a method for generat-
ing commonsense knowledge using a large,
pre-trained bidirectional language model. By
transforming relational triples into masked
sentences, we can use this model to rank a
triple’s validity by the estimated pointwise
mutual information between the two entities.
Since we do not update the weights of the
bidirectional model, our approach is not bi-
ased by the coverage of any one common-
sense knowledge base. Though this method
performs worse on a test set than models ex-
plicitly trained on a corresponding training set,
it outperforms these methods when mining
commonsense knowledge from new sources,
suggesting that unsupervised techniques may
generalize better than current supervised ap-
proaches.

1 Introduction

Commonsense knowledge consists of facts about
the world which are assumed to be widely
known. For this reason, commonsense knowledge
is rarely stated explicitly in natural language, mak-
ing it challenging to infer this information with-
out an enormous amount of data (Gordon and
Van Durme, 2013). Some have even argued that
machine learning models cannot learn common
sense implicitly (Davis and Marcus, 2015).

One method for mollifying this issue is directly
augmenting models with commonsense knowl-
edge bases (Young et al., 2018), which typically
contain high-quality information but with low cov-
erage. These knowledge bases are represented
as a graph, with nodes consisting of conceptual

entities (i.e. dog, running away, excited, etc.)
and the pre-defined edges representing the nature
of the relations between concepts (IsA, UsedFor,
CapableOf, etc.). Commonsense knowledge base
completion (CKBC) is a machine learning task
motivated by the need to improve the coverage of
these resources. In this formulation of the prob-
lem, one is supplied with a list of candidate entity-
relation-entity triples, and the task is to distin-
guish which of the triples express valid common-
sense knowledge and which are fictitious (Li et al.,
2016).

Several approaches have been proposed for
training models for commonsense knowledge base
completion (Li et al., 2016; Jastrzebski et al.,
2018). Each of these approaches uses some
sort of supervised training on a particular knowl-
edge base, evaluating the model’s performance
on a held-out test set from the same database.
These works use relations from ConceptNet, a
crowd-sourced database of structured common-
sense knowledge, to train and validate their mod-
els (Liu and Singh, 2004). However, it has been
shown that these methods generalize poorly to
novel data (Li et al., 2016; Jastrzebski et al., 2018).
Jastrzebski et al. (2018) demonstrated that much
of the data in the ConceptNet test set were simply
rephrased relations from the training set, and that
this train-test set leakage led to artificially inflated
test performance metrics. This problem of train-
test leakage is typical in knowledge base comple-
tion tasks (Toutanova et al., 2015; Dettmers et al.,
2018).

Instead of training a predictive model on any
specific database, we attempt to utilize the world
knowledge of large language models to identify
commonsense facts directly. By constructing a
candidate piece of knowledge as a sentence, we
can use a language model to approximate the like-
lihood of this text as a proxy for its truthfulness.
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In particular, we use a masked language model to
estimate point-wise mutual information between
entities in a possible relation, an approach that
differs significantly from fine-tuning approaches
used for other language modeling tasks. Since the
weights of the model are fixed, our approach is
not biased by the coverage of any one dataset. As
we might expect, our method underperforms when
compared to previous benchmarks on the Con-
ceptNet common sense triples dataset (Li et al.,
2016), but demonstrates a superior ability to gen-
eralize when mining novel commonsense knowl-
edge from Wikipedia.

Related Work Schwartz et al. (2017) and Trinh
and Le (2018) demonstrate a similar approach to
using language models for tasks requiring com-
monsense, such as the Story Cloze Task and
the Winograd Schema Challenge, respectively
(Mostafazadeh et al., 2016; Levesque et al., 2012).
Bosselut et al. (2019) and Trinh and Le (2019)
use unidirectional language models for CKBC, but
their approach requires a supervised training step.
Our approach differs in that we intentionally avoid
training on any particular database, relying instead
on the language model’s general world knowl-
edge. Additionally, we use a bidirectional masked
model which provides a more flexible framework
for likelihood estimation and allows us to estimate
point-wise mutual information. Although it is be-
yond the scope of this paper, it would be interest-
ing to adapt the methods presented here for the re-
lated task of generating new commonsense knowl-
edge (Saito et al., 2018).

2 Method

Given a commonsense head-relation-tail triple
x = (h, r, t), we are interested in determining the
validity of that tuple as a representation of a com-
monsense fact. Specifically, we would like to de-
termine a numeric score y ∈ R reflecting our con-
fidence that a given tuple represents true knowl-
edge.

We assume that heads and tails are arbitrary-
length sequences of words in a vocabulary V
so that h = {h1, h2, . . . , hn} and t =
{t1, t2, . . . , tm}. We further assume that we have
a known set of possible relationsR so that r ∈ R.

The goal is to determine a function f that maps
relational triples to validity scores. We propose
decomposing f(x) = σ(τ(x)) into two sub-
components: a sentence generation function τ

which maps a triple to a single sentence, and a
scoring model σ which then determines a validity
score y.

Our approach relies on two types of pretrained
language models. Standard unidirectional models
are typically represented as autoregressive proba-
bilities:

p(w1, w2, . . . , wm) =
m∏
i

p(wi|w1, . . . , wi−1)

Masked bidirectional models such as BERT, pro-
posed by Devlin et al. (2018), instead model in
both directions, training word representations con-
ditioned both on future and past words. The mask-
ing allows any number of words in the sequence to
be hidden. This setup provides an intuitive frame-
work to evaluate the probability of any word in a
sequence conditioned on the rest of the sequence,

p(wi|w′1:i−1, w′i+1:m)

where w′ ∈ V ∪ {κ} and κ is a special token indi-
cating a masked word.

2.1 Generating Sentences from Triples
We first consider methods for turning a triple such
as (ferret, AtLocation, pet store) into a
sentence such as “the ferret is in the pet store”.
Our approach is to generate a set of candidate sen-
tences via hand-crafted templates and select the
best proposal according to a language model.

For each relation r ∈ R, we hand-craft a set
of sentence templates. For example, one template
in our experiments for the relation AtLocation

is, “you are likely to find HEAD in TAIL”. For
the above example, this would yield the sentence,
“You are likely to find ferret in pet store”.

Because these sentences are not always gram-
matically correct, such as in the above example,
we apply a simple set of transformations. These
consist of inserting articles before nouns, con-
verting verbs into gerunds, and pluralizing nouns
which follow numbers. See the supplementary
materials for details and Table 1 for an exam-
ple. We then enumerate a set of alternative sen-
tences S = {S1, . . . , Sj} resulting from each tem-
plate and from all combinations of transforma-
tions. This yields a set of candidate sentences for
each data point. We then select the candidate sen-
tence with the highest log-likelihood according to
a pre-trained unidirectional language model Pcoh.

S∗ = argmax
S∈S

[logPcoh(S)]
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Candidate Sentence Si log p(Si)

“musician can playing musical instrument” −5.7
“musician can be play musical instrument” −4.9
“musician often play musical instrument” −5.5
“a musician can play a musical instrument” −2.9

Table 1: Example of generating candidate sen-
tences. Several enumerated sentences for the
triple (musician, CapableOf, play musical

instrument). The sentence with the highest log-
likelihood according to a pretrained language model is
selected.

We refer to this method of generating a sen-
tence from a triple as COHERENCY RANKING.
Coherency Ranking operates under the assump-
tion that natural, grammatical sentences will have
a higher likelihood than ungrammatical or unnat-
ural sentences. See an example subset of sen-
tence candidates and their corresponding scores
in Table 1. From a qualitative evaluation of the
selected sentences, we find that this approach
produces sentences of significantly higher quality
than those generated by deterministic rules alone.
We also perform an ablation study in our experi-
ments demonstrating the effect of each component
on CKBC performance.

2.2 Scoring Generated Triples
Assuming we have generated a proper sentence
from a relational triple, we now need a way to
score its validity with a pretrained model that con-
siders the relationship between the relation enti-
ties. We therefore propose using the estimated
point-wise mutual information (PMI) of the head
h and tail t of a triple conditioned on the relation
r, defined as,

PMI(t,h|r) = log p(t|h, r)− log p(t|r)

We can estimate these scores by using a masked
bidirectional language model, Pcmp. In the case
where the tail is a single word, the model al-
lows us to evaluate the conditional likelihood of
a single triple component p(t|h, r) by computing
Pcmp(wi = t |w1:i−1, wi+1:m) for the tail word.

In practice, the tail might be realized as a j-
word phrase. To handle this complexity, we use
a greedy approximation of its probability. We first
mask all of the tail words and compute the proba-
bility of each. We then find the word with highest
probability pk, substitute it back in, and repeat j

times. Finally, we calculate the total conditional
likelihood of the tail by the product of these terms,
p(t|h, r) =

∏j
k=1 pk.

The marginal p(t|r) is computed similarly, but
in this case we mask the head throughout. For
example, to compute the marginal tail probability
for the sentence, “You are likely to find a ferret
in the pet store” we mask both the head and the
tail and then sequentially unmask the tail words
only: “You are likely to find a κh1 in the κt1 κt2”.
If κt2 = “store” has a higher probability than
κt1 = “pet”, we unmask “store” and compute
“You are likely to find a κh1 in the κt1 store”. The
marginal likelihood p(t|r) is then the product of
the two probabilities.

The final score combines the marginal and con-
ditional likelihoods by employing a weighted form
of the point-wise mutual information,

PMIλ(t,h|r) = λ log p(t|h, r)− log p(t|r)

where λ is treated as a hyperparameter. Although
exact PMI is symmetrical, the approximate model
itself is not. We therefore average PMIλ(t,h|r)
and PMIλ(h, t|r) to reduce the variance of our es-
timates, computing the masked head values rather
than the tail values in the latter.

3 Experiments

To evaluate the Coherency Ranking approach we
measure whether it can distinguish between valid
and invalid triples. For our masked model, we use
BERT-large (Devlin et al., 2018). For sentence
ranking, we use the GPT-2 117M LM (Radford
et al., 2019). The relation templates and grammar
transformation rules which we use can be found in
the supplementary materials.

We compare the proposed method to several
baselines. Following Trinh and Le (2018), we
evaluate a simple CONCATENATION method for
generating sentences, splitting the relation r into
separate words and concatenating it with the head
and tail. For the triple (ferret, AtLocation,

pet store), the Concatenation approach would
yield, “ferret at location pet store”.

We also evaluate CKBC performance when we
construct sentences by applying a single hand-
crafted template. Since each triple is mapped
to a sentence with a single template without any
grammatical transformations, we refer to this as
the TEMPLATE method. Using the Template
approach, (ferret, AtLocation, pet store)
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Model Task 1 Task 2

Unsupervised

CONCATENATION 68.8 2.95± 0.11
TEMPLATE 72.2 2.98± 0.11
TEMPL.+GRAMMAR 74.4 2.56± 0.13
COHERENCY RANK 78.8 3.00± 0.12

Supervised

DNN 89.2 2.50
FACTORIZED 89.0 2.61
PROTOTYPICAL 79.4 2.55

Table 2: Main results for Task 1: Commonsense
knowledge base completion (test F1 score) and Task
2: Wikipedia mining (quality scores out of 4). Re-
sults are included from the sentence generation meth-
ods of simple concatenation, hand-crafted templates,
templates plus grammatical transformations, and co-
herency ranking. DNN, Factorized, and Prototypical
models are described in Jastrzebski et al. (2018).

would become “You are likely to find ferret in pet
store” using the template “you are likely to find
HEAD in TAIL”.

Next, we extend the Template method by ap-
plying deterministic grammatical transformations,
which we refer to as the TEMPLATE + GRAMMAR

approach. Like the full approach, these trans-
formations involve adding articles before nouns,
converting verbs into gerunds, and pluralizing
nouns following numbers. The Template + Gram-
mar approach differs from Coherency Ranking in
that all transformations are applied to every sen-
tence instead of applying combinations of trans-
formations and templates, which are then ranked
by a language model. Returning to our exam-
ple, the Template + Grammar method produces
“You are likely to find a ferret in a pet store”.
While this sentence is grammatical, applying this
method to (star, AtLocation, outer space)

yields “You are likely to find a star in an outer
space”, which is incorrect.

We compare our results to the supervised mod-
els from the work of Jastrzebski et al. (2018)
and the best performing model from Li et al.
(2016). Jastrzebski et al. (2018) introduce FAC-
TORIZED and PROTOTYPICAL models. The Fac-
torized model embeds the head, relation, and tail
in a vector space and then produces a score by tak-
ing a linear combination of the inner products be-
tween each pair of embeddings. The Prototypi-

cal model is similar, but does not include the in-
ner product between head and tail. Li et al. (2016)
evaluate a deep neural network (DNN) for CKBC.
They concatenate embeddings for the head, rela-
tion, and tail, which they then feed through a mul-
tilayer perceptron with one hidden layer. All three
models are trained on 100,000 ConceptNet triples.

Task 1: Commonsense Knowledge Base Com-
pletion Our experimental setup follows Li et al.
(2016), evaluating our model with their test set
(n = 2400) containing an equal number of valid
and invalid triples. The valid triples are from
the crowd-sourced Open Mind Common Sense
(OMCS) entries in the ConceptNet 5 dataset
(Speer and Havasi, 2012). Invalid triples are gen-
erated by replacing an element of a valid tuple
with another randomly selected element.

We use our scoring method to classify each tu-
ple as valid or invalid. To this end, we use our
method to assign a score to each tuple and then
group the resulting scores into two clusters. In-
stances in the cluster with the higher mean PMI
are labeled as valid, and the remainder are labeled
as invalid. We use expectation-maximization with
a mixture of Gaussians to cluster. We also tune the
PMI weight via grid search over 90 points from
λ ∈ [0.5, 5.], using the Akaike information crite-
rion of the Gaussian mixture model for evaluation
(Akaike, 1974).

Table 2 shows the full results. Our unsupervised
approach achieves a test set F1 score of 78.8, com-
parable to the 79.4 F1 score found by the super-
vised prototypical approach. The Factorized and
DNN models significantly outperformed our ap-
proach with F1 scores of 89.2 and 89.0, respec-
tively. Our grid search found an optimal λ value
of 1.65 for the Concatenation sentence generation
model and 1.55 for the Coherency Ranking model.
The Template and Template + Grammar methods
found lambda values of 1.20 and 0.95, respec-
tively.

Task 2: Mining Wikipedia To assess the
model’s ability to generalize to unseen data, we
evaluate our unsupervised model in comparison to
previous supervised methods on the task of min-
ing commonsense knowledge from Wikipedia. In
their evaluations, Li et al. (2016) curate a set of
1.7M triples across 10 relations by applying part-
of-speech patterns to Wikipedia articles. We sam-
ple 300 triples from each relation. We apply our
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method to evaluate these 3000 triples. Using the
approach described by Speer and Havasi (2012),
and followed by Li et al. (2016) and Jastrzebski
et al. (2018), two human annotators manually rate
the 100 triples with the highest predicted score
on a 0 to 4 scale: 0 (Doesn’t make sense), 1
(Not true), 2 (Opinion/Don’t know), 3 (Sometimes
true), and 4 (Generally true). We tuned λ by mea-
suring the quality of the 100 triples with the high-
est predicted score across λ ∈ {1, 2, . . . , 9, 10}.

The top 100 triples selected by our model were
assigned a mean rating of 3.00 (λ = 4) with a
standard error of 0.11 under the Coherency Rank-
ing approach, well exceeding the performance of
current supervised methods (Table 2). Standard
errors were calculated using 1000 bootstrap sam-
ples of the top 100 triples. The ratings assigned
by the two human annotators had a 0.50 Pearson
correlation and 0.23 kappa inter-annotator agree-
ment. Rater disagreements occur most frequently
when triples are ambiguous or difficult to inter-
pret. Notably, if we bucket the five scores into just
two categories of true and false, this disagreement
rate drops by 50%. To give a sense of the types
of commonsense knowledge our models struggle
to capture, we report the top 100 most confident
predictions that receive an average score below
3 in the supplementary material. Notably, some
of the top 100 triples our model identified were
indeed true, but would not be reasonably con-
sidered common sense (e.g. (vector bundle,

HasProperty, manifold)). This suggests that
our approach may be applicable to mining knowl-
edge beyond common sense.

Analysis: Sentence Generation In order to
measure the impact of sentence generation on our
model, we select a sample of 100 sentences and
group the results by a) whether the sentence con-
tained a grammatical error, and b) whether the
sentence misrepresented the meaning of the triple.
For example, the triple (golf, HasProperty,

good) yields the sentence “golf is a good”, which
is grammatically correct but conveys the wrong
meaning. On both Wikipedia mining and CKBC,
we find that misrepresenting meaning has an ad-
verse impact on model performance. In CKBC,
we also find that grammar has a high impact on the
resulting F1 scores (Table 3). Future work could
therefore focus on designing templates that more
reliably encode a relation’s true meaning.

Task 1 N (/100) F1 Score

GRAMMATICAL 75 79.1
UNGRAMMATICAL 25 66.7

CORRECT MEANING 91 77.6
WRONG MEANING 9 66.7

Task 2 - Quality

GRAMMATICAL 83 3.01
UNGRAMMATICAL 17 2.88

CORRECT MEANING 88 3.22
WRONG MEANING 12 1.18

Table 3: Test results examining the effect of sen-
tence meaning and grammaticality on task perfor-
mance. Scores are shown for a sample of 100 triples
split by whether the generated sentence is grammati-
cal and whether it conveys the correct meaning of the
triple.

4 Conclusion

We introduce a robust unsupervised method for
commonsense knowledge base completion using
the world knowledge of pre-trained language mod-
els. We develop a method for expressing knowl-
edge triples as sentences. Using a bidirectional
masked language model on these sentences, we
can then estimate the weighted point-wise mutual
information of a triple as a proxy for its valid-
ity. Though our approach performs worse on a
held-out test set developed by Li et al. (2016), it
does so without any previous exposure to the Con-
ceptNet database, ensuring that this performance
is not biased. In the future, we hope to explore
whether this approach can be extended to min-
ing facts that are not commonsense and to gen-
erating new commonsense knowledge outside of
any given database of candidate triples. We also
see potential benefit in the development of a more
expansive set of evaluation methods for common-
sense knowledge mining, which would strengthen
the validity of our conclusions.
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