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Abstract

Training and testing many possible parameters
or model architectures of state-of-the-art ma-
chine translation or automatic speech recog-
nition system is a cumbersome task. They
usually require a long pipeline of commands
reaching from pre-processing the training data
to post-processing and evaluating the output.

This paper introduces Sisyphus, a tool that
aims at managing scientific experiments in an
efficient way. After defining the workflow for
a given task, Sisyphus runs all required steps
and ensures that all commands finish success-
fully. It avoids unnecessary computations by
reusing tasks that are needed for multiple parts
of the workflow and saves the user time by de-
termining the order in which the tasks are to
be performed. Since the program and work-
flow are written in Python they can be easily
extended to contain arbitrary code. This makes
it possible to use the rich collection of Python
tools for editing, debugging, and documenta-
tion. It only has few requirements on the un-
derlying server or cluster, and has been suc-
cessfully tested in many large scale setups and
can handle thousands of tasks inside the work-
flow.

1 Introduction

Building competitive machine learning systems
requires the correct execution of many different
commands and components.

For example, a machine translation system
needs to pre-process the data, train a neural net-
work, and its performance evaluated. Each of
these steps can contain a large number of separate
steps. Running and later replicating all steps by
hand is cumbersome and error-prone.

A common approach to reduce these problems
is to create ad-hoc scripts for each given task. Al-
though this can be a solution for some parts of the
process, it is inflexible when changing workflows
as often as required in research. Additionally, er-

rors are easily overlooked when running a large
number of scripts in parallel.

Sisyphus is written to ensure that tasks can be
easily repeated and offers an overview of large ex-
periment setups with a vast number of steps. Or-
ganizing the work this way also allows the user
to easily reconfigure experiment and reuse tested
sub-tasks in other workflows. It is designed to han-
dle large and complicated workflows, containing
ten thousands of tasks in practice.

Finding a good naming scheme for multiple
related experiments is also hard, since initially
good choices often turn out to grow into strange
constructs as new experiments are added over
time resulting in names like “ExperimentA-withB-
withoutC-D=6-version3”. Sisyphus maps all jobs
to a unique path and can create links bearing de-
scriptive names. This allows the user to rename
everything without violating any dependencies.

1.1 Basic Assumption

In Sisyphus, workflows are broken down into sub-
tasks called “Jobs”. A job performs a specific
function, e.g. evaluating a translation, it often re-
quires an external script or program. Sisyphus is
built on one main assumption: Any job only re-
lies on a given list of parameters. e.g. evaluating
a translation depends on the hypothesis, the refer-
ence, and optionally a script.

This property is used to avoid multiple compu-
tations of the same job. Randomness is best mod-
eled using seeds that are given via the job param-
eters to allow for reliable reproducible results. If
this is not possible, e.g. for asynchronous neural
network training, Sisyphus still works, but cannot
be guaranteed to to reproduce the exact same re-
sult.

This means that the automatic handling of
changing input files is beyond the scope of Sisy-
phus. If an input file changes, it is necessary to
manually tell Sisyphus to invalidate all jobs that
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depend on it. Since a reliable test, e.g. hashing,
would be too costly to run for each startup, since it
can take a long time on large files like the training
data.

1.2 Design Goals
The design of Sisyphus is mainly guided by the
problems that we encounter while building sta-
tistical machine translation and automatic speech
recognition systems. Sisyphus aims to address the
following problems:

• Separation of the workflow description of an
experiment and the place where the experi-
ment is run: This allows the user to store the
small description on an expensive but safe file
server with backups, while the outputs of an
experiment are stored on a larger, but less re-
liable file system (Section 4.1 and 4.3).

• Reusability of jobs: Once a job is defined, it
should be easy to use at a different position
within the workflow.

• Minimal requirements on the underlying
server structure: Sisyphus only requires
Python 31 with a few basic packages and a
Unix-type operating system.

• Work definition independent of underlying
queuing engine: Moving it to a different en-
gine should be easy, e.g. testing the workflow
on a local computer before moving it to a grid
engine.

• Avoid redundant computations to save time
and disk space by grouping jobs with the
same input arguments.

• Start all needed jobs automatically in the cor-
rect order and, if no blocking dependencies
are found, in parallel.

• Automatically check for errors and, if possi-
ble, recover. Errors that occur silently some-
where in the pipeline can cause strange re-
sults and are hard to find. (Section 3.3)

• Be as general as possible and easy to extend:
The whole workflow definition is written in
standard conforming Python. This allows for
a lot of flexibility in defining a workflow and
to use external tools written for Python e.g.
to check and edit the workflow.

• The ability to integrate any external tool that
has a command line interface into a job.

1https://www.python.org/

2 Related Work

A large variety of heavyweight workflow manage-
ment systems exist, e.g. Pegasus (Deelman et al.,
2015), Taverna (Wolstencroft et al., 2013), and
Kepler (Ludäscher et al., 2006). They can cover
a large variety of use-cases (Liew et al., 2016), but
their use is hindered by strict requirements on the
users computing nodes.

The toolkit that seems to be most similar to our
approach is Ducttape2, the successor of LonnyBin
(Clark and Lavie, 2010). It is well designed and
covers many useful points. However, we miss a
more flexible configuration of the workflow e.g.
workflows that adjust to the outputs of finished
jobs are not supported. This does not allow to trig-
ger parts of the workflow only if current computa-
tions show that they are required.

Ducttape uses branch points to distinguish be-
tween different experiment settings. This creates
a fairly intuitive directory structure, but does not
depend on the true value given to each parameter.
If a parameter of a step is changed, it still maps
to the same directory. Additionally, long names
collapse to a hash value, losing the benefit of in-
tuitively named directories. Interruptions of Duct-
tape automatically stop all current computations,
which makes it problematic to add additional ex-
periments to a running workflow.

Sisyphus contains an experimental script to
convert Ducttape workflows into Sisyphus recipes.

3 Basic Elements

Every workflow can be modeled as a series of jobs.
The output of a job can be either files or param-
eters (parameters can be seen as special case of
files). This can be mapped to a directed acyclic
graph where each node is a job and each edge is a
file or parameter. The latter are either passed on to
another job or returned as result of the workflow.

The user can request the necessary files and
Sisyphus executes all jobs that are needed to com-
pute them. All jobs that are part of the graph but
are not required for the desired output are ignored.
This graph structure, as shown in Figure 1, is sim-
ilar to the approach followed by (Clark and Lavie,
2010).

3.1 Jobs

Jobs are the core element of Sisyphus, and are rep-
resented by the nodes in the dependency graph.
Every Job has specified inputs and outputs. When

2https://github.com/jhclark/ducttape

https://www.python.org/
https://github.com/jhclark/ducttape
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Figure 1: Example of a workflow as it is drawn by the
web interface. Jobs can be grouped to blocks for a bet-
ter visualization as it is done here with the stage data
block and the pre-processing blocks. If a Job finishes
successfully it is marked dark-green, running Jobs are
marked in green-yellow, Jobs that are runnable but not
running yet are marked blue, Jobs that have to wait for
other Jobs to finish are marked yellow, and Jobs that
failed are marked red. A block takes always the status
of the most problematic Job, e.g. if one Job failed it
is red, if all Jobs are finished it is green. Files that are
shared between Jobs are colored aquamarine.

an instance of a Job is created all inputs need to
be specified. However, they can be the output of
another Job. Once a Job is completed, all of its
outputs are guaranteed to be available for future
computations.

After a Job is created, a hash value is computed
based on the given input parameters. This hash is
used to ensure that only one node is used to repre-
sent the same computation. Additionally, it is used
as part of the path inside the work directory (Sec-
tion 4.3) associated with the Job. This directory
contains log files, status files, the work directory
and the output directory. All commands will be
run in the work directory, which is initially empty.

A Job is executed as soon as all inputs are ready,
meaning all Jobs that compute inputs are finished.
Before its execution, a Job has the opportunity to
request additional inputs. This can happen as a re-
sponse to the content of the previously specified
inputs, e.g. to implement an automatic parame-
ter optimization. If the Job does not specify addi-
tional inputs, it is scheduled for execution in the
configured queueing system.

An example Job definition is shown in Figure 2.

3.2 Tasks
Each Job must have one or more Tasks in which
the actual command is specified. All Tasks that
belong to the same Job share the same work direc-
tory, and are executed in a fixed linear order.

A Task object is the combination of a method
of the Job class, a set of requirements, and option-
ally a set of parameters that will be passed to the
method when executed. It is submitted to the grid
engine and once it is scheduled Sisyphus executes
the given method. It is also possible to create ar-
rays of Jobs by providing a list of parameter-sets.
These are executed in parallel (to the extent sup-
ported by the queue). A common approach is to
have a setup Task using one worker, a Task with
multiple parallel running instances, and finally a
Task to collect the outputs of all parallel Tasks and
to write them into the Jobs output file.

3.3 Error Handling
Sisyphus uses strict error checking to avoid errors
in which a step causes problems down the line.
This makes it easier to track down the problem
that caused the error. By default, a Job switches
into an error state if:

• a shell command returns a non-zero value,
which is also true for any command inside a
pipeline,

• an uninitialized variable is called, or

• the Python code throws an exception, which
can be used in combination with assertions.

This means the execution of this Job is stopped
to give the user a chance to fix the problem. After-
wards, the user can either delete or move the Job
directory by himself, or let Sisyphus do it for him.
If a Task is known to fail spontaneously, it can be
set to retry multiple times.

If a Task is interrupted before it is finished ex-
ecuting all commands, it switches into the inter-
rupted state. The Task can be marked as resume-
able, if executing the same code multiple times
results in the same outputs. In this case, Sisy-
phus automatically tries to determine if the Task
got interrupted due to a time or memory limit.
It increases the requested requirements automat-
ically and resubmits the Task. Resuming is not
performed automatically by default, since some
programs behave differently if they find files from
previous runs in their work directory. If a Job can
be resumed, meaning restarting the script will al-
ways result in the same output, the user can mark



87

1 from sisyphus import * # import all Sisyphus related classes, mainly job and task
2
3 class ParallelPipeline(Job):
4 #Example how to distibute a slow pipeline command to multiple machines
5 def __init__(self, text, command, parallel_processe=8):
6 self.text = text # Text that will be split and piped though command
7 self.command = command # The actuall command
8 self.parallel_processe = parallel_processe # Split into that many parallel processes
9 self.out = self.output_path(’out.gz’) # Name of the output path

10
11 def split(self):
12 #Count lines, capture_output gives stdout of command back as string
13 lines = int(self.sh(’zcat -f {text} | wc -l’, capture_output=True))
14 self.batch_size = (lines // self.parallel_processe) + 1 # compute batch size
15 self.sh(’zcat -f {text} | split -d -l {batch_size}’) # Split file
16
17 def run(self, pos): # pos will be given by task
18 self.sh(’cat x%02i | {command} > tmp.%02i’ % (pos, pos)) # Run the command for each batch
19
20 def collect(self):
21 self.sh(’cat tmp.* | gzip > {out}’) # collect all outputs
22 # Additional manual sanity check
23 output_lines = int(self.sh(’zcat {out} | wc -l’, capture_output=True))
24 print("Number of output lines: %i" % output_lines)
25 assert output_lines > 0, "No output created"
26
27 def tasks(self):
28 yield Task(’split’, rqmt={’cpu’: 1, ’mem’: 1}) # Run split task first
29 # Continue with the main task and starting a worker for each element in args list
30 yield Task(’run’, rqmt={’cpu’: 2, ’mem’: 4}, args=list(range(self.parallel_processe)))
31 yield Task(’collect’, rqmt={’cpu’: 1, ’mem’: 1}) # Finish with the collect task

Figure 2: Example of a job containing multiple task and running the one task on multiple computers

it as such. If not it stops executing further steps
and waits for a manual fix by the user.

3.4 Paths and Variables
Jobs are connected by Path and Variable objects,
representing the edges in the dependency graph.
A Variable is a subclass of the Path object which
can store arbitrary pickleable Python objects to be
passed between Jobs.

A Job checks all Path objects that are given as
inputs and start a Job only once all inputs are avail-
able. There are multiple ways for a Path to become
available. If it is created as an output of a Job, it
is available either once the Job is finished or it is
marked as available by the Job earlier. This can be
used for example if a neural network training cre-
ates save points of the current training state which
can be evaluated before the whole training is fin-
ished. If a Path object is used to add an input file
to the graph, Sisyphus marks it as available if the
file exists and alerts the user otherwise.

3.5 Engine
An engine defines how to execute and schedule
the given tasks. Currently supported engines are
the Son Grid Engine (SGE) with its closely related
forks, Platform Load Sharing Facility (LSF), and
a local engine running on the same node as Sisy-
phus. It is also possible to combine different en-
gines. A common setup is to have a local engine
for small Jobs, e.g. counting the number of lines
in a file, and a cluster-based engine for everything

else. The choice which engine to use can be given
via the requirement argument of a Task. Currently
all engine implementations require that all nodes
have access to a shared file system.

4 Directory Structure

A Sisyphus experiment directory usually consists
of:

• a recipe directory, containing the source code
for the Jobs (Section 4.1),

• a config directory, which defines the Jobs to
run and the order of their execution (Section
4.2),

• a work directory, each Job will create a direc-
tory here to run its code, store its output, and
save log files (Section 4.3),

• a output directory containing links the fin-
ished outputs (Section 4.4),

• an aliases directory, containing links to run-
ning Jobs with given aliases (Section 4.4),
and

• a settings files, that holds global settings, e.g.
which engines are available (Section 4.5).

4.1 Recipe Directory
The recipes are a collection of files that contain the
code describing the Jobs that can be executed to
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run an experiment. Recipe files are valid Python
files and can be imported similarly to any other
Python modules. This allows the users to manage
their experiments like a regular Python project,
creating dependencies between different Jobs sim-
ilar to Python module imports. The only thing that
separates the recipe directory from a regular mod-
ule directory is that it can contain Jobs descrip-
tions.

Beside placing Jobs in the recipe directory, it is
also common to place functions encapsulating re-
occurring workflows here. Any valid Python code
can be placed here.

4.2 Config Directory
The configuration directory is used to actually cre-
ate the graph and select which outputs has to be
computed. Similar to the recipe directory, it con-
tains regular Python files that can be imported
like any other Python module. It has to import
the needed modules from the recipe directory and
create the appropriate Jobs. When starting Sisy-
phus the user selects which configuration should
be loaded to construct the graph.

4.3 Work Directory
The work directory stores the realization of the
graph. Each Job gets its own directory. Its
path is constructed from the recipe module, the
Job name and the hash value of the given in-
puts. This yields a compromise between struc-
tured file names, brevity and the individuality of
these names. The work directory can be linked to
a different file system with sufficient disk space.

4.4 Output and Aliases Directory
Outputs that are computed by Sisyphus are linked
to the output directory. Similarly, it is possible
to give important Jobs one or more meaningful
aliases to make it trivial to find them.

4.5 Settings File
The settings file is used for global parameters.
This is the place to define which engine should be
used, if and how the requirements of interrupted
Jobs are changed, if the Job directory is cleaned
automatically after it finishes, what the default en-
vironment of an executed shell command should
looks like, and various delays to allow networked
file systems to synchronize.

5 Helpers

Sisyphus provides a few tools to help with reoc-
curring tasks.

5.1 Web Server

The web server provides a list with all Jobs and
their current states. Alternatively, it is also possi-
ble to show all Jobs in a graph structure, as shown
in Figure 1. Each Job can be selected to show more
detailed information about its status, dependencies
and possible error messages.

5.2 Console

It is possible to start an interactive Python shell
to analyze the graph or test different functions di-
rectly. It also serves to call the team import (Sec-
tion 5.3) and clean up helper (Section 5.5).

5.3 Team Import

If multiple people work on the same task, it is
helpful to avoid rerunning computations that have
been already carried out by others. Sisyphus can
automatically check other work directories and
import finished Jobs. This saves one from manu-
ally linking finished computations, as it is usually
the case when using scripts.

5.4 Virtual File System

An alternative way to have a structured access to
all Job work directories and attributes is the virtual
file system using fuse. This allows one to use any
console or script to navigate the graph.

5.5 Clean Up

After the experiments are finished it is time to
clean up. Sisyphus supports a few options to
do this depending how harsh the clean up has to
be. This is mainly a trade-off between how much
space is used on disk vs. how many steps are
needed to re-run the experiments.

The least invasive method is to delete the work
directory of each Job to remove temporary data
created during the execution of the Job and to pack
all log files into a tar archive. This can be set to
run automatically in the background after a Job
has finished successfully.

The second method is to remove lost Job direc-
tories from Jobs that are not in the final graph.
This usually happens if the workflow changed
over time and some steps had to be re-run due to
changed inputs. The now obsolete directories re-
main on disk until they are removed. A alterna-
tive source for lost data in the work directories are
Jobs that have been restarted after an error which
causes Sisyphus to move the old directory aside in
case later debugging is necessary. This step keeps
all the data used in the current workflow.



89

A more invasive option to free space is the
clean-up of the current graph by removing Jobs
that are not needed for further computations of the
workflow anymore. This only keeps Jobs which
produce outputs that are marked as targets or Jobs
that are still needed to reach unfinished targets.
In addition Jobs can be saved from deletion by
defining a score, Jobs with a score higher than
the chosen threshold will be kept. These are typi-
cally Jobs that are expensive to recompute, e.g. the
training of a neural networks.

6 Real-World Usage

Sisyphus is extensively used by the machine trans-
lation and the automatic speech recognition teams
at the RWTH Aachen University. All WMT and
IWSLT submissions by the RWTH Aachen Uni-
versity since 2015 until now have been created
using Sisyphus (Peter et al., 2015b,a). It was
used for speech recognition in Zeyer et al. (2017).
AppTek3 also uses Sisyphus internally.

7 Conclusion

We presented overview of our novel workflow
manager Sisyphus. Features like automatic er-
ror detection, efficient usage of computational re-
sources, scalability, easy of reproducibility, abil-
ity to share work with others have been proven to
be extremely helpful for our research. The large
collection of tools for Python can be used with-
out modification for editing, debugging, and docu-
menting the workflow, since it is written in Python.
It is freely available online4 under the Mozilla
License v2.0 to encourage the adoption by other
groups.
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