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Abstract

We put forward the hypothesis that high-
accuracy sentiment analysis is only pos-
sible if word senses with different polar-
ity are accurately recognized. We pro-
vide evidence for this hypothesis in a case
study for the adjective “hard” and propose
contextually enhanced sentiment lexicons
that contain the information necessary for
sentiment-relevant sense disambiguation.
An experimental evaluation demonstrates
that senses with different polarity can be
distinguished well using a combination of
standard and novel features.

1 Introduction

This paper deals with fine-grained sentiment anal-
ysis. We aim to make three contributions. First,
based on a detailed linguistic analysis of contexts
of the word “hard” (Section 3), we give evidence
that highly accurate sentiment analysis is only pos-
sible if senses with different polarity are accu-
rately recognized.

Second, based on this analysis, we propose to
return to a lexicon-based approach to sentiment
analysis that supports identifying sense distinc-
tions relevant to sentiment. Currently available
sentiment lexicons give the polarity for each word
or each sense, but this is of limited utility if senses
cannot be automatically identified in context. We
extend the lexicon-based approach by introducing
the concept of a contextually enhanced sentiment
lexicon (CESL). The lexicon entry of a word w in
CESL has three components: (i) the senses of w;
(ii) a sentiment annotation of each sense; (iii) a
data structure that, given a context in which w oc-
curs, allows to identify the sense of w used in that
context.

As we will see in Section 3, the CESL sense
inventory – (i) above – should be optimized for

sentiment analysis: closely related senses with the
same sentiment should be merged whereas subtle
semantic distinctions that give rise to different po-
larities should be distinguished.

The data structure in (iii) is a statistical classi-
fication model in the simplest case. We will give
one other example for (iii) below: it can also be a
set of centroids of context vector representations,
with a mapping of these centroids to the senses.

If sentiment-relevant sense disambiguation is
the first step in sentiment analysis, then power-
ful contextual features are necessary to support
making fine-grained distinctions. Our third con-
tribution is that we experiment with deep learn-
ing as a source of such features. We look at
two types of deep learning features: word em-
beddings and neural network language model pre-
dictions (Section 4). We show that deep learn-
ing features significantly improve the accuracy
of context-dependent polarity classification (Sec-
tion 5).

2 Related work

Initial work on sentiment analysis was either based
on sentiment lexicons that listed words as posi-
tive or negative sentiment indicators (e.g., Turney
(2002), Yu and Hatzivassiloglou (2003)), on statis-
tical classification approaches that represent doc-
uments as ngrams (e.g., Pang et al. (2002)) or on
a combination of both (e.g., Riloff et al. (2003),
Whitelaw et al. (2005)). The underlying assump-
tion of lexicon-based sentiment analysis is that
a word always has the same sentiment. This is
clearly wrong because words can have senses with
different polarity, e.g., “hard wood” (neutral) vs.
“hard memory” (negative).

Ngram approaches are also limited because
ngram representations are not a good basis for
relevant generalizations. For example, the neu-
tral adverbial sense ‘intense’ of “hard” (“laugh
hard”, “try hard”) vs. the negative adjectival mean-
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Cobuild syntax meaning example patterns sent. # train # test
1 FIRM 1 ADJ firm, stiff hard floor neu 78 5
2 DIFFICULT 2, 4, 9,

10, 11
ADJ difficult hard question hard for,

hard on,
hard to V

neg 2561 120

3 ADVERB 3a, 5,
6, 7

ADV intensely work hard neu 425 19

4 INTENSE 3b ADJ intense hard look be hard at
it

neu 24 7

5 HARD-MAN 8 ADJ unkind hard man neg 15 0
6 HARD-TRUTH 12 attributive

ADJ
definitely
true

hard truth neu 5 6

7 MUSIC ADJ hard-rock-
type music

hard beats neu 347 15

8 CONTRAST ADJ opposite of
soft transi-
tion

hard edge neu 3 1

9 NEGATIVE-P 13, 15 phrases neg 36 2
10 NEUTRAL-P 14, 16 phrases neu 375 27

Table 1: Sense inventory of “hard”.

ing ‘difficult’ (“hard life”, “hard memory”) cannot
be easily distinguished based on an ngram repre-
sentation. Moreover, although ngram approaches
could learn the polarity of these phrases they do
not generalize to new phrases.

More recent compositional approaches to senti-
ment analysis can outperform lexicon and ngram-
based methods (e.g., Socher et al. (2011), Socher
et al. (2013)). However, these approaches conflate
two different types of contextual effects: differ-
ences in sense or lexical meaning (“hard memory”
vs. “hard wood”) on the one hand and meaning
composition like negation on the other hand. From
the point of view of linguistic theory, these are dif-
ferent types of contextual effects that should not
be conflated. Recognizing that “hard” occurs in
the scope of negation is of no use if the basic po-
larity of the contextually evoked sense of “hard”
(e.g., negative in “no hard memories” vs. neutral
in “no hard wood”) is not recognized.

Wilson et al. (2009) present an approach to clas-
sify contextual polarity building on a two-step pro-
cess. First, they classify if a sentiment word is po-
lar in a phrase and if so, second, they classify its
polarity. Our approach can be seen as an exten-
sion of this approach; the main difference is that
we will show in our analysis of “hard” that the
polarity of phrases depends on the senses of the
words that are used. This is evidence that high-
accuracy polarity classification depends on sense
disambiguation.

There has been previous work on assigning po-
larity values to senses of words taken from Word-

Net (e.g., Baccianella et al. (2010), Wiebe and Mi-
halcea (2006)). However, these approaches are not
able to disambiguate the sense of a word given its
context.

Previous work on representation learning for
sentiment analysis includes (Maas and Ng, 2010)
and (Maas et al., 2011). Their models learn word
embeddings that capture semantic similarities and
word sentiment at the same time. Their approach
focuses on sentiment of entire sentences or docu-
ments and does not consider each sentiment word
instance at a local level.

We present experiments with one supervised
and one semisupervised approach to word sense
disambiguation (WSD) in this paper. Other
WSD approaches, e.g., thesaurus-based WSD
(Yarowsky, 1992), could also be used for CESL.

3 Linguistic analysis of sentiment
contexts of “hard”

We took a random sample of 5000 contexts of
“hard” in the Amazon Product Review Data (Jin-
dal and Liu, 2008). We use 200 as a test set and set
aside 200 for future use. We analyzed the remain-
ing 4600 contexts using a tool we designed for this
study, which provides functionality for selecting
and sorting contexts, including a keyword in con-
text display. If a reliable pattern has been identi-
fied (e.g., the phrase “die hard”), then all contexts
matching the pattern can be labeled automatically.

Our goal is to identify the different uses of
“hard” that are relevant for sentiment. The basis
for our inventory is the Cobuild (Sinclair, 1987)
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lexicon entry for “hard”. We use Cobuild because
it was compiled based on an empirical analysis of
corpus data and is therefore more likely to satisfy
the requirements of NLP applications than a tradi-
tional dictionary.

Cobuild lists 16 senses. One of these senses
(3) is split into two to distinguish the adverbial
(“to accelerate hard”) and adjectival (“hard accel-
eration”) uses of “hard” in the meaning ‘intense’.
We conflated five senses (2, 4, 9, 10, 11) refer-
ring to different types of difficulty: “hard ques-
tion” (2), “hard work” (4), “hard life” (11) and
two variants of “hard on”: “hard on someone”
(9), “hard on something” (10); and four differ-
ent senses (3a, 5, 6, 7) referring to different types
of intensity: “to work hard” (3a), “to look hard”
(5), “to kick hard” (6), “to laugh hard” (7). Fur-
thermore, we identified a number of noncompo-
sitional meanings or phrases (lists NEGATIVE-P
and NEUTRAL-P in the supplementary material1)
in addition to the four listed by Cobuild (13, 14,
15, 16). In addition, new senses for “hard” are in-
troduced for opposites of senses of “soft”: the op-
posite of ‘quiet/gentle voice/sound’ (7: MUSIC;
e.g., “hard beat”, “not too hard of a song”) and
the opposite of ‘smooth surface/texture’ (8: CON-
TRAST; e.g., “hard line”, “hard edge”).

Table 1 lists the 10 different uses that are the re-
sult of our analysis. For each use, we give the cor-
responding Cobuild sense numbers, syntactic in-
formation, meaning, an example, typical patterns,
polarity, and number of occurrences in training
and test sets.

7 uses are neutral and 3 are negative. As
“hard’s” polarity in most sentiment lexicons is
negative, but only 3 out of 7 senses are negative,
“hard” provides evidence for our hypothesis that
senses need to be disambiguated to allow for fine-
grained and accurate polarity recognition.

We hired two PhD students to label each of the
200 contexts in the test set with one of the 10 la-
bels in Table 1 (κ = .78). Disagreement was re-
solved by a third person.

We have published the labeled data set of
4600+200 contexts as supplementary material.

4 Deep learning features

We use two types of deep learning features to be
able to make the fine-grained distinctions neces-

1All supplementary material is available at http://
www.cis.lmu.de/ebert .

sary for sense disambiguation. First, we use word
embeddings similar to other recent work (see be-
low). Second, we use a deep learning language
model (LM) to predict the distribution of words for
the position at which the word of interest occurs.
For example, an LM will predict that words like
“granite” and “concrete” are likely in the context
“a * countertop” and that words like “serious” and
“difficult” are likely in the context “a * problem”.
This is then the basis for distinguishing contexts
in which “hard” is neutral (in the meaning ‘firm,
solid’) from contexts in which it is a sentiment in-
dicator (in the meaning ‘difficult’). We will use
the term predicted context distribution or PCD to
refer to the distribution predicted by the LM.

We use the vectorized log-bilinear language
model (vLBL) (Mnih and Kavukcuoglu, 2013)
because it has three appealing features. (i) It
learns state of the art word embeddings (Mnih and
Kavukcuoglu, 2013). (ii) The model is a language
model and can be used to calculate PCDs. (iii) As
a linear model, vLBL can be trained much faster
than other models (e.g., Bengio et al. (2003)).

The vLBL trains one set of word embeddings
for the input space (R) and one for the target space
(Q). We denote the input representation of word
w as rw and the target representation as qw. For a
given context c = w1, . . . , wn the model predicts
a target representation q̂ by linearly combining the
context word representations with position depen-
dent weights:

q̂(c) =
n∑
i=1

di � rwi

where di ∈ D is the weight vector associated
with position i in the context and � is point-
wise multiplication. Given the model parameters
θ = {R,Q,D, b} the similarity between q̂ and the
correct target word embedding is computed by the
similarity function

sθ(w, c) = q̂(c)Tqw + bw

where bw is a bias term.
We train the model with stochastic gradient

descent on mini-batches of size 100, following
the noise-contrastive estimation training proce-
dure of Mnih and Kavukcuoglu (2013). We use
AdaGrad (Duchi et al., 2011) with the initial learn-
ing rate set to η = 0.5. The embeddings size is set
to 100.
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bl 1 .62 .62 1.00 .76
fu

lly

2 + .90 .91 .94 .92
3 + .90 .91 .92 .92
4 + .87 .87 .92 .90
5 + + .92 .92 .94 .93
6 + + .91 .90 .95 .92
7 + + .86 .83 .96 .89
8 + + + .92 .93 .95 .94

se
m

i

9 + .85 .87 .89 .88
10 + .85 .87 .89 .88
11 + .76 .73 .98 .83
12 + + .85 .87 .89 .88
13 + + .85 .87 .89 .88
14 + + .85 .89 .87 .88
15 + + + .86 .87 .90 .89

te
st

bl 16 .66 .66 1.00 .80
fully 17 + + + .90 .89 .96 .92
semi 18 + + + .85 .85 .91 .88

Table 2: Classification results; bl: baseline

During training we do not need to normalize the
similarity explicitly, because the normalization is
implicitly learned by the model. However, nor-
malization is still necessary for prediction. The
normalized PCD for a context c of word w is com-
puted using the softmax function:

P cθ (w) =
exp(sθ(w, c))∑
w′ exp(sθ(w′, c))

We use a window size ofws = 7 for training the
model. We found that the model did not capture
enough contextual phenomena forws = 3 and that
results for ws = 11 did not have better quality
than ws = 7, but had a negative impact on the
training time. Using a vocabulary of the 100,000
most frequent words, we train the vLBL model for
4 epochs on 1.3 billion 7-grams randomly selected
from the English Wikipedia.

5 Experiments

The lexicon entry of “hard” in CESL consists of (i)
the senses, (ii) the polarity annotations (neutral or
negative) and (iii) the sense disambiguation data
structure. Components (i) and (ii) are shown in
Table 1. In this section, we evaluate two different
options for (iii) on the task of sentiment classifica-
tion.

1 2 3 4 5 6 7 8
1
2 ‡
3 ‡
4 ‡ ‡ ·
5 ‡ ‡
6 ‡ ‡
7 ‡ ‡ * ‡ ‡
8 ‡ * * ‡ * ‡

Table 3: Significant differences of lines 1–8 in Ta-
ble 2; ‡: p=0.01, *: p=0.05, ·: p=0.1

The first approach is to use a statistical classi-
fication model as the sense disambiguation struc-
ture. We use liblinear (Fan et al., 2008) with stan-
dard parameters for classification based on three
different feature types: ngrams, embeddings (em-
bed) and PCDs. Ngram features are all n-grams
for n ∈ {1, 2, 3}. As embedding features we
use (i) the mean of the input space (R) embed-
dings and (ii) the mean of the target space (Q) em-
beddings of the words in the context (see Blacoe
and Lapata (2012) for justification of using simple
mean). As PCD features we use the PCD predicted
by vLBL for the sentiment word of interest, in our
case “hard”.

We split the set of 4600 contexts introduced in
Section 3 into a training set of 4000 and a devel-
opment set of 600.

Table 2 (lines 1–8) shows the classification re-
sults on the development set for all feature type
combinations. Significant differences between re-
sults – computed using the approximate random-
ization test (Padó, 2006) – are given in Table 3.
The majority baseline (bl), which assigns a nega-
tive label to all examples, reaches F1 = .76. The
classifier is significantly better than the baseline
for all feature combinations with F1 ranging from
.89 to .94. We obtain the best classification result
(.94) when all three feature types are combined
(significantly better than all other feature combi-
nations except for 5).

Manually labeling all occurrences of a word
is expensive. As an alternative we investigate
clustering of the contexts of the word of interest.
Therefore, we represent each of the 4000 con-
texts of “hard” in the training set as its PCD2, use

2To transform vectors into a format that is more appropri-
ate for the underlying Gaussian model of kmeans, we take the
square root of each probability in the PCD vectors.
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kmeans clustering with k = 100 and then label
each cluster. This decreases the cost of labeling
by an order of magnitude since only 100 clusters
have to be labeled instead of 4000 training set con-
texts.

Table 2 (lines 9–15) shows results for this
semisupervised approach to classification, using
the same classifier and the same feature types, but
the cluster-based labels instead of manual labels.

For most feature combinations, F1 drops com-
pared to fully supervised classification. The best
performing model for supervised classification
(ngram+PCD+embed) loses 5%.

This is not a large drop considering the savings
in manual labeling effort. All results are signifi-
cantly better than the baseline. There are no signif-
icant differences between the different feature sets
(lines 9–15) with the exception of embed, which
is significantly worse than the other 6 sets.

The centroids of the 100 clusters can serve as an
alternative sense disambiguation structure for the
lexicon entry of “hard” in CESL.3 Each sense s is
associated with the centroids of the clusters whose
majority sense is s.

As final experiment (lines 16–18 in Table 2),
we evaluate performance for the baseline and for
PCD+ngram+embed – the best feature set – on the
test set. On the test set, baseline performance is
.80 (.04 higher than .76 on line 1, Table 2); F1 of
PCD+ngram+embed is .92 (.02 less than develop-
ment set) for supervised classification and is .88
(.01 less) for semisupervised classification (com-
paring to lines 8 and 15 in Table 2). Both results
(.92 and .88) are significantly higher than the base-
line (.80).

6 Conclusion

The sentiment of a sentence or document is the
output of a causal chain that involves complex lin-
guistic processes like contextual modification and
negation. Our hypothesis in this paper was that
for high-accuracy sentiment analysis, we need to
model the root causes of this causal chain: the
meanings of individual words. This is in contrast
to other work in sentiment analysis that conflates
different linguistic phenomena (word sense ambi-
guity, contextual effects, negation) and attempts to
address all of them with a single model.

For sense disambiguation, the first step in the
causal chain of generating sentiment, we proposed

3Included in supplementary material.

CESL, a contextually enhanced sentiment lexi-
con that for each word w holds the inventory of
senses of w, polarity annotations of these senses
and a data structure for assigning contexts of w
to the senses. We introduced new features for
sentiment analysis to be able to perform the fine-
grained modeling of context needed for CESL. In
a case study for the word “hard”, we showed that
high accuracy in sentiment disambiguation can be
achieved using our approach. In future work, we
would like to show that our findings generalize
from the case of “hard” to the entire sentiment lex-
icon.
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